Top Banner
Applications of Conformal Mappings for Electromagnetics Yuya Saito Electrical and Computer Engineer
21

Application of Conformal Mapping for Electromagnetic

Nov 24, 2014

Download

Documents

Schwarz-Christoffel Transformation applied to calculate capacitance of Coplanar Waveguide

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Application of Conformal Mapping for Electromagnetic

Applications of Conformal Mappings for Electromagnetics

Yuya SaitoElectrical and Computer Engineering

Page 2: Application of Conformal Mapping for Electromagnetic

Introduction

Modern applications of conformal mapping

•Heat Transfer

•Fluid FlowHydrodynamics and Aerodynamics

•ElectromagneticsStatic field in electricity and magnetism, Transmission

line and Waveguide, and Smith Chart etc

Transient Heat Conduction

Page 3: Application of Conformal Mapping for Electromagnetic

Conformal Mappings for Electromagnetics

   u=constant ( blue line ) ⇔  Electrical Flux  

   v=constant ( red line) ⇔   Magnetic Field (or electrical

potential)

Conformal Mapping : z=f(w)    z, w: complex values  

z-plane                w-plane

     

iy    z=x+jy v1

x

v2

iv    w=u+jvv1

uv2

Mapping a region in one complex plane onto another complex plane

For Electromagnetics

Page 4: Application of Conformal Mapping for Electromagnetic

Capacitance

a b1

a1

d1

εr

V

Electrical Flux

1

11

dbaC r

1

1

daC r

Two dimensional problem if b1=1

Page 5: Application of Conformal Mapping for Electromagnetic

Coaxial Cable

E field

H field

I

abC r

/ln2

r

VQC

the capacitance per unit length

dvsdEV vs

)( 0

Gauss’s Lawa b

Page 6: Application of Conformal Mapping for Electromagnetic

23

4

5

6 7

8

E field

H field

x

yZ-plane

123

45

6 7 8

a b

LogZW Mapping Function

iLogr

W-plane

1

2

3

4

5

6

7

8

π

Logau

0

Logbu

0ar br

u

v

abC r

/ln2

1

1

daC r

a1

d1

Conformal Mapping for the Coaxial Cable

= u + iv

Page 7: Application of Conformal Mapping for Electromagnetic

Transmission Lines for Microwave Circuits

Transistor Resistor Substrate

Ground Plane

Center conductor

Air Bridge

εr

Coplanar Waveguide Slot lineMicrostrip Line

Center conductor

Ground

Page 8: Application of Conformal Mapping for Electromagnetic

Coplanar Waveguide (CPW)

Center ConductorGround Plane

Substrate

εr

Current

How can we derive the capacitance of unit per length?

x

yair

εrCross section

Unit length

Schwarz-Christoffel Transformation

Page 9: Application of Conformal Mapping for Electromagnetic

Schwarz-Christoffel Transformation

w-planeZ-plane

x

y

P1P2

P3P4

P5

α1

α2

α3α4

α5

u

v

・X’1 ・ ・・ ・

X’2 X’3 X’4 X’5

(P1) (P2) (P3) (P4) (P5)

1)/('1)/('2

1)/('1 )()()( 21 n

nxwxwxwAdwdz

∞+∞-

Page 10: Application of Conformal Mapping for Electromagnetic

Assumption•Ground plane is long enough

•Substrate thickness is large enough

•The thickness of the metal is small enough

+∞x

y

-∞

air

εr

-i∞

SC transformation for CPWs

SC transformation

Metal thickness is small enough

Substrate

Page 11: Application of Conformal Mapping for Electromagnetic

+∞x

y

-∞

air

εr

-i∞

SC Transformation for CPWs

Symmetry

E-field

Parallel plate capacitor!!

u

v π/2 radπ/2 rad

air

① ③②④

②③

π/2 radπ/2 rad

①④

③∞∞

Z-planeSC transfrom

Page 12: Application of Conformal Mapping for Electromagnetic

u

ivW-plane

SC Transformation for CPWs

u1=K(k)

au

bzaz

Adzdw0 22220 ))((

1

)(1 kKu

))(( 2222 bzaz

Adzdw

where A :constant, k=a/b

First kind complete elliptic function

+∞x

y

-∞air

a-a b-b

Z-plane

0

)(kK

Page 13: Application of Conformal Mapping for Electromagnetic

u

vW-plane

SC Transformation for CPWs

u1+iv1=K(k)+iK(k’)

K’(k)

)'(1 kKv +∞x

y

-∞air

a-a b-b

Z-plane

)'()(2

1

1

kKkK

vuC rr

where A :constant, k’2=1-k2

The substrate case is the same as the air region case

b

a

ivu

u bzaz

Adzdw))(( 2222

11

1

Page 14: Application of Conformal Mapping for Electromagnetic

Assumption•Ground plane is long enough •Substrate thickness is large enough

•The thickness of the metal is small enough+∞

x

y

-∞

air

εr

-i∞

Metal thickness is small enough

Substrate

Can we still use Conformal Mapping???

Consideration of the assumption

Page 15: Application of Conformal Mapping for Electromagnetic

Finite length of the ground plane

y+∞

x-∞

air

a-a b-b c-c

Z-plane y+∞

xa b cSymmetry

i∞

+∞t1 t2 t3

Mapping Function2zt

0

21 at 2

2 bt 23 ct

-∞

T-plane

① ② ③ ④ ⑤⑥

u

v π/2 radπ/2 rad

③④

⑤⑥

π/2 radπ/2 rad

① ②③

⑤⑥

SC Transformation

-i∞Substrate Substrate

Substrate

air

Page 16: Application of Conformal Mapping for Electromagnetic

Z-plane

Finite thickness of the substrate

y+∞

x-∞

air

a-a b-bh

ih

hat

2sinh1

hbt

2sinh2

Mapping Function

hzt

2sinh

-i∞

t1 t2 +∞-∞ -t1-t2

T plane W plane

SC Transformation

u

v

Substrate

Air region is the same as previous way

Page 17: Application of Conformal Mapping for Electromagnetic

Finite thickness of the metal

+∞x

y-∞

airZ-plane

Substrate

z1

z2 z3

z4z5

z6z7

z8

+∞-∞air

W-plane

w1・・・・・・・・ w 2 w 3w 4w 5w6w7w8

η1・ ・

・・・・

・・ η2

η3η4η5η6

η7 η8

η-plane

SC Transformation

SC Transformation

Page 18: Application of Conformal Mapping for Electromagnetic

Summary

•Show the derivation of the capacitance for the EM (RF) devicesex: phase velocity, characteristic impedance, and attenuation loss

•Conformal mapping is powerful way to get the analytical solutions!!

constrain•Only 2 dimensional problem

•Some assumptions are needed

•Limitation of mapping functions

Page 19: Application of Conformal Mapping for Electromagnetic

Mapping Function

yZ-plane

0x

vW -plane

0u

nZW

n/

yZ-plane

0x

vW -plane

0u2/

2ZW n=2

Page 20: Application of Conformal Mapping for Electromagnetic

Mapping Function

W-plane

0 ・ ・・・

・・

D ECB

I

HG

uvyZ-plane

x0 ・ ・・・

・ ・・

D ECB

I HG

Mapping Function

hZW

2sinh

ih

i∞

Page 21: Application of Conformal Mapping for Electromagnetic

a1 a2

d1

a

Must be Uniform

1daC r

1

3

1

2

1

1

da

da

da

rrr

a

d1

Uniform E field Non Uniform E field

1da

r

321 CCCC

Non Uniform E field in the capacitor

a3

Strong field Strong fieldWeek field