Top Banner
1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX A Ice Storage Design Calculations 1) Determine System Ton-Hours (STH) Diversity = .8 Design Load (tons) = 500 Cooling Hours = 12 STH = 500*(.8)*12 = 4800 Ton-Hours 2) Nominal Chiller Size CAP ICE = .7 CAP OCC = 1.0 Ice Making Hours = 12 Cooling Hours = 12 NCS= STH (CAP ICE )*(Ice Making Hours) + (CAP OCC )*(Cooling Hours) NCS= 4800 = 235 tons (.7)*(12) + (1)*(12) NCS= 300 tons (Based on CALMAC Representatives recommendation) 3) Calculate the Required Number of Ice Banks GPM= Tons * 25.5 = 500*(25.5) = 850 GPM t 15 Chiller t = Tons * 25.5 = 300*(25.5) = 9 o F GPM 850 Therefore Entering Tank Temperature = 53 – 9 = 44 o F Leaving Tank Temperature = 38 o F 4) Adjusted Discharge Hours = (.8)*12 = 9.6 = 10 hours
52

APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Oct 27, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX A Ice Storage Design Calculations 1) Determine System Ton-Hours (STH) Diversity = .8 Design Load (tons) = 500 Cooling Hours = 12 STH = 500*(.8)*12 = 4800 Ton-Hours 2) Nominal Chiller Size CAPICE = .7 CAPOCC = 1.0 Ice Making Hours = 12 Cooling Hours = 12 NCS= STH (CAPICE)*(Ice Making Hours) + (CAPOCC)*(Cooling Hours) NCS= 4800 = 235 tons (.7)*(12) + (1)*(12) NCS= 300 tons (Based on CALMAC Representatives recommendation) 3) Calculate the Required Number of Ice Banks GPM= Tons * 25.5 = 500*(25.5) = 850 GPM ∆t 15 Chiller ∆t = Tons * 25.5 = 300*(25.5) = 9oF GPM 850 Therefore → Entering Tank Temperature = 53 – 9 = 44oF Leaving Tank Temperature = 38oF 4) Adjusted Discharge Hours = (.8)*12 = 9.6 = 10 hours

Page 2: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX A (CON’T) 5) From Model 1500C Chart (See Appendix B) Total Ton-Hours Available = 420 ton-hours/tank GPMsys = 25.5 GPM 6) Number of Tanks # of Tanks = STH – (NCS*Cooling Hours) = 4800 – (300*12) = 2.85 = 3 1500C Tanks Ton-Hours/Tank 420

Page 3: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX B

Page 4: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX C

Chiller Information

Page 5: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

FORM 201.24-EG1 (102)

YCWSWATER COOLED LIQUID CHILLER

91 TONS THROUGH 216 TONS320 kW THROUGH 760 kW

60HzSTYLE A

R-22

Page 6: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

2 YORK INTERNATIONAL

Nomenclature

YC W S 0140 S C 46 Y A

YC= York Chiller

W= Water cooled

S= Screw Compressor

Nominal Capacity in Tons Refrigerant C = R-22

Voltage Code:

Type Start: Y = Star-Delta

Design Series: A

S= Standard Efficiency

17 = 200-3-60

28 = 230-3-60

40 = 380-3-60

46 = 460-3-60

58 = 575-3-60

Table of Contents

Introduction................................................................................................................................................................3Specifi cations ............................................................................................................................................................4Accessories & Options ..............................................................................................................................................7Design Parameters....................................................................................................................................................8Pressure Drops .......................................................................................................................................................10Selection Data .........................................................................................................................................................12Ratings (R-22 English) ............................................................................................................................................14Ratings (R-22 SI).....................................................................................................................................................16Ratings- Brine (30 % Ethylene Glycol) (R-22 English) ............................................................................................18Ratings- Brine (30 % Ethylene Glycol) (R-22 SI) ....................................................................................................20Ratings- Brine (30 % Propylene Glycol) (R-22 English) ..........................................................................................22Ratings- Brine (30 % Propylene Glycol) (R-22 SI) ..................................................................................................24Part Load Ratings....................................................................................................................................................26Physical Data ..........................................................................................................................................................28Isolator Selection Data ............................................................................................................................................29Isolator Details.........................................................................................................................................................30Sound Data .............................................................................................................................................................31Dimensions (English) ..............................................................................................................................................32Electrical Data .........................................................................................................................................................36Incoming Wire Range Selections ............................................................................................................................39Customer Wiring Data .............................................................................................................................................42Typical Control Panel Wiring ...................................................................................................................................44Application Data ......................................................................................................................................................46Guide Specifi cations................................................................................................................................................47

Page 7: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

18 YORK INTERNATIONAL

Ratings- Brine (30 % Ethylene Glycol) (R-22 English)

NOTES:1. Tons = Unit Cooling Capacity Output2. kW = Compressor Input Power3. MBH = Condenser heat rejection4. EER = Chiller Energy Effi ciency Ratio (Capacity [Tons x 12] ÷ kW) 5. LCWT = Leaving Chilled Water Temperature6. Ratings based on 2.4 GPM cooler water per ton7. For ratings other than 30% glycol, refer to the design 03 dxchill program.

LEAVING CONDENSER WATER TEMPERATURE (°F)LCWT 85.0 95.0 105.0 (°F) TONS KW MBH EER TONS KW MBH EER TONS KW MBH

YCWS0120SC

YCWS0140SC

YCWS0180SC

YCWS0100SC16.0 45.6 61.6 757.0 8.9 42.2 72.0 751.0 7.0 38.6 85.7 755.0 5.4 20.0 50.9 60.9 818.0 10.0 47.2 70.5 807.0 8.0 43.4 82.8 803.0 6.3 24.0 56.9 61.2 891.0 11.2 53.0 70.1 875.0 9.1 49.0 81.4 865.0 7.2 28.0 63.9 61.6 977.0 12.5 59.7 70.1 955.0 10.2 55.4 80.5 939.0 8.3 32.0 72.3 62.1 1080.0 14.0 67.8 70.3 1053.0 11.6 63.1 80.2 1030.0 9.4 36.0 81.7 62.8 1194.0 15.6 76.7 71.0 1162.0 13.0 71.6 80.4 1133.0 10.7 40.0 88.7 63.2 1280.0 16.8 83.5 71.5 1245.0 14.0 78.1 80.6 1212.0 11.6

16.0 55.4 73.7 916.0 9.0 51.3 86.0 909.0 7.2 47.2 101.8 913.0 5.6 20.0 61.7 72.9 989.0 10.1 57.4 84.3 976.0 8.2 52.9 98.7 972.0 6.4 24.0 68.9 73.2 1076.0 11.3 64.3 83.9 1057.0 9.2 59.6 97.2 1046.0 7.4 28.0 77.3 73.7 1179.0 12.6 72.4 83.9 1154.0 10.3 67.3 96.4 1136.0 8.4 32.0 87.4 74.3 1302.0 14.1 82.0 84.2 1271.0 11.7 76.4 96.0 1245.0 9.6 36.0 98.5 75.1 1438.0 15.7 92.7 85.0 1402.0 13.1 86.6 96.3 1368.0 10.8 40.0 106.9 75.6 1540.0 17.0 100.7 85.5 1500.0 14.1 94.4 96.6 1462.0 11.7

16.0 65.8 86.0 1083.0 9.2 61.0 100.4 1075.0 7.3 56.2 118.5 1078.0 5.7 20.0 73.2 85.2 1169.0 10.3 68.2 98.4 1154.0 8.3 63.0 115.0 1148.0 6.6 24.0 81.7 85.4 1272.0 11.5 76.3 98.0 1250.0 9.4 70.8 113.4 1236.0 7.5 28.0 91.7 85.9 1393.0 12.8 85.8 98.0 1364.0 10.5 79.9 112.5 1342.0 8.5 32.0 103.5 86.6 1537.0 14.3 97.2 98.3 1501.0 11.9 90.7 112.2 1471.0 9.7 36.0 116.5 87.5 1697.0 16.0 109.7 99.1 1654.0 13.3 102.7 112.5 1616.0 11.0 40.0 126.5 88.1 1818.0 17.2 119.2 99.8 1770.0 14.3 111.8 112.8 1726.0 11.9

16.0 80.0 96.1 1288.0 10.0 74.9 111.4 1279.0 8.1 68.8 130.6 1271.0 6.3 20.0 89.9 95.3 1403.0 11.3 83.2 109.7 1373.0 9.1 76.9 127.4 1357.0 7.2 24.0 98.8 95.6 1511.0 12.4 93.4 109.4 1494.0 10.2 88.2 125.9 1488.0 8.4 28.0 112.7 96.2 1680.0 14.1 104.9 109.6 1632.0 11.5 97.3 125.4 1595.0 9.3 32.0 127.4 96.8 1859.0 15.8 119.7 110.0 1811.0 13.0 110.0 125.2 1747.0 10.5 36.0 143.8 97.6 2059.0 17.7 135.4 110.9 2003.0 14.6 126.7 125.7 1949.0 12.1 40.0 156.0 97.9 2206.0 19.1 146.8 111.5 2142.0 15.8 138.0 126.2 2087.0 13.1

Page 8: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

38 YORK INTERNATIONAL

Electrical Data - Cont.SINGLE POINT POWER SUPPLY (SEE FIG 10 & 11 , PAGE 30 & 31)

(One fi eld provided power supply circuit to the control panel. Field connections to factory provided Terminal Blocks(opt) or Non-Fused Disconnect(opt). Individual system Circuit Breakers, Non-Fused Disconnects or Class ‘J’ Fuse/Fuse Blocks in each motor

control center.)

YCWS0100SC 315 400 400 450 140 404 140 404 YCWS0120SC 366 400 450 500 140 404 181 591 YCWS0140SC 407 600 500 500 181 591 181 591 YCWS0180SC -17 465 600 600 600 181 591 227 708 YCWS0200SC 511 600 600 700 227 708 227 708 YCWS0220SC 563 600 700 800 227 708 269 708 YCWS0240SC 605 800 700 800 269 708 269 708 YCWS0100SC 275 400 350 350 122 354 122 354 YCWS0120SC 320 400 400 450 122 354 158 481 YCWS0140SC 356 400 400 500 158 481 158 481 YCWS0180SC -28 404 600 500 600 158 481 197 642 YCWS0200SC 443 600 500 600 197 642 197 642 YCWS0220SC 490 600 600 700 197 642 234 642 YCWS0240SC 527 600 600 700 234 642 234 642 YCWS0100SC 167 200 200 225 74 219 74 219 YCWS0120SC 194 200 225 250 74 219 96 285 YCWS0140SC 216 250 250 300 96 285 96 285 YCWS0180SC -40 245 250 300 350 96 285 119 343 YCWS0200SC 268 400 300 350 119 343 119 343 YCWS0220SC 295 400 350 400 119 343 141 343 YCWS0240SC 317 400 400 450 141 343 141 343 YCWS0100SC 137 150 175 175 61 174 61 174 YCWS0120SC 160 200 200 225 61 174 79 228 YCWS0140SC 178 200 200 250 79 228 79 228 YCWS0180SC -46 202 250 250 250 79 228 98 280 YCWS0200SC 221 250 250 300 98 280 98 280 YCWS0220SC 244 250 300 350 98 280 117 280 YCWS0240SC 263 400 300 350 117 280 117 280 YCWS0100SC 110 150 125 150 49 138 49 138 YCWS0120SC 128 150 150 175 49 138 63 182 YCWS0140SC 142 150 175 200 63 182 63 182 YCWS0180SC -58 162 200 200 225 63 182 79 224 YCWS0200SC 178 200 200 250 79 224 79 224 YCWS0220SC 197 200 225 250 79 224 94 224 YCWS0240SC 212 250 250 300 94 224 94 224

CHILLERMODELS

VOLTCODE

HZ

MIN(1)

CIRMCA

MIN N/FDISC SW

MIN DUALFUSE

MAX DUAL FUSE

MAX CB RLA Y-DLRA

RLA Y-DLRA

SYSTEM #1 SYSTEM #2

Page 9: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

FORM 201.24-EG1

39YORK INTERNATIONAL

Incoming Wire Range Selections

MODEL VOLT TERM TERM BLK N-F DIS SW N-F DIS SWNUMBER CODE BLK CUST. GROUND CUST. GROUND

SYSTEM # 1 & #2

YCWS0100SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0120SC (2) #2 - 300 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0140SC (2) #2 - 300 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0180SC -17 (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0200SC (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 2 - 4/0 AWGYCWS0220SC (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 2 - 4/0 AWGYCWS0240SC (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 2 - 4/0 AWGYCWS0100SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0120SC (2)# 2 - 4/0 AWG (2) # 6 - 1/0 AWG (2) #3/0 - 250 KCM (2)#6 - 1/0 AWGYCWS0140SC (2) #2 - 300 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0180SC -28 (2) #2 - 300 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0200SC (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0220SC (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 4 - 3/0 AWGYCWS0240SC (2) #2/0 - 500 KCM (2) # 4 - 3/0 AWG (2) 250 - 500 KCM (2) # 2 - 4/0 AWGYCWS0100SC #2 - 4/0 AWG # 8 - 2 AWG #4 - 300 KCM # 6 - 1/0 AWGYCWS0120SC #2 - 300 KCM # 6 - 1/0 AWG #6 - 350 KCM # 6 - 1/0 AWGYCWS0140SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0180SC -40 #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0200SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0220SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0240SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0100SC #2 - 4/0 AWG # 8 - 2 AWG #4 - 300 KCM # 6 - 1/0 AWGYCWS0120SC #2 - 4/0 AWG # 8 - 2 AWG #4 - 300 KCM # 6 - 1/0 AWGYCWS0140SC #2 - 300 KCM # 6 - 1/0 AWG #4 - 300 KCM # 6 - 1/0 AWGYCWS0180SC -46 #2 - 300 KCM # 6 - 1/0 AWG #6 - 350 KCM # 6 - 1/0 AWGYCWS0200SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0220SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0240SC #2/0 - 500 KCM # 4 - 3/0 AWG 250 - 500 KCM # 4 - 3/0 AWGYCWS0100SC #6 - 1/0 AWG # 8 - 2 AWG #2 - 4/0 AWG # 8 - 2 AWGYCWS0120SC #2 - 4/0 AWG # 8 - 2 AWG #6 - 350 KCM #6 - 1/0 AWGYCWS0140SC #2 - 4/0 AWG # 8 - 2 AWG #6 - 350 KCM #6 - 1/0 AWGYCWS0180SC -58 #2 - 4/0 AWG # 8 - 2 AWG #6 - 350 KCM #6 - 1/0 AWGYCWS0200SC #2 - 300 KCM # 6 - 1/0 AWG #6 - 350 KCM #6 - 1/0 AWGYCWS0220SC #2 - 300 KCM # 6 - 1/0 AWG #6 - 350 KCM #6 - 1/0 AWGYCWS0240SC #2 - 300 KCM # 6 - 1/0 AWG 250 - 500 KCM #4 - 3/0 AWG

SINGLE POINT POWER SUPPLY

Page 10: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

FORM 201.24-EG1

43YORK INTERNATIONAL

FIGURE 11 - OPTIONAL SINGLE POINT POWER SUPPLY WITH INTERNAL CLASS J FUSES/BLOCK

LEGENDTERM BLOCK TERMINAL BLOCK (FACTORY MOUNTED)C.B. CIRCUIT BREAKER (FACTORY MOUNTED)NF DISC SW NON-FUSED DISCONNECT SWITCH (FACTORY MOUNTED)D.F. DUAL FUSEDISC SW DISCONNECT SWITCHHZ HERTZMAX MAXIMUMMCA MINIMUM CIRCUIT AMPACITYMIN MINIMUMMIN NF MINIMUM NON FUSEDRLA RATED LOAD AMPSY-D LRA WYE-DELTA INRUSH LOCKED ROTOR AMPS

VOLTAGE CODE17 = 200-3-6028 = 230-3-6040 = 380-3-6046 = 460-3-6058 = 575-3-60

1. Dashed line indicates fi eld provided wiring2. The above recommendations are based upon the National Electric Code and the use of copper connectors only. Field wiring must comply with local codes.3. Single point Non-Fused Disconnect Switch is not offered with additional separate Non-Fused Disconnect Switchs

Notes:

Page 11: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX D

Cooling Tower Information

Page 12: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

B.A.C. Cooling Tower Selection ProgramRelease 6.02 NA

Program data and calculations are correct as of Jan. 10, 2003.Copyright © 2002 Baltimore Aircoil Company, Inc. All rights reserved..

To: Inquiry No.:Attn: Project Name:From: Date: Mar. 31, 2004

Selection Parameters

Product Line: Series 3000

Design ConditionsFlow Rate: 900.00 GPMHot Water Temp.: 95.00° FCold Water Temp.: 85.00° FWet Bulb Temp.: 78.00° F

Selection RequirementsNumber of Units: 1 to 9Reserve Capability: -5% to 33%Max. Total Fan Motor Power: 999 HPMax. Length (All): 9999 feetMax. Width: 9999 feetMax. Height: 9999 feet

User-Chosen Selection

Thermal performance for this selection is certified by the Cooling Technology Institute (CTI).

Total Pump ReserveFan Mtr Head Capability Warnings,

Qty. Model HP/Unit (psi) (%) if Any

1 3333A-LM 15.00 4.32 1.67

This selection assumes an open and unobstructed installation; no external static pressure; and no accessorieswhich may affect airflow through the unit, such as capacity control dampers, solid bottom panels, dischargehood, and sound attenuation. If one or more of these assumptions do not apply to this project, please usethe program to compute the applicable performance derate or contact your local B.A.C. sales representative.

Page 13: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX E

Sample Pump Calculations

AHU Pumps (P-5 & P-6): lf = f*(L/D)*(V2)/(2*g) 850 gpm = 1.89 ft3/sec Q=V*A A=.7854ft2 V=2.4 ft/sec Re = ρ(V)D/µ @ 38o ρ= 62.42, µ=.010071 f=.029 (Moody Diagram) L = 90’ D = .5’ V = 2.4 ft/sec g = 32.2 ft/sec2 f = .029 lf = .47’ Head loss for Coil = 7.2’ Total Head Loss = 7.2 + .47 = 7.5’

Tank and Chiller Pumps (P-3 & P-4): lf = f*(L/D)*(V2)/(2*g) Chiller Head Loss = 10’ Tank Head Loss = 40’ Piping Head Loss = .5’ Total Head Loss = 50.5’

Page 14: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Page 1 of 1

3/31/2004http://appserver.ittind.com/software/adv_plus/graphics/EPUMPQKSA.GIF

Page 15: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Page 1 of 1

3/31/2004http://appserver.ittind.com/software/adv_plus/graphics/EPUMPQKRV.GIF

Page 16: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Page 1 of 1

3/31/2004http://appserver.ittind.com/software/adv_plus/graphics/EPUMPQKRN.GIF

Page 17: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX F

System Schematics

Page 18: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX
Page 19: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX
Page 20: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX
Page 21: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX
Page 22: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX
Page 23: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX G

HAP Results

Page 24: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Air System Sizing Summary for AHU 5-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 1

Air System Information Air System Name ........................................... AHU 5-N Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 22 Floor Area ............................................................ 13086.5 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method:

Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Central Cooling Coil Sizing Data

Total coil load ........................................................ 38.6 Tons Total coil load ...................................................... 463.5 MBH Sensible coil load ................................................ 309.7 MBH Coil CFM at Jul 1500 ............................................ 6188 CFM Max block CFM at Jul 1700 .................................. 6188 CFM Sum of peak zone CFM ....................................... 6268 CFM Sensible heat ratio .............................................. 0.668 ft²/Ton .................................................................. 338.8 BTU/(hr-ft²) ............................................................ 35.4 Water flow @ 15.0 °F rise ................................... 61.84 gpm

Load occurs at .................................................... Jul 1500 OA DB / WB ..................................................... 95.0 / 76.0 °F Entering DB / WB ............................................ 87.0 / 67.8 °F Leaving DB / WB ............................................. 40.6 / 39.7 °F Coil ADP .................................................................... 35.4 °F Bypass Factor .......................................................... 0.100 Resulting RH ................................................................ 29 % Design supply temp. .................................................. 44.0 °F Zone T-stat Check ................................................ 3 of 22 OK Max zone temperature deviation ................................. 4.5 °F

Supply Fan Sizing Data

Actual max CFM at Jul 1700 ................................ 6188 CFM Standard CFM ...................................................... 6173 CFM Actual max CFM/ft² ............................................... 0.47 CFM/ft²

Fan motor BHP .......................................................... 5.41 BHP Fan motor kW ............................................................ 4.03 kW Fan static ................................................................... 3.00 in wg

Outdoor Ventilation Air Data Design airflow CFM .............................................. 2900 CFM CFM/ft² .................................................................. 0.22 CFM/ft²

CFM/person ............................................................. 20.00 CFM/person

Page 25: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 5-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 3

Air System Information Air System Name ........................................... AHU 5-N Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 22 Floor Area ............................................................ 13086.5 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method: Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Zone Sizing Data

Maximum Design Minimum Time Maximum Zone Cooling Air Air of Heating Floor Sensible Flow Flow Peak Load Area ZoneZone Name (MBH) (CFM) (CFM) Load (MBH) (ft²) CFM/ft²Zone 1 7.2 214 40 Jul 1700 2.7 282.0 0.76Zone 2 7.4 220 40 Jul 1700 2.8 342.0 0.64Zone 3 12.0 358 60 Jul 1700 4.6 522.0 0.69Zone 4 8.3 247 40 Jul 1700 4.3 383.0 0.65Zone 5 4.4 132 40 Jul 1700 2.4 278.0 0.48Zone 6 6.1 183 40 Jul 1700 3.7 386.0 0.48Zone 7 5.0 150 40 Jul 1700 2.0 373.9 0.40Zone 8 4.4 130 40 Jul 1700 2.3 276.0 0.47Zone 9 8.7 260 60 Jul 1400 4.8 426.0 0.61Zone 10 8.8 263 60 Jul 0900 3.7 402.0 0.65Zone 11 6.9 206 40 Jul 1000 3.0 348.0 0.59Zone 12 6.9 206 40 Jul 1000 3.0 348.0 0.59Zone 13 6.9 460 460 Jan 1800 0.0 222.0 2.07Zone 14 8.0 238 160 Jan 1800 0.0 722.0 0.33Zone 15 9.7 289 180 Jan 1800 0.0 880.2 0.33Zone 16 6.0 179 100 Jan 1800 0.0 565.0 0.32Zone 17 14.2 900 900 Jan 1800 0.0 650.0 1.38Zone 18 11.1 332 200 Jan 1800 0.0 985.8 0.34Zone 19 3.5 105 60 Jan 1800 0.0 331.3 0.32Zone 20 10.3 308 160 Jan 1800 0.0 954.8 0.32Zone 21 8.7 262 140 Jan 1800 0.0 776.5 0.34Zone 22 20.8 622 6 Jan 1900 0.0 2632.0 0.24

Zone Terminal Sizing Data

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 1 3.8 - 0.0 0.00 0 Zone 2 3.9 - 0.0 0.00 0 Zone 3 6.3 - 0.0 0.00 0 Zone 4 5.4 - 0.0 0.00 0 Zone 5 3.5 - 0.0 0.00 0 Zone 6 4.8 - 0.0 0.00 0 Zone 7 3.1 - 0.0 0.00 0 Zone 8 3.4 - 0.0 0.00 0 Zone 9 6.5 - 0.0 0.00 0 Zone 10 5.4 - 0.0 0.00 0 Zone 11 4.1 - 0.0 0.00 0 Zone 12 4.1 - 0.0 0.00 0 Zone 13 12.9 - 0.0 0.00 0 Zone 14 4.5 - 0.0 0.00 0 Zone 15 5.0 - 0.0 0.00 0

Page 26: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 5-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 2 of 3

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 16 2.8 - 0.0 0.00 0 Zone 17 25.2 - 0.0 0.00 0 Zone 18 5.6 - 0.0 0.00 0 Zone 19 1.7 - 0.0 0.00 0 Zone 20 4.5 - 0.0 0.00 0 Zone 21 3.9 - 0.0 0.00 0 Zone 22 0.0 - 0.0 0.00 0

Space Loads and Airflows

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft²Zone 1 5_N 5207 W OFFICE 1 2.9 Jul 1700 88 1.1 114.0 0.77 5_N 5208 W OFFICE 1 4.2 Jul 1700 127 1.6 168.0 0.75Zone 2 5_N 5209 W OFFICE 1 3.4 Jul 1700 102 1.3 168.0 0.61 5_N 5210 W OFFICE 1 3.9 Jul 1700 118 1.5 174.0 0.68Zone 3 5_N 5211 W OFFICE 1 4.0 Jul 1700 120 1.5 174.0 0.69 5_N 5212 W OFFICE 1 4.0 Jul 1700 120 1.5 174.0 0.69 5_N 5213 W OFFICE 1 3.9 Jul 1700 118 1.5 174.0 0.68Zone 4 5_N 5213 W OFFICE 1 3.9 Jul 1700 118 1.5 174.0 0.68 5_N 5214 NW OFFICE 1 4.3 Jul 1700 130 2.7 209.0 0.62Zone 5 5_N 5216 N OFFICE 1 2.0 Jul 1700 61 1.0 126.0 0.48 5_N 5217 N OFFICE 1 2.4 Jul 1700 72 1.3 152.0 0.47Zone 6 5_N 5218 N OFFICE 1 2.7 Jul 1700 82 1.6 174.0 0.47 5_N 5219 N OFFICE 1 3.4 Jul 1700 101 2.0 212.0 0.48Zone 7 5_N 5219 N OFFICE 1 3.4 Jul 1700 101 2.0 212.0 0.48 5_N 5221 N OFFICES 1 1.6 Jan 1800 49 0.0 161.9 0.30Zone 8 5_N 5319 N OFFICE 1 2.0 Jul 1700 58 1.0 114.0 0.51 5_N 5320 N OFFICE 1 2.4 Jul 1700 72 1.3 162.0 0.44Zone 9 5_N 5316 E OFFICE 1 2.5 Jul 0900 76 1.0 114.0 0.67 5_N 5315 E OFFICE 1 2.5 Jul 0900 76 1.0 114.0 0.67 5_N 5214 NE OFFICE 1 3.8 Jul 1500 115 2.7 198.0 0.58Zone 10 5_N 5315 E OFFICE 1 2.5 Jul 0900 76 1.0 114.0 0.67 5_N 5314 E OFFICE 1 2.5 Jul 0900 76 1.0 114.0 0.67 5_N 5313 E OFFICE 1 3.7 Jul 0900 111 1.6 174.0 0.64Zone 11 5_N 5311 E OFFICE 1 3.4 Jul 1000 103 1.5 174.0 0.59 5_N 5312 E OFFICE 1 3.4 Jul 1000 103 1.5 174.0 0.59Zone 12 5_N 5309 E OFFICE 1 3.4 Jul 1000 103 1.5 174.0 0.59 5_N 5311 E OFFICE 1 3.4 Jul 1000 103 1.5 174.0 0.59Zone 13

Page 27: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 5-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 3 of 3

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft² 5_S CONF ROOM 5305 1 6.9 Jan 1800 460 0.0 222.0 2.07Zone 14 5_N 5300 LIBRARY 1 4.2 Jan 1800 127 0.0 420.0 0.30 5_N OPEN AREA NE 5329 1 3.7 Jan 1800 111 0.0 302.0 0.37Zone 15 5_N 5328 E OFFICES 1 1.7 Jan 1800 49 0.0 164.5 0.30 5_N 5327 E OFFICES 1 1.7 Jan 1800 49 0.0 164.5 0.30 5_N 5326 E OFFICES 1 1.7 Jan 1800 49 0.0 164.5 0.30 5_N 5303 OFFICES 1 1.6 Jan 1800 48 0.0 156.7 0.31 5_N KITCHEN 1 3.1 Jan 1800 100 0.0 230.0 0.43Zone 16 5_N 5300 LIBRARY 1 4.2 Jan 1800 127 0.0 420.0 0.30 5_N COPY ROOM 5304 1 1.7 Jan 1800 52 0.0 145.0 0.36Zone 17 5_N LUNCH ROOM 1 14.2 Jan 1800 900 0.0 650.0 1.38Zone 18 5_N OPEN AREA N 5220 1 4.1 Jan 1800 123 0.0 360.0 0.34 5_N 5322 N OFFICES 1 1.6 Jan 1800 49 0.0 161.9 0.30 5_N 5324 N OFFICES 1 1.6 Jan 1800 49 0.0 161.9 0.30 5_N OPEN AREA NE 5325 1 3.7 Jan 1800 111 0.0 302.0 0.37Zone 19 5_N WORK ROOM 5231 1 3.5 Jan 1800 105 0.0 331.3 0.32Zone 20 5_N OPEN AREA NW 5223 1 3.7 Jan 1800 111 0.0 302.0 0.37 5_N 5225 W OFFICES 1 1.7 Jan 1800 49 0.0 164.5 0.30 5_N 5224 W OFFICES 1 1.7 Jan 1800 49 0.0 164.5 0.30 5_N 5222 N OFFICES 1 1.6 Jan 1800 49 0.0 161.9 0.30 5_N 5221 N OFFICES 1 1.6 Jan 1800 49 0.0 161.9 0.30Zone 21 5_N 5226 W OFFICES 1 1.7 Jan 1800 49 0.0 164.5 0.30 5_N 5229 OFFICES 1 1.7 Jan 1800 50 0.0 165.3 0.30 5_N 5228 COFFEE 1 1.7 Jan 1800 52 0.0 144.7 0.36 5_N OPEN AREA W 5227 1 3.7 Jan 1800 111 0.0 302.0 0.37Zone 22 5_N HALLWAY 1 20.8 Jan 1900 622 0.0 2632.0 0.24

Page 28: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Air System Sizing Summary for AHU 5-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 1

Air System Information Air System Name ........................................... AHU 5-S Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 26 Floor Area ............................................................ 15057.2 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method:

Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Central Cooling Coil Sizing Data

Total coil load ........................................................ 35.3 Tons Total coil load ...................................................... 423.3 MBH Sensible coil load ................................................ 308.7 MBH Coil CFM at Aug 1500 .......................................... 6252 CFM Max block CFM at Aug 1600 ................................ 6252 CFM Sum of peak zone CFM ....................................... 6603 CFM Sensible heat ratio .............................................. 0.729 ft²/Ton .................................................................. 426.9 BTU/(hr-ft²) ............................................................ 28.1 Water flow @ 15.0 °F rise ................................... 56.47 gpm

Load occurs at .................................................. Aug 1500 OA DB / WB ..................................................... 95.0 / 76.0 °F Entering DB / WB ............................................ 86.2 / 65.4 °F Leaving DB / WB ............................................. 40.4 / 39.1 °F Coil ADP .................................................................... 35.3 °F Bypass Factor .......................................................... 0.100 Resulting RH ................................................................ 27 % Design supply temp. .................................................. 44.0 °F Zone T-stat Check ................................................ 4 of 26 OK Max zone temperature deviation ................................. 4.6 °F

Supply Fan Sizing Data

Actual max CFM at Aug 1600 .............................. 6252 CFM Standard CFM ...................................................... 6237 CFM Actual max CFM/ft² ............................................... 0.42 CFM/ft²

Fan motor BHP .......................................................... 5.46 BHP Fan motor kW ............................................................ 4.07 kW Fan static ................................................................... 3.00 in wg

Outdoor Ventilation Air Data Design airflow CFM .............................................. 1920 CFM CFM/ft² .................................................................. 0.13 CFM/ft²

CFM/person ............................................................. 12.63 CFM/person

Page 29: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 5-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 3

Air System Information Air System Name ........................................... AHU 5-S Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 26 Floor Area ............................................................ 15057.2 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method: Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Zone Sizing Data

Maximum Design Minimum Time Maximum Zone Cooling Air Air of Heating Floor Sensible Flow Flow Peak Load Area ZoneZone Name (MBH) (CFM) (CFM) Load (MBH) (ft²) CFM/ft²Zone 1 7.1 211 2 Jul 1700 2.4 372.0 0.57Zone 2 6.3 188 2 Jul 1700 2.2 284.0 0.66Zone 3 7.9 237 2 Jul 1700 3.0 348.0 0.68Zone 4 5.6 167 2 Jul 1700 2.0 236.0 0.71Zone 5 6.4 190 2 Aug 1600 3.2 234.0 0.81Zone 6 7.9 236 2 Oct 1400 2.7 372.6 0.63Zone 7 9.4 280 3 Oct 1400 3.5 422.5 0.66Zone 8 13.0 390 4 Oct 1400 5.0 585.0 0.67Zone 9 7.6 227 2 Oct 1400 2.9 364.0 0.62Zone 10 5.7 171 2 Sep 1400 3.2 234.0 0.73Zone 11 4.9 147 1 Jul 1000 2.0 236.0 0.62Zone 12 6.8 204 2 Jul 0900 3.0 336.0 0.61Zone 13 9.5 284 3 Jul 0900 4.1 452.0 0.63Zone 14 9.4 282 3 Jul 1000 3.6 552.0 0.51Zone 15 6.9 207 2 Jan 1800 0.0 222.0 0.93Zone 16 5.0 149 1 Jan 1800 0.0 495.0 0.30Zone 17 8.8 262 3 Jan 1800 0.0 900.0 0.29Zone 18 11.9 357 4 Jan 1800 0.0 1030.3 0.35Zone 19 11.9 357 4 Jan 1800 0.0 1110.0 0.32Zone 20 8.5 256 3 Jan 1800 0.0 807.0 0.32Zone 21 9.9 296 3 Jan 1800 0.0 827.3 0.36Zone 22 6.9 207 2 Jan 1800 0.0 222.0 0.93Zone 23 5.6 168 2 Jan 1800 0.0 507.5 0.33Zone 24 6.9 207 2 Jan 1800 0.0 222.0 0.93Zone 25 8.6 257 3 Jan 1800 0.0 784.0 0.33Zone 26 22.2 666 7 Jan 1900 0.0 2902.0 0.23

Zone Terminal Sizing Data

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 1 2.4 - 0.0 0.00 0 Zone 2 2.2 - 0.0 0.00 0 Zone 3 3.0 - 0.0 0.00 0 Zone 4 2.0 - 0.0 0.00 0 Zone 5 3.2 - 0.0 0.00 0 Zone 6 2.7 - 0.0 0.00 0 Zone 7 3.5 - 0.0 0.00 0 Zone 8 5.0 - 0.0 0.00 0 Zone 9 2.9 - 0.0 0.00 0 Zone 10 3.2 - 0.0 0.00 0 Zone 11 2.0 - 0.0 0.00 0

Page 30: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 5-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 2 of 3

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 12 3.0 - 0.0 0.00 0 Zone 13 4.1 - 0.0 0.00 0 Zone 14 3.6 - 0.0 0.00 0 Zone 15 0.0 - 0.0 0.00 0 Zone 16 0.0 - 0.0 0.00 0 Zone 17 0.0 - 0.0 0.00 0 Zone 18 0.0 - 0.0 0.00 0 Zone 19 0.0 - 0.0 0.00 0 Zone 20 0.0 - 0.0 0.00 0 Zone 21 0.0 - 0.0 0.00 0 Zone 22 0.0 - 0.0 0.00 0 Zone 23 0.0 - 0.0 0.00 0 Zone 24 0.0 - 0.0 0.00 0 Zone 25 0.0 - 0.0 0.00 0 Zone 26 0.0 - 0.0 0.00 0

Space Loads and Airflows

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft²Zone 1 5_S 5105 W OFFICE 1 3.1 Jul 1700 93 0.9 198.0 0.47 5_S 5107 W OFFICE 1 3.9 Jul 1700 118 1.5 174.0 0.68Zone 2 5_S 5108 W OFFICE 1 3.0 Jul 1700 89 1.0 116.0 0.76 5_S 5109 W OFFICE 1 3.3 Jul 1700 99 1.2 168.0 0.59Zone 3 5_S 5110 W OFFICE 1 3.9 Jul 1700 118 1.5 174.0 0.68 5_S 5111 W OFFICE 1 4.0 Jul 1700 119 1.5 174.0 0.69Zone 4 5_S 5112 W OFFICE 1 2.6 Jul 1700 77 0.9 116.0 0.67 5_S 5113 W OFFICE 1 3.0 Jul 1700 90 1.1 120.0 0.75Zone 5 5_S 5114 SW CORNER 1 6.4 Aug 1600 190 3.2 234.0 0.81Zone 6 5_S 5116 S OFFICE 1 2.5 Oct 1400 75 0.8 134.3 0.56 5_S 5117 S OFFICE 1 3.0 Oct 1400 90 1.1 121.3 0.74 5_S 5118 S OFFICE 1 2.4 Oct 1400 71 0.8 117.0 0.60Zone 7 5_S 5119 S OFFICE 1 4.0 Oct 1400 120 1.5 182.0 0.66 5_S 5120 S OFFICE 1 5.4 Oct 1400 160 2.0 240.5 0.67Zone 8 5_S 5120 S OFFICE 1 5.4 Oct 1400 160 2.0 240.5 0.67 5_S 5417 S OFFICE 1 3.7 Oct 1400 111 1.4 169.0 0.66 5_S 5418 S OFFICE 1 4.0 Oct 1400 118 1.5 175.5 0.67Zone 9 5_S 5417 S OFFICE 1 3.7 Oct 1400 111 1.4 169.0 0.66 5_S 5416 S OFFICE 1 3.9 Oct 1400 116 1.4 195.0 0.59Zone 10 5_S 5414 SE CORNER 1 5.7 Sep 1400 171 3.2 234.0 0.73Zone 11 5_S 5412 E OFFICE 1 2.3 Jul 1000 69 0.9 116.0 0.60

Page 31: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 5-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 3 of 3

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft² 5_S 5413 E OFFICE 1 2.6 Jul 0900 77 1.1 120.0 0.64Zone 12 5_S 5411 E OFFICE 1 3.4 Jul 0900 103 1.5 168.0 0.61 5_S 5410 E OFFICE 1 3.4 Jul 1000 101 1.5 168.0 0.60Zone 13 5_S 5407 E OFFICE 1 3.4 Jul 1000 101 1.5 168.0 0.60 5_S 5408 E OFFICE 1 2.8 Jul 0900 83 1.1 116.0 0.71 5_S 5409 E OFFICE 1 3.4 Jul 1000 101 1.5 168.0 0.60Zone 14 5_S 5407 E OFFICE 1 3.4 Jul 1000 101 1.5 168.0 0.60 5_S 5405 E OFFICE 1 2.9 Jul 0900 86 1.0 168.0 0.51 5_S 5307 E OFFICE 1 3.2 Jul 1000 95 1.0 216.0 0.44Zone 15 5_S CONF ROOM 5403 1 6.9 Jan 1800 207 0.0 222.0 0.93Zone 16 5_S 5423 OFFICE 1 1.7 Jan 1800 50 0.0 165.0 0.30 5_S 5424 OFFICE 1 1.7 Jan 1800 50 0.0 165.0 0.30 5_S 5425 OFFICE 1 1.7 Jan 1800 50 0.0 165.0 0.30Zone 17 5_S WORK AREA 5006 1 4.2 Jan 1800 126 0.0 380.0 0.33 5_S 5421 OFFICE 1 2.3 Jan 1800 68 0.0 260.0 0.26 5_S 5420 OFFICE 1 2.3 Jan 1800 68 0.0 260.0 0.26Zone 18 5_S OPEN OFFICE (5419) 1 2.3 Jan 1800 69 0.0 207.0 0.34 5_S OPEN OFFICE (5122) 1 2.3 Jan 1800 69 0.0 207.0 0.34 5_S WORK AREA 5002,7 1 3.1 Jan 1800 92 0.0 236.3 0.39 5_S WORK AREA 5006 1 4.2 Jan 1800 126 0.0 380.0 0.33Zone 19 5_S WORK AREA 5009,10 1 7.4 Jan 1800 221 0.0 590.0 0.37 5_S 5123 OFFICE 1 2.3 Jan 1800 68 0.0 260.0 0.26 5_S 5124 OFFICE 1 2.3 Jan 1800 68 0.0 260.0 0.26Zone 20 5_S OPEN OFFICES 5125 1 3.6 Jan 1800 107 0.0 312.0 0.34 5_S 5126 OFFICE 1 1.7 Jan 1800 50 0.0 165.0 0.30 5_S 5127 OFFICE 1 1.7 Jan 1800 50 0.0 165.0 0.30 5_S 5128 OFFICE 1 1.7 Jan 1800 50 0.0 165.0 0.30Zone 21 5_S COPY ROOM (5103) 1 2.5 Jan 1800 76 0.0 237.3 0.32 5_S WORK AREA 5009,10 1 7.4 Jan 1800 221 0.0 590.0 0.37Zone 22 5_S CONF ROOM 5101 1 6.9 Jan 1800 207 0.0 222.0 0.93Zone 23 5_S 5104 OFFICE 1 2.1 Jan 1800 63 0.0 203.5 0.31 5_S OPEN OFFICES 5129 1 3.5 Jan 1800 106 0.0 304.0 0.35Zone 24 5_S CONF ROOM 5202 1 6.9 Jan 1800 207 0.0 222.0 0.93Zone 25 5_S LIBRARY 1 5.1 Jan 1800 152 0.0 480.0 0.32 5_S OPEN OFFICES 5426 1 3.5 Jan 1800 106 0.0 304.0 0.35Zone 26 5_S HALLWAY 1 22.2 Jan 1900 666 0.0 2902.0 0.23

Page 32: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Air System Sizing Summary for AHU 8-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 1

Air System Information Air System Name ........................................... AHU 8-N Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 23 Floor Area ............................................................ 13087.2 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method:

Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Central Cooling Coil Sizing Data

Total coil load ........................................................ 38.9 Tons Total coil load ...................................................... 467.4 MBH Sensible coil load ................................................ 352.9 MBH Coil CFM at Jul 1500 ............................................ 6684 CFM Max block CFM at Jul 1700 .................................. 6684 CFM Sum of peak zone CFM ....................................... 6753 CFM Sensible heat ratio .............................................. 0.755 ft²/Ton .................................................................. 336.0 BTU/(hr-ft²) ............................................................ 35.7 Water flow @ 15.0 °F rise ................................... 62.35 gpm

Load occurs at .................................................... Jul 1500 OA DB / WB ..................................................... 95.0 / 76.0 °F Entering DB / WB ............................................ 89.4 / 66.0 °F Leaving DB / WB ............................................. 40.4 / 39.0 °F Coil ADP .................................................................... 35.0 °F Bypass Factor .......................................................... 0.100 Resulting RH ................................................................ 24 % Design supply temp. .................................................. 44.0 °F Zone T-stat Check ................................................ 5 of 23 OK Max zone temperature deviation ................................. 3.0 °F

Supply Fan Sizing Data

Actual max CFM at Jul 1700 ................................ 6684 CFM Standard CFM ...................................................... 6668 CFM Actual max CFM/ft² ............................................... 0.51 CFM/ft²

Fan motor BHP .......................................................... 5.84 BHP Fan motor kW ............................................................ 4.36 kW Fan static ................................................................... 3.00 in wg

Outdoor Ventilation Air Data Design airflow CFM .............................................. 2080 CFM CFM/ft² .................................................................. 0.16 CFM/ft²

CFM/person ............................................................. 22.86 CFM/person

Page 33: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 8-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 3

Air System Information Air System Name ........................................... AHU 8-N Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 23 Floor Area ............................................................ 13087.2 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method: Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Zone Sizing Data

Maximum Design Minimum Time Maximum Zone Cooling Air Air of Heating Floor Sensible Flow Flow Peak Load Area ZoneZone Name (MBH) (CFM) (CFM) Load (MBH) (ft²) CFM/ft²Zone 1 5.1 152 2 Jul 1700 2.4 238.0 0.64Zone 2 5.2 157 2 Jul 1700 2.4 238.0 0.66Zone 3 10.2 304 3 Jul 1700 4.5 476.1 0.64Zone 4 5.4 162 2 Jul 1700 2.5 238.0 0.68Zone 5 4.5 135 1 Jul 1700 2.1 238.0 0.57Zone 6 5.2 157 2 Jul 1700 2.4 238.0 0.66Zone 7 7.3 219 2 Jul 1700 3.5 273.8 0.80Zone 8 5.0 149 1 Jul 1700 3.0 286.7 0.52Zone 9 8.6 256 3 Jul 1800 4.9 522.6 0.49Zone 10 8.6 256 3 Jul 1800 4.9 522.6 0.49Zone 11 5.0 149 1 Jul 1700 3.0 286.7 0.52Zone 12 10.8 323 3 Jul 1500 5.7 386.7 0.84Zone 13 10.4 312 3 Jul 0900 5.1 520.8 0.60Zone 14 10.0 301 3 Jul 1000 4.9 520.8 0.58Zone 15 10.0 301 3 Jul 1000 4.9 520.8 0.58Zone 16 11.5 343 3 Jul 1800 2.5 723.9 0.47Zone 17 12.3 370 4 Jul 1800 2.9 835.0 0.44Zone 18 13.8 414 4 Jul 1800 3.5 1015.7 0.41Zone 19 7.3 219 2 Jul 1800 1.8 509.9 0.43Zone 20 15.1 452 5 Jul 1800 5.5 992.6 0.46Zone 21 13.5 405 4 Jul 1800 3.2 920.9 0.44Zone 22 6.4 191 2 Jul 1800 1.5 443.6 0.43Zone 23 34.3 1027 10 Jul 1900 7.4 2138.0 0.48

Zone Terminal Sizing Data

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 1 2.4 - 0.0 0.00 0 Zone 2 2.4 - 0.0 0.00 0 Zone 3 4.5 - 0.0 0.00 0 Zone 4 2.5 - 0.0 0.00 0 Zone 5 2.1 - 0.0 0.00 0 Zone 6 2.4 - 0.0 0.00 0 Zone 7 3.5 - 0.0 0.00 0 Zone 8 3.0 - 0.0 0.00 0 Zone 9 4.9 - 0.0 0.00 0 Zone 10 4.9 - 0.0 0.00 0 Zone 11 3.0 - 0.0 0.00 0 Zone 12 5.7 - 0.0 0.00 0 Zone 13 5.1 - 0.0 0.00 0 Zone 14 4.9 - 0.0 0.00 0

Page 34: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 8-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 2 of 3

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 15 4.9 - 0.0 0.00 0 Zone 16 2.5 - 0.0 0.00 0 Zone 17 2.9 - 0.0 0.00 0 Zone 18 3.5 - 0.0 0.00 0 Zone 19 1.8 - 0.0 0.00 0 Zone 20 5.5 - 0.0 0.00 0 Zone 21 3.2 - 0.0 0.00 0 Zone 22 1.5 - 0.0 0.00 0 Zone 23 7.4 - 0.0 0.00 0

Space Loads and Airflows

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft²Zone 1 8_N PO 8024 (WEST) 1 5.1 Jul 1700 152 2.4 238.0 0.64Zone 2 8_N PO 8028 (WEST) 1 5.2 Jul 1700 157 2.4 238.0 0.66Zone 3 8_N AO 8029 (WEST) 1 3.3 Jul 1700 98 1.4 158.7 0.62 8_N AO 8030 (WEST) 1 3.3 Jul 1700 98 1.4 158.7 0.62 8_N AO 8031 (WEST) 1 3.6 Jul 1700 109 1.6 158.7 0.69Zone 4 8_N PO 8035 (WEST) 1 5.4 Jul 1700 162 2.5 238.0 0.68Zone 5 8_N PO 8039 (WEST) 1 4.5 Jul 1700 135 2.1 238.0 0.57Zone 6 8_N PO 8040 (WEST) 1 5.2 Jul 1700 157 2.4 238.0 0.66Zone 7 8_N NW CORNER OFFICE 1 7.3 Jul 1700 219 3.5 273.8 0.80Zone 8 8_N SEC NW 8043 1 1.3 Jul 1800 40 0.4 106.7 0.38 8_N COUNCEL NORTH 1 3.6 Jul 1700 109 2.6 180.0 0.60Zone 9 8_N AO 8045 (NORTH) 1 2.9 Jul 1800 85 1.6 174.2 0.49 8_N AO 8046 (NORTH) 1 2.9 Jul 1800 85 1.6 174.2 0.49 8_N AO 8050 (NORTH) 1 2.9 Jul 1800 85 1.6 174.2 0.49Zone 10 8_N AO 8051 (NORTH) 1 2.9 Jul 1800 85 1.6 174.2 0.49 8_N AO 8054 (NORTH) 1 2.9 Jul 1800 85 1.6 174.2 0.49 8_N AO 8055 (NORTH) 1 2.9 Jul 1800 85 1.6 174.2 0.49Zone 11 8_N COUNCEL NORTH-2 1 3.6 Jul 1700 109 2.6 180.0 0.60 8_N SEC NE 8057 1 1.3 Jul 1800 40 0.4 106.7 0.38Zone 12 8_N CONF NE 1 10.8 Jul 1500 323 5.7 386.7 0.84Zone 13 8_N AO 8060 (EAST) 1 3.4 Jul 1000 103 1.7 173.6 0.59 8_N AO 8061 (EAST) 1 3.5 Jul 0900 105 1.7 173.6 0.60 8_N AO 8064 (EAST) 1 3.5 Jul 0900 105 1.7 173.6 0.60Zone 14 8_N AO 8066 (EAST) 1 3.3 Jul 1000 100 1.6 173.6 0.58

Page 35: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 8-N Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 3 of 3

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft² 8_N AO 8067 (EAST) 1 3.3 Jul 1000 100 1.6 173.6 0.58 8_N AO 8070 (EAST) 1 3.3 Jul 1000 100 1.6 173.6 0.58Zone 15 8_N AO 8071 (EAST) 1 3.3 Jul 1000 100 1.6 173.6 0.58 8_N AO 8072 (EAST) 1 3.3 Jul 1000 100 1.6 173.6 0.58 8_N AO 8075 (EAST) 1 3.3 Jul 1000 100 1.6 173.6 0.58Zone 16 8_N LIBRARY 1 8.8 Jul 1800 265 1.9 546.0 0.49 8_N SEC E 8077 1 2.6 Jul 1800 79 0.6 177.9 0.44Zone 17 8_N LIBRARY 1 8.8 Jul 1800 265 1.9 546.0 0.49 8_N COMP ROOM 1 3.5 Jul 1800 105 1.0 289.0 0.36Zone 18 8_N CASEROOM 8052 (N) 1 6.0 Jul 1800 178 1.6 476.7 0.37 8_N CASEROOM 8065 (NORTH 1 3.4 Jul 1800 101 0.8 224.0 0.45 8_N AO 8063 (EAST) 1 2.1 Jul 1800 62 0.5 155.0 0.40 8_N PLEGAL 8068 1 2.4 Jul 1800 73 0.6 160.0 0.46Zone 19 8_N PLEGAL 8063 (NORTH) 1 2.6 Jul 1800 79 0.6 180.0 0.44 8_N AO 8056 (NORTH) 1 2.1 Jul 1800 61 0.5 152.0 0.40 8_N SEC NE 8062 1 2.6 Jul 1800 79 0.6 177.9 0.44Zone 20 8_N BILL OFFICE 8048 1 4.8 Jul 1800 143 2.2 330.0 0.43 8_N AO 8044 (NORTH) 1 2.7 Jul 1700 81 1.6 152.0 0.53 8_N OFFICES 8037 1 1.7 Jul 1800 50 0.4 110.2 0.45 8_N OFFICES 8034 1 1.7 Jul 1800 50 0.4 110.2 0.45 8_N OFFICES 8032 1 1.7 Jul 1800 50 0.4 110.2 0.45 8_N SEC N 8049 1 2.6 Jul 1800 79 0.6 180.0 0.44Zone 21 8_N PLEGAL W 8026 1 3.6 Jul 1800 109 0.7 216.0 0.50 8_N CASEROOM 8022 (W) 1 5.2 Jul 1800 155 1.3 372.0 0.42 8_N SEC W 8027 1 2.6 Jul 1800 79 0.6 177.9 0.44 8_N AO 8025 (WEST) 1 2.1 Jul 1800 62 0.5 155.0 0.40Zone 22 8_N DIR OFF 8033 1 1.7 Jul 1800 50 0.4 110.7 0.45 8_N AO 8036 (WEST) 1 2.1 Jul 1800 62 0.5 155.0 0.40 8_N SEC NW 8038 1 2.6 Jul 1800 79 0.6 177.9 0.44Zone 23 8_N HALLWAYS 1 34.3 Jul 1900 1027 7.4 2138.0 0.48

Page 36: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Air System Sizing Summary for AHU 8-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 1

Air System Information Air System Name ........................................... AHU 8-S Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 28 Floor Area ............................................................ 15497.3 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method:

Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Central Cooling Coil Sizing Data

Total coil load ........................................................ 47.7 Tons Total coil load ...................................................... 572.7 MBH Sensible coil load ................................................ 434.8 MBH Coil CFM at Jul 1500 ............................................ 8545 CFM Max block CFM at Jul 1700 .................................. 8545 CFM Sum of peak zone CFM ....................................... 8795 CFM Sensible heat ratio .............................................. 0.759 ft²/Ton .................................................................. 324.7 BTU/(hr-ft²) ............................................................ 37.0 Water flow @ 15.0 °F rise ................................... 76.40 gpm

Load occurs at .................................................... Jul 1500 OA DB / WB ..................................................... 95.0 / 76.0 °F Entering DB / WB ............................................ 87.6 / 65.1 °F Leaving DB / WB ............................................. 40.4 / 39.0 °F Coil ADP .................................................................... 35.2 °F Bypass Factor .......................................................... 0.100 Resulting RH ................................................................ 28 % Design supply temp. .................................................. 44.0 °F Zone T-stat Check .............................................. 11 of 28 OK Max zone temperature deviation ................................. 3.0 °F

Supply Fan Sizing Data

Actual max CFM at Jul 1700 ................................ 8545 CFM Standard CFM ...................................................... 8525 CFM Actual max CFM/ft² ............................................... 0.55 CFM/ft²

Fan motor BHP .......................................................... 7.47 BHP Fan motor kW ............................................................ 5.57 kW Fan static ................................................................... 3.00 in wg

Outdoor Ventilation Air Data Design airflow CFM .............................................. 1950 CFM CFM/ft² .................................................................. 0.13 CFM/ft²

CFM/person ............................................................... 7.22 CFM/person

Page 37: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 8-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 1 of 3

Air System Information Air System Name ........................................... AHU 8-S Equipment Class ........................................... CW AHU Air System Type .................................................... VAV

Number of zones .......................................................... 28 Floor Area ............................................................ 15497.3 ft² Location ........................ Washington, Dist. of Columbia

Sizing Calculation Information Zone and Space Sizing Method: Zone CFM ........................... Peak zone sensible load Space CFM ................... Individual peak space loads

Calculation Months ......................................... Jan to Dec Sizing Data ..................................................... Calculated

Zone Sizing Data

Maximum Design Minimum Time Maximum Zone Cooling Air Air of Heating Floor Sensible Flow Flow Peak Load Area ZoneZone Name (MBH) (CFM) (CFM) Load (MBH) (ft²) CFM/ft²Zone 1 5.0 149 1 Jul 1700 2.3 238.0 0.63Zone 2 5.0 150 1 Jul 1700 2.3 238.0 0.63Zone 3 4.5 135 1 Jul 1700 2.1 238.0 0.57Zone 4 5.4 162 2 Jul 1700 2.5 238.0 0.68Zone 5 5.4 162 2 Jul 1700 2.5 238.0 0.68Zone 6 4.5 135 1 Jul 1700 2.1 238.0 0.57Zone 7 5.0 150 1 Jul 1700 2.3 238.0 0.63Zone 8 7.4 222 2 Sep 1500 4.3 273.8 0.81Zone 9 7.0 209 2 Oct 1400 3.1 466.7 0.45Zone 10 6.3 188 2 Oct 1400 2.5 252.0 0.74Zone 11 6.1 183 2 Oct 1400 2.4 252.0 0.73Zone 12 6.1 183 2 Oct 1400 2.4 252.0 0.73Zone 13 6.3 188 2 Oct 1400 2.5 252.0 0.74Zone 14 7.0 209 2 Oct 1400 3.1 466.7 0.45Zone 15 7.0 210 2 Sep 1400 4.3 273.8 0.77Zone 16 8.0 238 2 Jul 1000 4.1 437.6 0.54Zone 17 26.6 798 8 Jul 1800 9.2 1456.0 0.55Zone 18 26.6 798 8 Jul 1800 9.2 1456.0 0.55Zone 19 26.6 798 8 Jul 1800 9.2 1456.0 0.55Zone 20 29.8 891 9 Jul 1800 10.9 1629.6 0.55Zone 21 5.4 161 2 Jul 1800 0.9 248.0 0.65Zone 22 7.7 231 2 Jul 1800 1.7 479.8 0.48Zone 23 7.8 233 2 Jul 1800 1.4 408.0 0.57Zone 24 34.6 1037 10 Jul 1900 7.5 2174.0 0.48Zone 25 16.5 493 5 Jul 1800 2.2 633.3 0.78Zone 26 7.8 233 2 Jul 1800 1.4 408.0 0.57Zone 27 3.8 115 1 Jul 1800 0.8 230.5 0.50Zone 28 4.6 136 1 Jul 1800 1.1 325.5 0.42

Zone Terminal Sizing Data

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 1 2.3 - 0.0 0.00 0 Zone 2 2.3 - 0.0 0.00 0 Zone 3 2.1 - 0.0 0.00 0 Zone 4 2.5 - 0.0 0.00 0 Zone 5 2.5 - 0.0 0.00 0 Zone 6 2.1 - 0.0 0.00 0 Zone 7 2.3 - 0.0 0.00 0 Zone 8 4.3 - 0.0 0.00 0 Zone 9 3.1 - 0.0 0.00 0

Page 38: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 8-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 2 of 3

Reheat Zone Zone Reheat Coil Htg Htg Mixing Coil Water Coil Water Box Fan Load gpm Load gpm Airflow Zone Name (MBH) @ 20.0 °F (MBH) @ 20.0 °F (CFM) Zone 10 2.5 - 0.0 0.00 0 Zone 11 2.4 - 0.0 0.00 0 Zone 12 2.4 - 0.0 0.00 0 Zone 13 2.5 - 0.0 0.00 0 Zone 14 3.1 - 0.0 0.00 0 Zone 15 4.3 - 0.0 0.00 0 Zone 16 4.1 - 0.0 0.00 0 Zone 17 9.2 - 0.0 0.00 0 Zone 18 9.2 - 0.0 0.00 0 Zone 19 9.2 - 0.0 0.00 0 Zone 20 10.9 - 0.0 0.00 0 Zone 21 0.9 - 0.0 0.00 0 Zone 22 1.7 - 0.0 0.00 0 Zone 23 1.4 - 0.0 0.00 0 Zone 24 7.5 - 0.0 0.00 0 Zone 25 2.2 - 0.0 0.00 0 Zone 26 1.4 - 0.0 0.00 0 Zone 27 0.8 - 0.0 0.00 0 Zone 28 1.1 - 0.0 0.00 0

Space Loads and Airflows

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft²Zone 1 8_S PO 8021 WEST 1 5.0 Jul 1700 149 2.3 238.0 0.63Zone 2 8_S PO 8019 WEST 1 5.0 Jul 1700 150 2.3 238.0 0.63Zone 3 8_S PO 8018 WEST 1 4.5 Jul 1700 135 2.1 238.0 0.57Zone 4 8_S PO 8015 WEST 1 5.4 Jul 1700 162 2.5 238.0 0.68Zone 5 8_S PO 8014 WEST 1 5.4 Jul 1700 162 2.5 238.0 0.68Zone 6 8_S PO 8011 WEST 1 4.5 Jul 1700 135 2.1 238.0 0.57Zone 7 8_S PO 8010 WEST 1 5.0 Jul 1700 150 2.3 238.0 0.63Zone 8 8_S_CORNEROFFICE_SW 1 7.4 Sep 1500 222 4.3 273.8 0.81Zone 9 8_S COUNSEL SOUTH 1 5.7 Oct 1400 171 2.7 360.0 0.47 8_S SEC 8007 SW 1 1.3 Jul 1800 40 0.4 106.7 0.38Zone 10 8_S PO 8004 South 1 6.3 Oct 1400 188 2.5 252.0 0.74Zone 11 8_S PO 8003 South 1 6.1 Oct 1400 183 2.4 252.0 0.73Zone 12 8_S PO 8002 South 1 6.1 Oct 1400 183 2.4 252.0 0.73Zone 13 8_S PO 8096 South 1 6.3 Oct 1400 188 2.5 252.0 0.74Zone 14

Page 39: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

Zone Sizing Summary for AHU 8-S Project Name: Untitled 04/01/2004 Prepared by: psuae 09:17AM

Hourly Analysis Program v.4.2 Page 3 of 3

Cooling Time Air Heating Floor Zone Name / Sensible of Flow Load Area Space Space Name Mult. (MBH) Load (CFM) (MBH) (ft²) CFM/ft² 8_S COUNSEL SOUTH 1 5.7 Oct 1400 171 2.7 360.0 0.47 8_S SEC 8093 SE 1 1.3 Jul 1800 40 0.4 106.7 0.38Zone 15 8_S_CORNEROFFICE_SE 1 7.0 Sep 1400 210 4.3 273.8 0.77Zone 16 8_S PO 8090 East 1 4.8 Jul 0900 144 2.5 264.0 0.55 8_S AO 8089 East 1 3.2 Jul 1000 94 1.5 173.6 0.54Zone 17 8_S CONF EAST 1 26.6 Jul 1800 798 9.2 1456.0 0.55Zone 18 8_S CONF EAST 1 26.6 Jul 1800 798 9.2 1456.0 0.55Zone 19 8_S CONF EAST 1 26.6 Jul 1800 798 9.2 1456.0 0.55Zone 20 8_S CONF EAST 1 26.6 Jul 1800 798 9.2 1456.0 0.55 8_S AO 8076 East 1 3.3 Jul 1000 100 1.6 173.6 0.57Zone 21 8_S PANTRY 1 5.4 Jul 1800 161 0.9 248.0 0.65Zone 22 8_S CAUCUS 1 3.9 Jul 1800 116 0.9 249.3 0.47 8_S SEC 8088 SE 1 2.6 Jul 1800 77 0.6 170.5 0.45 8_S PHONE 1 1.3 Jul 1800 38 0.2 60.0 0.63Zone 23 8_S CONF SE 8094 1 7.8 Jul 1800 233 1.4 408.0 0.57Zone 24 8_S HALLWAYS 1 34.6 Jul 1900 1037 7.5 2174.0 0.48Zone 25 8_S RECEPTION 1 16.5 Jul 1800 493 2.2 633.3 0.78Zone 26 8_S CONF SW 8005 1 7.8 Jul 1800 233 1.4 408.0 0.57Zone 27 8_S PHONE-2 1 1.3 Jul 1800 38 0.2 60.0 0.63 8_S SEC 8012 SW 1 2.6 Jul 1800 77 0.6 170.5 0.45Zone 28 8_S SEC 8020 SW 1 2.6 Jul 1800 77 0.6 170.5 0.45 8_S AO 8017 WEST 1 2.0 Jul 1800 59 0.5 155.0 0.38

Page 40: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX H

Coil Information

Page 41: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

USA COIL & AIR Version : 9.00P.O. BOX 578 Customer :DEVAULT, PA 19432 Project :(800) 872-2645 Date : 04/01/2004(610) 296-9668 Item :

COIL CONSTRUCTION USA Model No. : GW12-HP-06030-X

Type of Coil : Glycol CoolingFin Height x Fin Length : 30.00 In. x 60.00 InchesRows Deep x Fins / Inch : 8 Rows x 14 Fins Per InchTube Od and Thickness : 1/2 In. x .017 WallFin Thick. and Material : .0060 Corrugated Aluminum FinsFace Area : 12.50 Square Feet

AIR SIDE PERFORMANCE LIQUID SIDE PERFORMANCE

Flow, ACFM : 3134 ACFM Entering Gly. Temp. : 38.00 ºFEntering Air Dry Bulb : 87.00 ºF Leaving Gly. Temp : 53.11 ºFFT H2OEntering Air Wet Bulb : 68.00 ºF Number of Circuits : 30Leaving Air Dry Bulb : 42.84 ºF GPM : 30.92Leaving Air Wet Bulb : 42.84 ºF Water Pressure Drop : 6.40 FTFace Velocity : 250.72 SFPM Liquid Velocity : 1.79 FPSAir Side Pressure Drop : 0.38 " W.G. Percent Glycol : 25.00 %

Total Btuh : 219860.70 BTU/HR.Sensible Btuh : 151175.10 BTU/HR.

Coil for AHU's 2-7 (North and South)

NO. OF COILS PER SYSTEM: ____ ____ HIGH X ____ WIDE X ____ DEEP

If more than (1) Coil in system Performance shown above is basedon (1) individual coil.

Ratings outside the scope of the ARI Air-Cooling andAir-Heating Coils Certification Program.

Page 42: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

USA COIL & AIR Version : 9.00P.O. BOX 578 Customer :DEVAULT, PA 19432 Project :(800) 872-2645 Date : 04/01/2004(610) 296-9668 Item :

COIL CONSTRUCTION USA Model No. : GW12-HP-06030-X

Type of Coil : Glycol CoolingFin Height x Fin Length : 30.00 In. x 60.00 InchesRows Deep x Fins / Inch : 8 Rows x 14 Fins Per InchTube Od and Thickness : 1/2 In. x .017 WallFin Thick. and Material : .0060 Corrugated Aluminum FinsFace Area : 12.50 Square Feet

AIR SIDE PERFORMANCE LIQUID SIDE PERFORMANCE

Flow, ACFM : 3400 ACFM Entering Gly. Temp. : 38.00 ºFEntering Air Dry Bulb : 87.00 ºF Leaving Gly. Temp : 53.51 ºFFT H2OEntering Air Wet Bulb : 68.00 ºF Number of Circuits : 30Leaving Air Dry Bulb : 43.47 ºF GPM : 32.00Leaving Air Wet Bulb : 43.47 ºF Water Pressure Drop : 6.65 FTFace Velocity : 272.00 SFPM Liquid Velocity : 1.85 FPSAir Side Pressure Drop : 0.44 " W.G. Percent Glycol : 25.00 %

Total Btuh : 233641.80 BTU/HR.Sensible Btuh : 161571.60 BTU/HR.

Coil for AHU's 8 (North and South)

NO. OF COILS PER SYSTEM: ____ ____ HIGH X ____ WIDE X ____ DEEP

If more than (1) Coil in system Performance shown above is basedon (1) individual coil.

Ratings outside the scope of the ARI Air-Cooling andAir-Heating Coils Certification Program.

Page 43: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX I

Cooling Tower Schedule Capacity Fan ( A ) Sump Heater

Number Type GPM EWT LWT AMB WB CFM (B) V/PH ESP kW V/PH Oper. Weight Basis of Design

CT-1 C-FD 900 95 85 78 460/3 0.0" 480/3 15750

BAC 3333A-LM

Cooling Tower Types ( A ) Provide motor for use with variable frequency drive. FD Forced Draft

C Centrifugal Fan

Shut-Off VAV Box Schedule

Box Size Areas Served Amount Max CFM Inlet Size Max Box PD Max Box Height Remarks

4 Interior Zones 14 150 4" Dia 0.4 8" 1,2

4 Interior Zones 14 200 4" Dia 0.4 8" 1,2

5 Interior Zones 66 300 5" Dia 0.4 8" 1,2

6 Interior Zones 35 500 6" Dia 0.4 8" 1,2

8 Interior Zones 1 900 8" Dia 0.4 10" 1,2 1. Provide pressure independent boxes with electronic DDC controls 2. Basis of Design: Titus

Fan Powered VAV Box Schedule CFM

Box Size Areas Served Amount Valve Fan Inlet Size

Max Box PD

Max Fan HP

Max Box Height Remarks

2 North Perimeter

Zones 32 150 90 6" Dia 0.45 1/6 10-5/8" 1,2

2

South, East and West Perimeter

Zones 43 200 120 6" Dia 0.35 1/6 10-5/8" 1,2

2

South, East and West Perimeter

Zones 104 300 180 6" Dia 0.2 1/6 10-5/8" 1,2

2

South, East and West Perimeter

Zones 15 500 300 8" Dia 0.2 1/6 10-5/8" 1,2

1. Provide pressure independent boxes with electronic DDC controls

2. Basis of Design: Titus FVL

Page 44: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX I (CON’T)

Pump Schedule Electrical Data

No.

Location and/or Service Type GPM

HD (ft) RPM

Min Eff HP

Volts/ Phase

Oper. Weight Remarks Basis of Design

P-1 Condenser

Water BM-ES 450 50 1750 79.4 10 460/3 390 1 Bell & Gossett

1510 4BC

P-2 Condenser

Water BM-ES 450 50 1750 79.4 10 460/3 390 1 Bell & Gossett

1510 4BC

P-3 Chilled Water

to Coils BM-ES 125 10 1150 77.5 2 460/3 360 1 Bell & Gossett

1510 5A

P-4 Chilled Water

to Coils BM-ES 125 10 1150 77.5 2 460/3 360 1 Bell & Gossett

1510 5A

P-5 Chilled Water

to Tanks BM-ES 425 55 1750 79.2 10 460/3 370 1 Bell & Gossett

1510 3BC

P-6 Chilled Water

to Tanks BM-ES 425 55 1750 79.2 10 460/3 370 1 Bell & Gossett

1510 3BC

Remarks Pump Types

1. Select motor to be non overloading over entire pump curve. ES End Suction

BM Base Mounted

Chillers

Chilled Water Condenser Water Electrical

No, Type Refrigerant Capacity Flow

(GPM) LWT (F)

Max PD (FT WG)

Flow (GPM)

EWT (F)

Max PD (Ft WG) Voltage

Basis of

Design

CH-1 Screw 134a 150

Tons 425 22-31 10 960 85 10 460/3 York

CH-2 Screw 134a 150

Tons 425 22-31 10 960 85 10 460/3 York

Air Handling Unit Schedule

SA Fan Cooling Coil (B) Motor EAT (F)

No. Locati

on Type CFM Static "WG HP Volt/f

Total MBH

Sens MBH DB WB

CHW GPM

Filter Type

Min OA

CFM

Basis of

Design AHU-2S

thru AHU-7S

South Mech Room

VAV-DWC 6300 5.0" 10 460/3 465 310 87 68 60

2" Angle 2000 Carrier

AHU-2N thru

AHU-7N

North Mech Room

VAV-DWC 6300 5.0" 10 460/3 465 310 87 68

61.8

2" Angle 2000 Carrier

AHU-8S

South Mech Room

VAV-DWC 6800 5.0" 15 460/3 500 382 89 66 76

2" Angle 2000 Carrier

AHU-8N

North Mech Room

VAV-DWC 6800 5.0" 15 460/3 500 382 89 66 62

2" Angle 2000 Carrier

(A) CHW EWT 38 F VAV Variable Air Volume (B) Max fin spacing 14 per inch, same size connections DWC Double Wall Const

Page 45: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX J

Trace Results

Page 46: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

MO

NTH

LY U

TILI

TY C

OST

SB

y ps

uae

Alte

rnat

ive:

1

Jan

Feb

Mar

Apr

May

June

July

Aug

Sep

tO

ctN

ovD

ecTo

tal

Util

ity--

----

- M

onth

ly U

tility

Cos

ts

----

---

El e

ctric

104,

734

7,54

98,

224

9,05

78,

722

10,2

769,

221

9,92

49,

439

8,21

89,

066

7,18

57,

855

On-

Pk

Con

s. (

$)25

4,57

819

,452

20,4

6321

,074

21,8

3122

,330

22,5

6422

,432

22,0

7021

,520

20,8

9320

,205

19,7

44O

n-P

k D

eman

d ($

)11

0,33

18,

769

9,04

89,

161

9,63

09,

705

9,79

09,

757

9,57

09,

030

9,08

38,

903

7,88

6O

ff-P

k D

eman

d ($

)

35,4

8536

,293

39,0

4238

,767

41,0

7842

,113

41,5

7542

,311

40,1

8339

,291

37,7

3535

,770

469,

643

Tota

l ($)

:

35,4

8536

,293

39,0

4238

,767

41,0

7842

,113

41,5

7542

,311

40,1

8339

,291

37,7

3535

,770

469,

643

Mon

thly

Tot

al ($

):

Pro

ject

Nam

e:TR

AC

700

v4.

1 ca

lcul

ated

at 0

6:40

PM

on

02/2

0/20

0419

19 M

St

Dat

aset

Nam

e:P

:\191

9M S

t-2.tr

c

Mon

thly

Util

ity C

osts

repo

rt P

age

1 of

1

Page 47: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

MO

NTH

LY E

NER

GY

CO

NSU

MPT

ION

By

psua

e

Alte

rnat

ive:

119

19 M

St Ja

nFe

bM

arA

prM

ayJu

neJu

lyA

ugS

ept

Oct

Nov

Dec

Tota

lU

tility

----

---

Mon

thly

Ene

rgy

Con

sum

ptio

n -

----

--

El e

ctric

1,77

4,50

813

3,00

414

1,33

815

0,79

914

4,50

817

0,08

014

9,57

116

2,76

016

0,17

213

9,21

415

6,75

812

6,80

413

9,50

2O

n-P

k C

ons.

(kW

h)1,

984,

782

134,

045

148,

880

164,

714

171,

071

204,

018

183,

677

196,

595

185,

281

155,

959

169,

807

132,

193

138,

541

Off-

Pk

Con

s. (

kWh)

1,18

41,

052

1,08

31,

112

1,15

01,

174

1,18

41,

178

1,16

11,

131

1,09

51,

072

1,05

5O

n-P

k D

eman

d (k

W)

Wat

er4,

753

303

350

400

413

497

440

479

455

380

415

308

313

Con

s. (

1000

gal)

Bui

ldin

g E

nerg

y C

onsu

mpt

ion

= S

ourc

e E

nerg

y C

onsu

mpt

ion

=

Floo

r Are

a =

70,4

9421

1,50

4 ft

2Btu

/ (ft2

-yea

r)B

tu/(f

t2-y

ear)

182,

007

Pro

ject

Nam

e:TR

AC

700

v4.

1 ca

lcul

ated

at 1

1:52

AM

on

03/2

3/20

0419

19 M

St

Dat

aset

Nam

e:P

:\191

9M S

t-The

rmal

Sto

rage

.TR

CA

ltern

ativ

e - 1

M

onth

ly E

nerg

y C

onsu

mpt

ion

repo

rt pa

ge 1

Page 48: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

MO

NTH

LY U

TILI

TY C

OST

SB

y ps

uae

Alte

rnat

ive:

1

Jan

Feb

Mar

Apr

May

June

July

Aug

Sep

tO

ctN

ovD

ecTo

tal

Util

ity--

----

- M

onth

ly U

tility

Cos

ts

----

---

El e

ctric

56,0

184,

142

4,40

14,

845

4,64

35,

462

4,80

65,

228

4,98

54,

335

4,87

93,

950

4,34

4O

n-P

k C

ons.

($)

61,3

914,

175

4,63

55,

059

5,25

46,

262

5,64

06,

035

5,76

34,

854

5,28

34,

117

4,31

4O

ff-P

k C

ons.

($)

171,

952

8,81

19,

069

20,6

9121

,401

21,8

3922

,028

21,9

239,

726

9,47

39,

175

8,98

18,

836

On-

Pk

Dem

and

($)

231

1919

1919

1919

1919

1919

1919

Off-

Pk

Dem

and

($)

17,5

1317

,068

19,3

5618

,681

20,4

9333

,205

32,4

9233

,582

31,3

1730

,614

18,1

2417

,147

289,

593

Tota

l ($)

:

17,5

1317

,068

19,3

5618

,681

20,4

9333

,205

32,4

9233

,582

31,3

1730

,614

18,1

2417

,147

289,

593

Mon

thly

Tot

al ($

):

Pro

ject

Nam

e:TR

AC

700

v4.

1 ca

lcul

ated

at 1

1:52

AM

on

03/2

3/20

0419

19 M

St

Dat

aset

Nam

e:P

:\191

9M S

t-The

rmal

Sto

rage

.TR

C

Mon

thly

Util

ity C

osts

repo

rt P

age

1 of

1

Page 49: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX K

Mechanical Cost Analysis

Existing System New

System Chiller $236,000.00 $152,250.00 Cooling Tower $48,400.00 $33,000.00 Ice Tanks $0.00 $138,600.00 Heat Exchanger $43,400.00 $0.00 Pumps P1 $14,775.00 $14,775.00 P2 $14,775.00 $14,775.00 P3 $19,050.00 $14,775.00 P4 $14,775.00 $14,775.00 P5 $14,775.00 $14,775.00 P6 $19,050.00 $14,775.00 P7 $14,775.00 $0.00 P8 $14,775.00 $0.00 Air Handling Units (7) 13,000 cfm units $66,500.00 $0.00 (7) 15,000 cfm units $81,900.00 $0.00 (14) 6,300 cfm units $0.00 $65,450.00 (2) 6,800 cfm units $0.00 $9,350.00 Ducts $97,285.00 $69,415.00 Total $700,235.00 $556,715.00

Page 50: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX L

Electrical Sizing

Floors 2-7 Air Handling Units: From NEC Table 430.150 460V & 10HP FLC=14A I=kVA/(1.73*kV*PF) kVA=14*1.73*.460*1 = 11.1412 kVA From NEC Table 430.152 Full Voltage Starter, Inverse Time Delay Circuit Breaker = 250% of FLC 14*2.5 = 35A 35A Breaker Wire Size = 3-#8 THW From Table 11.6 of Electrical Systems in Buildings For 3 #8 THW current carrying conductors ¾” Conduit is required 3-#8 THW – ¾” C Pumps 5 & 6 From NEC Table 430.150 460V & 2HP FLC=3.4A I=kVA/(1.73*kV*PF) kVA=3.4*1.73*.460*1 = 2.7 kVA From NEC Table 430.152 Full Voltage Starter, Inverse Time Delay Circuit Breaker = 250% of FLC 3.4*2.5 = 8.5A 15A Breaker Wire Size = 3-#12 THW From Table 11.6 of Electrical Systems in Buildings For 3 #12 THW current carrying conductors ½” Conduit is required 3-#12 THW – ½” C

Page 51: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX M

CRSI Table 9-21

Page 52: APPENDIX A - Penn State College of Engineering Report-appen.pdf · 1919 M ST. WASHINGTON, D.C. DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY APPENDIX

1919 M ST. WASHINGTON, D.C.

DARREN BRUCE ARCHITECTURAL ENGINEERING MECHANICAL OPTION PENN STATE UNIVERSITY

APPENDIX M

CRSI Table 10-14