Top Banner
Anomalous Transport and Diffusion in Disordered Materials Armin Bunde Justus-Liebig-Universität Giessen in cooperation with Markus Ulrich (Giessen, Stuttgart) Paul Heitjans, Sylvio Indris (Hannover)
16

Anomalous Transport and Diffusion in Disordered Materials Armin Bunde

Jan 11, 2016

Download

Documents

ojal

Anomalous Transport and Diffusion in Disordered Materials Armin Bunde Justus-Liebig-Universität Giessen in cooperation with Markus Ulrich (Giessen, Stuttgart) Paul Heitjans, Sylvio Indris (Hannover). (I) Tutorial introduction into the percolation concept: - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Anomalous Transport and Diffusion in

Disordered Materials

Armin BundeJustus-Liebig-Universität Giessen

in cooperation with

Markus Ulrich (Giessen, Stuttgart)Paul Heitjans, Sylvio Indris (Hannover)

Page 2: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Outline

(I) Tutorial introduction into the percolation concept:

model, critical behavior, fractal structures

anomalous diffusion

(II) Applications in materials science:

composite ionic conductors

Page 3: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

(I) The percolation concept

mean length of finite clusters: size of the infinite cluster:

pc: critical

concentration: spanning (“infinite”) cluster emerges

p > pc: infinite cluster + finite clusters

p < pc: finite clusters of

occupied sites

P

)(~c

pp

2.0p 59.0p 8.0p

)(~c

ppP

Page 4: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Fractal structures:

● At pc:

● Above pc:

fd

rM ~

rr

rrMd

df

,

,~

Page 5: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Self-similarity at pc:

Page 6: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Self-similarity above pc:

Page 7: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

A

B

A

B

Anomalous diffusion

wd

ABABRt ~

2~ABAB

Rt

ttr ~2

Normal lattice

Percolation at cp

wd

ttr/22 ~

)3(7.3),2(9.2 ddddww

Page 8: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Diffusion above cp

w

ww

d

dd

ttt

ttttr

~,

~,~)(

/2

2

,/2 TkDneB

dttrD 22

Percolation system:

c

cc

pp

pppp

,0

,)(~

Relation between and :wd /)(2

wd

Proof: )2(2)1/2(1/22 )(~~~~/)(~ wwwwwd

c

dddd pptttrD

)(~c

ppPn

)(~c

pp

Nernst-Einstein:

Page 9: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

• nanocrystalline Li2O:B2O3

composite

II. Applications of percolation theory: Nano- and microcrystalline Li2O:B2O3

composites

Page 10: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

DC conductivity of nano- and microcrystalline Li2O:B2O3 composites

Indris et al, 2000

Page 11: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Brick-layer model

Cluster of conducting Li20 grains

Li20 grain: length a, interface

Bulk: normal conducting 0

Interface: highly conducting

)(10

)(1024

2

micro

nano

a

Ulrich et al, 2004

01200

Page 12: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Brick-layer model: connections between grains

69.0

~

)1(

10

cp

aaa

86.0

~

)2(

1

cp

aa

90.0

~

)3(

2

1

cp

aa

Ulrich et al, 2004

Page 13: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Brick-layer model: Results

DC conductivity for different grain sizes a and ratios = 1/0 between interface and bulk conductivities, 1 nm.

Nanocrystalline grains: a = 10 nm, = 200; a = 10 nm, = 100; a = 20 nm, = 200; a = 20 nm, = 100.

Microcrystalline grains: a = 10 , = 200; a = 10 , = 100; a = 20 , = 200; a = 20 , = 100.

Comparison of the experimentally observed normalized dc conductivity (p)/(0) with the simulation results for = 1 nm, = 200; a = 10 nm and a = 10 , respectively.m

mmm

m

Ulrich et al, 2004

Page 14: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Voronoi-type model

● log-normal distribution of grain sizes,

● percolation threshold: pc= 0.85 (also too small!)

Ulrich et al, 2004

Page 15: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde

Way out: Ionic diffusion via B2O3: B2O3 interfacesin the nanocrystalline system

pc 0.95 pc 0.93

Brick-layer model Voronoi model

Ulrich et al, 2004

Page 16: Anomalous Transport and Diffusion in  Disordered Materials Armin Bunde