Top Banner
FLT I will be able to: Identify redox reactions and justify the identification in terms of electron transfer Design and/or interpret the results of an experiment involving a redox titration Make qualitative or quantitative predictions about galvanic or electrolytic reactions based on half-cell reactions and potentials and/or Faraday’s laws Analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions by completing Electrochemistry Notes
55

AP Chem Week 28 Unit 10 Electrochemistry 2019

Apr 07, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AP Chem Week 28 Unit 10 Electrochemistry 2019

FLT•  Iwillbeableto:– Identifyredoxreactionsandjustifytheidentificationintermsofelectrontransfer– Designand/orinterprettheresultsofanexperimentinvolvingaredoxtitration– Makequalitativeorquantitativepredictionsaboutgalvanicorelectrolyticreactionsbasedonhalf-cellreactionsandpotentialsand/orFaraday’slaws– Analyzedataregardinggalvanicorelectrolyticcellstoidentifypropertiesoftheunderlyingredoxreactions

bycompletingElectrochemistryNotes

Page 2: AP Chem Week 28 Unit 10 Electrochemistry 2019

Electrochemistry

Page 3: AP Chem Week 28 Unit 10 Electrochemistry 2019

Review:Oxidation-ReductionReactions

Page 4: AP Chem Week 28 Unit 10 Electrochemistry 2019

Oxidation-Reduction•  Oxidation-Reduction(redox)reactionscanbeconsideredelectron-transferreactions

•  Overallreaction:2Mg(s)+O2(g)à2MgO(s)

2Mg(s)+O2(g)à2MgO(s)

EachOgains2e-tobecomeO2-

EachMgloses2e-tobecomeMg2+

•  Half-Reactions(showtheelectronsinvolved):

2Mgà2Mg2++4e- O2+4e-à2O2-

Page 5: AP Chem Week 28 Unit 10 Electrochemistry 2019

Oxidation-Reduction•  Oxidation–involvesthelossofelectrons•  Reduction–involvesthegainofelectrons•  LEOthelionsaysGER

Page 6: AP Chem Week 28 Unit 10 Electrochemistry 2019

Oxidation-Reduction•  Whenlookingatreactions,wecanassignoxidationstatestoseewhichsubstanceisoxidized,andwhichisreduced

CH4(g)+2O2(g)àCO2(g)+2H2O(g)

Loste-s(oxidized)

Gainede-s(reduced)

C:-4H:+1

O:0 C:+4O:-2

H:+1O:-2

Page 7: AP Chem Week 28 Unit 10 Electrochemistry 2019

Review:BalancingRedoxReactions

Page 8: AP Chem Week 28 Unit 10 Electrochemistry 2019

Balancing1.  Assignoxidationstatesandlabel2.  Separatetherxnintohalf-reactions3.  BalanceallatomsexceptHandO4.  BalanceOatomsbyaddingoneH2Omoleculeforeach

Oatomneeded5.  AcidicsolutionsàbalancehydrogenbyaddingH+.

BasicsolutionsàaddoneH2OmoleculeforeachHatomneeded,andthenaddthesamenumberofOH-atomsontheoppositeside.

6.  Balancethechargesbyaddinge-stothepositiveside.7.  Multiplerxnsbytheappropriatenumbertogetthe

electronstobalanceoutandcancel.8.  Addreactionstogether,cancelingouttermsthat

appearonoppositesides

Page 9: AP Chem Week 28 Unit 10 Electrochemistry 2019

Balancing•  Ex/Al(s)+Cu2+(aq)àAl3+(aq)+Cu(s)

•  First,assignoxidationstatesandlabel

Al(s)+Cu2+(aq)àAl3+(aq)+Cu(s) 0

+2

+3

0

Oxidized(loste-s)

Reduced(gainede-s)

Page 10: AP Chem Week 28 Unit 10 Electrochemistry 2019

Balancing•  Next,separateintohalfreactions:

Al(s)+Cu2+(aq)àAl3+(aq)+Cu(s)

Oxidationhalf-rxnAl(s) à Al3+(aq)

Reductionhalf-rxnCu2+(aq) à Cu(s)

Al(s) àAl3+(aq)+3e-

2e-+Cu2+(aq)àCu(s)

2Al(s)à2Al3+(aq)+6e-

6e-+3Cu2+(aq)à3Cu(s)

2Al(s)+3Cu2+(aq)à2Al3+(aq)+3Cu(s)

Page 11: AP Chem Week 28 Unit 10 Electrochemistry 2019

Trythis:Fe2+(aq)+MnO4

-(aq)àFe3+(aq)+Mn2+(aq)

•  Answer:

5Fe2+(aq)+8H+(aq)+MnO4

-(aq)à5Fe3+(aq)+Mn2+(aq)+4H2O(l)

Page 12: AP Chem Week 28 Unit 10 Electrochemistry 2019

Trythis:BASICsolutionI-(aq)+MnO4

-(aq)àI2(aq)+MnO2(s)

Page 13: AP Chem Week 28 Unit 10 Electrochemistry 2019

AlsoReview:Titrations

Page 14: AP Chem Week 28 Unit 10 Electrochemistry 2019

Titrations•  Recall:Titrationsareavolumetricanalysiswecanusetodeterminetheamountofacertainsubstance

•  Inatitration,astandardsolution(ofKNOWNconcentration)isaddedgraduallytoasolutionofunknownconcentrationuntilthechemicalreactioniscomplete.

Page 15: AP Chem Week 28 Unit 10 Electrochemistry 2019

Titrations•  Acid-BaseTitrationMethod:1.  Analytesolution(ofunknownM)isplacedina

flaskorbeaker2.  Asmallamountofindicatorisadded3.  Titrantisplacedinaburetteandslowlyaddedto

theanalyteandindicatormixture4.  Theprocessisstoppedwhentheindicatorcauses

achangeinthecolorofthesolution5.  Thechangeinvolumeisusedtodeterminethe

volumeoftheanalytesolution

Page 16: AP Chem Week 28 Unit 10 Electrochemistry 2019

Titrations•  Justasanacidcanbetitratedagainstabase,wecantitrateanoxidizingagentagainstareducingagent.

•  Wecancarefullyaddasolutioncontaininganoxidizingagenttoasolutioncontainingareducingagent

•  Theequivalencepointisreachedwhenthereducingagentiscompletelyoxidizedbytheoxidizingagent

•  Westilluseanindicatorthatchangescolor.•  Theindicatorhasacharacteristiccolorofthereducedformandoxidizedform.Atorneartheequivalencepoint,asharpchangeincolorwilloccur.

Page 17: AP Chem Week 28 Unit 10 Electrochemistry 2019

28

Page 18: AP Chem Week 28 Unit 10 Electrochemistry 2019

Titrations•  Ex/A16.42mLvolumeof0.1327MKMnO4solutionisneededtooxidize25.00mLofaFeSO4solutioninanacidicmedium.WhatistheconcentrationoftheFeSO4solutionifthenetionicequationis5Fe2++MnO4

-+8H+àMn2++5Fe3++4H2O•  First,findmolesofKMnO4,andthenusethebalancedequationtofindthemolesofFeSO4

•  Second,dividebythevolumeoftheFeSO4solutiontogetmolarity

Page 19: AP Chem Week 28 Unit 10 Electrochemistry 2019

Mini-CW

Page 20: AP Chem Week 28 Unit 10 Electrochemistry 2019

MiniCW•  BalancingWS!•  AnyunfinishedequationswillbeyourHWinadditiontothebookproblems.

Page 21: AP Chem Week 28 Unit 10 Electrochemistry 2019

Electrochemistry

Page 22: AP Chem Week 28 Unit 10 Electrochemistry 2019

Referencebacktothisslideafterwefinishelectrochem:

Page 23: AP Chem Week 28 Unit 10 Electrochemistry 2019

•  LEOsaysGER•  Oxidizingagentscausereduction•  Reducingagentscauseoxidation•  Galvaniccellsarespontaneous(battery)•  Eletrolyticcellsrequireexternale-source(DC)•  ANOX,REDCAT(anode–oxidationoccurs;cathode–reductionoccurs)

•  ElectrochemistryandEquilibrium=Buddies•  Atequilibrium,voltaiccellshavezerovoltage•  VoltaiccellshaveverylargeKvalues(favorable)•  Q=1atstandardconditions•  IfQincreasestoapproachK,voltagedecreases•  IfQdecreasestoapproachK,voltageincreases

Page 24: AP Chem Week 28 Unit 10 Electrochemistry 2019

Electrochemistry

Page 25: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectricCurrentsandRedox•  Inelectrochemistry,westudytherelationshipsbetweenelectricalandchemicalprocesses

•  Thisincludesbatteries,electroplating,fuelcells,hydrogenproduction,biologicalprocesses

•  Redoxrxnsinvolvethetransferofelectrons•  Wecanlookatenergyreleasedbyaspontaneouschemicalrxnbeingconvertedintoelectricity(ex/battery)

•  Wecanalsolookatprocesseslikeelectrolysis,whereweuseelectricalenergytoforceanonspontaneousrxntooccur

Page 26: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectricCurrentsandRedox•  Termstoknow:•  ElectricCurrent=theflowofelectriccharge– Current(I)isoftenrepresentedbythenumberofelectronspassingthroughpersecond(Amperes)

•  Voltage=thepotentialenergyperelectron

Page 27: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectricCurrentsandRedox•  Let’slookatredoxrxns:•  Sinceredoxrxnsinvolvethetransferofe-s,wecanlookatthemintermsofgeneratingelectricalcurrents

Zn(s)+Cu2+(aq)àZn2+(aq)+Cu(s)•  What’shappeninginthisrxn?

Page 28: AP Chem Week 28 Unit 10 Electrochemistry 2019

39

Page 29: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectricCurrentsandRedoxZn(s)+Cu2+(aq)àZn2+(aq)+Cu(s)

•  ZnmetalisplacedinasolutionofCu2+•  ThegreatertendencyofZntolosee-sresultsinZnbeingoxidizedandCu2+beingreduced

•  Let’sthink…•  Thee-sarebeingtransferreddirectlyfromZntoCu2+.ThecopperionacceptstheelectronsanddepositsontheZincassolidcopper.

Page 30: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectricCurrentsandRedoxZn(s)+Cu2+(aq)àZn2+(aq)+Cu(s)

•  Canweseparatethezincatomsandcopperions,andforcetheelectrontransfertooccurthroughawireconnectingthetwohalf-rxns?

•  Yes!•  Theflowofe-swouldconstituteanelectricalcurrentandcouldbeusedtodoelectricalwork

Page 31: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectrochemicalCells

Page 32: AP Chem Week 28 Unit 10 Electrochemistry 2019

ElectricCurrentFlowingIndirectlyb/tAtoms

Page 33: AP Chem Week 28 Unit 10 Electrochemistry 2019

TheVoltaicCell•  ElectrochemicalCell=devicethatgenerateselectricitythroughredoxrxns

① Voltaic(Galvanic)CellAnelectrochemicalcellthatproducesanelectricalcurrentfromaspontaneousrxn

② ElectrolyticCellAnelectrochemicalcellthatconsumesanelectricalcurrenttodriveanonspontaneousrxn

Page 34: AP Chem Week 28 Unit 10 Electrochemistry 2019

TheVoltaicCell

Page 35: AP Chem Week 28 Unit 10 Electrochemistry 2019

TheVoltaicCell•  Twohalf-cells•  SaltBridge– Connectstwohalf-cellsandneutralizeschargebuildup,allowingtherxntocontinue

•  Electrodes=conductivesurfaces– Cathode=wherereductiontakesplace– Anode=whereoxidationtakesplace

Page 36: AP Chem Week 28 Unit 10 Electrochemistry 2019

47

Page 37: AP Chem Week 28 Unit 10 Electrochemistry 2019

Electrodes•  Anode– electrodewhereoxidationoccurs– anionsattractedtoit– connectedtopositiveendofbatteryinelectrolyticcell– losesweightinelectrolyticcell

•  Cathode– electrodewherereductionoccurs– cationsattractedtoit– connectedtonegativeendofbatteryinelectrolyticcell– gainsweightinelectrolyticcell• electrodewhereplatingtakesplaceinelectroplating

Page 38: AP Chem Week 28 Unit 10 Electrochemistry 2019

49

Page 39: AP Chem Week 28 Unit 10 Electrochemistry 2019

CurrentandVoltage•  Thecurrent=thenumberofe-sthatflowthroughthesystempersecond–  unit=Ampere–  1Aofcurrent=1Coulombofchargeflowingbyeachsecond–  1A=6.242x1018electrons/second–  Electrodesurfaceareadictatesthenumberofelectronsthatcanflow

•  Potentialdifference=thedifferenceinpotentialenergybetweenthereactantsandproducts–  unit=Volt–  1Vofforce=1Jofenergy/Coulombofcharge–  thevoltageneededtodriveelectronsthroughtheexternalcircuit

–  amountofforcepushingtheelectronsthroughthewireiscalledtheelectromotiveforce,emf

Page 40: AP Chem Week 28 Unit 10 Electrochemistry 2019

CellPotential

Page 41: AP Chem Week 28 Unit 10 Electrochemistry 2019

CellPotential•  CellPotential(Ecell)=thedifferenceinpotentialenergybetweentheanodeandthecathodeinavoltaiccell

•  Dependsontherelativetendenciesofthereactantstoundergooxidationandreduction

•  Cellpotentialunderstandardconditionsiscalledthestandardemf,E°cell– 25°C,1atmforgases,1Mconcentrationofsolution– sumofthecellpotentialsforthehalf-reactions

•  Overall,thecellpotentialisameasureoftheoveralltendencyforaredoxrxntooccur.Thelowerthecellpotential,thelowerthetendency

Page 42: AP Chem Week 28 Unit 10 Electrochemistry 2019

CellNotation•  shorthanddescriptionofVoltaiccell•  electrode|electrolyte||electrolyte|electrode•  oxidationhalf-cellonleft,reductionhalf-cellontheright

•  single|=phasebarrier–  ifmultipleelectrolytesinsamephase,acommaisusedratherthan|

– oftenuseaninertelectrode•  doubleline||=saltbridge•  Ex/Zn(s)|Zn2+(aq)||Cu2+(aq)|Cu(aq)

Page 43: AP Chem Week 28 Unit 10 Electrochemistry 2019

Fe(s)|Fe2+(aq)||MnO4-(aq),Mn2+(aq),H+(aq)|Pt(s)

Page 44: AP Chem Week 28 Unit 10 Electrochemistry 2019

CellPotential•  Ahalf-rxnwithastrongtendencytooccurhasalarge+half-cellpotential

•  Whentwohalf-cellsareconnected,thee-sflowsothatthehalf-rxnwiththestrongertendencywilloccur

•  ThesevaluesarestandardizedbySHE,orthestandardhydrogenelectrode,whichisassignedapotentialdifferenceof0v

Page 45: AP Chem Week 28 Unit 10 Electrochemistry 2019
Page 46: AP Chem Week 28 Unit 10 Electrochemistry 2019

Half-CellPotentials•  SHEreductionpotentialisdefinedtobeexactly0v•  half-reactionswithastrongertendencytowardreductionthantheSHEhavea+valueforE°red

•  half-reactionswithastrongertendencytowardoxidationthantheSHEhavea-valueforE°red

•  E°cell=E°oxidation+E°reduction– E°oxidation=-E°reduction– +E°cellmeanstherxnisspontaneous– whenaddingE°valuesforthehalf-cells,donotmultiplythehalf-cellE°values,evenifyouneedtomultiplythehalf-rxnstobalancetheequation

Page 47: AP Chem Week 28 Unit 10 Electrochemistry 2019
Page 48: AP Chem Week 28 Unit 10 Electrochemistry 2019
Page 49: AP Chem Week 28 Unit 10 Electrochemistry 2019

Example•  CalculateE°cellforthereactionat25°C:Al(s)+NO3

-(aq)+4H+

(aq)àAl3+(aq)+NO(g)+2H2O(l)Steps:1.  Separatetherxnintotheoxidationand

reductionhalf-reactions2.  FindtheE°foreachhalf-reactionandsum

Page 50: AP Chem Week 28 Unit 10 Electrochemistry 2019

CalculateE°cellforthereactionat25°CAl(s)+NO3

−(aq)+4H+

(aq)→Al3+(aq)+NO(g)+2H2O(l)

Separate the reaction into the oxidation and reduction half-reactions

ox: Al(s) → Al3+(aq) + 3 e−

red: NO3

−(aq) + 4 H+

(aq) + 3 e− → NO(g) + 2 H2O(l)

find the E° for each half-reaction and sum to get E°cell

E°ox = −E°red = +1.66 v E°red = +0.96 v E°cell = (+1.66 v) + (+0.96 v) = +2.62 v

Page 51: AP Chem Week 28 Unit 10 Electrochemistry 2019

Example•  Willtherxnbelowbespontaneousunderstandardconditions?

Fe(s)+Mg2+(aq)àFe2+(aq)+Mg(s)

Page 52: AP Chem Week 28 Unit 10 Electrochemistry 2019

Predictifthefollowingreactionisspontaneousunderstandardconditions

Fe(s)+Mg2+(aq)→Fe2+(aq)+Mg(s)Separate the reaction into the oxidation and reduction half-reactions

ox: Fe(s) → Fe2+(aq) + 2 e−

red: Mg2+

(aq) + 2 e− → Mg(s)

look up the relative positions of the reduction half-reactions

red: Mg2+(aq) + 2 e− → Mg(s)

red: Fe2+(aq) + 2 e− → Fe(s)

since Mg2+ reduction is below Fe2+ reduction, the reaction is NOT spontaneous as written

Page 53: AP Chem Week 28 Unit 10 Electrochemistry 2019

the reaction is spontaneous in the reverse direction

Mg(s) + Fe2+(aq) → Mg2+

(aq) + Fe(s) ox: Mg(s) → Mg2+

(aq) + 2 e− red: Fe2+

(aq) + 2 e− → Fe(s)

sketch the cell and label the parts – oxidation occurs at the anode; electrons flow from anode to cathode

Page 54: AP Chem Week 28 Unit 10 Electrochemistry 2019

Practice-SketchandLabeltheVoltaicCellFe(s)⏐Fe2+(aq)⏐⏐ Pb2+(aq)⏐Pb(s),WritetheHalf-ReactionsandOverallReaction,andDeterminethe

CellPotentialunderStandardConditions.

Page 55: AP Chem Week 28 Unit 10 Electrochemistry 2019

ox:Fe(s)→Fe2+(aq)+2e−E°=+0.45V

red:Pb2+(aq)+2e−→Pb(s)E°=−0.13V

tot:Pb2+(aq)+Fe(s)→Fe2+(aq)+Pb(s)E°=+0.32V