Top Banner

Click here to load reader

of 33

Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.

Jan 18, 2018

Download

Documents

Kory Thompson

under high pressure SmO 0.9 F 0.11 FeAs LaO 0.89 F 0.11 FeAs LaOFeP Hg-Ba-Ca-Cu-O () Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O Y-Ba-Cu-O MgB 2 NbGe NbN NbC Nb Pb high-T c cuprate metal iron-based system Transition temperature (K) Year Hg La-Ba-Cu-O Discovery of superconducting phenomenon High-T c cuprate superconductor 2006 Iron-based high-T c superconductor Heavy fermion superconductor CeCu 2 Si 2 heavy fermion system PuCoGa 5 History of Superconductivity introduction 3
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Anisotropic Spin Fluctuations and Superconductivity in 115 Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H. Baek et. al. PRL 105,217002(2010) 1 Contents Introduction - History of superconductivity - Heavy fermion system - Transuranic HF compounds - Motivation Measurement - NMR (Nuclear Magnetic Resonance) Experimental Results (PuCoGa 5 ) Summary 2 under high pressure SmO 0.9 F 0.11 FeAs LaO 0.89 F 0.11 FeAs LaOFeP Hg-Ba-Ca-Cu-O Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O Y-Ba-Cu-O MgB 2 NbGe NbN NbC Nb Pb high-T c cuprate metal iron-based system Transition temperature (K) Year Hg La-Ba-Cu-O Discovery of superconducting phenomenon High-T c cuprate superconductor 2006 Iron-based high-T c superconductor Heavy fermion superconductor CeCu 2 Si 2 heavy fermion system PuCoGa 5 History of Superconductivity introduction 3 Normal metal Heavy Fermion system f ff f f f c-f hybridization ( c-f What does Heavy mean? Heavy Heavy large effective mass Heavy Fermion System introduction Strong electron correlation makes effective mass large. 4 Heavy Fermion System introduction Example of heavy fermion superconductor compounds UPt 3 UPd 2 Al 3 CeCu 2 Si 2 CePd 2 Si 2 CeRh 2 Si 2 CeIn 3 CeRhIn 5 PrOs 4 Sb 12 PuCoGa 5 f-electrons. All of HF compounds have f-electrons. lanthanide compounds some 4f electrons actinide compounds some 5f electrons 5 transuranium elements ( ) dont exist in nature Handling is difficult because of strong radioactivity Transuranic HF Compounds example : PuCoGa 5, PuRhGa 5, NpPd 5 Al 2 introduction 6 Motivation PuCoGa 5 : Pu-115 compounds 5f-electron : 5 T c = 18.5 K CeCoIn 5 : Ce-115 compounds 4f-electron : 1 T c = 2.3 K Amazingly high T c in HF 115 compounds NMR study NMR study (PuCoGa 5 in normal state) Spectra K (Knight shift) 1/T 1 T introduction iso-structural superconductor 7 m=+1/2 m=-1/2 H0 H0 Zeeman splitting NMR Intensity Introduction I =1/2 NMR spectra measurement 8 NMR Intensity H electron Knight shift measurement 9 T 1 ~spin-lattice relation time measurement electronic spin I=+1/2 I=-1/2 Excitation energy Release the energy nuclear spin spin-lattice interaction Energy- transfer 1/T 1 is quite sensitive to spin fluctuations 10 59 Co NMR Spectra at 19 K result Co : I =7/2 = MHz/T QQ Quadrupole Interaction : I >1 Q = 1.02 MHZ Spectra 11 Knight shifts and 1/T 1 result Knight shifts show strongly anisotropic behavior. At T c both sifts drop sharply, indicating spin-singlet pairing. 1/T 1 d-wave superconductor S=0 Spin singlet anisotropic : T3T3 12 1/T 1 T in 115 compounds result LuCoGa 5 1/T 1 T = const conduction electrons metallic PuCoGa 5 conduction electrons + 5f-electrons heavy fermion state Anisotropy (T 1 T) -1 / (T 1 T) -1 reaches a maximum just above T c. PuCoGa 5 LuCoGa 5 5f-electrons 55 00 LuCoGa 5 Spin fluctuations develop as temperature decrease. 13 Korringa ratio result Korringa ratio R K > 1 antiferromagnetic R K 1 Fermi gas R K < 1 ferromagnetic From K(T) and 1/T 1 T, R k ranges from 5 to 16 Strong AFM fluctuations in PuCoGa 5 14 Anisotropic nature result PuCoGa 5 : tetragonal structure (a=bc) new spin-lattice relaxation rate in-plane component : R a out-of-plane component : R c (1/T 1 T ) H c = 2R a (1/T 1 T ) H c = R a +R c AFM spin fluctuation is strong In XY-plane. 15 Ratio of spin fluctuation energy : result 115 HF compounds XY-like anisotropy > 1 XY-like anisotropy Cuprates : YBa 2 Cu 3 O 7 isotropic 1 isotropic Spin fluctuation energy : ratio : (q=Q,) 16 Magnetic order T c versus a / c for 115 HF superconductors result Reduced dimensionality could enhance T c. Anisotropy c / a is a good parameter for determining T c. 17 Summary Spin fluctuations promote d-wave superconductivity in the iso-structural 115 HF compounds. Both the Knight shift K and the spin-lattice relaxation rate 1/T 1 are strongly anisotropic. The ratio c / a (spin fluctuation energy) is a characteristic quantity in 115 HF compounds. This suggest the possibility that anisotropic spin-fluctuations enhance T c. PuCoGa 5 : 59 CoNMR study in the normal state 18 a : 71 Ga NMR spectra in 8T b : The normal-state magnetic shift K tot of the 59 Co and 71 Ga(1) versus bulk susceptibility x. c : The total magnetic shift K tot of the 59 Co and 71 Ga(1) versus temperature. 1/T 1 T 0.35 T3T3 Normalized spin susceptibility in the superconducting state. 59 Co 71 Ga (T 1 T ) -1 /(T 1 T ) -1 0 versus T/T c (T 1 T ) -1 0 is given by the value of (T 1 T ) -1 at 1.25T c T c versus the characteristic spin fluctuation energy T 0 T 0 = q B 2 /2 c/a ratio of tetragonal structure parameter versus T c Temperature - pressure phase diagram C H c =0 H c =90 Crystal structure in 115 compounds Cooper pairing state (r 1 -r 2 ;s 1,s 2 ) = (r 1 -r 2 ) (s 1,s 2 ) orbitalspin What can we know from Knight shift ? ~Symmetry of Cooper pair~ s-wave d-wave p-wave orbital partspin part even function (s, d wave) (-(r 1 -r 2 )) = (r 1 -r 2 ) spin-singlet (s 2,s 1 ) = - (s 1,s 2 ) odd function (p wave) (-(r 1 -r 2 )) = (r 1 -r 2 ) spin-triplet (s 2,s 1 ) = (s 1,s 2 ) S=0 S=1 N0N0 N S (E)EFEF E F + 0 1/T 1 in various superconductors Conventional type (BCS) s-wave d-wave p-wave unconventional superconductors (non BCS) N0N0 N S (E) EFEF E F + 0 Line nodes EFEF E F + 0 Point nodes