Top Banner
Annual Refresher Training Radiation Safety
25

Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Dec 26, 2015

Download

Documents

Tracey Reynolds
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Annual Refresher Training

Radiation Safety

Page 2: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Training Requirements

In order to work with radioactive material you must be properly trained on the safe use and the minimization of risk associated with each isotopes.

To keep your radiation worker status, you must have radiation safety refresher training once a year

Page 3: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Radiation is energy traveling through space, its most familiar form is sunshine

Cosmic Radiation – high energy particles and photons from the sun and other celestial sources

Terrestrial Radiation – radioactive materials occurring naturally in the earth’s crust

Internal Radiation – from radioactive materials incorporated in the human body

Inhaled Radiation – primarily radon and its progeny

Page 4: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Properties of Radiation

Radioactivity is the natural property of certain nuclides to spontaneously emit energy, in form of ionizing radiation, in an attempt to become more stable.

Ionizing radiation has the ability to remove electrons from atoms, creating ions. Ionization is the product of negatively charged free electrons and positively charged ionized atoms

Page 5: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Ionizing Radiation

ParticlesAlpha: 2 protons & 2 neutronsBeta: electrons emitted from nucleusNeutrons: classified by energy

PhotonsGamma: no mass, no charge, speed of light

Page 6: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Radiation UnitsRad (radiation absorption dose) is a measure of energy imparted to the medium

Roentgen (R) is a measure of energy imparted to air, and the rem or dose equivalent takes into account effects from different types of ionizing radiation.

Rem stands for “Roentgen Equivalent Man”, a unit of biological dose deposited in the body. The number of rems of radiation is equal to the number of rads absorbed multiplied by the relative biological effectiveness. One rem = 10 seiverts

Curie (Ci) is the unit to measure a radioactivity, often expressed in smaller units like thousandths (mCi) or one millionth (uCi)

One curie(Ci) = 3.7 x 10^10 dps (disintegrations per second) One millicurie(mCi) = 3.7 x 10^7 dps = 1 x 10-3 Ci One microcurie (µCi) = 3.7 x 10^4 dps or 2.22 106 dpm (1 x 10-6 Ci)

Becquerel (Bq) is a unit to measure a radioactivity, 1 transformation in one second, hence there are 3.7 x 10^10 Bq in one curie

Page 7: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

ALARA

Primary goal of radiation safety is to avoid any unnecessary radiation exposure and to keep all exposure

As Low As Reasonable Achievable

Three mains ways to keep your doses ALARA is:TimeDistanceShielding

Note: Obtaining higher doses in order to get the experiment done quicker is NOT “reasonable”

Page 8: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Time, Distance, Shielding

Time – Decrease exposure time decrease the radiation dose proportionately.

Distance – The radiation dose rate varies with the inverse square of the distance of the source. Thus doubling distance from source will decrease the dose by factor of four

Shielding Alpha is not an external hazardBeta stopped by ¼ inch of plexiglass, not lead Gamma stopped by high density materials such as lead

Page 9: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Preventing Internal Exposure

INTERNAL RADIATION EXPOSURE CONTROLFollow the precautions below to minimize internal radiation exposure:

Prevent absorption by changing your gloves frequently. Avoid touching your eyes, nose or mouth while conducting experiments. Monitor your work area with survey meter, wash your hands, and check your hands and lab coat with a survey meter.

Prevent inhalation by using fume hood when you are using any volatile sources of radioactivity.

Prevent ingestion by never eating, or drinking in the laboratory. Never store food in refrigerators or freezers or other areas designated for chemical or radioactive material storage.

Page 10: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Preventing Internal Exposure

Use protective clothing. Always wear a laboratory coat, gloves, and closed-toe-shoes when working with unsealed radioactive materials

Avoid spreading contamination. Do not touch telephones, light switches, faucet handles, or doorknobs with gloved hands.

Look for contamination. Frequent monitoring of hands, surfaces, and equipment will alert you to contamination

Page 11: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Exposure Limits

These limits are to ensure the risks from occupational radiation exposure levels are indistinguishable from other risks encountered from an average day of living

Trunk of the body = 5 rem/ year

Extremities = 50 rem/year

Lens of the Eye = 15 rem/ year

Organ dose = 50 rem/ year

Page 12: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Exposure Limits

Declared Pregnant Worker

The occupational dose level for a declared pregnant worker is limited to 500 mrem during the entire gestation period, or an average of 50 mrem per month.

The pregnant worker can only be monitored if she declares her pregnancy in writing to the Radiation Safety Officer.

Page 13: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Survey Meters

Check battery condition – needle should go to BAT TEST line on meter

Turn large switch to the lowest scale – turn on audio switch.

Note meter “background” reading in a location away from radiation source.

Place probe (window face down) about ½ inch from surface being surveyed.

Try not to let probe touch surfaces being checked.

Survey work area by slowly moving probe over surfaces, listen to audible “clicks” from survey meter speaker.

Page 14: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Surveys

Routine surveys of laboratory areas are the only means to ensure a safe and contamination free working environment

Before and after each experiment, surveys of the radiation use area using Geiger counter or wipe tests

Monthly wipe tests of use areas and Geiger survey of storage area must be recorded and kept in laboratory.

Page 15: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Wipe Samples

With a cotton wafer, wipe an area of approximately 100cm2 (about the size of a U.S. dollar bill). You should wipe about 1% of the accessible surface area in “hot area”.

In “clean” areas, take wipes of frequently used items or areas – calculators, phones, door knobs, high traffic floors, etc.

Count the wafer with at least 3 ml of “safe” scintillation cocktail, along with a background sample consisting of a new/unused, damp, cotton wafer, in a liquid scintillation counter (set to “open” or “wide” window). The results should be reviewed and data taped on the appropriate lab schematic, sign and date the form.  

Page 16: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Wipe Tests

How do I determine if an area is “contaminated”? Note: Take gloves off before entering room.

If the open-window count exceeds 200 cpm above background, you should recount the wipe vial before making it public to the other users in the room.

If result is still above 200 cpm, you must decontaminate the area and perform another wipe test.

 A meter reading two times background in any part of your lab area that has no nearby radioactive material storage or radioactive waste storage needs to be decontaminated. If area cannot be cleaned after two attempts, contact Radiation Safety officer for assistance.

Page 17: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Half-life

Half-life (T½)Half-life (T½) is the amount of time required for radioactive material to decrease by one half.

Each radioisotope has a unique Half-life time period.

Page 18: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Common Radioactive Materials in Laboratories

Phosphorus - 32 (P-32) Half life: 14.29 daysPure beta emitter: Eavg = 0.695 MeV max range in air: 20 feet

Emax = 1.71 MeV max range in lucite: .02 inch

Hazard – External skin & Internal Detection: Survey meter

Phosphorus – 33 (P-33) Half life: 25.3 daysPure beta emitter max range in air: 20 feetHazard- Slight external max range in lucite: .02

inch Detection: Survey meter

Iron - 59 (Fe-59) Half life: 44.5 daysLow energy gamma & X-rays – Typical shielding needed (0.5 mm of lead)Hazard – Internal organs Detection: Survey meter

Page 19: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Common Radioactive Materials in Laboratories

Iodine-125 (I-125) Half Life: 60.14 daysLow energy gamma & X-rays – Typical shielding needed (0.5 mm of lead)Hazard –External & Internal Detection: Survey meter

Calcium – 45 (Ca-45) Half life: 162.7 daysPure beta emitter max range in air: 20 feetHazard- Whole body and bone max range in lucite: .02

inch

Cadmium-109 (Cd-109) Half Life: 462.6 daysGamma & X-rays – Typical shielding needed (0.5 mm of lead)Hazard –External & Internal Detection: Survey meter

Page 20: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Radiation Spill Scenario

You’ve just spilled radioactive material on your lab coat and arm.

Remove contaminated clothing and place them in a plastic bag

Rinse exposed area thoroughly with soap and water, do not scrub

Obtain medical attention if necessary

Report the incident to your supervisor, and to the Radiation Safety Officer

Page 21: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Incidents/ Accident Response

A Minor Incident is radioactive material has been spilled with no personnel contamination and your are confident in your ability to contain and clean the spill.

Confine the spill and notify others in areaCover spill with absorbent paperVerify the isotope and estimate the activity involvedBegin decontamination efforts, working from outer edge of the spill in to the centerNotify your supervisor and the Radiation Safety Officer of the incident

Page 22: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Incidents/ Accident Response

A Major incident is one where the radioactive material has been spilled and there is some type of personal contamination, high activity, or large area contamination, or you just aren’t confident that you can contain the material

Notify others in the are and confine the spill and contaminated personnelStart decontamination procedures and notify Radiation Safety Officer as soon as possibleClean up and decontamination will be supervised by RSO.

Page 23: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

An Emergency is a situation where radioactive material has been spilled and the spill involves a fire, explosion, or personnel injury

Evacuate the area and call 5-111 or 911

In injury involved administer first aid

Contact Radiation Safety Officer as soon as possible

Incidents/ Accident Response

Page 24: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

Security

Radioactive material must be secured from unauthorized persons. This mean that your radioactive material must be stored and used in a way that prevents unauthorized persons from gaining access to it.

Principal investigators must determine the means used to assure security

Page 25: Annual Refresher Training Radiation Safety. Training Requirements In order to work with radioactive material you must be properly trained on the safe.

The End

You’re Done! See you next year.

And don’t forget to take the mandatory quiz.