Top Banner
A New Model for Annual Cancer Incidence Repor5ng Bruce L. Riddle, Ph.D. 1,2, Alexander D. Fuld, M.D., M.S. 1 , Marc S. Ernstoff, M.D. 1 , Angeline Andrew, Ph.D., 1 Maria O. Celaya, M.P.H., C.T.R. 1,2 , GM Monawar Hosain, M.B., B.S., Ph.D. 2,3 , Judy R. Rees, B.M., B.Ch., Ph.D. 1,2 1 Geisel School of Medicine at Dartmouth College; 2 New Hampshire State Cancer Registry; 3 New Hampshire Division of Public Health Services Funding for this work was provided in part by a contract with the New Hampshire Department of Health and Human Services and funding from the CDC CooperaPve Grant UA/DP00393002. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and PrevenPon or the New Hampshire Department of Health and Human Services. Conclusions We believe that adding a wide and robust collecPon of molecular markers is an essenPal step for cancer registries to conPnue their role in tracking cancer incidence, measuring success of treatment, and developing care strategies for the populaPon based on the inherent heterogeneity of molecular markers pertaining to ePology and biological behavior.. Cancer registries need a way to collect very complex data on markers in the immediate future, and to adapt the data dicPonary rapidly as new markers are introduced into clinical pracPce. The complexiPes of molecular markers will soon present us with a vast challenge: where the reports do not provide a simple binary yes/no or the scale 1 to 4, but rather provide a set of data elements, sequences, and text summaries relaPng to the possible benefits of specific therapies. Some cancers will require mulPple markers for diagnosis and the selecPon of treatment. We also need a way to collect biomarkers at AND a\er diagnosis, for example at recurrence, because in some cases, tumors take on different molecular characterisPcs than the primary from which they originated. The conPnued presentaPon of cancer incidence and survival rates by anatomic site distorts the understanding of disease by stakeholders and the public. Cancer registries need to consider how the rise of molecular markers is about to affect our collecPon of relevant data, and our response to that challenge will determine the usefulness of cancer registry data for research, oncology, and making improvements in public health. In Table 1, examples are shown of a small number of molecular markers and the ways in which they may be used in cancer diagnosis and management. For example, predicPve markers are a criPcal step in the pathological diagnosis of disease and are directly related to the response of the targeted therapy. As we begin to understand more about the roles these tumor markers play within the cancer cell, and as new treatments are developed, the classificaPons shown above may change. Table 2 shows only a few examples of tumor markers for which targeted therapies are already in development, clinical trials, or in common use. Background !"#$%&' %) *"+%# +,#-'# .,/0'# '1,+$2'& 3"+%# +,#-'# '1,+$2'& 45,6/%&*50 !"#$% '%#(%)*+ ,-./0!0!1 230/!2.1 3242/-56771 89:;/0<=71 0<>=7/0<>=797? -../ @%+@@+AB%C1 934D/,2=71 02-7E/-FG?7 3#',*+'/* $#'750*5%/ >HA I)+'' "%'' '#AB "+A"%@ -%'+AH)+ 2@%+I$ "+A"%@ 8J401 !.F 20!4 / )#$+$*HAI K@%C*"$ @%IKHAI% $H IK%"*L*" 20!4 *AM*N*$H@I 680O / +)K'*L*"+$*HAI K@%C*"$ @%IKHAI% $H +A$*/680O +A$*NHC*%I !#%6/%&*50 2@%+I$ "+A"%@ 3.. !-. PA"H$QK%RS1 -+))+K@*A$1 G63T 9,ED / )#$+$*HAI *AC*"+$*U% HL KHH@ H#$"H)% GJ6: / '+"( HL )#$+$*HAI *AC*"+$*U% HL KHH@ H#$"H)% 4.9D/G9R / )#$+$*HAI *AC*"+$*U% HL KHH@ H#$"H)% 45&',&' +%/5*%#5/6 3-. !.. 230/!2. GJ6:/F0 @%+@@+AB%)%A$I Table 1. Examples of selected molecular markers used for diagnosis, predicPon (treatment), prognosis, and disease monitoring. (Adapted from: Gonzalez de Castro, et al. Personalized Cancer Medicine: Molecular DiagnosJcs, PredicJve Biomarkers, and Drug Resistance. Clinical Pharmacology & TherapeuJcs, 93(3): 252295. Used with permission.) !"#$%& ()"*+,%- ./ 01*.& 23.*"&4%&- 5306 +.--32,% 0"&7%0%8 06%&"+3%- 9$10% ,%14%*3" !"#$%&%&' %)"*+$",-.*' /01)$"23**' %456$5%456*7*' /%#18' 9&,8 :&%"-0 $"#$%& &,7*' &%' :%' 1;1%*' 1;1%8' 3:%8' !-,</&' !%' !7:5 !6&.#3$ *;%,.38 ,%14%*3" )/%$&)# !.,.&%$0", $"#$%& &,7*' )%&1' ,%&<' 5%&<' !-,=/&' !7:5' <"&02 <"-0&3$ $"#$%& 3:%8 <= -0&.*", 01*.& )%&1' ,-7' !0;1%& >1#7 $"#$%& &,7*' &#,' )%&1' !>%8' -;1%' 1;1%*' 3:%8' ,%&<' ":,*' ":7' 5%&<' !-,</&' !7:5' %:7' %><* ?%,"#.*" )%&1' /755)*' ;5&**' ;5&?' ,-7' ":,*' 5%&< @A"&3"# $"#$%& )%&1' ,%&<' !-,=/&' !7:5' %3&0' &#, B6;&.38 $"#$%& B6;&.38 $"#$%& )%&1' 3%&<' ,%&<' 5%&<' %:7 &@ABCD@ EFGHI JCCBIKKLLL.HMNAONDFPDOGHD.GFPK Table 2. Examples of tumor biomarkers with potenPally targeted therapies Table 3. A new cancer incidence report format for 2015 It is clear that genePc data on tumors is becoming increasingly complex, and that soon registries will need to decide whether to invest in the technology and staffing to capture highly detailed tumor data not only at diagnosis but also potenPally at tumor recurrence. The heterogeneity of tumors has been recognized for decades (e.g. Howell et al, 1987. Endocrine Therapy for Advanced Carcinoma of the Breast: Effect of Tumor Heterogeneity and Site of Biopsy on the PredicJve Value of Progesterone Receptor EsJmaJons . Cancer Res January 1987 47; 296; Allred, DC et al. Ductal Carcinoma In situ and the Emergence of Diversity during Breast Cancer EvoluJon Clin Cancer Res 2008;14(2); 370). For example, the tumor markers present at diagnosis of breast cancer and in a subsequent recurrence are discordant in up to 40% of cases (reviewed in Foukakis T 2012. When to order a biopsy to characterize a metastaJc relapse in breast cancer. Ann Oncology 23 Supplement 10: x349– x353). When a primary cancer and a recurrence may have different tumor markers, a strong argument can be made for the collecPon of data on both events rather than only on the primary. An event driven data model is one possible way to collect molecular markers in a robust fashion. In this model, the diagnosis and treatment of cancer are recorded as a series of events, each with its own structure and definiPon, and common elements that allow connecPons to a master record. Table 6. Structure of an EventDriven Cancer Registry Dataset !"#$"%&' )'*+#$,-$./ 0.-'* !"#$"#% '()*)#+, +- ./,+)0 1)2-03 45),) /0) )()*)#+, +0/#,*"++)3 6"+5 )/25 )7)#+ 8-0 ("#$/%) 9:09-,), 1"*- 0"2' 3$#*- 0"2' 4$55&' 0"2' 6'7 8$#-9 )"-' :"*9'5 6.+$"& 6'+;#$-< 0;2%'# =9' 9"*9$/> .? 660 *''2* $/'@$-"%&'A B'>$*-#< )"-' .? =;2.# )$">/.*$* ;)#3"#% 1)%",+0< '()*)#+, C"-$'/- D) 0;2%'# 0EEFFB D-'2 GHI 6'/5$/> B'>$*-#< D) 0;2%'# '7)#+ '()*)#+, J@'/- D) J"+9 *,'+$?$+ '@'/- $* 5'?$/'5 K #'>$*-'#'5 L$-9 " +'/-#"& ";-9.#$-<A J@'/- !'#*$./ 0;2%'# E&& 5'?$/'5 '@'/-* 9"@' @'#*$./ /;2%'#* "* 5'?$/$-$./* +9"/>' J@'/- )"-' .-()2:(/0 ="-*/0$)0 '()*)#+, F.22./ 2"#M'# /"2' J> :JBH *-"-;* ='*- /"2' J> :JBH ,.*$-$@$-< F.2,./'/-* D22;/.9$*-.+9'2$*-#< *+.#' ND:FO PQ R'/' "2,&$?$+"-$./ N:JBHSFJCTUO 3D6: #"-$. HAT VW Introduc5on For at least 40 years, the tradiPonal cancer report has been based primarily on anatomic site; a few more detailed reports may include reference to histology. Rapid and significant changes in our understanding of the molecular biology of tumors have rendered these historical classificaPon schemes outdated. It is clear that there is heterogeneity within the cancers of a specific anatomic site, and recent data demonstrate that the clinically tractable molecular features may actually be similar across tumors of different organ sites. Molecular markers allow cancers to be categorized into subtypes of the disease that may reflect different molecular underpinnings and ePologies. These molecular markers are being used to assign tailored treatment strategies and define management opPons. Molecular markers are being invesPgated as a tool to beder define prognosis too. Clinicians now rouPnely test cancers for an increasing number of relevant markers, well beyond the bederknown molecular markers such as ER, PR and HER2 for breast cancer. TradiPonal cancer incidence reports do not typically incorporate these rapidly changing yet important biomarker data. To remain relevant, cancer reporPng by the cancer surveillance community needs to align itself with the clinical science by collecPng and reporPng data on all the relevant factors defining the disease ePology, management, and prognosis. IncorporaPon of this informaPon into registries will provide more complete and robust data that subsequently will be highly useful to the medical community and research funding agencies. SubclassificaPon of tumors by molecular markers is especially important as the surveillance community begins to report on prognosis and survival. Because the tradiPonal cancer incidence report has changed relaPvely lidle over several decades, it remains a useful tool to show some trends over Pme. However, there may be advantages to supplemenPng this format with tumor subclassificaPons that reflect the evolving clinical paradigms in cancer care. We propose a new model for an annual incidence report, which will supplement anatomic site with tumor markers. Because cancerrelated data are changing extremely rapidly, so must the incidence report and registry required variables must keep pace with these changes. We recognize that a new model (as well as the underlying data collected by Cancer Registries) will be dynamic as new observaPons will need to be incorporated in “real Pme” manner. +(,)&-'. *')" ,(/ 0'*)&1&2# ,3" 4".&-'(2 , 1"** /&-'(,() .&-5&("() 6&3 .1,**'6'.,)'&(* &6 '(.'/"() .,(."37 80" '-5&3),(." &6 )9-&3 4'&-,3:"3* 6&3 /',2(&*'*; )3",)-"(); 53&2(&*'*; ,(/ /'*",*" -&(')&3'(2 '* '(.3",*'(2 3,5'/1# <=">? )9-&3 4'&-,3:"3* ,3" 4"'(2 '/"()'6'"/ ,11 )0" )'-"@ )0" 6'"1/ '* .0,(2'(2 A"3# B9'.:1# C,(# )9-&3 4'&-,3:"3* ,3" .&--&( )& .,(."3* '( /'66"3"() *')"* "727 DEFG@ 43",*) H 2,*)3'. .,(."3 I) >'11 4" '-5&3),() )& .0,3,.)"3'J" )0" /'*)3'49)'&(* &6 )9-&3 4'&-,3:"3* '( 5&591,)'&(* +* 3".933"() )9-&3* <"A&1A"? 63&- )0" 53'-,3#; 53'-,3# ,(/ 3".933"() )9-&3* -,# 0,A" /'*.&3/,() )9-&3 4'&-,3:"3*@ ,( ,329-"() .,( 4" -,/" 6&3 .&11".)'(2 /,), &( 4&)0 )#5"* &6 )9-&3 "A"( '( ,( '(.'/"(." .,(."3 3"2'*)3# 80" .,(."3 3"2'*)3# .&--9(')# *0&91/ 3"*5&(/ 3,5'/1# )& .0,(2"* '( )9-&3 .1,**'6'.,)'&(; 4&)0 '( )"3-* &6 )0" /,), >" .&11".); ,(/ )0" /,), >" 3"5&3) Key Points The Accelera5ng Pace & Promise of Personalized Medicine In Table 3, we take some currently known molecular biomarkers used in diagnosis and treatment to breakdown anatomic sites into sub classificaPons. Not all anatomic sites have associated molecular markers while other molecular markers appears across sites (See Table 2, e.g. HER2, BRAF, KRAS, NRAS) and sPll other relevant factors relate to viral infecPons such as Human Papilloma Virus (HPV), HepaPPs C Virus (HCV) and Epstein Barr virus (EBV). So while this table is based on anatomic site, we can envision a new table(s) with increased emphasis on specific molecular biomarkers. We acknowledge that this report is only possible if the underlying data are rouPnely collected by cancer registries. In Table 4, we break down cancers of the breast by ER, PR, and HER2 using New Hampshire data 20102012. This table brings into focus several issues. (1) ER, PR and HER2 represent only a Pny fracPon of the tumor markers that are currently being invesPgated in breast cancer research, many of which may rapidly be brought into rouPne clinical pracPce. (2) MulPple combinaPons of tumor markers may be needed to break down an anatomic site. (3) The tumor markers or combinaPons of markers are unlikely to be evenly distributed. Small counts of some markers may make reporPng difficult, yet sPll be potenPally important in determining treatment opPons. (4) Changes in tumor marker tesPng are taking place at different speeds in different healthcare seings. To keep the cuing edge in sight, cancer registry variables must be updated more quickly, and decisions must be taken on how to collect very complex genePc data. In the future it seems likely that personalized medicine will involve the genePc characterizaPon not only of tumor markers, but also of the paPents themselves, in an effort to define those who will respond best to specific treatments. Table 4. CollaboraPve Stage Factor 16 201012 NH State Cancer Registry November 26, 2013 "#$%& $'&()& *+'+#* ,#$-)& %. /'*)* 0)&/)1+ 222 !" $ %" $ &!" ' $ ()* +,-. 223 !" $ %" $ &!" ' / )'0 (,). 232 !" $ %" / &!"' $ ') ,1. 233 !" $ %" / &!"' / 2)3 3,). 322 !" / %" $ &!"' $ '11 0,(. 323 !" / %" $ &!"' / +* ),-. 332 !" / %" / &!"' $ '3'' 13,(. 333 !" / %" / &!"' / '31 1,). 445 456 7889:;7<9= 1' ),(. 444 >?= 5@ A5@= 6=B6B ?56 8=@C5@A=D -(- '(,'. !"#$%& (")%* +,,- !"#$%& (")%* +,.- !"#$%& (")%* +,+- !"#$%& (")%* +,/- 0)121 $3 %"#$%&* 42&" 5 621&$7$8( 0)121 $3 %"#$%&* 42&" 5 &9:$% ;2$:)%<"%1 0)121 $3 %"#$%&* =$&">&2)77( )?&2$>);7" 8">"&2? ;2$:)%<"%1 5 #)&2">& #%$3272>8 0)121 $3 %"#$%&* @$:;2>"A &9:$% 5 #)&2">& :$7"?97)% ?6)%)?&"%2B)&2$> !"#$%&%'(#) +#(+," ",-'"&. #", /#.,$ '( #(#&'0%+ .%&, 1 2%.&')'34 !50'" /%'0#"6,". #", 3"#$5#))4 #$$,$ &' ",3%.&"4 $#&#/#., 7(+",#.%(3)4 +'0-),8 $#&#9 :2%+2 :%)) ),#$ 5. &' $,+%$, :2,&2," &' 0#..%;,)4 ,8-#($ ",3%.&"4 $#&#/#.,. 7(+",#.%(3 #5&'0#&%'( '< 0'),+5)#" +2#"#+&,"%=#&%'( '< /'&2 &50'" 1 -#&%,(&9 :%&2 ",.5)&%(3 .%0-)%<%+#&%'( '< +#(+," ",+'"$. >8#0-), ",-'"&? >8#0-), ",-'"&? >8#0-), ",-'"&? >8#0-), ",-'"&? @')'(? A$,('+#"+%('0# B&2," C,+&50? A$,('+#"+%('0# B&2," DCAE FGH ICAJ FGH KE7 FGH B&2," !50'" /%'0#"6,".? E,L5,(+, M? .+'", '" FGH E,L5,(+, N? .+'", '" FGH E,L5,(+, O? .+'", '" FGH ,&+ P%"#) <#+&'".? P%"#) M? FGH P%"#) N? FGH ,&+ !50'" -"'<%), <'" &",#&0,(& ",.-'(., A3,(& M? A3,(& N? ,&+ Q#&%,(& -"'<%), <'" &",#&0,(& ",.-'(., Q"'<%), M? Q"'<%), N? ,&+ Q#&%,(& -"'<%), <'" &",#&0,(& &'),"#(+, Q"'<%), M? Q"'<%), N? ,&+ Q#&%,(& -"'<%), <'" -"'3('.%. Q"'<%), M? Q"'<%), N? ,&+ B;,"#)) &",#&0,(& .5%&#/%)%&4 .+'",? A3,(& M? .+'", '" FGH A3,(& N? .+'", '" FGH >&+ !50'"H-#&%,(&H&",#&0,(& .500#"4 -"'<%),? Q"'<%), M Q"'<%), N Q"'<%), ORS Q"'<%), TUVO Q"'<%), TUVW ,&+ In Table 5, we speculate about the direcPon in which cancer classificaPon will be recorded in cancer registries of the future (Table 5). The first column (2005) represents our tradiPonal cancer incidence report based on site and histology. The second (2015) reflects recent changes in our understanding of tumor markers, including those shown in Table 3. The third column (2025) reflects our hypotheses that (1) tumors will be fully sequenced and acPonable sequences will be reported; (2) more extensive infecPous disease tesPng may become rouPne for some cancers e.g. Human Papilloma Virus, Epstein Barr Virus; (3) paPent characterisPcs will be assessed to idenPfy innate characterisPcs that predict response to and tolerance to treatment agents; and that (4) treatment agents will be ranked in a measurable way for individual paPents. Within the next decade, we anPcipate seeing a huge increase in the volume of data that cancer registries could collect. Further, we need internal data from molecular markers reports rather than just binary summaries because definiPons and ranges change over Pme. In the fourth column (2035), we hypothesize that the extensive informaPon collected in the preceding decade will be assimilated using genePc and treatment algorithms, and provided back to the oncologist along with simple summary paPent and tumor profiles. In other words, things will get beder a\er they get worse. However, to reach the simplified model, the registry community needs to contribute to the understanding of tumor markers in the context of cancer management, and in doing so, we must decide how much complex genePc data are needed in the cancer registry database. It is difficult to envision the complexity and size of a populaPonbased registry that collected the key genePc sequences within incident tumors. Table 5. Progression of possible cancer registry classificaPons for cancer incidence reporPng, by decade into the future: example, colorectal cancer Model Image courtesy of the NaPonal Human Genome Research InsPtute's Talking Glossary (hdp://www.genome.gov/glossary/). hdp://geneed.nlm.nih.gov/topic_subtopic.php?Pd=15&sid=16 The Double Helix Trastuzumab (Breast CA: Her2/neu) Depicts date of FDA approval for targeted cancer drugs, the relevant disease and acPonable biomarker & select milestone dates. Ima5nib (Chronic Myelogenous Leukemia (CML): BcrAbl) Human Genome Sequenced Erlo5nib (Lung CA: EGFR) Dasa5nib (CML BcrAbl) Nilo5nib (CML BcrAbl) Mammaprint 70 gene assay approved for Breast CA Risk recurrence Lapa5nib (Breast CA: Her2/neu) Cetuximab (Colorectal/Head & neck CA: EGFR, KRAS wild type) Crizo5nib (Lung CA: ALK) Vemurafenib (Melanoma: BRAF) Ima5nib (GI Stromal Tumors: ckit) Pertuzumab (Breast CA: Her2/neu) Ceri5nib (Lung CA: ALK) 1998 2000 2002 2004 2006 2008 2010 2012 2014 Dabrafenib (Melanoma: BRAF) Tramatenib (Melanoma: BRAF) Guanine Thymine Base Pair Sugar Phosphate Backbone Adenine Cytosine
1

ANewModelforAnnualCancerIncidenceRepor5ng · 2017-02-21 · primary.&An&eventdriven&datamodel&is&one&possible&way&to&collectmolecular ......

Jun 12, 2018

Download

Documents

lamliem
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ANewModelforAnnualCancerIncidenceRepor5ng · 2017-02-21 · primary.&An&eventdriven&datamodel&is&one&possible&way&to&collectmolecular ... schemes&outdated.&Itis&clear&thatthere&is&heterogeneity&within&the&cancers&of&

A  New  Model  for  Annual  Cancer  Incidence  Repor5ng   Bruce  L.  Riddle,  Ph.D.1,2,  Alexander  D.  Fuld,  M.D.,  M.S.1,  Marc  S.  Ernstoff,  M.D.1,  Angeline  Andrew,  Ph.D.,1  Maria  O.  Celaya,  M.P.H.,  C.T.R.1,2,  GM  Monawar  Hosain,  M.B.,  B.S.,  Ph.D.2,3,  Judy  R.  Rees,  B.M.,  B.Ch.,  Ph.D.1,2  

1  Geisel  School  of  Medicine  at  Dartmouth  College;  2  New  Hampshire  State  Cancer  Registry;  3  New  Hampshire  Division  of  Public  Health  Services  

Funding  for  this  work  was  provided  in  part  by  a  contract  with  the  New  Hampshire  Department  of  Health  and  Human  Services  and  funding  from  the  CDC  CooperaPve  Grant  UA/DP003930-­‐02.  The  contents  are  solely  the  responsibility  of  the  authors  and  do  not  necessarily  represent  the  official  views  of  the  Centers  for  Disease  Control  and  PrevenPon  or  the  New  Hampshire  Department  of  Health  and  Human  Services.  

Conclusions  We   believe   that   adding   a   wide   and   robust   collecPon   of   molecular  markers   is  an  essenPal  step  for  cancer  registries  to  conPnue  their  role  in   tracking   cancer   incidence,   measuring   success   of   treatment,   and  developing   care   strategies   for   the   populaPon   based   on   the   inherent  heterogeneity   of   molecular   markers   pertaining   to   ePology   and  biological   behavior..   Cancer   registries   need   a   way   to   collect   very  complex   data   on  markers   in   the   immediate   future,   and   to   adapt   the  data   dicPonary   rapidly   as   new   markers   are   introduced   into   clinical  pracPce.    

The  complexiPes  of  molecular  markers  will  soon  present  us  with  a  vast  challenge:  where  the  reports  do  not  provide  a  simple  binary  yes/no  or  the  scale  1  to  4,  but  rather  provide  a  set  of  data  elements,  sequences,  and   text   summaries   relaPng   to   the   possible   benefits   of   specific  therapies.  Some  cancers  will  require  mulPple  markers  for  diagnosis  and  the  selecPon  of  treatment.  We  also  need  a  way  to  collect  biomarkers  at  AND  a\er  diagnosis,  for  example  at  recurrence,  because  in  some  cases,  tumors   take   on   different   molecular   characterisPcs   than   the   primary  from  which  they  originated.        

The   conPnued   presentaPon   of   cancer   incidence   and   survival   rates   by  anatomic  site  distorts  the  understanding  of  disease  by  stakeholders  and  the  public.  Cancer  registries  need  to  consider  how  the  rise  of  molecular  markers   is   about   to   affect   our   collecPon   of   relevant   data,   and   our  response   to   that   challenge   will   determine   the   usefulness   of   cancer  registry   data   for   research,   oncology,   and   making   improvements   in  public  health.  

In  Table   1,   examples   are   shown   of   a   small   number   of  molecular  markers   and   the  ways  in  which  they  may  be  used  in  cancer  diagnosis  and  management.  For  example,  predicPve  markers  are  a  criPcal  step  in  the  pathological  diagnosis  of  disease  and  are  directly  related  to  the  response  of  the  targeted  therapy.  As  we  begin  to  understand  more  about  the  roles  these  tumor  markers  play  within  the  cancer  cell,  and  as  new  treatments   are   developed,   the   classificaPons   shown   above   may   change.   Table   2  shows   only   a   few   examples   of   tumor   markers   for   which   targeted   therapies   are  already  in  development,  clinical  trials,  or  in  common  use.  

Background  

!"#$%&'(%)(*"+%#(+,#-'#(

.,/0'#('1,+$2'&( 3"+%#(+,#-'#('1,+$2'&(

45,6/%&*50( !"#$%&'%#(%)*+& ,-./0!0!1&230/!2.1&3242/-56771&89:;/0<=71&0<>=7/0<>=797?&-../@%+@@+AB%C1&934D/,2=71&02-7E/-FG?7&&

3#',*+'/*($#'750*5%/( >HA&I)+''&"%''&'#AB&"+A"%@&&-%'+AH)+&& & &&&2@%+I$&"+A"%@&& & &&

8J401&!.F&&20!4&/&)#$+$*HAI&K@%C*"$&@%IKHAI%&$H&IK%"*L*"&20!4&*AM*N*$H@I&&680O&/&+)K'*L*"+$*HAI&K@%C*"$&@%IKHAI%&$H&+A$*/680O&+A$*NHC*%I&&

!#%6/%&*50( 2@%+I$&"+A"%@&&3..&& & & && &

&& &!-.& & & &&&

PA"H$QK%RS1&-+))+K@*A$1&G63T&&9,ED&/&)#$+$*HAI&*AC*"+$*U%&HL&KHH@&H#$"H)%&GJ6:&/&'+"(&HL&)#$+$*HAI&*AC*"+$*U%&HL&KHH@&H#$"H)%&4.9D/G9R&/&)#$+$*HAI&*AC*"+$*U%&HL&KHH@&H#$"H)%&

45&',&'(+%/5*%#5/6( 3-.&&!..&& & &&

230/!2.&&GJ6:/F0&@%+@@+AB%)%A$I&&&&&&&&&&&

&

Table   1.   Examples   of   selected   molecular   markers   used   for   diagnosis,   predicPon  (treatment),  prognosis,  and  disease  monitoring.    (Adapted  from:  Gonzalez  de  Castro,  et   al.   Personalized   Cancer  Medicine:  Molecular   DiagnosJcs,   PredicJve   Biomarkers,  and   Drug   Resistance.   Clinical   Pharmacology   &   TherapeuJcs,   93(3):   252-­‐295.   Used  with  permission.)    

!"#$%&' ()"*+,%-'./'01*.&'23.*"&4%&-'5306'+.--32,%'0"&7%0%8'06%&"+3%-'9$10%',%14%*3"' !"#$%&%&'(%)"*+$",-.*'(/01)$"23**'(%456$5%456*7*'(/%#18'(

9&,8((

:&%"-0'$"#$%&''

&,7*'(&%'(:%'(1;1%*'(1;1%8'(3:%8'(!-,</&'(!%'(!7:5(

!6&.#3$'*;%,.38',%14%*3"''

)/%$&)#(

!.,.&%$0",'$"#$%&''

&,7*'()%&1'(,%&<'(5%&<'(!-,=/&'(!7:5'(<"&02(

<"-0&3$'$"#$%&''

3:%8(

<='-0&.*",'01*.&''

)%&1'(,-7'(!0;1%&(

>1#7'$"#$%&' &,7*'(&#,'()%&1'(!>%8'(-;1%'(1;1%*'(3:%8'(,%&<'(":,*'(":7'(5%&<'(!-,</&'(!7:5'(%:7'(%><*(

?%,"#.*"''

)%&1'(/755)*'(;5&**'(;5&?'(,-7'(":,*'(5%&<(

@A"&3"#'$"#$%&''

)%&1'(,%&<'(!-,=/&'(!7:5'(%3&0'(&#,(

B6;&.38'$"#$%&'B6;&.38'$"#$%&'

)%&1'(3%&<'(,%&<'(5%&<'(%:7(

&@ABCD@(EFGHI(JCCBIKKLLL.HMNAONDFPDOGHD.GFPK(

(

Table  2.    Examples  of  tumor  biomarkers  with  potenPally  targeted  therapies    

Table  3.  A  new  cancer  incidence  report  format  for  2015     It   is   clear   that   genePc   data   on   tumors   is   becoming   increasingly   complex,   and   that   soon  registries  will   need   to   decide  whether   to   invest   in   the   technology   and   staffing   to   capture  highly  detailed   tumor  data  not  only  at  diagnosis  but  also  potenPally   at   tumor   recurrence.  The   heterogeneity   of   tumors   has   been   recognized   for   decades   (e.g.   Howell   et   al,   1987.  Endocrine  Therapy  for  Advanced  Carcinoma  of  the  Breast:  Effect  of  Tumor  Heterogeneity  and  Site   of   Biopsy   on   the   PredicJve   Value   of   Progesterone   Receptor   EsJmaJons.   Cancer   Res  January   1987   47;   296;   Allred,   DC   et   al.   Ductal   Carcinoma   In   situ   and   the   Emergence   of  Diversity  during  Breast  Cancer  EvoluJon  Clin  Cancer  Res  2008;14(2);  370).  For  example,  the  tumor  markers  present  at  diagnosis  of  breast  cancer  and  in  a  subsequent  recurrence  are  discordant   in  up  to  40%  of  cases  (reviewed  in  Foukakis  T  2012.  When  to  order  a  biopsy  to  characterize  a  metastaJc  relapse  in  breast  cancer.  Ann  Oncology  23  Supplement  10:  x349–x353).    When  a  primary  cancer  and  a  recurrence  may  have  different  tumor  markers,  a  strong  argument   can  be  made   for   the   collecPon  of   data  on  both  events   rather   than  only  on   the  primary.  An  event  driven  data  model   is  one  possible  way  to  collect  molecular  markers  in  a  robust  fashion.  In  this  model,  the  diagnosis  and  treatment  of  cancer  are  recorded  as  a  series  of   events,   each   with   its   own   structure   and   definiPon,   and   common   elements   that   allow  connecPons  to  a  master  record.  

Table  6.  Structure  of  an  Event-­‐Driven  Cancer  Registry  Dataset  

!"#$"%&'()'*+#$,-$./( (0.-'*(!"#$"#%&'()*)#+,&+-&./,+)0&1)2-03& 45),)&/0)&)()*)#+,&+0/#,*"++)3&6"+5&)/25&)7)#+&8-0&("#$/%)&9:09-,),&1"*-(0"2'( (3$#*-(0"2'( (4$55&'(0"2'( (6'7( (8$#-9()"-'( (:"*9'5(6.+$"&(6'+;#$-<(0;2%'#( =9'(9"*9$/>(.?(660(*''2*($/'@$-"%&'A(B'>$*-#<()"-'(.?(=;2.#()$">/.*$*( (;)#3"#%&1)%",+0<&'()*)#+,& &C"-$'/-(D)(0;2%'#( 0EEFFB(D-'2(GHI(6'/5$/>(B'>$*-#<(D)(0;2%'#( ('7)#+&'()*)#+,& &J@'/-(D)( J"+9(*,'+$?$+('@'/-($*(5'?$/'5(K(#'>$*-'#'5(L$-9("(+'/-#"&(";-9.#$-<A((J@'/-(!'#*$./(0;2%'#( E&&(5'?$/'5('@'/-*(9"@'(@'#*$./(/;2%'#*("*(5'?$/$-$./*(+9"/>'(J@'/-()"-'( (.-()2:(/0&="-*/0$)0&'()*)#+,& &F.22./(2"#M'#(/"2'( J>(:JBH(*-"-;*(='*-(/"2'( J>(:JBH(,.*$-$@$-<(F.2,./'/-*( (D22;/.9$*-.+9'2$*-#<(*+.#'(ND:FO( PQ(R'/'("2,&$?$+"-$./(N:JBHSFJCTUO(3D6:(#"-$.( HAT(VW(!

Introduc5on  For  at   least  40  years,  the  tradiPonal  cancer  report  has  been  based  primarily  on   anatomic   site;   a   few   more   detailed   reports   may   include   reference   to  histology.   Rapid   and   significant   changes   in   our   understanding   of   the  molecular   biology   of   tumors   have   rendered   these   historical   classificaPon  schemes  outdated.  It  is  clear  that  there  is  heterogeneity  within  the  cancers  of  a   specific   anatomic   site,   and   recent   data   demonstrate   that   the   clinically  tractable   molecular   features   may   actually   be   similar   across   tumors   of  different  organ  sites.    Molecular  markers  allow  cancers  to  be  categorized  into  subtypes   of   the   disease   that  may   reflect   different  molecular   underpinnings  and   ePologies.   These   molecular   markers   are   being   used   to   assign   tailored  treatment   strategies   and   define  management   opPons.    Molecular  markers  are  being   invesPgated   as   a   tool   to  beder  define     prognosis   too.     Clinicians  now  rouPnely  test  cancers  for  an  increasing  number  of  relevant  markers,  well  beyond   the   beder-­‐known  molecular   markers   such   as   ER,   PR   and   HER2   for  breast   cancer.   TradiPonal   cancer   incidence   reports   do   not   typically  incorporate  these  rapidly  changing  yet  important  biomarker  data.        To   remain   relevant,   cancer   reporPng  by   the   cancer   surveillance   community  needs  to  align  itself  with  the  clinical  science  by  collecPng  and  reporPng  data  on   all   the   relevant   factors   defining   the   disease   ePology,  management,   and  prognosis.  IncorporaPon  of  this  informaPon  into  registries  will  provide  more  complete   and   robust     data   that   subsequently   will   be   highly   useful   to   the  medical   community   and   research   funding   agencies.     Sub-­‐classificaPon   of  tumors   by   molecular   markers   is   especially   important   as   the   surveillance  community  begins  to  report  on  prognosis  and  survival.    Because   the   tradiPonal   cancer   incidence   report  has   changed   relaPvely   lidle  over  several  decades,  it  remains  a  useful  tool  to  show  some  trends  over  Pme.  However,  there  may  be  advantages  to  supplemenPng  this  format  with  tumor  sub-­‐classificaPons  that  reflect  the  evolving  clinical  paradigms  in  cancer  care.    We   propose   a   new   model   for   an   annual   incidence   report,   which   will  supplement  anatomic  site  with    tumor  markers.  Because  cancer-­‐related  data  are  changing  extremely  rapidly,  so  must  the   incidence  report  and  registry-­‐required  variables  must  keep  pace  with  these  changes.    We  recognize  that  a  new  model  (as  well  as  the  underlying  data  collected  by  Cancer  Registries)  will  be  dynamic  as  new  observaPons  will  need  to  be  incorporated  in  “real  Pme”  manner.    

 

!"#$%&'()*$• +(,)&-'.$*')"$,(/$0'*)&1&2#$,3"$4".&-'(2$,$1"**$/&-'(,()$.&-5&("()$6&3$.1,**'6'.,)'&(*$

&6$'(.'/"()$.,(."37!• 80"$'-5&3),(."$&6$)9-&3$4'&-,3:"3*$6&3$/',2(&*'*;$)3",)-"();$53&2(&*'*;$,(/$/'*",*"$

-&(')&3'(2$'*$'(.3",*'(2$3,5'/1#$• <=">?$)9-&3$4'&-,3:"3*$,3"$4"'(2$'/"()'6'"/$,11$)0"$)'-"@$)0"$6'"1/$'*$.0,(2'(2$A"3#$

B9'.:1#$• C,(#$)9-&3$4'&-,3:"3*$,3"$.&--&($)&$.,(."3*$'($/'66"3"()$*')"*$"727$DEFG@$43",*)$H$

2,*)3'.$.,(."3$• I)$>'11$4"$'-5&3),()$)&$.0,3,.)"3'J"$)0"$/'*)3'49)'&(*$&6$)9-&3$4'&-,3:"3*$'($5&591,)'&(*$• +*$3".933"()$)9-&3*$<"A&1A"?$63&-$)0"$53'-,3#;$53'-,3#$,(/$3".933"()$)9-&3*$-,#$0,A"$

/'*.&3/,()$)9-&3$4'&-,3:"3*@$,($,329-"()$.,($4"$-,/"$6&3$.&11".)'(2$/,),$&($4&)0$)#5"*$&6$)9-&3$"A"($'($,($'(.'/"(."$.,(."3$3"2'*)3#$

• 80"$.,(."3$3"2'*)3#$.&--9(')#$*0&91/$3"*5&(/$3,5'/1#$)&$.0,(2"*$'($)9-&3$.1,**'6'.,)'&(;$4&)0$'($)"3-*$&6$)0"$/,),$>"$.&11".);$,(/$)0"$/,),$>"$3"5&3)$

!

Key  Points  

The  Accelera5ng  Pace  &  Promise  of  Personalized  Medicine    

In  Table  3,  we  take  some  currently  known  molecular  biomarkers  used   in  diagnosis   and   treatment   to   breakdown   anatomic   sites   into   sub  classificaPons.    Not  all  anatomic  sites  have  associated  molecular  markers  while   other   molecular   markers   appears   across   sites   (See   Table   2,   e.g.  HER2,   BRAF,   KRAS,   NRAS)   and   sPll   other   relevant   factors   relate   to   viral  infecPons   such  as  Human  Papilloma  Virus   (HPV),  HepaPPs  C  Virus   (HCV)  and  Epstein  Barr  virus  (EBV).    So  while  this  table  is  based  on  anatomic  site,  we   can   envision   a   new   table(s)   with   increased   emphasis   on   specific  molecular  biomarkers.  We  acknowledge  that  this  report  is  only  possible  if  the  underlying  data  are  rouPnely  collected  by  cancer  registries.  

In  Table  4,  we  break  down  cancers  of  the  breast  by  ER,  PR,  and  HER2  using  New  Hampshire  data  2010-­‐2012.    This  table  brings  into  focus  several  issues.    

(1)  ER,  PR  and  HER2  represent  only  a  Pny  fracPon  of  the  tumor  markers  that  are  currently  being  invesPgated  in  breast  cancer  research,  many  of  which  may  rapidly  be  brought  into  rouPne  clinical  pracPce.    

(2)  MulPple  combinaPons  of  tumor  markers  may  be  needed  to  break  down  an  anatomic  site.    

(3)  The  tumor  markers  or  combinaPons  of  markers  are  unlikely  to  be  evenly  distributed.  Small  counts  of  some  markers  may  make  reporPng  difficult,  yet  sPll  be  potenPally  important  in  determining  treatment  opPons.    

(4)  Changes   in   tumor  marker   tesPng  are   taking  place  at  different   speeds   in  different  healthcare   seings.  To  keep  the  cuing  edge  in  sight,  cancer  registry  variables  must  be  updated  more  quickly,  and  decisions  must  be  taken  on  how  to  collect  very  complex  genePc  data.    In  the  future  it  seems  likely  that  personalized  medicine  will  involve   the   genePc   characterizaPon   not   only   of   tumor  markers,   but   also   of   the   paPents   themselves,   in   an  effort  to  define  those  who  will  respond  best  to  specific  treatments.  

Table  4.  CollaboraPve  Stage  Factor  16  2010-­‐12  NH  State  Cancer  Registry  November  26,  2013  

! "#$%&!$'&()&!*+'+#*! ,#$-)&!%.!/'*)*! 0)&/)1+!222! !"#$#%"#$#&!"#'#$! ()*# +,-.#223! !"#$#%"#$#&!"#'#/# )'0# (,).#232! !"#$#%"#/#&!"'#$! ')# ,1.#233! !"#$#%"#/#&!"'#/! 2)3# 3,).#322! !"#/#%"#$#&!"'#$! '11# 0,(.#323! !"#/#%"#$#&!"'#/! +*# ),-.#332! !"#/#%"#/#&!"'#$! '3''# 13,(.#333! !"#/#%"#/#&!"'#/! '31# 1,).!445! 456#7889:;7<9=# 1'# ),(.#444! >?=#5@#A5@=#6=B6B#?56#8=@C5@A=D## -(-# '(,'.##

!"#$%&'(")%*'+,,-' !"#$%&'(")%*'+,.-' !"#$%&'(")%*'+,+-! !"#$%&'(")%*'+,/-'0)121'$3'%"#$%&*'42&"'5'621&$7$8('

'

0)121'$3'%"#$%&*'42&"'5'&9:$%';2$:)%<"%1'

'

0)121'$3'%"#$%&*'=$&">&2)77(')?&2$>);7"'8">"&2?';2$:)%<"%1'5'#)&2">&'#%$3272>8'

0)121'$3'%"#$%&*'@$:;2>"A'&9:$%'5'#)&2">&'':$7"?97)%'?6)%)?&"%2B)&2$>'

!"#$%&%'(#)*+#(+,"*

",-'"&.*#",*/#.,$*

'(*#(#&'0%+*.%&,*

1*2%.&')'34*

!50'"*/%'0#"6,".*

#",*3"#$5#))4*#$$,$*

&'*",3%.&"4*$#&#/#.,*

7(+",#.%(3)4*+'0-),8*$#&#9*:2%+2*:%))*

),#$*5.*&'*$,+%$,*:2,&2,"*&'*0#..%;,)4*

,8-#($*",3%.&"4*$#&#/#.,.*

7(+",#.%(3*#5&'0#&%'(*'<*

0'),+5)#"*+2#"#+&,"%=#&%'(*'<*/'&2*

&50'"*1*-#&%,(&9*:%&2*",.5)&%(3*

.%0-)%<%+#&%'(*'<*+#(+,"*",+'"$.*

>8#0-),*",-'"&?* >8#0-),*",-'"&?* >8#0-),*",-'"&?* >8#0-),*",-'"&?*

@')'(?*

***A$,('+#"+%('0#!***B&2,"*

*

C,+&50?*

***A$,('+#"+%('0#*

***B&2,"*

*

DCAE*FGH*

ICAJ*FGH*

KE7*FGH**

B&2,"*

!50'"*/%'0#"6,".?*

***E,L5,(+,*M?*.+'",*'"*FGH*

***E,L5,(+,*N?*.+'",*'"*FGH*

***E,L5,(+,*O?*.+'",*'"*FGH*

***,&+*

P%"#)*<#+&'".?*

***P%"#)*M?*FGH*

***P%"#)*N?*FGH*

***,&+*

!50'"*-"'<%),*<'"*&",#&0,(&*",.-'(.,*

***A3,(&*M?*

***A3,(&*N?*

***,&+*

Q#&%,(&*-"'<%),*<'"*&",#&0,(&*",.-'(.,*

***Q"'<%),*M?**

***Q"'<%),*N?*

***,&+*

Q#&%,(&*-"'<%),*<'"*&",#&0,(&*&'),"#(+,***

***Q"'<%),*M?**

***Q"'<%),*N?*

***,&+*

Q#&%,(&*-"'<%),*<'"*-"'3('.%.*

***Q"'<%),*M?**

***Q"'<%),*N?*

***,&+*

B;,"#))*&",#&0,(&*.5%&#/%)%&4*.+'",?*

***A3,(&*M?*.+'",*'"*FGH*

***A3,(&*N?*.+'",*'"*FGH*

***>&+*

!50'"H-#&%,(&H&",#&0,(&*

.500#"4*-"'<%),?*

***Q"'<%),*M*

***Q"'<%),*N*

***Q"'<%),*ORS*

***Q"'<%),*TUVO*

***Q"'<%),*TUVW**

***,&+*

*

*

*

*

*

In  Table  5,  we  speculate  about  the  direcPon  in  which  cancer  classificaPon  will  be  recorded  in  cancer  registries  of  the  future  (Table  5).      

The  first  column  (2005)  represents  our  tradiPonal  cancer  incidence  report  based  on  site  and  histology.    

The  second  (2015)  reflects  recent  changes   in  our  understanding  of  tumor  markers,   including  those  shown  in  Table  3.    

The   third   column   (2025)   reflects   our   hypotheses   that   (1)   tumors   will   be   fully   sequenced   and   acPonable  sequences   will   be   reported;   (2)   more   extensive   infecPous   disease   tesPng   may   become   rouPne   for   some  cancers  e.g.  Human  Papilloma  Virus,  Epstein  Barr  Virus;  (3)  paPent  characterisPcs  will  be  assessed  to  idenPfy  innate   characterisPcs   that   predict   response   to   and   tolerance   to   treatment   agents;   and   that   (4)   treatment  agents   will   be   ranked   in   a   measurable   way   for   individual   paPents.   Within   the   next   decade,   we   anPcipate  seeing  a  huge   increase   in  the  volume  of  data  that  cancer  registries  could  collect.    Further,  we  need   internal  data  from  molecular  markers  reports  rather  than  just  binary  summaries  because  definiPons  and  ranges  change  over  Pme.      

In  the  fourth  column  (2035),  we  hypothesize  that  the  extensive  informaPon  collected  in  the  preceding  decade  will   be   assimilated  using   genePc  and   treatment   algorithms,   and  provided  back   to   the  oncologist   along  with  simple   summary   paPent   and   tumor   profiles.   In   other   words,   things   will   get   beder   a\er   they   get   worse.  However,  to  reach  the  simplified  model,  the  registry  community  needs  to  contribute  to  the  understanding  of  tumor  markers   in   the  context  of   cancer  management,  and   in  doing  so,  we  must  decide  how  much  complex  genePc  data  are  needed  in  the  cancer  registry  database.  It  is  difficult  to  envision  the  complexity  and  size  of  a  populaPon-­‐based  registry  that  collected  the  key  genePc  sequences  within  incident  tumors.  

Table  5.  Progression  of  possible  cancer  registry  classificaPons  for  cancer   incidence  reporPng,  by  decade   into  the  future:  example,  colorectal  cancer  

Model  

Image  courtesy  of  the  NaPonal  Human  Genome  Research  InsPtute's  Talking  Glossary  (hdp://www.genome.gov/glossary/).  hdp://geneed.nlm.nih.gov/topic_subtopic.php?Pd=15&sid=16  

The  Double  Helix  

Trastuzumab    (Breast  CA:  Her2/neu)  

Depicts  date  of  FDA  approval  for  targeted  cancer  drugs,  the  relevant  disease  and  acPonable  biomarker  &  select  milestone  dates.    

Ima5nib    (Chronic  Myelogenous  Leukemia  (CML):  Bcr-­‐Abl)  

Human  Genome  Sequenced     Erlo5nib  (Lung  CA:  EGFR)    

Dasa5nib    (CML  Bcr-­‐Abl)  

Nilo5nib  (CML  Bcr-­‐Abl)  Mammaprint  70  gene  assay  approved  for  Breast  CA  Risk  recurrence  

Lapa5nib  (Breast  CA:  Her2/neu)  

Cetuximab  (Colorectal/Head  &  neck  CA:    EGFR,  KRAS  wild  type)  

Crizo5nib  (Lung  CA:  ALK)  

Vemurafenib    (Melanoma:  BRAF)  

Ima5nib    (GI  Stromal  Tumors:  c-­‐kit)  Pertuzumab    (Breast  CA:  Her2/neu)    

Ceri5nib    (Lung  CA:  ALK)  

1998   2000   2002   2004   2006   2008   2010   2012   2014  

Dabrafenib  (Melanoma:  BRAF)  

Tramatenib  (Melanoma:  BRAF)  

Guanine  

Thymine  

Base  Pair  

Sugar  Phosphate  Backbone  

Adenine  

Cytosine