Top Banner
Antimatter Antimatter Jan Meier Seminar: Experimental Methods in Atomic Physics May, 8th 2007
40

Antimatter Meier.pdf

Jan 01, 2017

Download

Documents

truonghuong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Antimatter Meier.pdf

AntimatterAntimatter

Jan MeierSeminar: Experimental Methods in Atomic Physics

May, 8th 2007

Page 2: Antimatter Meier.pdf

Overview• Antimatter and CPT theorie

– what is antimatter?– what physics does it follow to?

• First observations of antimatter• Natural sources of antimatter• Artificial sources of antimatter and experiments with

antihydrogen– PS210, E862 (first detections of Ħ )– ATHENA, ATRAP (spatial and velocity distribution and

temperature measurements)– ALPHA (trapping of Ħ )– AEGIS (gravity measurement)

Page 3: Antimatter Meier.pdf

Antimatter and CPT theorie

Page 4: Antimatter Meier.pdf

( ) 0,ˆˆ 2rrrrr

hh =Ψ⎟⎠⎞

⎜⎝⎛ −∇⋅+

∂∂ trcmcit

i eβα

Dirac equation of a free electron

Prediction of antimatter

solution delivers two energy eigenvalues:

4222 cmpcE e+±=±r

Does negative enery eigenvalue have physical meaning?

1928 - Paul Dirac(Nobel prize 1933)

(P.A.M. Dirac, Proc. R. Soc. A 117 (1928) 610)

Page 5: Antimatter Meier.pdf

⎟⎟⎟

⎜⎜⎜

⎛=

z

y

x

ααα

αˆˆˆ

ˆr

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

0001001001001000

ˆ xα

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

000000000

000

ˆ

iii

i

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

−=

001000011000

0100

ˆ zα

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

−−

=

1000010000100001

β̂

Page 6: Antimatter Meier.pdf

Dirac interpretation

e+ is a “hole“

e-

“Dirac sea“ e-

Page 7: Antimatter Meier.pdf

1949 Feynman-Stückelberg interpretation

• Positron is a particle (not a “hole“)• Positron is a (positively charged) electron,

travelling backwards in time

positron

electron

some other electron

Page 8: Antimatter Meier.pdf

CPT-TheoryTransformations C, P and T:

xx rr−→P (parity inversion)

C (charge conjugation)

T (time inversion) tt −→

qq −→

CPT transformation:

),,(),,( txqftxqf −−−→rr

BB −→; …

Page 9: Antimatter Meier.pdf

A CPT transformation transforms a particle into its corresponding anti-particle

particle Anti-particle

e- e+

CPTtxq ,, r txq −−− ,, r

⇒ Standard Model:For every particle type there is a corresponding antiparticle type

(some electrically neutral bosons, like Z0, γ and ηc= are their own antiparticles)

cc

CPT Symmetry

Page 10: Antimatter Meier.pdf

CPT invariance

Physics (i.g. all physical laws, equations, processes) is invariant under CPT transformations

Ψ∂∂

=Ψt

iH hˆ

−+

CPT transformation

)()ˆ( Ψ∂∂

=Ψt

iCPTHCPT h

+ −+−

ĦpH

e- e+

under certain conditions, relativistic quantum field theories say:

Page 11: Antimatter Meier.pdf

Prospect of Ħ spectroscopy

Page 12: Antimatter Meier.pdf

Violation of CPT invariance

• String theory• Kostelecky (standard model extension)• …

Historical: P (theory:Lee,Yang; Exp.:Wu), CP violations (J.H. Christenson)

(R. Bluhm et al., Phys. Rev. Lett. 82 (1999) 2254)

(C.S. Wu et al., Phys. Rev. 105 (1957) 1413)(J.H. Christenson et al., Phys. Rev. Lett. 13 (1964) 138)

Page 13: Antimatter Meier.pdf

Matter-antimatter asymmetry

Big Bangenergy

???

tt=0 now

matter

antimatter

matter+

possible explanations: • CPT violation, breaking of Baryon number conservation• CP violation, breaking of Baryon number conservation, out of equilibrium situation

energy

(H.R. Quinn, SLAC-PUB-8784 (2001))

Page 14: Antimatter Meier.pdf

First observations of antimatter

Page 15: Antimatter Meier.pdf

First detection of antimatter

1932 - Carl Anderson

From particle track:

eqPositron 2+<

ePositron mm 20<

“Positron“ (e+)

cloud chambersecondary cosmic rays

(Nobel prize 1936)

(C.D. Anderson, Phys. Rev. 43 (1933) 491)

Page 16: Antimatter Meier.pdf

Further detections of antiparticles

• 1955 - antiproton at Lawrence Berkeley National Laboratory (Chamberlain, Sergé,

Wiegand, Ypsilantis)• 1956 - antineutron (B. Cork)

(S.L. Chamberlain, Phys. Rev. 100, 947 (1955))

(B. Cork, Phys. Rev. 104, 1193 (1956))

Page 17: Antimatter Meier.pdf

Natural sources of antimatter

• Beta(plus)-decay

• secondary cosmic rays

eeNeNa ν++→ +2210

2211

πμ ,, ++e

Page 18: Antimatter Meier.pdf

Is there antimatter in (primary) cosmic rays?

1998 - AMS-01 ten day flight on Discovery

2009 – 2012AMS-02

No evidence for primaryantimatter!

“prototype“ m ~ 3 tons

three years on ISS

m ~ 7 tons

Goal:detection of He,and heavier nuclea

eH

Page 19: Antimatter Meier.pdf
Page 20: Antimatter Meier.pdf

Artificial sources of antimatter and experiments with Ħ

Page 21: Antimatter Meier.pdf

antiproton productionprinciple (since 1954):

traget (e.g. Be, Cu)proton beam particle-antiparticle pairs like ,p

p

target nucleus

γp

cGeV26=pp

1013

intensity 107(J. Eades, Rev. of modern phys. Vol.71, No.1 (1999))

Page 22: Antimatter Meier.pdf

PS210 Experiment (1995 first Ħ detection)

PS (Proton Synchrotron) at CERN

Page 23: Antimatter Meier.pdf

PS210 at LEAR (Low Energy Antiproton Ring) p = 1.94GeV/c

Xe cluster

e-,e+ pair creation is a rare process• only if , Z get close• two photon collision

probability = 0.000 000 000 000 000 01 %

Ħ production only ifrel. energy , e+ < 13.7 eV

11 Ħ detected!

Page 24: Antimatter Meier.pdf

E862 at Fermilab (1996)

beamp = 3..9 GeV/c

H2 beam

detection of 99 Ħ

γ

e+

e-

p

Ħ

Page 25: Antimatter Meier.pdf

AD (Antiproton Decelerator) (since July 2000)

AD

• ATHENA (2002)(Ħ detection by detector)• ATRAP (2002)(Ħ detection by reionization)

deceleration and coolingp : 3.5 -> 0.1 GeV/c

Page 26: Antimatter Meier.pdf

The ATHENA experiment

from AD

T≈10K

Page 27: Antimatter Meier.pdf

positron production

Solid Neon is best known positron moderatorNeon gas

solid Neon layer“low energy“ positrons

22NaT=6K

Page 28: Antimatter Meier.pdf

Antiproton capturing

5kV

n ≈ 104

E = 5 MeVtp = 200 nsn ≈ 107

loss rate: 103

Page 29: Antimatter Meier.pdf

Antiproton positron mixing

• production of several million Ħ between 2002 and 2004

“Mixing trap“: nested potential with both positive and negative ions

Page 30: Antimatter Meier.pdf

Ħ detection

CsI crystal calorimeter

Si strips to “follow the path“

Page 31: Antimatter Meier.pdf

ATHENA measurementsMeasurement of the spatial distribution of Ħin dependence of e+ plasma temperature

model:

e+ plasma

32mm

2.5mm andisotropicalemission of Ħ

• spatial distribution is independent of e+ plasma temperature• Ħ is not emitted isotropically

Page 32: Antimatter Meier.pdf

temperature measurementModel: -Recombining rotate with e+ plasma; isotropically produced Ħpropagates with momentum of -using two temperatures to describe nonequilibrium conditions-spatial distribution measurement provides temperature ratio

K150≥⇒ parapT

K15≥perppT

(N. Madsen, Phys. Rev. Lett. 94 (2005) 033403)

perpp

parap TT 2)(10±=from measurement:

Withsurrounding temperature

and e+ are not in thermal equilibrium i.g. cooling rate is much lower than recombination rate!

Page 33: Antimatter Meier.pdf

Temperature measurement at ATRAPMeasurement of velocity distribution:• Oscillating field (at radiofrequencies)• Ionization probability in oscillating field

is higher for slower Ħ• detection of ionized Ħ (antiprotons)

Best fit for : meV200=kinE

corresponds to K2400=HT

(G. Gabrielse, Phys. Rev. Lett. 93 (2004) 073401)

Page 34: Antimatter Meier.pdf

The ALPHA Project (since 2006, successor to ATHENA)

Summary:• ATRAP:

– TĦ ≈ 2400 K• ATHENA:

– TĦ ≥150 K

•Goal: Trapping Ħ for spectroscopy!•Since Ħ is neutral it can not be trapped in a Penning trap!•Other method: using magn. momentum of Ħ•But: How deep is such a trap? How hot is Ħ allowed to be?

Page 35: Antimatter Meier.pdf

Ħ trapping with magn. quadrupole

BErr

⋅−= μ

BkET Δ

trap depth

“low field seekers“

“high field seekers“

T1.0≈Δ⇒ B

BE Δ⋅=Δ μ BT Δ⋅=TK7.0

solBr For Br = 1T, Bsol=6T

K07.0=T

in Kelvin

Page 36: Antimatter Meier.pdf

solBrrB

r

22rsol BBB +=

solrsol BBBB −+=Δ⇒ 22

Page 37: Antimatter Meier.pdf

Helmholz configuration for axial trappig

Anti-Helmholz configuration for radial trapping

Page 38: Antimatter Meier.pdf

AEGIS project (planned to be in AD)Goal: direct measurement of g for Ħ

Rydberg positronium Beam (laser exited)

Stark accelerator

Cooled in Penning trapT≈100mK

Ħ *

In AEGIS: With two gratings and position dependent detectorPrecision: ∼1%

v∼100m/s

e+e-

Page 39: Antimatter Meier.pdf

conclusion

• Low temperatures needed for trapping Ħ and to– do spectroscopy experiments (CPT test; precision

1013!!!)– test gravity for antimatter

• Temperatures still to high for trapping!• Challange: Cooling of negative ions ( ) to build Ħ at

very low temperatures (∼mK)• Futher cooling of Ħ with lasercooling (if convenient

lasersystems are developed)

Page 40: Antimatter Meier.pdf

Thank You for Your attention!