Top Banner
Kinetic theory of transport for inhomogeneous electron fluids Andrew Lucas Stanford Physics Physics Next: From Quantum Fields to Condensed Matter; Hyatt Place Long Island August 25, 2017
51

Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Apr 01, 2018

Download

Documents

phungnga
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Kinetic theory of transport for inhomogeneous electron fluids

Andrew Lucas

Stanford Physics

Physics Next: From Quantum Fields to Condensed Matter; Hyatt Place Long Island

August 25, 2017

Page 2: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Collaborators 2

Sean HartnollStanford Physics

I A. Lucas and S. A. Hartnoll. “Kinetic theory of transport forinhomogeneous electron fluids”, 1706.04621

Page 3: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Introduction to Transport 3

Transport in Metals

I Ohm’s law – the “simplest” experiment...

E = ρJ (V = IR)

I ...yet ρ hard to compute in interesting systems:

transportgases

fluids

QFT

chaosstat.mech. black holes

I textbooks on canonical Boltzmann/kinetic transport:

Ziman, Electrons and Phonons: Theory of Transport in Solids (1960)

57 years later, we have ‘completed’ this theory

Page 4: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Introduction to Transport 3

Transport in Metals

I Ohm’s law – the “simplest” experiment...

E = ρJ (V = IR)

I ...yet ρ hard to compute in interesting systems:

transportgases

fluids

QFT

chaosstat.mech. black holes

I textbooks on canonical Boltzmann/kinetic transport:

Ziman, Electrons and Phonons: Theory of Transport in Solids (1960)

57 years later, we have ‘completed’ this theory

Page 5: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Introduction to Transport 3

Transport in Metals

I Ohm’s law – the “simplest” experiment...

E = ρJ (V = IR)

I ...yet ρ hard to compute in interesting systems:

transportgases

fluids

QFT

chaosstat.mech. black holes

I textbooks on canonical Boltzmann/kinetic transport:

Ziman, Electrons and Phonons: Theory of Transport in Solids (1960)

57 years later, we have ‘completed’ this theory

Page 6: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Introduction to Transport 3

Transport in Metals

I Ohm’s law – the “simplest” experiment...

E = ρJ (V = IR)

I ...yet ρ hard to compute in interesting systems:

transportgases

fluids

QFT

chaosstat.mech. black holes

I textbooks on canonical Boltzmann/kinetic transport:

Ziman, Electrons and Phonons: Theory of Transport in Solids (1960)

57 years later, we have ‘completed’ this theory

Page 7: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 4

The Boltzmann Equation

I assume quasiparticles:

〈ψ†(k, ω)ψ(k, ω)〉 ∼ 1

ω − ε(k) + icω2 + · · · .

I non-equilibrium distribution function:

f(x,p) ∼ “particles of momentum p at position x”

I weak interactions + ∆x∆p� ~ =⇒ kinetic theory:

∂tf + v · ∂xf + F · ∂pf︸ ︷︷ ︸free-particle streaming

= C[f ]︸︷︷︸collisions

.

Page 8: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 4

The Boltzmann Equation

I assume quasiparticles:

〈ψ†(k, ω)ψ(k, ω)〉 ∼ 1

ω − ε(k) + icω2 + · · · .

I non-equilibrium distribution function:

f(x,p) ∼ “particles of momentum p at position x”

I weak interactions + ∆x∆p� ~ =⇒ kinetic theory:

∂tf + v · ∂xf + F · ∂pf︸ ︷︷ ︸free-particle streaming

= C[f ]︸︷︷︸collisions

.

Page 9: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 4

The Boltzmann Equation

I assume quasiparticles:

〈ψ†(k, ω)ψ(k, ω)〉 ∼ 1

ω − ε(k) + icω2 + · · · .

I non-equilibrium distribution function:

f(x,p) ∼ “particles of momentum p at position x”

I weak interactions + ∆x∆p� ~ =⇒ kinetic theory:

∂tf + v · ∂xf + F · ∂pf︸ ︷︷ ︸free-particle streaming

= C[f ]︸︷︷︸collisions

.

Page 10: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 5

Computing Transport

I assume:I inversion and time reversal symmetryI thermodynamic equilibrium feq is not unstable

I static linear response: f = feq + δf ,

v · ∂xδf + F · ∂pδf︸ ︷︷ ︸streaming terms

+ eE · v∂feq

∂ε︸ ︷︷ ︸source term

=δCδf

∣∣∣∣eq

· δf︸ ︷︷ ︸collision operator

I BIG linear algebra problem...schematically:

L|Φ〉+W|Φ〉 = Ei|Ji〉, δf = −∂feq

∂εΦ︸ ︷︷ ︸

Φ not singular

I choose inner product 〈Jx|Φ〉 = Javgx :

σxx = 〈Jx|(W + L)−1|Jx〉.

Page 11: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 5

Computing Transport

I assume:I inversion and time reversal symmetryI thermodynamic equilibrium feq is not unstable

I static linear response: f = feq + δf ,

v · ∂xδf + F · ∂pδf︸ ︷︷ ︸streaming terms

+ eE · v∂feq

∂ε︸ ︷︷ ︸source term

=δCδf

∣∣∣∣eq

· δf︸ ︷︷ ︸collision operator

I BIG linear algebra problem...schematically:

L|Φ〉+W|Φ〉 = Ei|Ji〉, δf = −∂feq

∂εΦ︸ ︷︷ ︸

Φ not singular

I choose inner product 〈Jx|Φ〉 = Javgx :

σxx = 〈Jx|(W + L)−1|Jx〉.

Page 12: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 5

Computing Transport

I assume:I inversion and time reversal symmetryI thermodynamic equilibrium feq is not unstable

I static linear response: f = feq + δf ,

v · ∂xδf + F · ∂pδf︸ ︷︷ ︸streaming terms

+ eE · v∂feq

∂ε︸ ︷︷ ︸source term

=δCδf

∣∣∣∣eq

· δf︸ ︷︷ ︸collision operator

I BIG linear algebra problem...schematically:

L|Φ〉+W|Φ〉 = Ei|Ji〉, δf = −∂feq

∂εΦ︸ ︷︷ ︸

Φ not singular

I choose inner product 〈Jx|Φ〉 = Javgx :

σxx = 〈Jx|(W + L)−1|Jx〉.

Page 13: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 5

Computing Transport

I assume:I inversion and time reversal symmetryI thermodynamic equilibrium feq is not unstable

I static linear response: f = feq + δf ,

v · ∂xδf + F · ∂pδf︸ ︷︷ ︸streaming terms

+ eE · v∂feq

∂ε︸ ︷︷ ︸source term

=δCδf

∣∣∣∣eq

· δf︸ ︷︷ ︸collision operator

I BIG linear algebra problem...schematically:

L|Φ〉+W|Φ〉 = Ei|Ji〉, δf = −∂feq

∂εΦ︸ ︷︷ ︸

Φ not singular

I choose inner product 〈Jx|Φ〉 = Javgx :

σxx = 〈Jx|(W + L)−1|Jx〉.

Page 14: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 6

Conservation Laws

I exact solution hard. common approximations:

W =1

τ.

relaxation time approximation

L→ 0.

homogeneous fluid

I however there are conservation laws:

C[feq

(ε(p)− µ− δµ

T

)]= 0

I conservation of charge: W|Φ = 1〉 = 0

I and conservation of momentum: if density ρ 6= 0:

W|Φ = px〉 = 0 =⇒ σxx = 〈Jx|W−1|Jx〉 =∞

Page 15: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 6

Conservation Laws

I exact solution hard. common approximations:

W =1

τ.

relaxation time approximation

L→ 0.

homogeneous fluid

I however there are conservation laws:

C[feq

(ε(p)− µ− δµ

T

)]= 0

I conservation of charge: W|Φ = 1〉 = 0

I and conservation of momentum: if density ρ 6= 0:

W|Φ = px〉 = 0 =⇒ σxx = 〈Jx|W−1|Jx〉 =∞

Page 16: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 6

Conservation Laws

I exact solution hard. common approximations:

W =1

τ.

relaxation time approximation

L→ 0.

homogeneous fluid

I however there are conservation laws:

C[feq

(ε(p)− µ− δµ

T

)]= 0

I conservation of charge: W|Φ = 1〉 = 0

I and conservation of momentum: if density ρ 6= 0:

W|Φ = px〉 = 0 =⇒ σxx = 〈Jx|W−1|Jx〉 =∞

Page 17: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Old Boltzmann Transport 6

Conservation Laws

I exact solution hard. common approximations:

W =1

τ.

relaxation time approximation

L→ 0.

homogeneous fluid

I however there are conservation laws:

C[feq

(ε(p)− µ− δµ

T

)]= 0

I conservation of charge: W|Φ = 1〉 = 0

I and conservation of momentum: if density ρ 6= 0:

W|Φ = px〉 = 0 =⇒ σxx = 〈Jx|W−1|Jx〉 =∞

Page 18: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Strange Metals in Experiment 7

Viscous Flows in Constrictions

I at finite T , more scattering? ∂∂TW > 0 =⇒

∂∂T ρ = ∂

∂T (〈Jx|W−1|Jx〉)−1 > 0?

I however, ∂∂T ρ < 0 in graphene constrictions!

[Kumar et al; 1703.06672]

Page 19: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Strange Metals in Experiment 7

Viscous Flows in Constrictions

I at finite T , more scattering? ∂∂TW > 0 =⇒

∂∂T ρ = ∂

∂T (〈Jx|W−1|Jx〉)−1 > 0?I however, ∂

∂T ρ < 0 in graphene constrictions!

[Kumar et al; 1703.06672]

Page 20: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Strange Metals in Experiment 8

Electron-Electron Interaction Limited Resistivity in Fermi Liquids

I in a Fermi liquid:

τee ∼~µ

(kBT )2, ρ = AT 2 ∼ 1

τee. . .

I A depends on thermodynamics (not disorder?):[Jacko, Fjaerestad, Powell; 0805.4275]

Page 21: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Strange Metals in Experiment 8

Electron-Electron Interaction Limited Resistivity in Fermi Liquids

I in a Fermi liquid:

τee ∼~µ

(kBT )2, ρ = AT 2 ∼ 1

τee. . .

I A depends on thermodynamics (not disorder?):[Jacko, Fjaerestad, Powell; 0805.4275]

Page 22: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Strange Metals in Experiment 9

Linear Resistivity: A Challenge

I in a theory without quasiparticles:

τee &~kBT

.

I “Drude” ρ =m

ne2

1

τee∼ m

ne2

kBT

~:

[Bruin, Sakai, Perry, Mackenzie; (2013)]

Page 23: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Strange Metals in Experiment 9

Linear Resistivity: A Challenge

I in a theory without quasiparticles:

τee &~kBT

.

I “Drude” ρ =m

ne2

1

τee∼ m

ne2

kBT

~:

[Bruin, Sakai, Perry, Mackenzie; (2013)]

Page 24: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 10

Classical Disorder

I charge puddles: H = Hclean +

∫ddx n(x)Vimp(x):

�F

µ(x) = µ0 � Vimp(x)

I for simplicity: neglect umklapp, phononsI W|P 〉 = 0 – ee collisions conserve momentumI must include streaming terms: L 6= 0I Vimp perturbatively small – efficient analytical/numerical

algorithm to exactly solve the transport problem:

ρ = V 2imp × · · ·

Page 25: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 10

Classical Disorder

I charge puddles: H = Hclean +

∫ddx n(x)Vimp(x):

�F

µ(x) = µ0 � Vimp(x)

I for simplicity: neglect umklapp, phonons

I W|P 〉 = 0 – ee collisions conserve momentumI must include streaming terms: L 6= 0I Vimp perturbatively small – efficient analytical/numerical

algorithm to exactly solve the transport problem:

ρ = V 2imp × · · ·

Page 26: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 10

Classical Disorder

I charge puddles: H = Hclean +

∫ddx n(x)Vimp(x):

�F

µ(x) = µ0 � Vimp(x)

I for simplicity: neglect umklapp, phononsI W|P 〉 = 0 – ee collisions conserve momentum

I must include streaming terms: L 6= 0I Vimp perturbatively small – efficient analytical/numerical

algorithm to exactly solve the transport problem:

ρ = V 2imp × · · ·

Page 27: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 10

Classical Disorder

I charge puddles: H = Hclean +

∫ddx n(x)Vimp(x):

�F

µ(x) = µ0 � Vimp(x)

I for simplicity: neglect umklapp, phononsI W|P 〉 = 0 – ee collisions conserve momentumI must include streaming terms: L 6= 0

I Vimp perturbatively small – efficient analytical/numericalalgorithm to exactly solve the transport problem:

ρ = V 2imp × · · ·

Page 28: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 10

Classical Disorder

I charge puddles: H = Hclean +

∫ddx n(x)Vimp(x):

�F

µ(x) = µ0 � Vimp(x)

I for simplicity: neglect umklapp, phononsI W|P 〉 = 0 – ee collisions conserve momentumI must include streaming terms: L 6= 0I Vimp perturbatively small – efficient analytical/numerical

algorithm to exactly solve the transport problem:

ρ = V 2imp × · · ·

Page 29: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 11

Free Fermions (L 6= 0, W = 0)

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

I simple argument:

1

τDrude=vF

ξ×∆θ2

I formally:

ρ ∼ν(µ)V 2

imp

n2e2vFξ

I arrow of time =⇒ entropyproduction when W = 0!

Page 30: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 11

Free Fermions (L 6= 0, W = 0)

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

I simple argument:

1

τDrude=vF

ξ×∆θ2

I formally:

ρ ∼ν(µ)V 2

imp

n2e2vFξ

I arrow of time =⇒ entropyproduction when W = 0!

Page 31: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 11

Free Fermions (L 6= 0, W = 0)

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

I simple argument:

1

τDrude=vF

ξ×∆θ2

I formally:

ρ ∼ν(µ)V 2

imp

n2e2vFξ

I arrow of time =⇒ entropyproduction when W = 0!

Page 32: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 12

Toy Model: Single Fermi Surface

empty

filled

empty

filled

filled

kx

ky

kx

ky

I low T limit:

Φ ≈∑j∈Z

Φj(x)eijθ

I conserve charge (j = 0),momentum (j = ±1):

W ∼ vF

`ee

∑|j|≥2

|j〉〈j|

I analytically compute ρ!interactions alwaysdecrease ρ:

0 0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1

ξ/`ee

ρ/ρ

res

kTFξ � 1kTFξ � 1

Page 33: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 12

Toy Model: Single Fermi Surface

empty

filled

empty

filled

filled

kx

ky

kx

ky

I low T limit:

Φ ≈∑j∈Z

Φj(x)eijθ

I conserve charge (j = 0),momentum (j = ±1):

W ∼ vF

`ee

∑|j|≥2

|j〉〈j|

I analytically compute ρ!interactions alwaysdecrease ρ:

0 0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1

ξ/`ee

ρ/ρ

res

kTFξ � 1kTFξ � 1

Page 34: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 12

Toy Model: Single Fermi Surface

empty

filled

empty

filled

filled

kx

ky

kx

ky

I low T limit:

Φ ≈∑j∈Z

Φj(x)eijθ

I conserve charge (j = 0),momentum (j = ±1):

W ∼ vF

`ee

∑|j|≥2

|j〉〈j|

I analytically compute ρ!interactions alwaysdecrease ρ:

0 0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1

ξ/`ee

ρ/ρ

res

kTFξ � 1kTFξ � 1

Page 35: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 12

Toy Model: Single Fermi Surface

empty

filled

empty

filled

filled

kx

ky

kx

ky

I low T limit:

Φ ≈∑j∈Z

Φj(x)eijθ

I conserve charge (j = 0),momentum (j = ±1):

W ∼ vF

`ee

∑|j|≥2

|j〉〈j|

I analytically compute ρ!interactions alwaysdecrease ρ:

0 0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1

ξ/`ee

ρ/ρres

kTFξ � 1kTFξ � 1

Page 36: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 13

Comparison with Viscous Hydrodynamics

I `ee � ξ =⇒ viscoushydrodynamic transport

ρ ∼ η∫

d2x

V

(∇ 1

ne

)2

with η ∼ `ee

I QP random walks – seesVimp slower:

ρ ∼ 1

τ∼ vF`ee

ξ2

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

Page 37: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 13

Comparison with Viscous Hydrodynamics

I `ee � ξ =⇒ viscoushydrodynamic transport

ρ ∼ η∫

d2x

V

(∇ 1

ne

)2

with η ∼ `ee

I QP random walks – seesVimp slower:

ρ ∼ 1

τ∼ vF`ee

ξ2

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

Page 38: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 14

Toy Model: Two Fermi Surfaces

empty

filled

empty

filled

filled

kx

ky

kx

ky

I pockets have different vF

I conservation laws:I charge in pocket 1I charge in pocket 2I total momentum

I numerical computationgives:

0 0.5 1 1.5 20

2

4

6

⇠/`ee

⇢/⇢

res

kTF⇠ ⌧ 1

vF,1/vF,2 = 0.3

vF,1/vF,2 = 0.5

vF,1/vF,2 = 0.7

vF,1/vF,2 = 1

0 0.5 1 1.5 2

0.5

1

1.5

⇠/`ee

⇢/⇢

res

kTF⇠ � 1

I similar to Baber scattering,but novel mechanism

Page 39: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 14

Toy Model: Two Fermi Surfaces

empty

filled

empty

filled

filled

kx

ky

kx

ky

I pockets have different vF

I conservation laws:I charge in pocket 1I charge in pocket 2I total momentum

I numerical computationgives:

0 0.5 1 1.5 20

2

4

6

⇠/`ee

⇢/⇢

res

kTF⇠ ⌧ 1

vF,1/vF,2 = 0.3

vF,1/vF,2 = 0.5

vF,1/vF,2 = 0.7

vF,1/vF,2 = 1

0 0.5 1 1.5 2

0.5

1

1.5

⇠/`ee

⇢/⇢

res

kTF⇠ � 1

I similar to Baber scattering,but novel mechanism

Page 40: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 14

Toy Model: Two Fermi Surfaces

empty

filled

empty

filled

filled

kx

ky

kx

ky

I pockets have different vF

I conservation laws:I charge in pocket 1I charge in pocket 2I total momentum

I numerical computationgives:

0 0.5 1 1.5 20

2

4

6

⇠/`ee

⇢/⇢

res

kTF⇠ ⌧ 1

vF,1/vF,2 = 0.3

vF,1/vF,2 = 0.5

vF,1/vF,2 = 0.7

vF,1/vF,2 = 1

0 0.5 1 1.5 2

0.5

1

1.5

⇠/`ee

⇢/⇢

res

kTF⇠ � 1

I similar to Baber scattering,but novel mechanism

Page 41: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 14

Toy Model: Two Fermi Surfaces

empty

filled

empty

filled

filled

kx

ky

kx

ky

I pockets have different vF

I conservation laws:I charge in pocket 1I charge in pocket 2I total momentum

I numerical computationgives:

0 0.5 1 1.5 20

2

4

6

⇠/`ee⇢/⇢

res

kTF⇠ ⌧ 1

vF,1/vF,2 = 0.3

vF,1/vF,2 = 0.5

vF,1/vF,2 = 0.7

vF,1/vF,2 = 1

0 0.5 1 1.5 2

0.5

1

1.5

⇠/`ee

⇢/⇢

res

kTF⇠ � 1

I similar to Baber scattering,but novel mechanism

Page 42: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 14

Toy Model: Two Fermi Surfaces

empty

filled

empty

filled

filled

kx

ky

kx

ky

I pockets have different vF

I conservation laws:I charge in pocket 1I charge in pocket 2I total momentum

I numerical computationgives:

0 0.5 1 1.5 20

2

4

6

⇠/`ee⇢/⇢

res

kTF⇠ ⌧ 1

vF,1/vF,2 = 0.3

vF,1/vF,2 = 0.5

vF,1/vF,2 = 0.7

vF,1/vF,2 = 1

0 0.5 1 1.5 2

0.5

1

1.5

⇠/`ee

⇢/⇢

res

kTF⇠ � 1

I similar to Baber scattering,but novel mechanism

Page 43: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 15

Why Do Interactions Increase the Resistivity?

I ∇ · J1 = ∇ · J2 = 0; QPspushed out of equilibrium:

J

Jimb

`ee

x

µimbalance

I all excited QPs relaxmomentum:

1

τ∼ `eevF

ξ2︸ ︷︷ ︸diffusion

× ξ2

`2ee︸︷︷︸imbalance

∼ vF

`ee

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

Page 44: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 15

Why Do Interactions Increase the Resistivity?

I ∇ · J1 = ∇ · J2 = 0; QPspushed out of equilibrium:

J

Jimb

`ee

x

µimbalance

I all excited QPs relaxmomentum:

1

τ∼ `eevF

ξ2︸ ︷︷ ︸diffusion

× ξ2

`2ee︸︷︷︸imbalance

∼ vF

`ee

Vimp ⇠

Vimp Vimp

x

y

x

y

x

y

Page 45: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 16

Bounds

I we proved a unified transport bound:

ρ ≤ T s

J2=〈Φodd|W|Φodd〉〈Φodd|E〉2

, subject to ∇ ·J [Φodd] = 0︸ ︷︷ ︸conservation of

charge, energy, imbalance...

upon integrating out non-conserved even modes:

W = Wodd + LTW−1evenL

I hydrodynamic limit:

T S ∼∫

ddx

(J − nv) ·Σ−1 · (J − nv)︸ ︷︷ ︸imbalance diffusion

+η(∇v)2

.I perturbative results from above become non-perturbative

bounds on ρ

Page 46: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 16

Bounds

I we proved a unified transport bound:

ρ ≤ T s

J2=〈Φodd|W|Φodd〉〈Φodd|E〉2

, subject to ∇ ·J [Φodd] = 0︸ ︷︷ ︸conservation of

charge, energy, imbalance...

upon integrating out non-conserved even modes:

W = Wodd + LTW−1evenL

I hydrodynamic limit:

T S ∼∫

ddx

(J − nv) ·Σ−1 · (J − nv)︸ ︷︷ ︸imbalance diffusion

+η(∇v)2

.

I perturbative results from above become non-perturbativebounds on ρ

Page 47: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

New Boltzmann Transport 16

Bounds

I we proved a unified transport bound:

ρ ≤ T s

J2=〈Φodd|W|Φodd〉〈Φodd|E〉2

, subject to ∇ ·J [Φodd] = 0︸ ︷︷ ︸conservation of

charge, energy, imbalance...

upon integrating out non-conserved even modes:

W = Wodd + LTW−1evenL

I hydrodynamic limit:

T S ∼∫

ddx

(J − nv) ·Σ−1 · (J − nv)︸ ︷︷ ︸imbalance diffusion

+η(∇v)2

.I perturbative results from above become non-perturbative

bounds on ρ

Page 48: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Return to Experiments 17

Phenomenology: Enhanced Resistivity near Criticality

I sample phase diagram:

doping

Tρ ∼ T

ρ ∼ T 2

I imbalance diffusion + smooth disorder =⇒ entire phasediagram ?

I layered materials with chemical doping =⇒ smootherpotentials...

I many ways to get this effect besides two Fermi surfaces...

Page 49: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Return to Experiments 17

Phenomenology: Enhanced Resistivity near Criticality

I sample phase diagram:

doping

Tρ ∼ T

ρ ∼ T 2

I imbalance diffusion + smooth disorder =⇒ entire phasediagram ?

I layered materials with chemical doping =⇒ smootherpotentials...

I many ways to get this effect besides two Fermi surfaces...

Page 50: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Return to Experiments 17

Phenomenology: Enhanced Resistivity near Criticality

I sample phase diagram:

doping

Tρ ∼ T

ρ ∼ T 2

I imbalance diffusion + smooth disorder =⇒ entire phasediagram ?

I layered materials with chemical doping =⇒ smootherpotentials...

I many ways to get this effect besides two Fermi surfaces...

Page 51: Andrew Lucas - qpt.physics.harvard.eduqpt.physics.harvard.edu/physicsnext/Andrew_Lucas.pdf · Kinetic theory of transport for inhomogeneous electron uids Andrew Lucas Stanford Physics

Return to Experiments 17

Phenomenology: Enhanced Resistivity near Criticality

I sample phase diagram:

doping

Tρ ∼ T

ρ ∼ T 2

I imbalance diffusion + smooth disorder =⇒ entire phasediagram ?

I layered materials with chemical doping =⇒ smootherpotentials...

I many ways to get this effect besides two Fermi surfaces...