Top Banner
AP Calculus AB Chapter 1 Limits SY: 2016 – 2017 Mr. Kunihiro
15

AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

Mar 15, 2018

Download

Documents

duongcong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

APCalculusABChapter1Limits

SY:2016–2017Mr.Kunihiro

Page 2: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

1.1LimitsNumerical&GraphicalShowallofyourworkonANOTHERSHEETofFOLDERPAPER.InExercises1and2,astoneistossedverticallyintotheairfromgroundlevelwithaninitialvelocityof15m/s.Itsheightattime is m.1.Computethestone’saveragevelocityoverthetimeinterval andindicatethecorrespondingsecantlineonasketchofthegraphof .2.Computethestone’saveragevelocityoverthetimeintervals , ,

and , , ,andthenestimatetheinstantaneousvelocityat .(Roundyouranswerstofourdecimalplaces.)InExercise3,usethefollowinggraphprovidedtohelpyouanswerthefollowingquestions.NOTE:PAYATTENTIONtotheVOCABULARY!3.ThefigurebelowshowstheestimatednumberNofinternetusersinChile,basedonthedatafromtheUnitedNationsStatisticsDivision.(a)EstimatetherateofchangeofNat .(b)Doestherateofchangeincreaseordecreaseas increases?Explaingraphically.(c)LetRbetheaveragerateofchangeover .ComputeR.(d)Istherateofchangeat greaterthanorlessthantheaveragerateR?Explaingraphically.

t h t( ) = 15t − 4.9t 2

0.5,2.5[ ]h t( )

1,1.01[ ] 1,1.001[ ]1,1.0001[ ] 0.99,1[ ] 0.999,1[ ] 0.9999,1[ ]

t = 1

t = 2003.5

t

2001,2005[ ]

t = 2002

Page 3: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

InExercises4and5,findthefollowinglimits,orexplainwhytheydonotexist.4

. (a) (b) (c)

5

. (a) (b) (c)

InExercise6,usethegraphbelowtoanswerthefollowinglimitquestions.6.Whichofthefollowingstatementsaboutthefunction graphedherearetrue,andwhicharefalse?

(a) exists (b) (c)

(d) (e)

(f) existsateverypoint intheinterval

2.2 Limit of a Function and Limit Laws 73

The assertion resulting from replacing the less than or equal to inequality by thestrict less than inequality in Theorem 5 is false. Figure 2.14a shows that for

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,u Z 0,(6 )

(… )

THEOREM 5 If for all x in some open interval containing c, exceptpossibly at itself, and the limits of ƒ and g both exist as x approaches c,then

limx:c

ƒsxd … limx:c

g sxd .

x = cƒsxd … g sxd

Exercises 2.2

Limits from Graphs1. For the function g(x) graphed here, find the following limits or

explain why they do not exist.

a. b. c. d.

2. For the function ƒ(t) graphed here, find the following limits or ex-plain why they do not exist.

a. b. c. d.

3. Which of the following statements about the function graphed here are true, and which are false?

a. exists.

b.

c.

d.

e.

f. exists at every point in

g. does not exist.limx:1

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxd = 0

limx:1

ƒsxd = 1

limx:0

ƒsxd = 1

limx:0

ƒsxd = 0

limx:0

ƒsxd

y = ƒsxd

t

s

1

10

s ! f (t)

–1

–1–2

limt: -0.5

ƒstdlimt:0

ƒstdlimt: -1

ƒstdlimt: -2

ƒstd

3x

y

2

1

1

y ! g(x)

limx:2.5

g sxdlimx:3

g sxdlimx:2

g sxdlimx:1

g sxd

4. Which of the following statements about the function graphed here are true, and which are false?

a. does not exist.

b.

c. does not exist.

d. exists at every point in

e. exists at every point in (1, 3).

Existence of LimitsIn Exercises 5 and 6, explain why the limits do not exist.

5. 6.

7. Suppose that a function ƒ(x) is defined for all real values of x ex-cept Can anything be said about the existence of

Give reasons for your answer.

8. Suppose that a function ƒ(x) is defined for all x in Cananything be said about the existence of Give rea-sons for your answer.

limx:0 ƒsxd?[-1, 1] .

limx:x0 ƒsxd?x = x0 .

limx:1

1

x - 1limx:0

xƒ x ƒ

x

y

321–1

1

–1

–2

y ! f (x)

x0limx:x0

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxdlimx:2

ƒsxd = 2

limx:2

ƒsxd

y = ƒsxd

x

y

21–1

1

–1

y ! f (x)

Another important property of limits is given by the next theorem. A proof is given inthe next section.

7001_AWLThomas_ch02p058-121.qxd 10/1/09 2:33 PM Page 73

limx→1

g x( ) limx→2

g x( ) limx→3

g x( )

2.2 Limit of a Function and Limit Laws 73

The assertion resulting from replacing the less than or equal to inequality by thestrict less than inequality in Theorem 5 is false. Figure 2.14a shows that for

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,u Z 0,(6 )

(… )

THEOREM 5 If for all x in some open interval containing c, exceptpossibly at itself, and the limits of ƒ and g both exist as x approaches c,then

limx:c

ƒsxd … limx:c

g sxd .

x = cƒsxd … g sxd

Exercises 2.2

Limits from Graphs1. For the function g(x) graphed here, find the following limits or

explain why they do not exist.

a. b. c. d.

2. For the function ƒ(t) graphed here, find the following limits or ex-plain why they do not exist.

a. b. c. d.

3. Which of the following statements about the function graphed here are true, and which are false?

a. exists.

b.

c.

d.

e.

f. exists at every point in

g. does not exist.limx:1

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxd = 0

limx:1

ƒsxd = 1

limx:0

ƒsxd = 1

limx:0

ƒsxd = 0

limx:0

ƒsxd

y = ƒsxd

t

s

1

10

s ! f (t)

–1

–1–2

limt: -0.5

ƒstdlimt:0

ƒstdlimt: -1

ƒstdlimt: -2

ƒstd

3x

y

2

1

1

y ! g(x)

limx:2.5

g sxdlimx:3

g sxdlimx:2

g sxdlimx:1

g sxd

4. Which of the following statements about the function graphed here are true, and which are false?

a. does not exist.

b.

c. does not exist.

d. exists at every point in

e. exists at every point in (1, 3).

Existence of LimitsIn Exercises 5 and 6, explain why the limits do not exist.

5. 6.

7. Suppose that a function ƒ(x) is defined for all real values of x ex-cept Can anything be said about the existence of

Give reasons for your answer.

8. Suppose that a function ƒ(x) is defined for all x in Cananything be said about the existence of Give rea-sons for your answer.

limx:0 ƒsxd?[-1, 1] .

limx:x0 ƒsxd?x = x0 .

limx:1

1

x - 1limx:0

xƒ x ƒ

x

y

321–1

1

–1

–2

y ! f (x)

x0limx:x0

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxdlimx:2

ƒsxd = 2

limx:2

ƒsxd

y = ƒsxd

x

y

21–1

1

–1

y ! f (x)

Another important property of limits is given by the next theorem. A proof is given inthe next section.

7001_AWLThomas_ch02p058-121.qxd 10/1/09 2:33 PM Page 73

limt→−2

f t( ) limt→−1

f t( ) limt→0

f t( )

y = f x( )

2.2 Limit of a Function and Limit Laws 73

The assertion resulting from replacing the less than or equal to inequality by thestrict less than inequality in Theorem 5 is false. Figure 2.14a shows that for

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,u Z 0,(6 )

(… )

THEOREM 5 If for all x in some open interval containing c, exceptpossibly at itself, and the limits of ƒ and g both exist as x approaches c,then

limx:c

ƒsxd … limx:c

g sxd .

x = cƒsxd … g sxd

Exercises 2.2

Limits from Graphs1. For the function g(x) graphed here, find the following limits or

explain why they do not exist.

a. b. c. d.

2. For the function ƒ(t) graphed here, find the following limits or ex-plain why they do not exist.

a. b. c. d.

3. Which of the following statements about the function graphed here are true, and which are false?

a. exists.

b.

c.

d.

e.

f. exists at every point in

g. does not exist.limx:1

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxd = 0

limx:1

ƒsxd = 1

limx:0

ƒsxd = 1

limx:0

ƒsxd = 0

limx:0

ƒsxd

y = ƒsxd

t

s

1

10

s ! f (t)

–1

–1–2

limt: -0.5

ƒstdlimt:0

ƒstdlimt: -1

ƒstdlimt: -2

ƒstd

3x

y

2

1

1

y ! g(x)

limx:2.5

g sxdlimx:3

g sxdlimx:2

g sxdlimx:1

g sxd

4. Which of the following statements about the function graphed here are true, and which are false?

a. does not exist.

b.

c. does not exist.

d. exists at every point in

e. exists at every point in (1, 3).

Existence of LimitsIn Exercises 5 and 6, explain why the limits do not exist.

5. 6.

7. Suppose that a function ƒ(x) is defined for all real values of x ex-cept Can anything be said about the existence of

Give reasons for your answer.

8. Suppose that a function ƒ(x) is defined for all x in Cananything be said about the existence of Give rea-sons for your answer.

limx:0 ƒsxd?[-1, 1] .

limx:x0 ƒsxd?x = x0 .

limx:1

1

x - 1limx:0

xƒ x ƒ

x

y

321–1

1

–1

–2

y ! f (x)

x0limx:x0

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxdlimx:2

ƒsxd = 2

limx:2

ƒsxd

y = ƒsxd

x

y

21–1

1

–1

y ! f (x)

Another important property of limits is given by the next theorem. A proof is given inthe next section.

7001_AWLThomas_ch02p058-121.qxd 10/1/09 2:33 PM Page 73

limx→0

f x( ) limx→0

f x( ) = 0 limx→0

f x( ) = 1

limx→1

f x( ) = 1 limx→1

f x( ) = 0

limx→x0

f x( ) x0 −1,1( )

Page 4: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

1.2One–SidedLimitsShowallofyourworkonANOTHERSHEETofFOLDERPAPER.InExercises1through4,usethegraphbelowtoanswerthefollowinglimitquestions.1.Whichofthefollowingstatementsaboutthefunction y = f x( ) graphedherearetrue,andwhicharefalse?

(a) lim

x→2f x( ) doesnotexist. (b) lim

x→2f x( ) = 2 (c) lim

x→1f x( ) doesnotexist

(d) lim

x→x0f x( ) existsateverypoint x0 intheinterval −1,1( ) .

(e) lim

x→x0f x( ) existsateverypoint x0 intheinterval 1,3( ) .

2.Whichofthefollowingstatementsaboutthefunction y = f x( ) graphedherearetrue,andwhicharefalse?

(a) lim

x→−1+f x( ) = 1 (b) lim

x→2f x( ) doesnotexist (c) lim

x→2f x( ) = 2

(d) lim

x→1−f x( ) = 2 (e) lim

x→1+f x( ) = 1 (f) lim

x→1f x( ) doesnotexist

(g) lim

x→0+f x( ) = lim

x→0−f x( ) (h) lim

x→cf x( ) existsatevery c intheopeninterval −1,1( )

(i) lim

x→cf x( ) existsatevery c intheopeninterval 1,3( ) (j) lim

x→−1−f x( ) = 0

(k) lim

x→3+f x( ) doesnotexist

2.2 Limit of a Function and Limit Laws 73

The assertion resulting from replacing the less than or equal to inequality by thestrict less than inequality in Theorem 5 is false. Figure 2.14a shows that for

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,u Z 0,(6 )

(… )

THEOREM 5 If for all x in some open interval containing c, exceptpossibly at itself, and the limits of ƒ and g both exist as x approaches c,then

limx:c

ƒsxd … limx:c

g sxd .

x = cƒsxd … g sxd

Exercises 2.2

Limits from Graphs1. For the function g(x) graphed here, find the following limits or

explain why they do not exist.

a. b. c. d.

2. For the function ƒ(t) graphed here, find the following limits or ex-plain why they do not exist.

a. b. c. d.

3. Which of the following statements about the function graphed here are true, and which are false?

a. exists.

b.

c.

d.

e.

f. exists at every point in

g. does not exist.limx:1

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxd = 0

limx:1

ƒsxd = 1

limx:0

ƒsxd = 1

limx:0

ƒsxd = 0

limx:0

ƒsxd

y = ƒsxd

t

s

1

10

s ! f (t)

–1

–1–2

limt: -0.5

ƒstdlimt:0

ƒstdlimt: -1

ƒstdlimt: -2

ƒstd

3x

y

2

1

1

y ! g(x)

limx:2.5

g sxdlimx:3

g sxdlimx:2

g sxdlimx:1

g sxd

4. Which of the following statements about the function graphed here are true, and which are false?

a. does not exist.

b.

c. does not exist.

d. exists at every point in

e. exists at every point in (1, 3).

Existence of LimitsIn Exercises 5 and 6, explain why the limits do not exist.

5. 6.

7. Suppose that a function ƒ(x) is defined for all real values of x ex-cept Can anything be said about the existence of

Give reasons for your answer.

8. Suppose that a function ƒ(x) is defined for all x in Cananything be said about the existence of Give rea-sons for your answer.

limx:0 ƒsxd?[-1, 1] .

limx:x0 ƒsxd?x = x0 .

limx:1

1

x - 1limx:0

xƒ x ƒ

x

y

321–1

1

–1

–2

y ! f (x)

x0limx:x0

ƒsxd

s -1, 1d .x0limx:x0

ƒsxdlimx:1

ƒsxdlimx:2

ƒsxd = 2

limx:2

ƒsxd

y = ƒsxd

x

y

21–1

1

–1

y ! f (x)

Another important property of limits is given by the next theorem. A proof is given inthe next section.

7001_AWLThomas_ch02p058-121.qxd 10/1/09 2:33 PM Page 73

90 Chapter 2: Limits and Continuity

Solution

(a) Using the half-angle formula we calculate

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,not a 5x. We produce it by multiplying numerator and denominator by :

EXAMPLE 6 Find .

Solution From the definition of tan t and sec 2t, we have

Eq. (1) and Example 11bin Section 2.2= 1

3 (1)(1)(1) = 13.

limt:0

tan t sec 2t

3t = 13 lim

t:0 sin t

t# 1cos t

# 1cos 2t

limt:0

tan t sec 2t

3t

= 25 s1d = 2

5

= 25 lim

x:0 sin 2x

2x

limx:0

sin 2x

5x = limx:0

s2>5d # sin 2x

s2>5d # 5x

2>5Eq. (1) and Example 11ain Section 2.2 = - s1ds0d = 0.

Let u = h>2. = - limu:0

sin uu

sin u

limh:0

cos h - 1

h= lim

h:0-

2 sin2 sh>2dh

cos h = 1 - 2 sin2sh>2d ,

Exercises 2.4

Finding Limits Graphically1. Which of the following statements about the function

graphed here are true, and which are false?

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

2. Which of the following statements about the function graphed here are true, and which are false?

y = ƒsxd

limx:2+

ƒsxd = 0limx: -1-

ƒsxd does not exist .

limx:2-

ƒsxd = 2limx:1

ƒsxd = 0

limx:1

ƒsxd = 1limx:0

ƒsxd = 1

limx:0

ƒsxd = 0limx:0

ƒsxd exists.

limx:0-

ƒsxd = limx:0+

ƒsxdlimx:0-

ƒsxd = 1

limx:0-

ƒsxd = 0limx: -1+

ƒsxd = 1

x

y

21–1

1

0

y ! f (x)

y = ƒsxd

a. b. does not exist.

c. d.

e. f. does not exist.

g.

h. exists at every c in the open interval

i. exists at every c in the open interval (1, 3).

j. k. does not exist.limx:3+

ƒsxdlimx: -1-

ƒsxd = 0

limx:c

ƒsxd

s -1, 1d .limx:c

ƒsxd

limx:0+

ƒsxd = limx:0-

ƒsxd

limx:1

ƒsxdlimx:1+

ƒsxd = 1

limx:1-

ƒsxd = 2limx:2

ƒsxd = 2

limx:2

ƒsxdlimx: -1+

ƒsxd = 1

x

y

0

1

2

1–1 2 3

y ! f (x)

Now, Eq. (1) applies withu = 2x.

7001_AWLThomas_ch02p058-121.qxd 10/1/09 2:34 PM Page 90

Page 5: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

3.Let f x( ) =3− x, x < 2x2+1, x > 2

⎧⎨⎪

⎩⎪

(a)Find lim

x→2+f x( ) and lim

x→2−f x( ) .

(b)Does limx→2

f x( ) exist?Ifso,whatisit?Ifnot,whynot?(c)Find lim

x→4−f x( ) and lim

x→4+f x( )

(d)Does limx→4

f x( ) exist?Ifso,whatisit?Ifnot,whynot?

4.Let f x( ) =0, x ≤ 0

sin 1x

, x > 0

⎧⎨⎪

⎩⎪

(a)Does lim

x→0+f x( ) exist?Ifso,whatisit? Ifnot,whynot?

(b)Does limx→0−

f x( ) exist?Ifso,whatisit?Ifnot,whynot?(c)Does lim

x→0f x( ) exist?Ifso,whatisit?Ifnot,whynot?

Page 6: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

5.(CalculatorUse)Let f x( ) = xx

(a)Graph f x( ) ontheinterval−3≤ x ≤ 3 .Is f x( ) undefinedwithinthisinterval?(b)Nowfind lim

x→0−f x( ) & lim

x→0+f x( ) . (c)Whatis lim

x→0f x( )

6.(MultipleChoice)

Thegraphofthefunction f isshowninthefigureabove.Whichofthefollowingstatementsabout f istrue?(A) lim

x→af x( ) = lim

x→bf x( ) (B) lim

x→af x( ) = 2 (C) lim

x→bf x( ) = 2

(D) lim

x→bf x( ) = 1 (E) lim

x→af x( ) doesnotexist

Page 7: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

1.3FindingLimitsAnalytically(Part1)ShowallofyourworkonANOTHERSHEETofFOLDERPAPER.MultipleChoice

1. limx→2

x2 + x − 62 − x

is

(A)5 (B)3 (C)−3 (D)−5 (E)DNE

2. limx→9

x − 5 − 2x − 9

is

(A) 14 (B)− 1

4 (C)1 (D)0 (E)DNE

3. limx→2

1x− 12

x − 2is

(A) 14 (B)− 1

4 (C)1 (D)−1 (E)DNE

4. limx→1

tan−1 xsin−1 x +1

is

(A)0 (B) 14 (C) 1

2 (D) π

2 (E) π

2π + 4

Forproblems5&6,usethetableprovidedbelow.5.Giventhefollowingselectedvaluesforcontinuousfunctions f x( ) and g x( ) inthetablebelow:

limx→3

f g x( )( )g f x( )( ) is

(A) 14 (B) 1

3 (C)1 (D)3 (E)4

x 1 2 3 4f x( ) 4 2 3 1g x( ) 2 3 1 4

Page 8: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

6. limx→2

f g−1 x( )( )g f −1 x( )( ) is

(A) 43 (B)1 (C) 3

4 (D)3 (E)4

FreeResponseFindthelimitsforeachofthefollowing.

7. limx→0

7 + sec2 x 8. limx→0

1+ x + sin x3cos x

9. limx→1

x4 −1x3 −1

10. limx→−2

x + 2x2 + 5 − 3

11. limx→−3

2 − x2 − 5x + 3

12. limx→4

4x − x2

2 − x

13.Suppose lim

x→bf x( ) = 7 and lim

x→bg x( ) = −3 .Find

(a) limx→b

f x( ) + g x( )( ) (b) limx→b

f x( ) ⋅g x( ) (c) lim

x→b4g x( ) (d) lim

x→bf x( ) g x( )

14.Thegraphsof f x( ) = x , g x( ) = −x ,andh x( ) = xcos 50πx

⎛⎝⎜

⎞⎠⎟ on

theinterval−1≤ x ≤1 aregivenattheright.UsetheSqueeze

Theoremtofind limx→0

xcos 50πx

⎛⎝⎜

⎞⎠⎟ .Justifyyouranswer.

15.If1≤ f x( ) ≤ x2 + 2x + 2 forall x ,find lim

x→−1f x( ) .Justifyyouranswer.

16.If−3cos π x( ) ≤ f x( ) ≤ x3 + 2 ,evaluate lim

x→1f x( ) .Justifyyouranswer.

Page 9: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

1.4FindingLimitsAnalytically(Part2)ShowallofyourworkonANOTHERSHEETofFOLDERPAPER.MultipleChoice

1. limx→0

sin2xxcos x

is

(A)0 (B)1 (C) 12 (D)2 (E)DNE

2. limx→0

cos2 x −12xsin x

is

(A)−1 (B)− 12 (C)1 (D) 1

2 (E)0

3. limx→0

cot 6xcsc3x

is

(A)2 (B)0 (C) 12 (D)−2 (E)DNE

4. limx→0

sinα cos x −1( )− cosα sin xx

is

(A)1 (B) cosα (C) sinα (D)−sinα (E)DNE

5. limx→0

x ex + 1x

⎛⎝⎜

⎞⎠⎟ is

(A)0 (B)1 (C)2 (D)DNE (E)Noneoftheabove

6. limx→−3+

x2 x + 3x2 − 9

is

(A)0 (B)1 (C)−1.5 (D)1.5 (E)DNE

7. limx→0

tan3x2x

is

(A)0 (B) 12 (C) 2

3 (D) 3

2 (E)Noneoftheabove

Page 10: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

FreeResponseEvaluatethefollowinglimits.Note:thesymbol x⎢⎣ ⎥⎦ isthegreatestintegerfunction.

8. limx→−2−

x + 3( ) x + 2x + 2

9. limx→1+

2x x − 2( )x − 3

10. limx→3+

x⎢⎣ ⎥⎦x

11. limx→4−

x − x⎢⎣ ⎥⎦( ) 12. limx→06x2 cot x( ) csc2x( ) 13. lim

x→0

tan xcos x2x

14. limx→0

tan3xcsc8x( ) 15. limx→0

sin x5x2 − x

16. limx→0

sin3 xx3 1+ cos x( )

17.Explainwhy limx→0

xxdoesnotexist.

Page 11: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

1.5LimitsInvolvingInfinityShowallofyourworkonANOTHERSHEETofFOLDERPAPER.MultipleChoice

1.Thegraphof y = x2 − 93x − 9

has

(A)averticalasymptoteat x = 3 (B)ahorizontalasymptoteat y = 13

(C)aremovablediscontinuityat x = 3 (D)aninfinitediscontinuityat x = 3 (E)Noneoftheabove

2.Whichstatementistrueaboutthecurve y = 2x2 + 42 + 7x − 4x2

?

(A)Theline x = − 14isaverticalasymptote.

(B)Theline x = 1 isaverticalasymptote.

(C)Theline y = − 14isahorizontalasymptote.

(D)Thegraphhasnoverticalorhorizontalasymptote.(E)Theline y = 2 isahorizontalasymptote.

3. limx→∞

2x2 +12 − x( ) 2 + x( ) is

(A)−4 (B)−2 (C)1 (D)2 (E)DNE

4. limx→∞

2− x

2xis

(A)−1 (B)1 (C)0 (D)∞ (E)DNE

5. limx→−∞

2− x

2xis

(A)−1 (B)1 (C)0 (D)∞ (E)DNE

6. limx→−∞

5x3 + 2720x2 +10x + 9

is

(A)−∞ (B)−1 (C)0 (D)3 (E)∞

Page 12: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

FreeResponseEvaluatethefollowinglimits.

7. limx→∞

2x3 + 7x3 − x2 + x + 7

8. limx→−∞

9x4 + x2x4 + 5x2 − x + 6

9. limx→∞

10x5 + x4 + 31x6

10. limx→∞

8x2 − 32x2 + x

11. limx→−∞

x2 − 5xx3 + x − 2

12. limx→−∞

x−1 + x−4

x−2 − x−3

13. limx→−5−

3x2x + 5

14. limx→ −π 2( )−

sec x 15. limx→∞arctan x

16. limx→0−

1+ csc x( ) 17. limx→7

4x − 7( )2

18. limx→5

1x − 5

Sketchthegraphofafunction y = f x( ) thatsatisfiesthegivenconditions.Noformulasarerequired–justlabelthecoordinateaxesandsketchanappropriategraph.(Theanswersarenotunique,sotherearemultiplesolutions)19. f 0( ) = 0 , lim

x→±∞f x( ) = 0 , lim

x→0+f x( ) = 2 ,and lim

x→0−f x( ) = −2

20. f 2( ) = 1 , f −1( ) = 0 , lim

x→∞f x( ) = 0 , lim

x→0+f x( ) = ∞ , lim

x→0−f x( ) = −∞ ,and lim

x→−∞f x( ) = 1

Page 13: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

1.6Continutiy&IVTShowallofyourworkonANOTHERSHEETofFOLDERPAPER.MultipleChoice1.Let g x( ) beacontinuousfunction.Selectedvaluesof g aregiveninthetablebelow.

Whatisthefewestnumberoftimes g x( ) willintersect y = 1 ontheclosedinterval3,10[ ]?(A)None (B)One (C)Two (D)Three (E)Four2.Leth x( ) beacontinuousfunction.Selectedvaluesof h aregiveninthetablebelow.

Forwhichvalueof k willtheequationh x( ) = 2

3haveatleasttwosolutionsonthe

closedinterval 2,7[ ]?

(A)1 (B) 34 (C) 7

9 (D) 2

3 (E) 11

18

3.If f x( ) =x +1, x ≤13+ ax2, x >1

⎧⎨⎩

,then f x( ) iscontinuousforall x ifa =?

(A)1 (B)−1 (C) 12 (D)0 (E)−2

4.If f x( ) =2x + 5 − x + 7

x − 2, x ≠ 2

k, x = 2

⎧⎨⎪

⎩⎪,andif f iscontinuousat x = 2 ,then k = ?

(A)0 (B) 16 (C) 1

3 (D)1 (E) 7

5

Page 14: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

5.Let f bethefunctiondefinedbythefollowing:

f x( ) =

sin x, x < 0x2, 0 ≤ x <12 − x, 1≤ x < 2x − 3, x ≥ 2

⎨⎪⎪

⎩⎪⎪

Forwhatvaluesof x is f NOTcontinuous?(A)0only (B)1only (C)2only (D)0and2only (E)0,1,and26.Let f beacontinuousfunctionontheclosedinterval −3,6[ ] .If f −3( ) = −1 andf 6( ) = 3 ,thentheIntermediateValueTheoremguaranteesthat(A) f 0( ) = 0 (B)Theslopeofthegraphof f is 4

9somewherebetween−3 and6

(C)−1≤ f x( ) ≤ 3 forall x between−3 and6(D) f c( ) = 1 foratleastone c between−3 and6(E) f c( ) = 0 foratleastone c between−1and3

7.Let f bethefunctiongivenby f x( ) = x −1( ) x2 − 4( )x2 − a

.Forwhatpositivevaluesof

a is f continuousforallrealnumbers x ?(A)None (B)1only (C)2only (D)4only (E)1and4only8.If f iscontinuouson −4,4[ ] suchthat f −4( ) = 11 and f 4( ) = −11 ,thenwhichmustbetrue?(A) f 0( ) = 0 (B) lim

x→2f x( ) = 8

(C)Thereisatleastone c∈ −4,4[ ] suchthat f c( ) = 8 (D) lim

x→3f x( ) = lim

x→−3f x( )

(E)Itispossiblethat f isnotdefinedat x = 0 FreeResponse9.Atoycartravelsonastraightpath.Duringthetimeinterval 0 ≤ t ≤ 60 seconds,thetoycar’svelocity v ,measuredinfeetpersecond,isacontinuousfunction.Selectedvaluesaregivenbelow:

Page 15: AP Calculus AB Chapter 1 Limits - Mr. Morimotomrmori.weebly.com/uploads/3/7/6/6/37660747/ch_1_assignments.pdf · 1.1 Limits Numerical & Graphical Show all of your work on ANOTHER

For0 < t < 60 ,musttherebeatimewhen v t( ) = −2 ?Justify.

10.Forthefunction f x( ) = x − 2( )2 , x = 45, 4 < x ≤10

⎧⎨⎪

⎩⎪.Find f 4( ) and f 10( ) .Doesthe

IVTguaranteea y -valueu on 4 ≤ x ≤10 suchthat f 4( ) < u < f 10( )?Whyorwhynot?Sketchthegraphof f x( ) foraddedvisualproof.11.Thefunctions f and g arecontinuousforallrealnumbers.Thetablebelowgivesvaluesofthefunctionsatselectedvaluesof x .Thefunction h isgivenbyh x( ) = g f x( )( ) + 2 .

Explainwhytheremustbeavaluew for1< w < 5 suchthat h w( ) = 0 .12.Thefunctions f and g arecontinuousforallrealnumbers.Thefunctionh isgivenby h x( ) = f g x( )( )− x .Thetablebelowgivesvaluesofthefunctionsatselectedvaluesof x .Explainwhytheremustbeavalueu for1< u < 4 suchthath u( ) = −1 .