Top Banner
Massive 2- and 3-loop corrections to hard scattering processes in QCD Dissertation zur Erlangung des Doktorgrades an der Fakult¨ at ur Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universit¨ at Hamburg vorgelegt von Marco Saragnese Hamburg 2022 arXiv:2208.06145v1 [hep-ph] 12 Aug 2022
268

and 3-loop corrections to hard scattering processes in QCD

May 09, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: and 3-loop corrections to hard scattering processes in QCD

Massive 2- and 3-loop corrections tohard scattering processes in QCD

Dissertationzur Erlangung des Doktorgrades an der Fakultat

fur Mathematik, Informatik und Naturwissenschaften

Fachbereich Physik

der Universitat Hamburg

vorgelegt von

Marco Saragnese

Hamburg

2022

arX

iv:2

208.

0614

5v1

[he

p-ph

] 1

2 A

ug 2

022

Page 2: and 3-loop corrections to hard scattering processes in QCD

Gutachter der Dissertation: Prof. Dr. habil. Johannes Blumlein

Prof. Dr. Sven-Olaf Moch

Zusammensetzung der Prufungskommission: Prof. Dr. habil. Johannes Blumlein

Prof. Dr. Sven-Olaf Moch

Prof. Dr. Bernd Kniehl

Prof. Dr. Katerina Lipka

Prof. Dr. Gleb Arutyunov

Vorsitzender der Prufungskommission: Prof. Dr. Bernd Kniehl

Datum der Disputation: 14 Juli 2022

Vorsitzender Fach-Promotionsausschusses Physik: Prof. Dr. Wolfgang Parak

Leiter des Fachbereichs Physik: Prof. Dr. Gunter H. W. Sigl

Dekan der Fakultat MIN: Prof. Dr. Heinrich Graener

Page 3: and 3-loop corrections to hard scattering processes in QCD
Page 4: and 3-loop corrections to hard scattering processes in QCD

Abstract

This thesis deals with calculations of higher-order corrections in perturbative quantum chromo-dynamics (QCD). The two-mass contributions to the 3-loop, polarized twist-two operator matrix

elements (OMEs) A(3),PSQq and A

(3)gg,Q are calculated. The N -space result for A

(3)gg,Q is obtained an-

alytically as a function of the quark mass ratio, which for A(3),PSQq is not yet possible. In the

z-space representation, one obtains for both matrix elements semi-analytical representations interms of iterated integrals, whereby for reasons of efficiency an additional integral is necessaryfor some terms.

These universal (process-independent) massive OMEs govern the asymptotic behaviour ofthe Wilson coefficients in deep-inelastic scattering at large virtualities Q2 ≫ m2

c,b, with mc,b

the charm and bottom quark masses. These corrections are also required to define the variableflavour number scheme. This scheme describes the transition from massive quark corrections tothe massless ones for very high momentum scales, which is relevant to the description of colliderdata.

In the single-mass, polarized case, we derive the logarithmic corrections for the Wilson coef-ficients of the structure function g1 in the asymptotic region Q2 ≫ m2

c,b. This is done using theknown OMEs and massless Wilson coefficients, using the renormalization group equations.

For the non-singlet structure functions FNS2 and gNS

1 we revisit the scheme-invariant evolutionoperator known for massless quarks and extend it to the massive case with single- and two-masscorrections. In this case, the evolution can effectively be described up to O(a3s) in the Wilsoncoefficients, where as = αs/(4π) denotes the strong coupling constant. The influence of thehitherto not fully known 4-loop non-singlet anomalous dimension can be described effectively.It turns out that the effect of the theory error in question can be completely controlled. Arepresentation by a Pade approximant proves to be sufficient.

We consider the class of functions of multivariate hypergeometric series and study systemsof differential equations obeyed by them. We describe an algorithmic method to solve someclasses of such differential systems which delivers a hypergeometric series solution having nestedhypergeometric products as summand; we discuss the relationship between these products andPochhammer symbols. For a number of classical hypergeometric series we derive differentialsystems and their associated difference equations. We present some examples of series expan-sions of such functions and of the mathematical objects which arise therein. We also present aMathematica package which implements algorithms related to the solution of partial linear dif-ference equations, focusing in particular on bounding the degree of the denominator of solutionswhich are rational functions. These methods are of particular importance when solving multi-legcalculations for Feynman diagrams, but also come into play when hypergeometric methods formulti-loop integrals are used.

We describe a numerical implementation of an N -space library for the calculation of scal-ing violations for structure functions, which can perform the evolution of parton distributionfunctions up to NNLO from a parametrization chosen by the user, and encodes massless andmassive Wilson coefficients for the structure functions F2 and g1 in the case of photon exchange,and for the structure functions FW+±W−

3 in the case of charged-current exchange. The librarycontains analytic continuation of the relevant harmonic sums in Mellin-space up to weight 5 andmany weight-6 harmonic sums. The numerical representation in x space is performed by contourintegration around the singularities of the solution of the evolution equations in N space.

i

Page 5: and 3-loop corrections to hard scattering processes in QCD

Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit Berechnungen von Korrekturen hoherer Ordnungin der perturbativen Quanten Chromodynamik (QCD). Es werden die zweimassigen Beitrage zu

den 3-loop massiven, polarisierten twist–2 Operatormatrixelementen (OMEs), A(3),PSQq und A

(3)gg,Q,

berechnet. Das N -Raum-Ergebnis fur A(3)gg,Q erhalt man analytisch als Funktion des Massenver-

haltnisses der schweren Quarks, was fur A(3),PSQq nicht durch iterierte Inegrale moglich ist. In der

sog. z-Raum Darstellung erhalt man fur beide Matrixelemente analytische Darstellungen durchiterierte Integrale, wobei aus Effizienzgrunden hieruber fur manche Terme ein weiteres Integralnotwendig ist.

Diese universellen (prozeßunabhangigen) massiven OMEs bestimmen das asymptotische Ver-halten der Wilson-Koeffizienten bei tief–inelastischer Streuung fur große VirtualitatenQ2 ≫ m2

c,b.Hier bezeichnen mc,b die Charm- und Bottom-Quark-Masse. Diese Korrekturen sind auch er-forderlich, um das Variable Flavor Number Scheme zu definieren. Dieses Schema beschreibt fursehr hohe Impulsskalen den Ubergang massiver Quark–Korrekturen in den masslosen Fall, wasfur die Beschreibung von Kollider–Daten von Bedeutung ist.

Im einmassigen Fall leiten wir die logarithmischen Korrekturen fur die Wilson-Koeffizientender Strukturfunktion g1 in der asymptotischen Region Q2 ≫ m2

c,b ab. Dies geschieht unterVerwendung der bekannten OMEs und der masselosen Wilson-Koeffizienten, unter Verwendungder Renormierungsgruppengleichungen.

Fur die nicht-singulett Strukturfunktionen FNS2 und gNS

1 berechnen wir den schema-invarian-ten Evolutionsoperator, der fur masslose Quarks bekannt war und erweitern ihn fur den massivenFall mit ein- und zwei-massigen Korrekturen. Hierdurch kann die Evolution in diesem Fall effektivbis zur O(a3s) in den Wilsonkoeffizienten beschrieben werden. Hierbei bezeichnet as = αs/(4π)die starke Kopplungskonstante. Der Einfluss der bisher nicht vollstandig bekannten 4–loop nicht-singulett anomalen Dimension kann effektiv beschrieben werden. Es stellt sich heraus, daß derEffekt des betreffenden Theoriefehlers vollstandig kontrolliert werden kann. Eine Darstellungdurch eine Pade-Approximation zeigt sich als ausreichend.

Wir betrachten die Klasse der Funktionen multivariater hypergeometrischer Reihen und un-tersuchen Systeme von Differentialgleichungen und Differenzengleichungen, welche diese beschrei-ben. Wir beschreiben ein algorithmisches Verfahren zur Losung einiger Klassen solcher Diffe-rentialgleichungssysteme, welche eine hypergeometrische Reihenlosung mit verschachtelten hy-pergeometrischen Produkten als Summanden liefert und diskutieren die Beziehung zwischen denStrukturen rationaler Monome aus Pochhammer-Symbolen. Fur eine Reihe generalisierter klas-sischer hypergeometrischer Reihen leiten wir Differentialgleichungssysteme und die zugehorigenDifferenzengleichungen her. Wir stellen einige Beispiele fur Reihenentwicklungen solcher Funk-tionen und der darin auftretenden mathematischen Objekte vor. Es wird ein Mathematica-Paketbeschrieben, welches Algorithmen implementiert, die sich auf die Losung partieller linearer Dif-ferenzgleichungen beziehen, wobei der Schwerpunkt insbesondere auf der Begrenzung des Gradesder Nenner von Losungen liegt, die rationale Funktionen sind. Diese Methoden haben besondereBedeutung bei der Losung von sog. multi-leg Berechnungen bei Feynman Diagrammen, kommenjedoch auch bei Anwendung der hypergeometrischen Methoden fur multi-loop Diagramme zumEinsatz.

Wir beschreiben eine numerische Implementierung einer analytischen N -Raum Bibliothek zurBerechnung von Skalenverletzungen von Strukturfunktionen, welche die Evolution von Parton-Verteilungsfunktionen bis zu NNLO aus einer vom Benutzer gewahlten Parametrisierung durch-fuhren kann und masselose und massive Wilson-Koeffizienten fur das Photon fur die Struktur-funktionen F2 und g1, im Falle des Photonaustausches, und fur die Strukturfunktion FW+±W−

3

im Falle geladener Strome beschreibt. Die Bibliothek enthalt im Mellin-Raum analytische Fort-setzungen der relevanten harmonischen Summen bis zum Gewicht w = 5. Die numerische Dar-

ii

Page 6: and 3-loop corrections to hard scattering processes in QCD

stellung im x-Raum erfolgt durch eine Kontur-Integration um die Singularitaten der vollkommenanalytischen Losung der Evolutionsgleichungen im N Raum.

iii

Page 7: and 3-loop corrections to hard scattering processes in QCD

List of publications

Chapters of this thesis have been published in part in:

Journal articles

J. Blumlein and M. Saragnese, The N3LO scheme-invariant QCD evolution of the non-singletstructure functions FNS

2 (x,Q2) and gNS1 (x,Q2), Phys. Lett. B 820 (2021) 136589 [arXiv:2107.01293

[hep-ph]].

J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald, Logarithmic contribu-tions to the polarized O(α3

s) asymptotic massive Wilson coefficients and operator matrix elementsin deeply inelastic scattering, Phys. Rev. D 104 (2021) no.3, 034030 [arXiv:2105.09572 [hep-ph]].

J. Ablinger, J. Blumlein, A. De Freitas, A. Goedicke, M. Saragnese, C. Schneider and K. Schon-wald, The two-mass contribution to the three-loop polarized gluonic operator matrix elementA

(3)gg,Q, Nucl. Phys. B 955 (2020) 115059 [arXiv:2004.08916 [hep-ph]].

J. Ablinger, J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald, The three-loop polarized pure singlet operator matrix element with two different masses, Nucl. Phys. B 952(2020) 114916 [arXiv:1911.11630 [hep-ph]].

Proceedings

J. Ablinger, J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald, New2- and 3-loop heavy flavor corrections to unpolarized and polarized deep-inelastic scattering,[arXiv:2107.09350 [hep-ph]].

Preprints

J. Blumlein, M. Saragnese and C. Schneider, Hypergeometric Structures in Feynman Integrals,[arXiv:2111.15501 [math-ph]].

iv

Page 8: and 3-loop corrections to hard scattering processes in QCD

Contents

1 Introduction 1

2 Basic formalism 72.1 Deep-inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Light-cone dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 The operator product expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 The forward Compton amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 112.5 Scaling violation and renormalization group . . . . . . . . . . . . . . . . . . . . 132.6 Renormalization in the presence of heavy quarks . . . . . . . . . . . . . . . . . . 152.7 Variable flavour number scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.8 Mathematical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8.1 The Mellin transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.8.2 Nested sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.8.3 Iterated integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.8.4 Mellin-Barnes integration . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Polarized deep-inelastic scattering 273.1 The two-mass contribution to the polarized operator matrix element A

(3),PSQq . . . 27

3.1.1 The x-space result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2 The two-mass contribution to the polarized matrix element A

(3)gg,Q . . . . . . . . 36

3.2.1 The N -space solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.2.2 The result in momentum fraction z-space . . . . . . . . . . . . . . . . . . 463.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 The logarithmic single-mass contributions to the polarized asymptotic O(a3s) Wilsoncoefficients in deeply inelastic scattering 67

5 N3LO scheme-invariant evolution of the non-singlet structure functions FNS2 and gNS

1 715.1 Flavour decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.2 The non-singlet evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Hypergeometric functions and differential systems 796.1 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.2 Recursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816.3 The Solution of the Recursions . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.4 An algorithm for hypergeometric products . . . . . . . . . . . . . . . . . . . . . 84

6.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.5 Computing the expansion in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966.7 A brief descriptions of the commands of HypSeries . . . . . . . . . . . . . . . . 96

7 Partial difference equations with rational coefficients 997.1 Description of the basic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 997.2 Denominator bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007.3 Determination of the numerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Treatment of a hypergeometric prefactor . . . . . . . . . . . . . . . . . . 101

v

Page 9: and 3-loop corrections to hard scattering processes in QCD

7.3.2 Finding solutions in terms of nested sums . . . . . . . . . . . . . . . . . 1027.3.3 Matching the solution to initial values . . . . . . . . . . . . . . . . . . . 1037.3.4 Finding the solution in a series expansion . . . . . . . . . . . . . . . . . . 1037.3.5 A brief descriptions of the commands of solvePartialLDE . . . . . . . . 104

8 A numerical library for DIS structure functions 1078.1 The structure functions F2 and FL . . . . . . . . . . . . . . . . . . . . . . . . . 1078.2 The structure function g1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118.3 The structure function xFW+−W−

3 . . . . . . . . . . . . . . . . . . . . . . . . . 1118.4 The structure function xFW++W−

3 . . . . . . . . . . . . . . . . . . . . . . . . . 1138.5 Drell-Yan process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138.6 Higgs boson production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148.7 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158.8 Evolution of the singlet PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168.9 Evolution of the non-singlet PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . 1178.10 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.10.1 Analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188.10.2 Structure of the massive OMEs . . . . . . . . . . . . . . . . . . . . . . . 122

8.11 Structure of the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.11.1 List of routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.11.2 User options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258.11.3 User initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268.11.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268.11.5 Estimates of the numerical accuracy . . . . . . . . . . . . . . . . . . . . 1268.11.6 List of mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . 1338.11.7 Comparison to the code Pegasus . . . . . . . . . . . . . . . . . . . . . . 1348.11.8 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9 Conclusions 150

A Representation of certain iterated integrals 152

B Relations between certain functions 162

C Polarized operator matrix elements 168C.1 A

PS(3)qq,Q in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.2 AS(3)qg,Q in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.3 ASQg in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.4 AS(3)gg,Q in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.5 APS(3)qq,Q in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.6 AS(3)qg,Q in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.7 ASQg in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.8 AS(3)gg,Q in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D Polarized massive Wilson coefficients 207D.1 LPS

q in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207D.2 LS

g in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207D.3 HPS

q in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209D.4 HS

g in N space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210D.5 LPS

q in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217D.6 LS

g in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

vi

Page 10: and 3-loop corrections to hard scattering processes in QCD

D.7 HPSq in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

D.8 HSg in z space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

E Definition of certain iterated integrals 232

References 240

vii

Page 11: and 3-loop corrections to hard scattering processes in QCD

1 Introduction

The first experiment in subatomic particle physics was arguably performed by J. Thomson in1897 [1], see also [2] for historical accounts of the period. Thomson was the first to isolate anelectron beam (a cathodic ray in the language of the time), speculating that it was composed ofcharged particles. By measuring their charge to mass ratio he could conclude that those particleswere distinct from any known ion, therefore discovering the electron. Further insights on thestructure of matter came from Rutherford’s experiment culminating in the establishment of thepresence of a positively charged nucleus in 1911 [3–5] and therefore discovering the proton. Thefamous gold-foil experiment is arguably the first scattering experiment in the modern sense. In1932, Chadwick [6,7] discovered the neutron.

The notion of a particle-like interpretation of the photon was introduced in the same era,by Planck’s theory of blackbody radiation and Einstein’s theory of the photoelectric effect,gaining widespread acceptance following Compton’s experiments on photon-electron scatteringin 1923 [8].

Given the known components of the nucleus, it was necessary to deduce the existence ofa strong force liable to hold the positively charged particles together. The first theory of thestrong force is due to Yukawa in 1934 [9]. Yukawa postulated the existence of a new particleacting as a mediator of the strong force and formulated a prediction of its mass. Yukawa’stheory proved inadequate to settle the question of the nature of the strong force completely, asin the following two decades, a large number of new particles and antiparticles, both weakly andstrongly interacting, were discovered mainly in the study of cosmic rays.

In the 1960s, the spectra and quantum numbers of the known strongly-interacting particleswere classified by Gell-Mann and Ne’eman into multiplets based on a SU(3) symmetry (the“Eightfold Way” [10]). Based on this model, Gell-Mann successfully predicted the existence ofan undiscovered resonance, the Ω−, its charge, mass and decay rate. It was found as predicted in1964 [11]. The success of this model led Gell-Mann [12] and Zweig [13, 14] to the interpretationof hadrons as composite objects, mesons and baryons, composed of two or three quarks. At thetime, the model contained three flavours of quarks, u, d, and s, explaining the SU(3) symmetryof the Eightfold Way. A new quantum number, color, was introduced by Greenberg in 1964 [15]to explain the existence of the ∆++(uuu), ∆−(ddd) and Ω−(sss) resonances. Without color as anew quantum number, the wavefunction of these resonances would have been totally symmetric,and hence prohibited for Fermions by Pauli’s exclusion principle. Color was included formallyin a Yang-Mills theory by Han and Nambu [16].

Early experimental evidence for the presence of substructure in the hadrons was obtained bymeasurements of the anomalous magnetic moment of the proton by Frisch and Stern in 1933 [17]and of the neutron by Alvarez and Bloch in 1939 [18,19]. Hofstadter’s team measured the chargedistribution inside the nucleons in the 1950s [20] and measured their size to be of the order of10−15 m.

Further evidence for nucleon substructure came from the deep-inelastic scattering experimentsperformed at SLAC in the 1960s at higher resolution [21–27]. In these experiments, basedon electron-proton scattering, the measured cross-section was found to be incompatible withthe proton being point-like, but was compatible with an internal structure formed by threepoint-like constituents. The hypothesis of the proton having a uniform charge distribution wasdefinitely excluded. On the theoretical front, before the deep-inelastic scattering experiments ofthe late 1960s, the existence of quarks was not universally accepted, because the hypotheses offractional charge and of confinement were considered too arbitrary; the fact that no quark couldbe observed directly was for many physicists a reason to accept them only as a book-keepingmethod. Theoretical research was more focused on the deduction of general properties of theS-matrix than on perturbation theory or even field theory. The SLAC experiments were crucialfor establishing a baseline of experimental observations that a successful theory of the strong

1

Page 12: and 3-loop corrections to hard scattering processes in QCD

interactions would need to explain. Among these were Bjorken scaling [28], the observationthat the structure functions are approximately independent of the exchanged momentum (itis intimately connected to asymptotic freedom) and the Callan-Gross relation [29], a relationbetween the structure functions FL and F2 of the proton. Both are successfully explained byFeynman’s parton model [30,31].

Kinematically, deep-inelastic scattering is described by the exchanged momentum q2 = −Q2

and by x = Q2/2p.q, with p the nucleon momentum (see Section 2.1). Bjorken scaling refersto the observation that the structure functions, to first approximation, are independent on Q2.The Callan-Gross relation corresponds to the vanishing of the longitudinal structure function,FL ≪ F2. In QCD, these properties are recovered to leading order, and higher-order correctionsare calculable in perturbation theory.

Bjorken scaling and the Callan-Gross relation had been predicted in 1969. At the time ofFeynman’s formulation of the parton model, which provided an explanation of both properties,the existence of quarks started to be commonly accepted in the scientific community.

Further theoretical developments were the proof of renormalizability of Yang-Mills theory by’t Hooft in 1971 [32], the formulation of QCD as a SU(3) Yang-Mills theory by Gell-Mann andFritzsch in 1972 [33, 34] and the computation of the β-function by Gross, Wilczek and Politzerin 1973 [35,36] establishing the firm theoretical footing for asymptotic freedom.

The predictions of QCD are, to first order in the coupling constant, the same as those of theparton model, but become different at higher order. In particular, QCD predicts a pattern ofscaling violations: a specific dependence of the experimental observables on the scale (typicallythe exchanged virtual momentum). For example, Bjorken scaling is not valid beyond lowestorder, and the dependence of the structure functions on Q2 is calculable. Similarly, the Callan-Gross relation is not valid beyond lowest order. This feature of QCD provides a path to veryprecise tests of the theory.

The calculation of the theoretical ingredients for this type of analysis started when Gross andWilczek [37, 38] and Georgi and Politzer [39] first computed the anomalous dimensions of thetwist-2 operators to leading order. In the framework of QCD, they account for the anomalousscaling of the parton densities. The Wilson coefficients, which account for the partonic scatteringamplitudes, were first computed in 1978 [40], and completed in [41] enabling the calculation ofthe leading order QCD corrections to the parton model.

The scaling of the parton densities was formulated in x-space as a set of coupled integro-differential equations in [42, 43] and, in a fermion-pseudoscalar theory [45–48], in [44]. Theparton densities and the splitting functions are given in this context an intuitive interpretationrelated to the partonic content of the hadron and to the amplitude for collinear splitting of thepartons. The splitting functions Pij are just Mellin transforms of the already known anomalousdimensions γij,

γij(N) = −∫ 1

0

dx xN−1Pij(x) . (1.1)

Advances in the formulation of theoretical predictions are also due to the factorization tech-nique whereby the infrared and collinear singularities due to initial state partons are absorbedinto the bare parton densities to obtain a finite renormalized parton density. The first instanceof this idea is due to Politzer in 1977 [49]; systematic study on factorization theorems has beenperformed by a number of authors, among whom Amati, Petronzio and Veneziano [50,51], Libbyand Sterman, [52,53], in several studies [54–59]; see also the reviews [60,61].

Higher order results have been obtained for the deeply inelastic process since the pioneeringworks of the 1960s. The Wilson coefficients for the structure functions F2 and FL and theanomalous dimensions have been computed up to three-loop order in [62–76] in massless QCD.For the polarized case, the anomalous dimensions were calculated at LO in [42, 79, 80], at NLOin [81, 82] and at NNLO in [83–85]; a calculation and definition of the M-scheme commonly

2

Page 13: and 3-loop corrections to hard scattering processes in QCD

u 2.2+0.5−0.4 MeV

d 4.7+0.5−0.3 MeV

s 95+9−3 MeV

c 1.275+0.025−0.035 GeV

b 4.18+0.04−0.03 GeV

t 160.0+4.8−4.3 GeV

Table 1: Quark masses quoted in [77]. The u, d, s masses are MS masses at µ ≈ 2 GeV; the c, b massesare the running MS masses. The MS t mass is quoted in [78].

used for polarized studies appears in [85, 86]. Polarized Wilson coefficients for the structurefunction g1 were computed in [87, 88]. The Wandzura-Wilczek sum rule was presented in [89],see also [90, 91] for a modern perspective on polarized sum rules. Higher-order results are alsoavailable for structure functions in charged-current exchange in massless QCD [92].

The coefficients of the β-function in QCD are known to NLO [93, 94], NNLO [95, 96], N3LO[97,98] and to five-loop order [99–102].

The experimental basis for the Standard Model gained another building block in 1974 withthe discovery of the J/Ψ resonance [103, 104]. The new meson was convincingly interpreted asa cc resonance in the quark model, where c denotes the charm quark. The existence of a fourthquark had been conjectured earlier in [105,106] in order to preserve a symmetry between leptonsand quarks: this fact contributed, together with the discovery of many other charmed particles,to the general acceptance of the quark model. The bottom quark b was identified in 1975 [107]as a constituent of the Υ meson, and the top quark t was discovered in 1995 [108, 109] at theTevatron.

In Table 1 the masses of the six quarks in the MS scheme are summarized. The u, d and squarks have a mass which lies in the non-perturbative regime typically characterized by ΛQCD ∼O(200 MeV). For this reason, in perturbative calculations, they are typically treated as massless.The heavier c, b quarks have a mass which is not negligible at the energies probed by scatteringexperiments and cannot be neglected, while the top quark has a mass much higher still, and istreated as decoupling in most perturbative calculations.

At intermediate energies, the heavy c, b quarks are often treated in a variable flavour numberscheme, where, depending on the value of Q2, a definite number of quarks is considered light andattributed a parton density. As Q2 increases, when a threshold for quark production is reached,one more quark is treated as light and attributed a parton density, while the other partondensities are redefined according to a set of matching conditions. This type of prescriptionenables to formulate predictions for a wide range of values of Q2 across the thresholds for theheavy quarks and to limit the occurrence of large logarithms in the perturbative series, which areinstead resummed by the renormalization group equation. Various such variable flavour numberschemes (VFNS) have been defined in the literature [110–120]. The matching conditions in theVFNS have been computed in [121,122] for the two-mass case.

Experimentally, the largest kinematic range has been achieved by the HERA experiment atDESY [123–126], for which the extreme values of x and Q2 covered were 10−6 < x < 0.65 and0.45 GeV2 < Q2 < 50000 GeV2. At Q2 = 10 GeV2, the region up to around x = 10−4 could beprobed [126].

Reviews of QCD and deep-inelastic scattering can be found in [61, 127–134]. Deep-inelasticscattering experiments have been performed with polarized leptons and hadrons since the earlyexperiments at SLAC in the 1970s [135,136], and more recently at CERN with the EMC exper-iment [137,138], at SLAC [139–145], at CERN [146–151], CLAS [152,153] and at the HERMESexperiment at DESY [154, 155]. In such experiments, the lepton is longitudinally polarized

3

Page 14: and 3-loop corrections to hard scattering processes in QCD

and the hadron can have longitudinal or transverse polarization. For polarized scattering, alarger number of structure functions than in the unpolarized case appears: in the most generalelectroweak case, which was studied in [156], five unpolarized structure functions Fi and ninepolarized ones gi contribute to the hadronic tensor; in the case of pure photon exchange, however,only F1,2 and g1,2 appear, see also [90,156,157].

The contribution due to g2 is suppressed, compared to the contribution due to g1, by afactor of M2/s, with M the mass of the hadron and s the energy in the center-of-mass frame,making it harder to measure experimentally, especially in the kinematic range where higher-twistcontributions are less pronounced. Because the theoretical treatment of the polarized structurefunctions in terms of the operator product expansion closely follows that of the unpolarizedcase, an opportunity exists for the extension to the structure function g1 of many results alreadyknown in the literature.

In particular, the operator matrix elements of twist-two operators are important ingredientsin the VFNS, where they enter in the redefinition of the parton densities across a quark massthreshold. Matching relations in the VFNS have been studied at O(a2s) in [112] and at O(a3s) in[158] for the single-mass case, where heavy quarks are decoupled one by one under the assumptionQ2 ≫ m2

b ,m2c .

However, because the mass ratio between the charm and the bottom quark is η = m2c/m

2b ∼

0.1, it is desirable for precision applications to build a VFNS with the purpose of matching thehigh-energy region where both quarks are decoupled and the low-energy region where they areactive. To this end, it is necessary to compute operator matrix elements involving both quarksin the loops. In QCD, operator matrix elements will contain contributions from diagrams withtwo different massive quarks in the loops starting at O(a3s). This causes the emergence, in theircalculation, of classes of special functions and iterated integrals which depend on the ratio ofthe two masses. The extension of the VFNS to the decoupling of two quarks has been studiedin [122] and the renormalization of the OMEs in [159] to O(a2s) and in [121,158] to O(a3s) for thesingle-mass and the two-mass case respectively.

The calculation of the matrix elements of twist-two operators has historically been one of themethods by which their anomalous dimensions have been obtained, starting with [38, 39]. Thecalculation of the unpolarized single-mass OMEs has been performed to O(a2s) in [112,159–163]and to O(a3s) in [73,164–170], and of the two-mass OMEs in [121,171–174]. The polarized OMEshave been computed in [175–177] and to O(a3s) in [178–180]. Currently, up to O(a3s), only the

OME A(3)Qg is not fully known, and is likely to fall in the function space of elliptic integrals, at

least for some color structures.From the factorization theorems of QCD, it is possible to obtain the asymptotic form of

the Wilson coefficients involving a massive quark, i.e. the coefficients of the logarithmic factorsln(Q2/µ2) and ln(Q2/m2), from the factorization into massive OMEs and massless Wilson coef-ficients. This method was pioneered in [112] where the asymptotic two-loop charm contributionsto the Wilson coefficients were calculated. Those asymptotic results were found to be in agree-ment with an analytic calculation in [181] and with the small-x limit derived in [182]. To O(a3s)the logarithmic terms of massive Wilson coefficients have been calculated in [73, 165, 183, 184].For charged-current interactions, the massive Wilson coefficients have been computed with themethod of massive OMEs in [185–187], correcting results of [188].

The factorization of mass singularities has also found applications in QED: initial-state radia-tive corrections to the process e+e− → γ∗/Z∗ have been calculated with the method of massiveOMEs [189], which has historically been important to cross-check and to correct a direct compu-tation performed in [190] and to obtain radiator functions to high orders [191–193]. Nowadays,these QED results allow a very precise determination of the Z-boson width and of the asymmetryin e+e− annihilation [194,195].

This thesis reports on computations which fit into the long-running project of calculatingOMEs and heavy-quark corrections to the Wilson coefficients. It is organized as follows: in

4

Page 15: and 3-loop corrections to hard scattering processes in QCD

Chapter 2 we review the theoretical basis of deep-inelastic scattering, of the renormalization ofthe OMEs of twist-two operators, and the definition of the VFNS. We also briefly review themathematics of nested sums, iterated integrals and of the Mellin transform. In Chapter 3, wedescribe the calculation of two of the polarized OMEs, namely the contributions to A

(3),PSQq and

A(3)gg,Q with two different quark masses. For A

(3),PSQq the result, given in Chapter 3.1, is obtained

by Feynman parametrization and Mellin-Barnes integration. The Mellin-Barnes integrals arecalculated by the residue theorem, which turns the integral into a sum, which is then treated usingtechniques in summation theory. The calculation closely follow that of the unpolarized OME[196]. Working in the Larin scheme [197] for the treatment of γ5 in dimensional regularization,we computed the OME and compared its poles in the dimensional parameter ε to the knownprediction which is obtainable from the knowledge of OMEs to lower perturbative order and ofthe renormalization structure of the theory. We could confirm the pole structure of the OME.The constant part in ε is new and is given in x-space in semi-analytic form as iterated integralsover an alphabet which contains root-valued expressions. The N -space result is not given, sincethe respective recurrences are not first-order factorizable and hence the solution falls outside ofthe function space under consideration. The calculation was published in [196].

In Chapter 3.2 we calculate the polarized OME A(3)gg,Q in the Larin scheme. The method is

the same as for A(3),PSQq , and closely follows the unpolarized calculation [172]. Here, we could

compute the analytic N -space result as well, as a function of the ratio η of the squared quarkmasses. The OME turns out to be expressible in nested harmonic and binomial sums. We alsoderive the x-space result in semi-analytic form using iterated integrals, in a form suitable fornumerical evaluations. We also derive a number of identities which re-express many of theseiterated integrals into the more familiar harmonic polylogarithms and multiple polylogarithms,which are less cumbersome for numerical evaluation. We review the mathematical objects inwhich these results are expressed, namely nested sums containing binomial coefficients involvingη as summands, and iterated integrals whose alphabet contains square roots, at argumentscontaining η. These results were published in [198].

In Chapter 4 we present the asymptotic form, for Q2 ≫ m2, of the polarized single-massWilson coefficients for the structure function g1 in the Larin scheme. These single-mass Wilsoncoefficients were obtained by the factorization theorems which state that the massive correctionscan be obtained asymptotically as the product of the massive OMEs and the massless Wilsoncoefficients. The known OMEs and Wilson coefficients allow us to write the logarithmic terms atO(a3s) with the exclusion of the constant part. These results were published in [199]. In Chapter5 we describe the the scheme-invariant evolution of the structure functions FNS

2 and gNS1 in the

asymptotic region accounting for the effects of the c and b quarks to N3LO. These results werepublished in [200].

In Chapter 6 we describe methods to classify some differential systems of hypergeometric type.These systems are obeyed by multivariate hypergeometric series and are in correspondence withdifference equations with shifts, obeyed by the summand, involving one variable only. We discusssuch a case and describe an algorithm to solve the system of differential equations and recoverthe summand as a nested hypergeometric product. We discuss how this algorithm works in theclassical cases of functions studied by Appell, Horn, Lauricella, and Exton, as these functionshave been used in the physics literature in the context of calculating Feynman integrals. In [201]we provide a computer algebra package which implements the algorithm and a computer-readablelist of these classical functions and of the systems obeyed by them. We also give some examplesof how the series expansion of some hypergeometric series can be obtained using the packageSigma by Schneider [202–204] and of the types of functions arising in those examples.

The calculation of OMEs to high loop order requires the solution and classification of nestedsums, arising for instance from the Mellin-Barnes integration method. These sums, which inphysics applications can be very numerous and very complicated, need to be solved, or, in other

5

Page 16: and 3-loop corrections to hard scattering processes in QCD

words, classified in a minimal set of simpler objects, the simplest of which are the harmonicsums. This classification is often done in summation theory by deriving and solving differenceequations, through a number of techniques falling under the name of telescoping (see [205]for a survey and [160, 206–208] for applications to OMEs). The package Sigma encodes suchtechniques for solving univariate difference equations in this context. In principle, the Laportaalgorithm [325] also gives rise to difference equations. Motivated by the application to physics ofunivariate difference equations in deep-inelastic scattering, in Chapter 7 we review the problemof partial linear difference equations in several variables. To date, only a limited number ofalgorithms are available towards a solution of such equations. We describe a computer algebraimplementation of one known approach which targets the solution space of rational functions,possibly containing harmonic sums or Pochhammer symbols in the numerator. The package hasbeen released in [201].

In Chapter 8 we describe a numerical library in Fortran which encodes the splitting func-tions up to NNLO and massless and asymptotic massive Wilson coefficients for the structurefunctions F2 and g1 for photon exchange, and FW+±W−

3 . It also includes Fortran routines forthe Wilson coefficients of the polarized and unpolarized Drell-Yan process, as well as for scalarand pseudoscalar Higgs boson production. The library works in N -space by encoding the ana-lytic continuation of the Mellin transforms of harmonic polylogarithms, sufficient to evaluate theanalytic continuation, through the even or odd moments, of the harmonic sums up to weight 5and in several cases to weight 6. The library is suitable for the numerical evolution of singletand non-singlet PDFs given a programmable initial parametrization. It is usable in principle forexperimental fits of these structure functions. We study the numerical precision attained overthe computation of low integer moments and show the evolution of a test input set of unpolarizedand polarized PDFs.

6

Page 17: and 3-loop corrections to hard scattering processes in QCD

2 Basic formalism

2.1 Deep-inelastic scattering

Deep-inelastic scattering (DIS) is the scattering process between a lepton, with momentum k,and a hadron, with momentum p, in a specific kinematic regime (Figure 1). The lepton interactswith a quark by exchanging an electro-weak boson and a final state is produced. We denote themomentum of the outgoing lepton by k′ and the momentum of the final hadronic state by pX .In many inclusive experiments, only k′, but not pX , is measured. A measurement of also pX hasbeen first possible in the collider experiments H1 and ZEUS at HERA.

p,M

k k′

q

X

pX

Figure 1: Kinematics in DIS

We define q = k − k′ the momentum of the vector boson. In the reference frame of thehadron, p = (M, 0), k = (Ek, k). Neglecting the electron mass, we have:

q2 = (k − k′2) = −2EkE′k(1− cos θ) = −4EkE

′k sin

2 θ

2< 0. (2.1)

It is customary to use the variables

Q2 = −q2 > 0, (2.2)

ν =p.q

M, (2.3)

x =Q2

2p.q, (2.4)

y =p.q

p.k, (2.5)

W 2 = p2X (2.6)

to define the kinematics of the process. The variables x and y are called Bjorken variables. Onerefers to deep-inelastic scattering if the process occurs in a kinematic region where Q2 ≳ 4 GeV2

and W 2 ≳ 4 GeV2 [134], a region where the picture offered by perturbative QCD becomesapplicable. Further cuts are typically applied in order to limit the size of power correctionsO(M2/Q2) which would otherwise be visible in the experimental data, but subleading withrespect to the logarithmic terms most readily obtainable in QCD. Target mass corrections, whichare one class of such subleading terms, have been discussed in [209, 210] and in the context ofexperimental fits in [211,212]. In this thesis, they will be neglected.

Computing the amplitude for the process outlined above, one obtains:

iM = Lµ−iq2

∫dxeiq.x⟨X|Jµ(x)|P ⟩ = Lµ−i

q2Wµ, (2.7)

where Lµ represents the leptonic contribution to the amplitude, Jµ is the electromagnetic currentJµ = eq qγ

µq in case of pure photon exchange, and eq is the quark charge. Squaring the amplitude

7

Page 18: and 3-loop corrections to hard scattering processes in QCD

requires us to examine the quantities Lµν and Wµν . The leptonic tensor has the form Lµν ∝Tr[/kΓµ/k′Γν ], Γµ being the lepton-boson vertex coupling. Because the hadron is a compositeobject, such an explicit formula cannot be written about the hadronic tensor

Wµν(p, q) =∑X

(2π)4δ4(pX − p− q)⟨P |Jµ(x)|X⟩⟨X|Jν(x)|P ⟩ (2.8)

=

∫d4xeiq.x⟨P |Jµ(x)Jν(0)|P ⟩. (2.9)

Nevertheless, its form can be constrained by considering its Lorentz structure, because, due tothe Ward identity and the conservation of the electromagnetic current, qµWµν = qνWµν = 0.This restriction allows us to write in general

Wµν(p, q) =(−gµν +

qµqνq2

)F1(x,Q

2)

+2x

Q2

(pµ −

p.q

q2qµ

)(pν −

p.q

q2qν

)F2(x,Q

2)

+iεµναβpαqβ

p.qF3(x,Q

2). (2.10)

The scalar functions Fi(x,Q2) are known as structure functions and

εµναβ =

sign(σ) if (µναβ) = σ(0123),

0 otherwise,(2.11)

for σ a permutation, is the Levi-Civita tensor.Formula (2.10) is valid if we restrict the analysis to electromagnetic currents. In the case of

unpolarized nucleon targets, the term with the Levi-Civita tensor does not contribute, unlessweak interactions are considered. In the case of polarized nucleon targets, the hadronic tensoralso acquires an antisymmetric part, and the structure functions g1 and g2 are defined by [91,156]

WAµν = iεµνλσ

[qλSσ

p.qg1(x,Q

2) +qλ

(p.q)2(p.q Sσ − S.q pσ)g2(x,Q

2)], (2.12)

with S the nucleon spin 4-vector normalized as S2 = −M2.In the case of pure photon exchange on unpolarized targets, the structure functions can be

mapped to the differential cross section of deep-inelastic scattering by [134]

d2σγ,unpol.

dxdy=

2πα2

xyQ2

[1 + (1− y)2

]F2(x,Q

2)− y2FL(x,Q2)

(2.13)

and therefore can be measured experimentally; they are observables. In the literature, differentdefinitions and normalizations for the structure functions are used; here we follow [134]. Forcompleteness we repeat, for the case of pure photon exchange on unpolarized targets, the relationbetween the structure functions and the differential cross-section, [91]

d2σγ,pol.(λ,±SL)

dx dy= ±2πs

α2

Q4

[−2λy

(2− y − 2xyM2

s

)xg1(x,Q

2) + 8λyx2M2

sg2(x,Q

2)

],

(2.14)

d3σγ,pol.(λ,±ST )

dx dy dϕ= ±2α2s

Q4

√M2

s

√xy(1− y − xyM2

s

)cos(θ − ϕ)

×[−2λxyg1(x,Q

2)− 4λxg2(x,Q2)], (2.15)

8

Page 19: and 3-loop corrections to hard scattering processes in QCD

with α the fine structure constant, s the energy in the center of mass frame, λ the helicity of theincoming lepton, SL,T the spin vector of the longitudinally or transversally polarized nucleon,which are

SL = (0, 0, 0,M), (2.16)

ST =M(0, cos θ, sin θ, 0) (2.17)

in the nucleon rest frame, ϕ is the azimuthal angle.Instead of F1, in the literature it is common to study the longitudinal structure function

FL(x,Q2) = F2(x,Q

2)− 2xF1(x,Q2). (2.18)

By projecting the hadronic tensor (2.10) with gµν and with pµpν and setting p2 = 0 one canwrite [175]

gµνWµν(p, q) =2−D

2xF2(x,Q

2) +D − 1

2xFL(x,Q

2), (2.19)

pµpνWµν(p, q) =Q2

8x3FL(x,Q

2), (2.20)

withD = 4 + ε (2.21)

the dimensions of spacetime. These are inverted as

F2(x,Q2) =

2x

D − 2

[(D − 1)

4x2

Q2pµpνWµν(p, q)− gµνWµν(p, q)

], (2.22)

FL(x,Q2) =

8x3

Q2pµpνWµν(p, q) . (2.23)

The process known as deep-inelastic scattering refers to the kinematic region of Q2 → ∞as x is kept finite, the Bjorken limit [28]. In this region it is possible to apply the methods ofperturbative QCD, due to the asymptotic freedom of the theory.

2.2 Light-cone dominance

Consider [133] the quantity ∫d4xeiq.x⟨P |Jν(0)Jµ(x)|P ⟩ (2.24)

where the two currents have been interchanged with respect to their order in Wµν . In thephysically allowed region, q0 = E − E ′ > 0. It can be shown that in this region the quantity(2.24) is zero. Inserting a complete set of states, one obtains∫

d4xeiq.x⟨P |Jν(0)Jµ(x)|P ⟩ =∑X

(2π)4δ4(q − p+ pX)⟨P |Jµ(x)|X⟩⟨X|Jν(x)|P ⟩. (2.25)

One can prove that if q0 > 0 then q − p+ pX = 0: in the rest frame of the proton, assuming theequality holds,

(q − p)2 = p2X → q2 − 2q0M +M2 = p2X → q0 =1

2M(q2 +M2 − p2X). (2.26)

In the physically allowed region, q2 < 0 and p2X > M2, so it is impossible to have q0 > 0.

9

Page 20: and 3-loop corrections to hard scattering processes in QCD

As a consequence we can rewrite (2.9) as

Wµν =

∫d4xeiqx⟨P |[Jµ(x)Jν(0)]|P ⟩. (2.27)

Because of causality, the commutator must vanish for x2 < 0. Additionally, it can be shown thatin the deep-inelastic scattering limit where q2 → −∞ and Q2/2p.q → constant, the dominantcontribution to Wµν is due to the region 0 ≤ x2 < 1/Q2.

This statement is known as light-cone dominance: the hadronic tensor Wµν receives contri-butions from the product of currents Jµ(x)Jν(0) which are dominated by the region x2 ∼ 0.

2.3 The operator product expansion

The product of two composite operators O(x1)O(x2) can become singular in certain limits.Wilson [213] considered the limit x1 → x2 and postulated that such a product, when singular,can be expanded as a linear combination of all other operators Oi appearing in the theory whichare finite in the limit, with the singular behaviour encoded in singular coefficient functions Ci(x):

O(x1)O(x2) →∑i

Ci(x)Oi(x) as x1 → x2. (2.28)

For the application to deep inelastic scattering [214–216], such an expansion is needed for thelight-cone region of the product of two currents:

Jµ(x)Jν(0) → gµν

(∂

∂x

)2∑i,n

C(n)i,1 (x

2)xµ1 · · ·xµnO(i)µ1···µn

(0)

+1

x2

∑i,n

C(n)i,2 (x

2)xµ1 · · · xµnO(i)µνµ1···µn

(0) + · · · (2.29)

In a massless, free-field theory, it is possible to find the behaviour of the singular functionsCi(x

2) around x2 = 0 by a power-counting argument: call dJ the mass dimension of the current

J(x) and d(i)O (n) that of O

(i)µ1···µn . Then, from (2.29) it follows that the mass dimension of Ci(x

2)

is [Ci(x2)] = 2dJ + n− d

(i)O (n) and

Ci(x2) ∼ (x2)−dJ−n/2+dO(n)/2. (2.30)

Thus, the operators corresponding to the minimum value of

τ (i)n = d(i)O (n)− n, (2.31)

a quantity called twist, will be dominant in the light-cone expansion. The dominant operatorsO

(i)µ1···µn therefore have twist 2. They are traceless and symmetric, and have definite spin n and

dimension n+ 2. The operators can be explicitly written:

OSq;µ1···µn

(x) = in−1S[ψ(x)γµ1Dµ2 · · ·Dµnψ(x)

]− trace terms

ONS,(i)q;µ1···µn

(x) = in−1S[ψ(x)γµ1Dµ2 · · ·Dµnλ

(i)ψ(x)]− trace terms (2.32)

OSg;µ1···µn

(x) = in−1SSp

[F aµ1ν

(x)Dµ2 · · ·Dµn−1Faµn

ν(x)]− trace terms

where S stands for a symmetrization in the Lorentz indices

Sfµ1···µn =1

n!(fµ1···µn + permutations), (2.33)

10

Page 21: and 3-loop corrections to hard scattering processes in QCD

Sp is the trace over SU(Nc) and λ(i) are the SU(Nf ) generator matrices if we assume the theory

to have such a flavour symmetry. In equations (2.32), the subtraction of trace terms containsfactors of gµiµj

; it is needed in order to make the operators have definite spin. Here, ψ(x) andFµν denote respectively the quark field and the electromagnetic field strength, and Dµ is thecovariant derivative,

Dµ = ∂µ − igtaAaµ, (2.34)

F aµν = ∂µA

aν − ∂νA

aµ + gfabcAb

µAcν , (2.35)

where ta are the generators of SU(3) in the fundamental representation and fabc are the structureconstants.

In the case of polarized scattering, the contributing twist-two operators are [79,81]

OS,5q;µ1···µn

(x) = inS[ψ(x)γ5γµ1Dµ2 · · ·Dµnψ(x)

]− trace terms

ONS,(i),5q;µ1···µn

(x) = inS[ψ(x)γ5γµ1Dµ2 · · ·Dµn

λ(i)

2ψ(x)

]− trace terms (2.36)

OS,5g;µ1···µn

(x) = inSSp

[12εµ1αβγF a

βγ(x)Dµ2 · · ·Dµn−1Faαµn

(x)]− trace terms.

2.4 The forward Compton amplitude

The optical theorem states that the imaginary part of an amplitude can be related to the am-plitude for scattering into all possible final states. The theorem can be applied [215] in the caseof the hadronic tensor to relate it to forward virtual Compton scattering, whose amplitude isdetermined by

Tµν = i

∫d4x eiq.x⟨P |T [jµ(x)jν(0)]|P ⟩. (2.37)

The theorem states that1

2πIm(Tµν) = Wµν , (2.38)

since Im(Tµν) is equal to the discontinuity of the tensor in the q0 plane. The forward Comptonscattering can be more readily computed in a perturbative expansion, and can be related to thehadronic tensor by a dispersion integral: by calling

ω =1

x=

2p.q

Q2, (2.39)

we have

2

∫ 1

0

dx xn−2Wµν =2

π

∫ ∞

1

ωnIm(Tµν) =

1

2πi

∫C

dωTµνωn

, (2.40)

and C is a contour that circles around the branch cuts of Tµν in the ω plane. Noting the formula

1

2πi

∫C

dω ωm−n = δm,n−1 (2.41)

it follows that Eq. (2.40) will pick one power in a series expansion of Tµν .To the forward Compton scattering tensor Tµν one can apply arguments related to an operator

product expansion in a way analogous to those applicable to Wµν . We report here the results ofthis operator product expansion as presented in the textbook by Muta [133], see also [217]:

T [jµ(x)jν(x′)] =(∂µ∂

′ν − gµν∂.∂

′)OL(x, x′)

+ (gµλ∂ρ∂′ν + gρν∂µ∂

′λ − gµλgρν∂.∂

′ − gµν∂λ∂′ρ)O

λρ2 (x, x′) (2.42)

+ antisymmetric terms.

11

Page 22: and 3-loop corrections to hard scattering processes in QCD

The antisymmetric terms only contribute to polarized scattering processes. In analogy with(2.29), the operators have the light-cone expansion

OL(x, x′) =

∑i,n

C(i)L,n(y

2)yµ1 · · · yµnO(i)Lµ1···µn

(x+ x′

2

)(2.43)

Oλρ2 (x, x′) =

∑i,n

C(i)2,n(y

2)yµ1 · · · yµnO(i)λρ2µ1···µn

(x+ x′

2

)(2.44)

where y = x− x′, and i runs over the operators in (2.32). Applying the expansion to (2.37), oneobtains

Tµν = 2∑i,n

ωn

[(gµν −

qµqνq2

)A

(i)L,nC

(i)L,n(Q

2) + dµνA(i)2,nC

(i)2,n(Q

2)

], (2.45)

with

dµν = −gµν −pµpν(p.q)2

q2 +pµqν + pνqµ

p.q, (2.46)

C(i)(2,L),n(Q

2)qµ1 · · · qµn/(q2)n = i

∫d4x eiq.xC

(i)(2,L),n(x

2) (2.47)

andA

(i)L,npµ1 · · · pµn + terms with gµiµj

= ⟨P |O(i)Lµ1···µn

(0)|P ⟩, (2.48)

with a similar formula for A(i)2,n.

From equations (2.10), (2.18), (2.40), (2.45), and applying the replacement n → N + 1 toharmonize different conventions present in the literature, one finally deduces the master formula∫ 1

0

dx xN−1F(2,L)(x,Q2) =

∑i

A(i)(2,L),N

( p2µ2

)C

(i)(2,L),N

(Q2

µ2

). (2.49)

The operation on the left-hand side is called the Mellin transform, and can be inverted to givean explicit formula for the structure functions:

F(2,L)(x,Q2) =

1

2πi

∫ c+i∞

c−i∞dN x−N

∑i

A(i)(2,L),N

( p2µ2

)C

(i)(2,L),N

(Q2

µ2

). (2.50)

An interesting property with practical consequences for actual computations [91, 218] isthe symmetry Tµν(−ω) = Tµν(ω). In the unpolarized case, this has the consequence thatC(2,L),N(Q

2) = 0 for odd N . In the case of scattering over a polarized target, instead, Cg1,N(Q2) =

0 for even N .The importance of formula (2.50) lies in the fact that the functions CN(Q

2), called Wilsoncoefficients, depend only on short-distance physics, and, for this reason, can be computed inperturbative QCD because of the property of asymptotic freedom. Asymptotic freedom refersto the fact that the running coupling constant goes to zero at high energy: this makes thecomputation of physical quantities possible as the expansion parameter as = αs/(4π) is small.By contrast, the quantities AN , whose Mellin inverse is related to the parton density through afactorization procedure, depend on long-distance physics: they are the matrix elements betweenthe target hadron state of the operators appearing in the operator product expansion.

We will discuss later in greater detail how parton densities are defined and also treat possiblecollinear and mass singularities present in the operator matrix elements. Broadly speaking, incalculations these singularities arise from the initial-state partons, over which the deep-inelasticscattering process is not inclusive. In reality, the initial state partons are confined inside thehadron, and are not themselves asymptotic states. It is therefore reasonable to assume thatthe initial state infrared and collinear singularities that arise when we compute with initial-state

12

Page 23: and 3-loop corrections to hard scattering processes in QCD

partons are manifestations of the inapplicability of perturbation theory to the long-range nonper-turbative regime, and are actually shielded by non-perturbative physics. Therefore, it is sensibleto reabsorb them into the unobservable, bare parton density, which encodes the long-distancephysics. After this step, the structure function is postulated to be a Mellin convolution of a fi-nite parton density and a finite Wilson coefficient along the lines of (2.50), and the renormalizedparton density becomes scale dependent. The procedure, first applied in [49], is analogous towhat happens when renormalizing the coupling constant.

The parton densities cannot be computed perturbatively and must be extracted from exper-imental data. This can be accomplished by measuring the structure functions experimentallyand computing the Wilson coefficients, then applying (2.50) in a suitable form.

Still, there is predictive value in factorizing the structure function (or its Mellin moments), asone can assume that the AN are universal (see for a discussion [127,131]): they will not dependon which scattering process is being studied, and, once they are deduced for a given hadronictarget and leptonic probe, they can be used in predictions for processes which involve a differentleptonic probe, provided that the virtuality µ2 does not change sign.

One important remark is the existence of Carlson’s theorem [219, 220], which implies thatthe analytic continuation of the Mellin transform in the complex plane can be derived given theknowledge of the even or odd moments. Extensions and applications of Carlson’s theorem tothis physical case are derived in [221].

2.5 Scaling violation and renormalization group

Let us describe Eq. (2.50) in greater detail. To the operators (2.32) correspond three partondensities, classifiable according to their symmetry properties under the flavour symmetry. Thegluon density G(N,µ2) corresponds to the gluon operator. Assuming NF massless quarks, thesinglet combination Σ(N,µ2) and the non-singlet combination ∆k(N,µ

2) are given by [64]

Σ(N,µ2) =

NF∑k=1

[fk(N,µ2) + fk(N,µ

2)], (2.51)

∆k(N,µ2) = fk(N,µ

2) + fk(N,µ2)− 1

NF

Σ(N,µ2), (2.52)

with fk and fk the densities of quarks and anti-quarks. The scale µ2 is the factorization scale,which separates the high-energy and the non-perturbative contributions. In the following, it willbe set equal to the renormalization scale, although in principle the two scales can be treatedseparately. The structure functions then can be written as [64]

F(2,L)(NF , N − 1, Q2) =1

NF

NF∑k=1

e2k

[Σ(NF , N, µ

2)CSq,(2,L)

(NF , N,

Q2

µ2

)+G(NF , N, µ

2)CSg,(2,L)

(NF , N,

Q2

µ2

)+NF∆k(NF , N, µ

2)CNSq,(2,L)

(NF , N,

Q2

µ2

)]. (2.53)

The quarkonic singlet contribution is split into a non-singlet part and a pure-singlet part,

CSq,i = CNS

q,i + CPSq,i , i = 2, L. (2.54)

The perturbative expansion of the Wilson coefficients is as follows:

CSg,i

(NF , N,

Q2

µ2

)=

∞∑k=1

aksC(k),Sg,i

(NF , N,

Q2

µ2

), (2.55)

13

Page 24: and 3-loop corrections to hard scattering processes in QCD

CPSq,i

(NF , N,

Q2

µ2

)=

∞∑k=2

aksC(k),PSq,i

(NF , N,

Q2

µ2

), (2.56)

CNSq,i

(NF , N,

Q2

µ2

)= δi,2 +

∞∑k=1

aksC(k),NSq,i

(NF , N,

Q2

µ2

), (2.57)

for i = 2, L. We call

as =αs

4π=( gs4π

)2. (2.58)

the renormalized strong coupling constant.In order to investigate the behaviour of the Wilson coefficients in the high-Q2 regime, and to

formulate predictions for the dependence of the structure functions on Q2, it is necessary to con-sider the renormalization of the operator matrix elements. The operators (2.32) are renormalizedby [38]

ONS,(i),bareq;µ1...µn

= ZNS(µ2)ONS,(i),renq;µ1...µN

, (2.59)

OS,barei;µ1,...,µN

= ZSij(µ

2)OS,renj;µ1,...,µN

, i, j = q, g. (2.60)

The renormalization produces a scale dependence in the renormalized operators, whose anoma-lous dimension is

γNSqq = µ

(ZNS(µ2)

)−1 ∂

∂µZNS(µ2) , (2.61)

γSij = µ(ZS

il (µ2))−1 ∂

∂µZS

lj(µ2) . (2.62)

Because the structure functions are observables, they must be independent on the renormalizationscale µ; therefore their total derivative with respect to µ2 must vanish,

D(µ2)F(2,L)(N,Q2) = 0, (2.63)

with

D(µ2) = µ2 ∂

∂µ2+ β

(as(µ

2)) ∂

∂as(µ2)− γm

(as(µ

2))m(µ2)

∂m(µ2), (2.64)

β(as(µ2)) = µ2∂as(µ

2)

∂µ2, (2.65)

γm(as(µ2)) = − µ2

m(µ2)

∂m(µ2)

∂µ2. (2.66)

Eq. (2.63) is the renormalization group equation [214, 216, 222]. In a massless theory, it followsthat [127,223]∑

i=q,g

[µ2 ∂

∂µ2+ β(as(µ

2))∂

∂as(µ2)

δij −

1

2γS,NSij

]Ci,(2,L)

(Q2

µ2, as(µ

2))= 0, (2.67)

∑j=q,g

[µ2 ∂

∂µ2+ β(as(µ

2))∂

∂as(µ2)

δij +

1

2γS,NSij

]⟨l|Oj(µ

2)|l⟩ = 0. (2.68)

(In the non-singlet case, the indices i, j only take the value q.) From these equations one canobtain the evolution equations for the parton densities [37–39],

∂ lnµ2

(Σ(NF , N, µ

2)G(NF , N, µ

2)

)= −1

2

(γqq γqgγgq γgg

)(Σ(NF , N, µ

2)G(NF , N, µ

2)

)(2.69)

14

Page 25: and 3-loop corrections to hard scattering processes in QCD

∂ lnµ2∆k(NF , N, µ

2) = −1

2γNSqq ∆k(NF , N, µ

2) (2.70)

and correspondingly

∂ lnµ2

(CS

q,i(NF , N,Q2/µ2)

Cg,i(NF , N,Q2/µ2)

)=

1

2

(γqq γgqγqg γgg

)(CS

q,i(NF , N,Q2/µ2)

Cg,i(NF , N,Q2/µ2)

), (2.71)

∂ lnµ2CNS

q,i (NF , N,Q2/µ2) =

1

2γNSqq C

NSq,i (NF , N,Q

2/µ2). (2.72)

2.6 Renormalization in the presence of heavy quarks

Because of the wide difference in the quark masses, it is natural to divide the quarks into “light”and “heavy”. Typically, the u, d, and s quarks are considered light, because they have a masscomparable or smaller than ΛQCD, which separates perturbative and non-perturbative physics.In perturbative calculations, their mass is neglected. The masses of the c, b and t quarks areoutside of the non-perturbative regime, and their treatment in calculations will depend on thescale of the process being considered. In general, the t quark, because of its extremely high mass,is not considered to produce any effects at the lower energies available for DIS experiments.

The possibility to disregard particles much heavier than the scale under consideration is aconsequence of the Appelquist-Carazzone theorem [224]. Its physical meaning is that physics atvery high energies should not affect the physics at low energies and should not be discernibleonly from low-energy phenomena. More precisely, it states that if a low-energy effective theory isconstructed by removing the heavy-particle fields, then the effect on the Green’s functions thatinvolve only light particles is equivalent to a finite renormalization of the couplings, up to termssuppressed by the heavy mass, O(1/M). In other words, removing the heavy particles does notproduce observable effects. (An exception to this rule applies when the low-energy theory hasdifferent symmetries than the high-energy one; in such cases the effect of removing the heavyparticles will be visible).

In practice, whether it is appropriate to include the effects of the c, b quark, or both, willdepend on the observable under consideration and the experimental precision available. However,if calculations are performed in the MS scheme, the decoupling of heavy particles is not manifestorder by order. This is because the MS renormalization prescription is mass-independent. Indimensional regularization, it prescribes the removal of the ε poles and of the universal sphericalfactor

Sε = exp[ε2(γE − ln(4π))

](2.73)

for each perturbative order, in D dimensions, with γE the Euler-Mascheroni constant,

γE = limn→∞

( n∑k=1

1

k− ln(n)

). (2.74)

In the MS scheme, the decoupling of heavy particles is only manifest after all perturba-tive orders are summed. However, it is highly desirable in practice to adopt a renormalizationscheme which exhibits the decoupling order by order. An example of such a scheme is the CWZprescription [110].

The CWZ prescription corresponds to a set of subschemes related to each other by matchingconditions. If the masses of nf quarks are

m1, . . . mnℓ,mnℓ+1, . . . ,mnf

(2.75)

and the virtuality of the process is Q ∼ µ ∼ mnℓ, the CWZ prescription is to divide the quarks

into nℓ light or “active” and nh = nf − nℓ heavy quarks. The light quarks are considered

15

Page 26: and 3-loop corrections to hard scattering processes in QCD

massless and are renormalized in the MS scheme. Graphs containing heavy quark lines arerenormalized using zero-momentum subtraction, also known as BPHZ. Explictly, it is demandedthat Π(p2,m2)|p=0 = 0 for the heavy quarks, where Π(p2,m2) refers to the contribution from theheavy quarks to the gluon self-energy.

In the CWZ scheme, the decoupling of the heavy quarks is manifest, and the numerical valueof the β-function is the same as in the effective theory with nℓ quarks renormalized in the MSscheme. When implementing a variable flavour number scheme, as a way of resumming the largelogarithms that occur, the choice of which subscheme to use is determined by the virtuality Q,which should be of the order of mnℓ

.A one-loop calculation in the CWZ scheme can be found in [225]. Multi-loop calculations

can be found in [159,175,176].Let us review the renormalization procedure for the massive OMEs developed in [158,159,175]

for the single-mass OMEs; the two-mass case was discussed in [121, 178]. This whole sectionfollows the exposition in those References.

The unrenormalized OMEs are first obtained by 2-point functions including self-energies inthe external legs, amputated of the external fields. The external legs are kept on-shell, thusavoiding the potential problem of the mixing of non-gauge-invariant operators [75,226–231]. Wecall the momentum flowing through them p, with p2 = 0.

The trace terms present in the twist-two operators are projected out by multiplying by anexternal source

Jµ1...µN= ∆µ1 · · ·∆µN

, (2.76)

with ∆µ an auxiliary light-like vector, ∆2 = 0.Calling the unrenormalized OMEs, which are denoted by two hats,

ˆAij

(m2

µ2, ε, N

)= ⟨j|Oi|j⟩ , (2.77)

the general structure of these Green’s functions is then [112,159]

Gabµν,l,Q =

ˆAlg δ

ab(∆.p)N(−gµν +

∆µpν +∆νpµ∆.p

), (2.78)

Gijl,Q =

ˆAlq δ

ij(∆.p)N/∆ , (2.79)

depending on whether the external states are gluons or quarks. Here l can indicate a light partonor the heavy quark. One projects out the OMEs through

ˆAlq = Pq G

ijl,Q =

δij

Nc

(∆.p)−NTr(/pGijl,Q) , (2.80)

for the case of external quarks, with Nc the number of colors. In the case of external gluons, oneshould distinguish between the two projectors

P (1)g = − δab

N2c − 1

1

D − 2(∆.p)−Ngµν , (2.81)

P (2)g =

δab

N2c − 1

1

D − 2(∆.p)−N

(−gµν +

∆µpν +∆νpµ∆.p

). (2.82)

The projector P(2)g enforces the transversity of the gluon polarizations and does not require the

inclusion of diagrams with external ghosts. Instead, they must be considered if one chooses toperform the calculation using P

(1)g . In either case, one has

ˆAlg = P (1,2)

g Gabµν,l,Q . (2.83)

16

Page 27: and 3-loop corrections to hard scattering processes in QCD

In the case of polarized OMEs, different projectors are used.The renormalization of the OMEs occurs in four steps: mass renormalization, coupling con-

stant renormalization, operator renormalization and mass factorization. In the first step, theunrenormalized mass m is replaced with the renormalized mass. Considering for illustration thecase of one massive quark, the relation reads in the on-mass shell (OMS) scheme [232–236]

m = Zmm = m

[1 + as

(m2

µ2

)ε/2δm1 + a2s

(m2

µ2

)εδm2 +O(a3s)

], (2.84)

with

δm1 = CF

[6

ε− 4 +

(4 +

3

4ζ2

](2.85)

≡ δm(−1)1

ε+ δm

(0)1 + δm

(1)1 ε , (2.86)

δm2 = CF

1

ε2

[18CF − 22CA + 8TF (nf +Nh)

]+

1

ε

[− 45

2CF +

91

2CA

−14TF (NF +NH)]+ CF

(199

8− 51

2ζ2 + 48 ln(2)ζ2 − 12ζ3

)+CA

(−605

8+

5

2ζ2 − 24 ln(2)ζ2 + 6ζ3

)+TF

[NF

(45

2+ 10ζ2

)+NH

(69

2− 14ζ2

)](2.87)

≡ δm(−2)2

ε2+δm

(−1)2

ε+ δm

(0)2 , (2.88)

where NF is the number of light flavours and NH that of heavy flavours. The constants ζk referto the Riemann ζ-function at integer values,

ζk =∞∑n=1

1

nk, k ∈ N, k ≥ 2. (2.89)

After this replacement one can write the mass-renormalized OMEs as [158]

ˆAij

(m2

µ2, ε, N

)= δij + as

ˆA

(1)ij

(m2

µ2, ε, N

)+a2s

[ˆA

(2)ij

(m2

µ2, ε, N

)+ δm1

(m2

µ2

)ε/2m

d

dmˆA

(1)ij

(m2

µ2, ε, N

)]+a3s

[ˆA

(3)ij

(m2

µ2, ε, N

)+ δm1

(m2

µ2

)ε/2m

d

dmˆA

(2)ij

(m2

µ2, ε, N

)+δm2

(m2

µ2

)εm

d

dmˆA

(1)ij

(m2

µ2, ε, N

)+δm2

1

2

(m2

µ2

)εm2 d2

dm 2

ˆA

(1)ij

(m2

µ2, ε, N

)].

(2.90)

The coupling is renormalized in the MS scheme as follows:

as =(ZMS

g (ε,NF ))2aMSs (µ2) (2.91)

= aMSs (µ2)

[1 + δaMS

s,1 (NF )aMSs (µ2) + δaMS

s,2 (NF )(aMSs (µ)

)2+O

((aMSs

)3)]. (2.92)

17

Page 28: and 3-loop corrections to hard scattering processes in QCD

The coefficients in this expansion are related to the β-function as follows: in dimensional regu-larization, the renormalization scale µ is defined through

gs,(D) = µ−ε/2gs , (2.93)

g2s = (4π)2as . (2.94)

From the independence of the bare coupling on µ, one derives

0 =d

d lnµ2as,(D) =

d

d lnµ2(µ−εas) =

d

d lnµ2

[µ−εZg(ε,NF , µ

2)as(µ2)]

(2.95)

from which it follows that

β =ε

2as(µ

2)− 2as(µ2)

d

d lnµ2lnZg(ε,NF , µ

2) . (2.96)

Specializing to the MS scheme for the coupling constant,

βMS(NF ) = −β0(NF )(aMSs

)2 − β1(NF )(aMSs

)3+O

((aMSs

)4)(2.97)

and one obtains [35,36,93,94,237]

δaMSs,1 (NF ) =

2

εβ0(NF ) (2.98)

δaMSs,2 (NF ) =

4

ε2β20(NF ) +

1

εβ1(NF ) (2.99)

with

β0(NF ) =11

3CA − 4

3TFNF , (2.100)

β1(NF ) =34

3C2

A − 4

(5

3CA + CF

)TFNF . (2.101)

In order to preserve the condition of having on-shell massless external particles and the decouplingof the massive quarks in the running of the coupling constant, one demands that the gluon self-energy receives no contribution from the heavy quark at zero momentum,

ΠH,BF (p2 = 0,m2) = 0 . (2.102)

This condition is enforced in the background field method [158,238–240]. In this renormalizationscheme the renormalization factor of the coupling constant is defined through

ZMOMg (ε,NF + 1, µ2,m2) =

1

(ZA,l + ZA,H)1/2, (2.103)

ZA,l =(ZMS

g (ε,NF ))−2

, (2.104)

with ZA,(l,H) the contributions to the renormalization factor of the background field due to thelight quarks and the heavy quark.

In this MOM scheme, a formula analogous to (2.92) holds, but reads [158]

as =(ZMOM

g (ε,NF + 1, µ2,m2))2

aMOMs (µ2,m2) (2.105)

= aMOMs (µ2,m2)

[1 + δaMOM

s,1 aMOMs (µ2,m2) + δaMOM

s,2

(aMOMs (µ)

)2+O

((aMOMs

)3)],

(2.106)

18

Page 29: and 3-loop corrections to hard scattering processes in QCD

with [158]

δaMOMs,1 =

[2β0(NF )

ε+

2β0,Qε

f(ε)], (2.107)

δaMOMs,2 =

[β1(NF )

ε+2β0(NF )

ε+

2β0,Qε

f(ε)2

+1

ε

(m2

µ2

)ε(β1,Q + εβ

(1)1,Q + ε2β

(2)1,Q

)]+O(ε2) .

(2.108)

β0,Q = −4

3TF , (2.109)

β1,Q = −4

(5

3CA + CF

)TF , (2.110)

β(1)1,Q = −32

9TFCA + 15TFCF , (2.111)

β(2)1,Q = −86

27TFCA − 31

4TFCF − ζ2

(5

3TFCA + TFCF

), (2.112)

where

f(ε) ≡(m2

µ2

)ε/2exp( ∞∑

i=2

ζii

(ε2

)i). (2.113)

From the invariance of the unrenormalized coupling,(ZMS

g (ε,NF + 1))2aMSs (µ2) =

(ZMOM

g (ε,NF + 1, µ2,m2))2aMOMs (µ2) (2.114)

one can obtain the relation between aMSs and aMOM

s :

aMSs = aMOM

s + aMOMs

2[δaMOM

s,1 − δaMSs,1 (NF + 1)

]+ aMOM

s

3[δaMOM

s,2 − δaMSs,2 (NF + 1)

−2δaMSs,1 (NF + 1)

[δaMOM

s,1 − δaMSs,1 (nf + 1)

]]+O(aMOM

s

4) , (2.115)

Here, aMSs = aMS

s (NF + 1). Using the MOM scheme for the coupling, one can write the mass-and coupling-renormalized OME, indicated by Aij [158]

Aij = δij + aMOMs

ˆA

(1)ij + aMOM

s

2[ˆA

(2)ij + δm1

(m2

µ2

)ε/2m

d

dmˆA

(1)ij + δaMOM

s,1ˆA

(1)ij

]+aMOM

s

3

[ˆA

(3)ij + δaMOM

s,2ˆA

(1)ij + 2δaMOM

s,1

(ˆA

(2)ij + δm1

(m2

µ2

)ε/2m

d

dmˆA

(1)ij

)

+δm1

(m2

µ2

)ε/2m

d

dmˆA

(2)ij + δm2

(m2

µ2

)εm

d

dmˆA

(1)ij +

δm21

2

(m2

µ2

)εm2 d2

dm 2

ˆA

(1)ij

](2.116)

At this stage, ultraviolet singularities are still present due to the composite operators. In themassless case, they are removed by imposing

Aij

(−p2µ2

, NF , N)= Zij(ε, a

MS, NF , N) Aij

(−p2µ2

, ε, NF , N). (2.117)

The pole structure in the operator Z-factors Zij can be determined by the requirement that

γij =∞∑k=0

γ(k)ij

(aMSs

)k+1= µZ−1

il (µ2)∂

∂µZlj(µ

2) . (2.118)

19

Page 30: and 3-loop corrections to hard scattering processes in QCD

Equations (2.117) and (2.118) have to be specialized to the singlet, non-singlet and pure-singletcases appropriately, i.e.

Z−1qq = Z−1,PS

qq + Z−1,NSqq , (2.119)

Aqq = APSqq + ANS

qq . (2.120)

From Eq. (2.118) one determines the pole terms in the Z-factors, which can be found writtenin explicit form in [158] and are not repeated here. One obtains the Z-factors in the case of(NF + 1) flavours by taking them at NF + 1 flavours and applying the scheme transformation

between aMSs and aMOM

s , i.e. the inverse of (2.115). The OMEs are split into a light and a heavyflavour part,

Aij(p2,m2, µ2, aMOM

s , NF + 1) = Aij

(−p2µ2

, aMSs , NF

)+ AQ

ij(p2,m2, µ2, aMOM

s , NF + 1) (2.121)

and the operator renormalization of the heavy contribution is [158]

AQij(p

2,m2, µ2, aMOMs , NF + 1) = Z−1

il (aMOMs , NF + 1, µ)AQ

ij(p2,m2, µ2, aMOM

s , NF + 1)

+Z−1il (aMOM

s , NF + 1, µ)Aij

(−p2µ2

, aMSs , NF

)−Z−1

il (aMSs , nf , µ)Aij

(−p2µ2

, aMSs , NF

). (2.122)

Taking now p2 = 0, the contribution of the unrenormalized massless OMEs reduces to their treelevel value because scaleless loop integrals vanish in dimensional regularization, so they reduceto

Aij(0, aMSs , NF ) = δij . (2.123)

The remaining collinear singularities in AQij are removed by mass factorization,

AQij = AQ

il

(m2

µ2, aMOM

s , NF + 1)Γ−1lj . (2.124)

The transition functions Γij correspond to the inverse of the Z-factors in the massless case. Werepeat here from [158] the formula for the renormalized OMEs which one obtains after thesesteps:

AQij

(m2

µ2, aMOM

s , nf + 1)=

aMOMs

(A

(1),Qij

(m2

µ2

)+ Z

−1,(1)ij (nf + 1)− Z

−1,(1)ij (nf )

)

+aMOMs

2

(A

(2),Qij

(m2

µ2

)+ Z

−1,(2)ij (nf + 1)− Z

−1,(2)ij (nf ) + Z

−1,(1)ik (nf + 1)A

(1),Qkj

(m2

µ2

)+[A

(1),Qil

(m2

µ2

)+ Z

−1,(1)il (nf + 1)− Z

−1,(1)il (nf )

]Γ−1,(1)lj (nf )

)

+aMOMs

3

(A

(3),Qij

(m2

µ2

)+ Z

−1,(3)ij (nf + 1)− Z

−1,(3)ij (nf ) + Z

−1,(1)ik (nf + 1)A

(2),Qkj

(m2

µ2

)

+ Z−1,(2)ik (nf + 1)A

(1),Qkj

(m2

µ2

)+[A

(1),Qil

(m2

µ2

)+ Z

−1,(1)il (nf + 1)

20

Page 31: and 3-loop corrections to hard scattering processes in QCD

− Z−1,(1)il (nf )

]Γ−1,(2)lj (nf ) +

[A

(2),Qil

(m2

µ2

)+ Z

−1,(2)il (nf + 1)− Z

−1,(2)il (nf )

+ Z−1,(1)ik (nf + 1)A

(1),Qkl

(m2

µ2

)]Γ−1,(1)lj (nf )

). (2.125)

By applying (2.125) and (2.90) as well as the pole expansions of the Z and Γ factors, thecoefficients of the ε-expansion of the OMEs have been predicted in terms of the renormalizationconstants up to O(a3s). These predictions are derived by demanding that (2.125) be free of polesin ε.

In analogy with the process described above, the renormalization of the OMEs in the presenceof two heavy quarks has been preformed in [121, 178]. The main differences to the single-masscase summarized above are due to the fact that the renormalization of one mass will depend onthe other; also, two quarks have to be decoupled in the running of the coupling. The procedureis not repeated here and only the relevant results are printed in the next sections for the OMEsrespectively under consideration, where we focus on the genuine two-mass contribution to theOMEs, i.e. on graphs which contain two different masses.

2.7 Variable flavour number scheme

In the so-called fixed-flavour number scheme, heavy quarks are treated as if they were radiativelygenerated, and are not assigned a parton distribution. Such calculations give rise to logarithms ofthe type ln(Q2/m2), with m the mass of the heavy quark. In principle, for very large virtualities,these logarithms could become large and ruin the convergence of the perturbative series. In thepresently accessible kinematic range at HERA, however, the fixed-flavour number scheme hasbeen shown to be numerically stable [241,242].

The variable flavour number scheme (VFNS), by contrast, exploits the possibility to factorizethe structure functions for Q2 ≫ m2 using the massive operator matrix elements and the masslessWilson coefficients, and devises a transition between, e.g., NF and NF + 1 flavours, however,only at very high scales µ2 = Q2. At the transition scale µ2, a new PDF is introduced for theheavy quark, which from then on is treated as massless. The transition is designed such thatthe structure functions are unchanged asymptotically after the new PDF is introduced and thelight quark PDFs are adjusted appropriately. The VFNS was discussed in [110–112, 114, 118];the matching conditions were given at O(a2s) in [112], at O(a3s) in [158] and the VFNS where twoquarks are decoupled in [121]. This VFNS prescription is also known as the “zero-mass VFNS”.

For concreteness we reproduce here the single-mass VFNS relations given in [158]:

fk(NF + 1, µ2,m2, N) + fk(NF + 1, µ2,m2, N) = ANSqq,Q

(NF ,

µ2

m2, N

)·[fk(NF , µ

2, N)

+fk(NF , µ2, N)

]+APS

qq,Q

(NF ,

µ2

m2, N

)· Σ(NF , µ

2, N)

+Aqg,Q

(NF ,

µ2

m2, N

)·G(NF , µ

2, N),

(2.126)

fQ(NF + 1, µ2,m2, N) + fQ(NF + 1, µ2,m2, N) = APSQq

(NF ,

µ2

m2, N

)· Σ(NF , µ

2, N)

+AQg

(NF ,

µ2

m2, N

)·G(NF , µ

2, N) .

(2.127)

21

Page 32: and 3-loop corrections to hard scattering processes in QCD

Σ(NF + 1, µ2,m2, N) =

NF+1∑k+1

[fk(NF + 1, µ2) + fk(NF + 1, µ2)

]=

[ANS

qq,Q

(NF ,

µ2

m2, N

)+NF A

PSqq,Q

(NF ,

µ2

m2, N

)

+APSQq

(NF ,

µ2

m2, N

)]· Σ(NF , µ

2, N)

+

[NF Aqg,Q

(NF ,

µ2

m2, N

)+ AQg

(NF ,

µ2

m2, N

)]·G(NF , µ

2, N)

(2.128)

∆k(NF + 1, µ2,m2, N) = fk(NF + 1, µ2, N) + fk(NF + 1, µ2,m2, N)

− 1

NF + 1Σ(NF + 1, µ2,m2, N) (2.129)

G(NF + 1, µ2,m2, N) = Agq,Q

(NF ,

µ2

m2, N

)· Σ(NF , µ

2, N)

+Agg,Q

(NF ,

µ2

m2, N

)·G(NF , µ

2, N) . (2.130)

where fk,k are the light quark and antiquark PDFs, fQ,Q refer to the new PDF of the heavyquark, G is the gluon distribution, Σ is the singlet distribution defined in Eq. (2.51) and ∆k thenon-singlet distribution, Eq. (2.52).

The two-mass VFNS derived in [121] is also reproduced below, for completeness:

fk(NF + 2, N, µ2,m21,m

22) + fk(NF + 2, N, µ2,m2

1,m22) =

ANSqq,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)·[fk(NF , N, µ

2) + fk(NF , N, µ2)]

+1

NF

APSqq,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)· Σ(NF , N, µ

2)

+1

NF

Aqg,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)·G(NF , N, µ

2), (2.131)

fQ(NF + 2, N, µ2,m21,m

22) + fQ(NF + 2, N, µ2,m2

1,m22) =

APSQq

(N,NF + 2,

m21

µ2,m2

2

µ2,

)· Σ(NF , N, µ

2)

+AQg

(N,NF + 2,

m21

µ2,m2

2

µ2

)·G(NF , N, µ

2) . (2.132)

In this case, the flavor singlet, non-singlet and gluon densities for (NF + 2) flavors are given by

Σ(NF + 2, N, µ2,m21,m

22) =

[ANS

qq,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)+ APS

qq,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)

+APSQq

(N,NF + 2,

m21

µ2,m2

2

µ2

)]· Σ(NF , N, µ

2)

+

[Aqg,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)+ AQg

(N,NF + 2,

m21

µ2,m2

2

µ2

)]·G(NF , N, µ

2) ,

(2.133)

∆k(NF + 2, N, µ2,m21,m

22) = fk(NF + 2, N, µ2,m2

1,m22) + fk(NF + 2, N, µ2,m2

1,m22)

− 1

NF + 2Σ(NF + 2, N, µ2,m2

1,m22) , (2.134)

22

Page 33: and 3-loop corrections to hard scattering processes in QCD

G(NF + 2, N, µ2,m21,m

22) = Agq,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)· Σ(NF , N, µ

2)

+Agg,Q

(N,NF + 2,

m21

µ2,m2

2

µ2

)·G(NF , N, µ

2) . (2.135)

One can observe how the two-mass contributions to the OME enter the definitions of the partondensities. Due to the presence of diagrams with two different quark masses, decoupling the charmand bottom quarks one at a time becomes theoretically an ill-defined procedure at higher order.This is one main motivation for the computation of the two-mass contributions to OMEs.

2.8 Mathematical methods

2.8.1 The Mellin transform

The Mellin transform is a central mathematical operation in the study of deep-inelastic scattering,because the Bjorken variable x and the variable N are conjugate to each other with respect toit. In Eq. (2.50) we saw an example of this fact.

The Mellin transform [243–245] of a function f(x) is defined as

M [f ] (N) = F (N) =

∫ 1

0

xN−1f(x)dx, (2.136)

whenever the integral exists. In our physical applications, poles of M [f ] (N) arise along thenegative real axis, and the rightmost pole will be located at N = 1.

In Table 2, a few common cases of Mellin transforms are summarized.

f(x) M[f(x)](N) = F (N)

xa 1N+a

(1 + x)−a Γ(s)Γ(a−s)Γ(a)

δ(1− x) 1lna x (−1)aN−a−1a!

lna f(x) F (a)(N)

f (a)(x) Γ(a+1−N)Γ(1−N)

F (N − a)

Table 2: Some elementary properties of the Mellin transform.

From the Mellin transform of a function it is possible to recover the original function usingthe inverse Mellin transform

f(x) =1

2πi

∫ c+i∞

c−i∞x−NF (N)dN. (2.137)

The Mellin convolution of two functions is defined as

[f ⊗ g] (x) =

∫ ∞

0

dx1

∫ ∞

0

dx2 δ(x− x1x2)f(x1)g(x2). (2.138)

A property of the Mellin convolution is:

M [f ⊗ g] (s) = (M [f ] (s)) (M [g] (s)) , (2.139)

or, in other words, the Mellin convolution becomes an ordinary product in Mellin space.The functions of relevance to physics which we are concerned with, such as parton distribution

functions, are defined in the interval [0, 1], and vanish outside of this interval.

23

Page 34: and 3-loop corrections to hard scattering processes in QCD

2.8.2 Nested sums

From the earliest computations of anomalous dimensions in QCD, sums have appeared in physicalquantities [38,39], even though a more systematic study of these objects in the context of high-energy physics appeared only much later [246,247].

The first class of sums to be studied systematically [246, 247], see also [208] is that of theharmonic sums, defined recursively as

Sn1,...,nk(N) =

N∑i=1

(sign(n1))i

i|n1|Sn2,...,nk

(i), ni ∈ Z\0, (2.140)

S∅ = 1. (2.141)

The quantity w =∑ |ni| is called the weight of the sum, and k is called the depth. For any given

weight there are 2 · 3w − 1 different harmonic sums.Generalizations of these objects which have been encountered in QCD computations have

the form [208,221,248]

Sn1,...,nk(x1, . . . , xk;N) =

N∑i=1

xi1i|n1|

Sn2,...,nk(x2, . . . , xk; i), xi = 0. (2.142)

A further generalization is the class of cyclotomic sums [249], defined as

Sa1,b1,c1,...,ak,bk,ck(x1, . . . , xk;N) =N∑i=1

xi1(a1i+ b1)c1

Sa2,b2,c2,...,ak,bk,ck(x2, . . . , xk; i). (2.143)

In three-loop massive calculations, in addition, more complex sums, both finite and infinite,involving binomial summands have been found to contribute, [250–254]. Examples of such sum-mands are (

2i

i

)rxi

i, r = ±1, (2.144)

4i

i(2ii

)( η

η − 1

)i, 0 < η < 1, (2.145)

where in our applications η is the ratio of the squares of two quark masses. No specific symbolhas been used for this type of sums in the literature and they are typically written explicitly.

Nested sums obey algebraic and structural properties [255–257], most importantly the alge-braic quasi-shuffle algebra [259]. This algebra can be derived from relations of the type

( N∑i=1

ai

)( N∑i=1

bi

)=

N∑i=1

ai

i∑j=1

bj +N∑i=1

bi

i∑j=1

aj −N∑i=1

aibi. (2.146)

Such relations allow to reduce the sums to a smaller set of “basis” sums which are algebraicallyindependent.

The classes of sums described above have been an object of interest for mathematicians, andMathematica packages exist to perform algebraic reductions and inverse Mellin transforms. Wehave extensively used HarmonicSums [260] in this thesis.

2.8.3 Iterated integrals

Iterated integrals are a powerful way to represent many classes of functions which arise naturallyin the computation of Feynman integrals. They naturally appear, for example, when the method

24

Page 35: and 3-loop corrections to hard scattering processes in QCD

of differential equations is used to compute the Feynman integrals [261,262], as well as in otherareas [208, 221]. In this thesis, they occur in the x-space representation of OMEs, as the resultof inverse Mellin transforms.

Iterated integrals are functions defined as

G (f1(τ), f2(τ), · · · , fn(τ) , z) =∫ z

0

dτ1 f1(τ1)G (f2(τ), · · · , fn(τ) , τ1) , (2.147)

with

G

(1

τ,1

τ, · · · , 1

τ⏞ ⏟⏟ ⏞n times

, z

)≡ 1

n!lnn(z) . (2.148)

The set fi of functions appearing in a given physical problem is called the alphabet.One example of iterated integrals studied in the context of high-energy physics is that of the

harmonic polylogarithms or HPLs [263–266], which can be considered a special case of iteratedintegrals. They are defined as

Hb,a(x) =

∫ x

0

dyfb(y)Ha(y), H∅ = 1, ai, b ∈ 0, 1,−1 , (2.149)

where

f0(x) =1

x, f1(x) =

1

1− x, f−1(x) =

1

1 + x, (2.150)

and

H0, . . . , 0⏞ ⏟⏟ ⏞n times

(x) =1

n!lnn(x) . (2.151)

The number of indices in Ha(x) is called the weight of the HPL. A numerical library for theevaluation of HPLs up to weight 5 has been published in [267] and to weight 8 in [268].

Harmonic polylogarithms are closely related to the Mellin transform of harmonic sums. Forexample, defining the “+”-distribution as∫ 1

0

dx f(x)(g(x)

)+=

∫ 1

0

dx(f(x)− f(1)

)g(x) (2.152)

one has

S1(N) = M[( 1

x− 1

)+

]. (2.153)

By repeated integration-by-parts, one can obtain the Mellin transform of HPLs in terms ofharmonic sums (possibly evaluated at infinity) provided that appropriate regularizations such asthe +-distribution are used in the Mellin transform.

Another special class is that of cyclotomic multiple polylogarithms [249], whose alphabet is1x

∪ xb

Φn(x)| n ∈ N+, 0 ≤ b ≤ φ(k)

(2.154)

Φn(x) =∏

1≤k≤ngcd(k,n)=1

(x− e2iπ

kn

)(2.155)

where φ(n) is Euler’s totient function. The polynomials Φn(x) are called cyclotomic polynomials.Cyclotomic harmonic polylogarithms are related through the Mellin transform to the cyclotomicharmonic sums.

Iterated integrals also obey shuffle algebras [255] due to the identity(∫ x

0

dy f(y))(∫ x

0

dy g(y))=

∫ x

0

dy f(y)

∫ y

0

dz g(z) +

∫ x

0

dy g(y)

∫ y

0

dz f(z), (2.156)

which allow to reduce the iterated integrals to a basis. Many algorithms pertaining to thesymbolic manipulation of iterated integrals are available in HarmonicSums.

25

Page 36: and 3-loop corrections to hard scattering processes in QCD

2.8.4 Mellin-Barnes integration

The Feynman parametrization is one of the standard ways to compute Feynman integrals. Itconsists in the repeated application to Feynman integrals of the identity

1

Aν11 · · ·Aνn

n

=Γ(∑n

i=1 νi)

Γ(ν1) · · ·Γ(νn)

∫ 1

0

dx1 · · ·∫ 1

0

dxnxν1−11 · · ·xνn−1

n

(x1A1 + · · ·+ xnAn)x1+···+xnδ(1−

n∑i=1

νi

),

(2.157)which is valid for Ai > 0, Re(νi) > 0. This identity is one of the methods which can be used toturn the integrals over the loop momenta into integrals over scalar Feynman parameters xi. Theevaluation of the integrals over xi is then the source of complexity in the Feynman representation,and the integrals will in general evaluate to special functions, in many cases yet unknown. Oneway to approach the integrals in the Feynman parametrization, which has been used in thecalculations in this thesis, in part is through Mellin-Barnes integrals.

The Mellin-Barnes formula [269–272]

1

(A+B)λ=

1

2πiΓ(λ)

∫ i∞

−i∞dσ Γ(σ + λ)Γ(−σ) Aσ

Bλ+σ(2.158)

is one important tool for the evaluation of Feynman integrals; early applications can be foundin [273,274], see also [275]. In (2.158), the integration contour must separate the infinite sets ofascending and descending poles of the Γ-functions, and must otherwise stretch in the direction ofthe imaginary axis. This formula is used to disentangle polynomials appearing from the Feynmanparametrization. In general, the contour can be quite involved, and can necessitate the separatecalculation of one or more residues, particularly if the integral is divergent in the dimensionalparameter ε. In any case, symbolic algebra packages exist to perform the analytic continuationand ε-expansion of Mellin-Barnes integrals as well as for numerical evaluation. In this thesis wemade use of MB and MBResolve [276,277].

The evaluation of Mellin-Barnes integrals with these packages is not possible in general ifthe integrand depends on the further symbolic parameter N , as is the case in the calculation ofOMEs. For this application, the packages were therefore used only to compute moments. In thegeneral case, one can apply the residue theorem to evaluate the integral into a (nested) infinitesum, and turn to algorithms in summation theory from the package Sigma [202–204].

26

Page 37: and 3-loop corrections to hard scattering processes in QCD

3 Polarized deep-inelastic scattering

In the following, we present the calculation of the two-mass contributions to A(3),PSQq and to A

(3)gg,Q,

which were performed in [196] and in [198] respectively.

3.1 The two-mass contribution to the polarized operator matrix elementA

(3),PSQq

The calculation presented here for the polarized A(3),PSQq closely mirrors that of the corresponding

unpolarized OME, which was performed in [171].The Feynman rule used for the operator insertion, for the quark-quark-gluon vertex, is taken

from [81]: one has

Oµa (p, q) = −gTa∆µ/pγ5

N−2∑i=0

(∆.p)N−i−2(−∆.q)i, (3.1)

where ∆µ is a light-like vector, ∆2 = 0 and p, q are incoming quark momenta.When using dimensional regularization in polarized physics, a choice must be made for the

analytic continuation from four to D dimensions of chiral quantities, such as γ5, which areintrinsically four-dimensional. This calculation has been performed in the Larin scheme [197],which is the definition

γ5 =i

24γµγνγργδε

µνρδ. (3.2)

The contraction of two Levi-Civita tensors is then

εαβγδεµνρσ =

gαµ gαν gαρ gασgβµ gβν gβρ gβσgγµ gγν gγρ gγσgδµ gδν gδρ gδσ

. (3.3)

Other scheme choices have been made in the literature; in particular, the anomalous dimensionshave been computed in the M-scheme, which was first defined in [86] and is obtained from theLarin scheme through a finite renormalization.

In order to compare with the literature, care must be taken to adopt a consistent schemechoice: see [85] for the relationship between the anomalous dimensions in the two schemes.

The pole structure for the OME can be derived from the renormalization structure; see [121]for this particular case. The predicted pole structure, which was used to check the calculation,is presented in Eq. (3.4):

ˆA

(3),PS,tmQq =

8

3ε3γ(0)gq γ

(0)qg β0,Q +

1

ε2

[2γ(0)gq γ

(0)qg β0,Q (L1 + L2) +

1

6γ(0)qg γ

(1)gq − 4

3β0,Qγ

PS,(1)qq

]+1

ε

[γ(0)gq γ

(0)qg β0,Q

(L21 + L1L2 + L2

2

)+

1

8γ(0)qg γ

(1)gq − β0,Qγ

PS,(1)qq

(L2 + L1)

+1

3ˆγ(2),PSqq − 8a

(2),PSQq β0,Q + γ(0)qg a

(2)gq

]+ a

(3),PSQq

(m2

1,m22, µ

2), (3.4)

where

γij = γij(NF + 2)− γij(NF ), (3.5)

ˆγij =γij(NF + 2)

NF + 2− γij(NF )

NF

, (3.6)

and the notation aij, aij denote the respective O(ε0), O(ε) terms of the OMEs, while ζk is the

Riemann ζ-function at integer values, Eq. (2.89). The quantity a(3),PSQq (m2

1,m22, µ

2) is the objectof this calculation.

27

Page 38: and 3-loop corrections to hard scattering processes in QCD

•••••⊗

(1)

•••••⊗

(2)

•••••⊗

(3)

•••••⊗

(4)

•••••⊗

(5)

•••••⊗

(6)

•••••⊗

(7)

•••••⊗

(8)

•••••⊗

(9)

•••••⊗

(10)

•••••⊗

(11)

•••••⊗

(12)

•••••⊗

(13)

•••••⊗

(14)

•••••⊗

(15)

•••••⊗

(16)

Figure 2: The diagrams for the two-mass contributions to A(3),PSQq . The dashed arrow line represents the

external massless quarks, while the thick solid arrow line represents a quark of mass m1, and the thin arrowline a quark of mass m2. We assume m1 > m2.

The contributing diagrams are shown in Figure 2. The unrenormalized OME is obtainedfrom their sum by applying the projector [85,178]

PqGijl = −δij

i(∆.p)−N−1

4Nc(D − 2)(D − 3)εµνp∆tr

[p/γµγνGij

l

]. (3.7)

The numerator algebra was performed in Form [278] and in Mathematica. Of the contributingdiagrams, the nonzero ones are 9–12 and 13–16, which are related by a symmetry under theexchange of the two heavy quarks. One obtains for the unrenormalized OME

A(3),PS,tmQq (N) = 2

[1 + (−1)N−1

]D9(m1,m2, N) + 2

[1 + (−1)N−1

]D9(m2,m1, N), (3.8)

where we define the variable

η =m2

2

m21

< 1. (3.9)

The calculation made use of the following Mellin-Barnes representation for the massive bubblesof Figure 3:

28

Page 39: and 3-loop corrections to hard scattering processes in QCD

µ, a ν, b

(a1)

••⊗

µ, a ν, b

(b2)

Figure 3: Massive bubbles appearing in the Feynman diagrams shown in Figure 2.

Iµν,aba1(k) = − 8iTFg

2s

(4π)D/2δab(k

2gµν − kµkν)

∫ 1

0

dxΓ(2−D/2)(x(1− x))D/2−1(

−k2 + m2

x(1−x)

)2−D/2, (3.10)

Iµν,abb2(k) = αsTF ie

−γEε/2(k ·∆)N−1(µ2)−ε/2Sεϵ∆kµν

∫ 1

0

dx xN+D/2−1(1− x)D/2−1

×(

−k2 + m2

x(1− x)

)−2+D/2

2Γ(2−D/2)[(D − 6)x−2 + (D + 2N)x−1

](3.11)

+

(−k2 + m2

x(1− x)

)−3+D/2

4Γ(3−D/2)(1− x)−1[m2(x−3 + x−2)

+(−k2)(1− x−1)]

, (3.12)

After the Feynman parametrization and the Mellin-Barnes decomposition are performed, oneobtains for Diagram 9 the representation

D9(m1,m2, N) = CFT2Fα

3sS

16

2 + ε

4(2− ε)J1 − 8ηJ2 − 8(N + 3)J3 + 8J4 + 8

(2 +

ε

2+N

)×J5 − 8J6 − (ε− 2)2J7 + 2(2− ε)ηJ8 + 2(2− ε)(3 +N)J9 − 2(2− ε)J10

−2(2− ε)

(2 +

ε

2+N

)J11 + 2(2− ε)J12 − 8ηJ13 + 2(2− ε)ηJ14

, (3.13)

with

J1 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x−1+ ε

2+NB1

x(1− x)

), (3.14)

J2 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x−1+ ε

2+NB3

x(1− x)

), (3.15)

J3 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x

ε2+NB1

x(1− x)

), (3.16)

J4 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x

ε2+NB2

x(1− x)

), (3.17)

J5 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x1+

ε2+NB1

x(1− x)

), (3.18)

J6 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x1+

ε2+NB2

x(1− x)

), (3.19)

29

Page 40: and 3-loop corrections to hard scattering processes in QCD

J7 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x−1+ ε

2+NB1

x(1− x)

), (3.20)

J8 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x−1+ ε

2+NB3

x(1− x)

), (3.21)

J9 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x

ε2+NB1

x(1− x)

), (3.22)

J10 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x

ε2+NB2

x(1− x)

), (3.23)

J11 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x1+

ε2+NB1

x(1− x)

), (3.24)

J12 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x1+

ε2+NB2

x(1− x)

), (3.25)

J13 =

(m2

1

µ2

) 32ε

Γ(N)

Γ(1 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x−2+ ε

2+NB3

x(1− x)

), (3.26)

J14 =

(m2

1

µ2

) 32ε

Γ(N + 1)

Γ(2 + ε

2+N

) ∫ 1

0

dx (1− x)ε2x−2+ ε

2+NB3

x(1− x)

). (3.27)

The functions Bi are given by

B1(ξ) =1

2πi

∫ i∞

−i∞dσ ξσ Γ(−σ)Γ(−σ + ε)Γ

(σ − 3ε

2

)Γ(σ − ε

2

) Γ2(σ + 2− ε)

Γ(2σ + 4− 2ε), (3.28)

B2(ξ) =1

2πi

∫ i∞

−i∞dσ ξσ Γ(−σ)Γ(−σ + ε)Γ

(σ − 3ε

2

)Γ(σ + 1− ε

2

) Γ2(σ + 2− ε)

Γ(2σ + 4− 2ε),

(3.29)

B3(ξ) =1

2πi

∫ i∞

−i∞dσ ξσ Γ(−σ)Γ(−σ − 1 + ε)Γ

(σ + 1− 3ε

2

)Γ(σ + 1− ε

2

)× Γ2(σ + 3− ε)

Γ(2σ + 6− 2ε). (3.30)

where we take

ξ =1

ηx(1− x)(3.31)

for diagram 9. It was possible to reduce this representation to the same class of functions asin the unpolarized calculation, as is expected from the fact that the two cases differ only innumerator structures. The calculation was then performed in x space by taking residues of thefunctions Bi in σ and expanding in ε. Because the functions Bi are the same as those appearingin the unpolarized calculation, it was possible to refer to their O(ε0) behaviour as computedin [171], where this expansion was performed with the packages MB [276], MBresolve [277],Sigma [202–204], HarmonicSums [221, 249, 260], EvaluateMultiSums and SumProduction [279].In this way, the integrals appearing in Bi are evaluated in terms of sums involving harmonicsums.

The convergence of the integrals depends on the value of ξ. This implies that the intervalx ∈ [0, 1] needs to be split into three intervals

[0, η−], [η−, η+], [η+, 1], with η± =1

2

(1±

√1− η

), (3.32)

30

Page 41: and 3-loop corrections to hard scattering processes in QCD

where the contours appearing in the functions Bi are closed to the right (for the second region)or to the left (for the first and the third), giving rise to two different functional forms for the

residue sums. The constant parts in ε, B(0)i , depend on harmonic sums [246,247], defined in Eqs.

(2.140) and (2.141).Then, the prefactors appearing in Ji can be expanded in ε, giving rise, after partial fractioning,

to denominators of the type1

N + l, with l ∈ 0, 1, (3.33)

which can be absorbed inside an integral using the relation

1

N + l

∫ b

a

dx xN−1f(x) =bN+l

N + l

∫ b

a

dyf(y)

yl+1−∫ b

a

dx xN+l−1

∫ x

a

dyf(y)

yl+1(3.34)

=aN+l

N + l

∫ b

a

dyf(y)

yl+1+

∫ b

a

dx xN+l−1

∫ b

x

dyf(y)

yl+1. (3.35)

The purpose of this method is to ultimately obtain a(3),PSQq in x-space, by leaving one of the

Feynman parameters unintegrated.The final result is expressed in terms of generalized iterated integrals, as defined in Eqs.

(2.147), (2.148) and harmonic polylogarithms [263] which can be considered a special case ofiterated integrals and are defined as in (2.149), (2.150), (2.151).

In this case, the letters appearing in the iterated integrals are

1

τ,

√4− τ

√τ ,

√1− 4τ

τ. (3.36)

3.1.1 The x-space result

We obtain the following expression for the O(ε0) term of the unrenormalized 3-loop two-masspure singlet operator matrix element:

a(3),PSQq (x) = CFT

2F

R0(m1,m2, x) +

(θ(η− − x) + θ(x− η+)

)x g0(η, x)

+θ(η+ − x)θ(x− η−)

[x f0(η, x)−

∫ x

η−

dy

(f1(η, y) +

x

yf3(η, y)

)]+θ(η− − x)

∫ η−

x

dy

(g1(η, y) +

x

yg3(η, y)

)−θ(x− η+)

∫ x

η+

dy

(g1(η, y) +

x

yg3(η, y)

)+xh0(η, x) +

∫ 1

x

dy

(h1(η, y) +

x

yh3(η, y)

)+θ(η+ − x)

∫ η+

η−

dy

(f1(η, y) +

x

yf3(η, y)

)+

∫ 1

η+

dy

(g1(η, y) +

x

yg3(η, y)

). (3.37)

Here we follow the notation used in Ref. [171]. Compared to that notation, in the present case nofunctions carrying the index 2 occur. The functions gi(η, x) in Eq. (3.37) shall not be confoundedwith polarized structure functions, also often denoted by gi. Here θ(z) denotes the Heavisidefunction

θ(z) =

1 z ≥ 00 z < 0

(3.38)

31

Page 42: and 3-loop corrections to hard scattering processes in QCD

by which we divide the interval x ∈ [0, 1] as described earlier. We define for convenience

u =x(1− x)

η, v =

η

x(1− x)(3.39)

and

L1 = ln

(m2

1

µ2

), L2 = ln

(m2

2

µ2

), (3.40)

with µ the renormalization scale. If in the following expressions the harmonic polylogarithms Ha

are given without argument it is understood that their argument is x. The functions appearingin Eq. (3.37) are given by

R0(m1,m2, x) = 32

(L31 + L1L2(L1 + L2) + L3

2

)[5(−1 + x)− 2(1 + x)H0

]+128L1L2

[(x+ 1)

(2

3H0,1 −

10

9H0 −

2

3ζ2

)+ (x− 1)

(10

9− 5

3H1

)]+32

(L21 + L2

2

)[(x+ 1)

(2

3H0,1 +H2

0 −2

3ζ2

)+ (x− 1)

(1

9− 5

3H1

)+1

9(17− 37x)H0

]+64(L1 + L2)

[(1 + x)

((2H0,1 −

8ζ23

)H0 −

2

9H3

0 −10

3H0,0,1

−4

3H0,1,1 +

14

3ζ3

)+ (x− 1)

(442

27+

5

3H2

1 −5

9H1

(1 + 9H0

))− 2

27(56 + 137x)H0 +

1

9(−5 + 4x)H2

0 +2

9(−17 + 28x)H0,1

+2

9(−28 + 17x)ζ2

]+

64

1215

[(1 + x)

((3240H0,0,1 + 1620H0,1,1

)H0

+(− 1620H0,1 + 945ζ2

)H2

0 + 90H40 − 1080H0,0,0,1

−2700H0,0,1,1 + 540H0,1,1,1 + 1296ζ22

)+ (−1 + x)

(20(437 + 54x) +(

1080H0 + 4050H20 + 2025ζ2

)H1 − 225H3

1

−45H21

(11 + 45H0

))+(− 10

(− 842 + 1111x+ 81x2

)−540(−7 + 11x)H0,1 − 45(−53 + 73x)ζ2 − 4860(1 + x)ζ3

)H0

+165(19 + 37x)H20 − 30(−19 + 8x)H3

0 + 30(−1 + x)(157 + 27x)H1

+(− 30(61 + 169x)− 810(1 + x)ζ2

)H0,1 + 180(−11 + 25x)H0,0,1

+180(−14 + 13x)H0,1,1 + 15(131 + 329x)ζ2 + 90(−55 + 29x)ζ3

], (3.41)

g0(η, x) = −32(1− x)

9

[− 16(−1 + x)x

η+ 18

(− 2(η − 4(−1 + x)x)2

9η2+

1

3ζ2

)H0

(u)

+5H20

(u)+ 2

(− 1 +

(η − 4(1− x)x)3/2

η3/2

)ζ2 +H3

0

(u)]

32

Page 43: and 3-loop corrections to hard scattering processes in QCD

−64(1− x)

9

[(2(η − 4(1− x)x)3/2

η3/2− 3ζ2

)G

(√1− 4τ

τ

, u

)]

+64(1− x)

3

[G2

(√1− 4τ

τ

, u

)+G

(√1− 4τ

τ,

√1− 4τ

τ,1

τ

, u

)]−64(1− x)

9G

(√1− 4τ

τ,1

τ

, u

)(η − 4(1− x)x)3/2

η3/2, (3.42)

g1(η, x) =64

27η2x

[− 6(1− x)H0

(u)P2 − 8η(−1 + x)(1 + x)(7η + 24(1− x)x)

+3η2(−1 + x)(−5 + 13x)H20

(u)− 3η2(1− x)(−1 + 2x)H3

0

(u)

−(6(1− x))

((1 + x)η3/2 − 4η(1 + x)

√η − 4(1− x)x+ 2(−1 + x)x(1 + 10x)

×√η − 4(1− x)x

)√ηζ2

]+

128(−1 + x)

9x

[(− 4

√η − 4(1− x)x

η3/2P1

−3(−1 + 2x)ζ2

)G

(√1− 4τ

τ

, u

)]−128(−1 + x)(−1 + 2x)

3xG2

(√1− 4τ

τ

, u

)−128(−1 + x)(−1 + 2x)

3xG

(√1− 4τ

τ,

√1− 4τ

τ,1

τ

, u

)−256(−1 + x)P1

9xG

(√1− 4τ

τ,1

τ

, u

) √η − 4(1− x)x

η3/2, (3.43)

g3(η, x) = − 32

27η2x

[8η(1− x)P4 − 6(1− x)H0

(u)P5 + 3η2(−1 + x)(−5 + 8x)

×H20

(u)+ 3η2(−1 + x)2H3

0

(u)− (6(1− x))

((1 + 2x)η3/2

−η(4 + 5x)√η − 4(1− x)x+ 2(−1 + x)x(1 + 8x)

√η − 4(1− x)x

)√ηζ2

]−64(1− x)

9x

[(2

√η − 4(1− x)x

η3/2P3 + 3(−1 + x)ζ2

)G

(√1− 4τ

τ

, u

)]+64(−1 + x)2

3xG2

(√1− 4τ

τ

, u

)+64(−1 + x)2

3xG

(√1− 4τ

τ,

√1− 4τ

τ,1

τ

, u

)−64(1− x)P3

9xG

(√1− 4τ

τ,1

τ

, u

) √η − 4(1− x)x

η3/2, (3.44)

with the polynomials

P1 = 2η(x+ 1)− 10x3 + 9x2 + x, (3.45)

P2 = 3η2(2xζ2 + x− ζ2 + 1) + 8ηx(10x2 − 9 x− 1

)− 16(1− x)2x2(10x+ 1), (3.46)

P3 = η(5x+ 4) + 2x(−8x2 + 7x+ 1

), (3.47)

P4 = 7η(x+ 1) + 6x(−5x2 + x+ 4

), (3.48)

P5 = η2(x(3ζ2 + 5)− 3ζ2 + 3) + 8ηx(8x2 − 7 x− 1

)− 16(x− 1)2x2(8x+ 1), (3.49)

33

Page 44: and 3-loop corrections to hard scattering processes in QCD

and

f0(η, x) =

[− 16(1− x)

3G

(1

τ,√4− τ

√τ

, v

)− 4P6

9(−1 + x)x2

[− 1 + 2H0

(v)]

×(−η + 4(1− x)x)3/2

η3/2

]G(√

4− τ√τ, v)

+4(1− x)

3

[[− 1 + 2H0

(v)]G2(√

4− τ√τ, v) ]

+16(1− x)

3G

(1

τ,√4− τ

√τ ,√4− τ

√τ

, v

)+

1

18

[− 1536(1− x)

− 9η4

(−1 + x)3x4− 80η3

(−1 + x)2x3− 104η2

(−1 + x)x2+

576η

x+

4P7

(−1 + x)3x4H0

(v)

−320(1− x)H20

(v)+ 64(1− x)H3

0

(v)−(128(1− x)

)(5− 3H0

(v))ζ2

+768(1− x)ζ3

]− 8P6

9(1− x)x2G

(1

τ,√4− τ

√τ

, v

)×(−η + 4(1− x)x)3/2

η3/2, (3.50)

f1(η, x) =1

27x5

[− 1

(1− x)3

[6912η(−1 + x)3x4 − 27η4(−1 + 2x)− 240η3(−1 + x)x

(−1 + 2x) + 512(−1 + x)4x4(−16 + 11x) + 12H0

(v)P9

−24η2(−1 + x)2x2(−25 + 2x) + 192(−1 + x)4x4(−5 + 13x)H20

(v)

−192(−1 + x)4x4(−1 + 2x)H30

(v)]

+ 384(1− x)x4(5− 13x

+3(−1 + 2x)H0

(v))ζ2 − 2304(−1 + x)x4(−1 + 2x)ζ3

]+[

32(−1 + x)(−1 + 2x)

3xG

(1

τ,√4− τ

√τ

, v

)− 8P8

9(1− x)x3

(− 1 + 2H0

(v))√−η + 4(1− x)x

η3/2

]×G

(√4− τ

√τ, v)− 8(−1 + x)(−1 + 2x)

3x

[(− 1 + 2H0

(v))

×G2(√

4− τ√τ, v) ]

+32(1− x)(−1 + 2x)

3x

×G(

1

τ,√4− τ

√τ ,√4− τ

√τ

, v

)− 16P8

9(−1 + x)x3

×G(

1

τ,√4− τ

√τ

, v

) √−η + 4(1− x)x

η3/2, (3.51)

f3(η, x) =1

54(−1 + x)2x5

[27η4 − 240η3(1− x)x− 5184η(−1 + x)2x4 − 1024(−8 + x)

×(−1 + x)3x4 − 12H0

(v)P10 − 24η2(−1 + x)x2(25 + 11x)

−192(−1 + x)3x4(−5 + 8x)H20

(v)+ 192(−1 + x)4x4H3

0

(v)

+384(−1 + x)3x4(5− 8x− 3(1− x)H0

(v))ζ2 + 2304(−1 + x)4x4ζ3

]

34

Page 45: and 3-loop corrections to hard scattering processes in QCD

+

[− 16(−1 + x)2

3xG

(1

τ,√4− τ

√τ

, v

)− 4P11

9x3

(− 1

+2H0

(v))√−η + 4(1− x)x

η3/2

]G(√

4− τ√τ, v)

+4(−1 + x)2

3x

[(− 1 + 2H0

(v))G(√

4− τ√τ, v)2 ]

+16(−1 + x)2

3xG

(1

τ,√4− τ

√τ ,√4− τ

√τ

, v

)+

8P11

9x3

×G(

1

τ,√4− τ

√τ

, v

) √−η + 4(1− x)x

η3/2, (3.52)

with

P6 = 3η2 + 6η(1− x)x+ 4(x− 1)2x2, (3.53)

P7 = 3η4 − 24η3(1− x)x+ 20η2(x− 1)2x2 − 160η (x− 1)3x3 − 128(x− 1)4x4, (3.54)

P8 = η3(6x− 3) + 6η2x(2x2 − 3x+ 1

)− 8η (x− 1)2x2(8x− 1)

+8(x− 1)3x3(10x+ 1), (3.55)

P9 = η4(6x− 3) + 24η3x(2x2 − 3x+ 1

)− 4η2(x− 1)2x2(2x+ 11)

−64η(x− 1)3x3(8x− 1) + 96(x− 1)4x4(x+ 4), (3.56)

P10 = 3η4 − 24η3(1− x)x− 4η2x2(7x2 + 4x− 11

)− 32η(x− 1)2x3(11x− 2)

+32(x− 1)3x4(7x+ 12), (3.57)

P11 = 3η3 − 6η2(1− x)x− 4ηx2(11x2 − 13x+ 2

)+ 8(1− x)2x3(8x+ 1). (3.58)

The functions hi are defined as follows

hi(η, x) = gi

(1

η, x

), i = 0, 1, 3. (3.59)

10-4 0.001 0.010 0.100 1-0.1

0.0

0.1

0.2

0.3

0.4

x

AQq

(3),PS,2-mass

AQq

(3),PS,TF2

Figure 4: The ratio of the 2-mass contributions to the massive OME APS,(3)Qq to all contributions to

APS,(3)Qq of O(T 2

F ) as a function of x and µ2. Dotted line (red): µ2 = 30 GeV2. Dashed line (black):

µ2 = 50 GeV2. Dash-dotted line (blue): µ2 = 100 GeV2. Full line (green): µ2 = 1000 GeV2. Herethe on-shell heavy quark masses mc = 1.59 GeV and mb = 4.78 GeV [280, 281] have been used,from [196].

35

Page 46: and 3-loop corrections to hard scattering processes in QCD

Figure 4 shows the ratio of the two-mass contribution to the complete O(T 2FCF ) term. The

two-mass correction grows relatively larger with µ2 and can reach the order of 40% of the totalO(T 2

FCF ) contribution.The result is difficult to obtain in Mellin-N space and we refrain from this. The main

reason for this is the appearance of the Heaviside functions in (3.38). In general one will obtainrecursions not factorizing in first order.

3.2 The two-mass contribution to the polarized matrix element A(3)gg,Q

The calculation of the OME A(3)gg,Q proceeds from the diagrams of Figure 5. The renormalization

•••••⊗

(1)

•••••⊗

(2)

•••••⊗

(3)

•••••⊗

(4)

•••••⊗

(5)

•••••⊗

(6)

•••••⊗

(7)

•••••⊗

(8)

••••••⊗

(9)

••••••⊗

(10)

••••••⊗

(11)

Figure 5: The 11 different topologies for A(3)gg,Q. Curly lines: gluons; thin arrow lines: lighter massive quark;

thick arrow lines: heavier massive quark; the symbol ⊗ represents the corresponding local operator insertion,cf. [81] for the related Feynman rules.

of the OME is performed in [121] and provides a check by predicting the pole terms of the fullcalculation.

We perform the calculation in N -space following the methods of the unpolarized calculation[172], which will be described in what follows. Then we obtain the z-space result by an inverseMellin transform. The Feynman rules applied to the operator insertion are found in [81], and tothe sum of the Feynman diagrams we apply the projector [158,175]

Agg,Q =δab

N2c − 1

1

(D − 2)(D − 3)(∆ · p)−N−1εµνρσ∆Gab

Q,µν∆ρpσ . (3.60)

We adopt the Larin scheme. The Feynman parametrization used for each diagram is chosensuch that, after performing the Dirac algebra with FORM [278], numerator structures are not can-celled against denominators. At the price of having to deal with more complicated denominator

36

Page 47: and 3-loop corrections to hard scattering processes in QCD

structures, this allows us to reduce their number, which makes it easier to manipulate theseterms.

We use the Feynman parametrization

Πµνab (k) = −i 8TFg

2

(4π)D/2δab(k

2gµν − kµkν)

1∫0

dxΓ(2−D/2) (x(1− x))D/2−1(

−k2 + m2

x(1−x)

)2−D/2(3.61)

for massive quark bubbles. After the Feynman parametrization is obtained for the whole diagram,the numerator algebra is performed through the identities∫

dDk

(2π)Dkµ1kµ2f(k

2) =gµ1µ2

D

∫dDk

(2π)Dk2f(k2), (3.62)∫

dDk

(2π)Dkµ1kµ2kµ3kµ4f(k

2) =Sµ1µ2µ3µ4

D(D + 2)

∫dDk

(2π)D(k2)2f(k2),

(3.63)∫dDk

(2π)Dkµ1kµ2kµ3kµ4kµ5kµ6f(k

2) =Sµ1µ2µ3µ4µ5µ6

D(D + 2)(D + 4)

∫dDk

(2π)D(k2)3f(k2), (3.64)

with the symmetric tensors

Sµ1µ2µ3µ4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 (3.65)

Sµ1µ2µ3µ4µ5µ6 = gµ1µ2 [gµ3µ4gµ5µ6 + gµ3µ5gµ4µ6 + gµ3µ6gµ4µ5 ]

+gµ1µ3 [gµ2µ4gµ5µ6 + gµ2µ5gµ4µ6 + gµ2µ6gµ4µ5 ]

+gµ1µ4 [gµ2µ3gµ5µ6 + gµ2µ5gµ3µ6 + gµ2µ6gµ3µ5 ]

+gµ1µ5 [gµ2µ3gµ4µ6 + gµ2µ4gµ3µ6 + gµ2µ6gµ3µ4 ]

+gµ1µ6 [gµ2µ3gµ4µ5 + gµ2µ4gµ3µ5 + gµ2µ5gµ3µ4 ] . (3.66)

The scalar integrals can then be performed using the relation∫dDk

(2π)D(k2)m

(k2 +R2)n=

1

(4π)D/2

Γ(n−m−D/2)

Γ(n)

Γ(m+D/2)

Γ(D/2)

(R2)m−n+D/2

. (3.67)

After the integrals over the loop momenta are performed, only integrals over the Feynmanparameters are left. They always appear in the form

j∏i=1

1∫0

dxi xaii (1− xi)

bi RN0

[R1 m

21 +R2 m

22

]−s, (3.68)

where R0 is a polynomial in the Feynman parameters xi, and R1 and R2 are rational functions inxi. At this point the polynomial R0 can be treated by applying the binomial theorem (multipletimes if necessary)

(A+B)N =N∑i=0

(N

i

)AiBN−i (3.69)

while the factor [R1 m21 +R2 m

22]

−sis treated via a Mellin-Barnes decomposition (2.158).

The integrals over the Feynman parameters are then turned into infinite sums using theresidue theorem. This sum representation is treated analytically by the algorithms of Sigma,HarmonicSums, EvaluateMultiSums and SumProduction, which reduce these nested sums intoclasses of hypergeometric sums which are shown, algorithmically, to be independent.

37

Page 48: and 3-loop corrections to hard scattering processes in QCD

The target function space is, for the N -space result, that of harmonic sums, defined in Eqs.(2.140) and (2.141), generalized harmonic sums (2.142), cyclotomic sums [249] and binomialsums [252]. Harmonic polylogarithms [263] will also appear in the result.

The calculation was checked by computing fixed N -moments using MB and MBResolve andcomparing the results with those obtained from the packages Q2E/EXP [282, 283]. In N -space,the result appears to exhibit spurious poles for N = 1/2, 3/2. It has been verified analyticallythat the expression is actually regular at those points.

3.2.1 The N -space solution

We obtain, for the constant part in ε of the N -space A(3)gg,Q,

a(3)gg,Q =

1

2

(1− (−1)N

)CFT

2F

− L1L2P39

12ηN3(1 +N)3− 8(L1 + L2)P51

27N4(1 +N)4

+P59

243ηN5(1 +N)5(−3 + 2N)(−1 + 2N)− 5(η2 − 1)(L1 − L2)

+16(N − 1)(2 +N)

(L21L2 + L1L

22

)N2(1 +N)2

+24(N − 1)(2 +N)

(L31 + L3

2

)N2(1 +N)2

+N − 1

N3(1 +N)2(−3 + 2N)(−1 + 2N)

[[8(2 +N)S2(1− η,N)P10

3η− 4H2

0P21

−8H0S1(1− η,N)P21

3η− 8S1,1(1− η, 1, N)P21

](1

1− η

)N

+

[8

3(2 +N)S2

(η − 1

η,N)P8 −

4

3H2

0P15 +8

3H0S1

(η − 1

η,N)P15

−8

3S1,1

(η − 1

η, 1, N

)P15

](η

1− η

)N]+

(N − 1)(2 +N)

N2(1 +N)2

[128

3

(H0H0,1

−H0,0,1

)− 32

3

[S1

( 1

1− η,N)+ S1

( η

η − 1, N)]

H20 −

32

9H3

0

−64

3H2

0H1 +32

27S31 −

704

27S3 +

128

3S2,1

−64

3H0

[S1,1

( 1

1− η, 1− η,N

)− S1,1

( η

η − 1,η − 1

η,N)]

+64

3

[S1,2

( 1

1− η, 1− η,N

)+ S1,2

( η

η − 1,η − 1

η,N)]

−64

3

[S1,1,1

( 1

1− η, 1− η, 1, N

)+ S1,1,1

( η

η − 1,η − 1

η, 1, N

)]−352

9ζ3

]+(L21 + L2

2

)( 5

8η+

8− P36

12N3(1 +N)3

)+

N − 1

ηN(1 +N)2(−3 + 2N)(−1 + 2N)4N

(2N

N

)×[− 4

3(2 +N)

N∑i=1

4i(

11−η

)iS2(1− η, i)

i(2ii

) P4 −4

3

N∑i=1

4i(

ηη−1

)iS1,1

(η−1η, 1, i

)i(2ii

) P7

−2

3H2

0

N∑i=1

4i(

ηη−1

)ii(2ii

) P7 −16

3(η − 1)H0

N∑i=1

4i

i2(2ii

)P9 −8

3

N∑i=1

4iS1(i)

i2(2ii

) P12

38

Page 49: and 3-loop corrections to hard scattering processes in QCD

+8

3

N∑i=1

4i

i3(2ii

)P12 +2

3H2

0

N∑i=1

4i(

11−η

)ii(2ii

) P13

+4

3

((2 +N)

N∑i=1

4i(

ηη−1

)iS2

(η−1η, i)

i(2ii

) P1 +H0

N∑i=1

4i(

ηη−1

)iS1

(η−1η, i)

i(2ii

) P7

+H0

N∑i=1

4i(

11−η

)iS1(1− η, i)

i(2ii

) P13 +N∑i=1

4i(

11−η

)iS1,1(1− η, 1, i)

i(2ii

) P13

)]

+(1 + η)(N − 1)(2 +N)P2

3η3/2N(1 +N)2(−3 + 2N)(−1 + 2N)4N

(2N

N

)[− 16

(H0,0,1

(√η)+H0,0,−1

(√η))

+8(H0,1

(√η)+H0,−1

(√η))

H0 − 2(H1

(√η)+H−1

(√η))

H20

]+

8(5 + 8N)P24

9ηN(1 +N)2(−3 + 2N)(−1 + 2N)(1 + 2N)H0

+(1 + η)

(5− 2η + 5η2

)η3/2

[− 1

4(L1 − L2)

(H0,1

(√η)+H0,−1

(√η))

−1

2

(H0,0,1

(√η)+H0,0,−1

(√η))

− 1

16(L1 − L2)

2(H1

(√η)+H−1

(√η))]

− 8P55

9ηN3(1 +N)3(−3 + 2N)(−1 + 2N)(1 + 2N)H0

+32(N − 1)(2 +N)

(− 6− 8N +N2

)(L1 − L2)

3N3(1 +N)3H0

+48(N − 1)(2 +N)

(L21 − L2

2

)N2(1 +N)2

H0 +32(N − 1)(2 +N)

(− 6− 8N +N2

)3N3(1 +N)3

H20

+48(N − 1)(2 +N)(L1 + L2)

N2(1 +N)2H2

0 +

[− 16(N − 1)P49

81ηN4(1 +N)4(−3 + 2N)(−1 + 2N)

+32(N − 1)(2 +N)

(− 6− 8N +N2

)(L1 + L2)

9N3(1 +N)3+

16(N − 1)(2 +N)(L21 + L2

2

)N2(1 +N)2

+(N − 1)(2 +N)

N2(1 +N)2

(32(L1 − L2)H0 + 32H2

0 −32

3S2

)]S1

+32(N − 1)(2 +N)

(− 6− 8N +N2

)27N3(1 +N)3

S21 +

16(N − 1)(2 +N)(L1 + L2)

3N2(1 +N)2S21

−32(N − 1)(2 +N)(− 6− 8N +N2

)9N3(1 +N)3

S2 −16(N − 1)(2 +N)(L1 + L2)

N2(1 +N)2S2

+

[− 8P33

9N3(1 +N)3+

40(N − 1)(2 +N)(L1 + L2)

N2(1 +N)2+

32(N − 1)(2 +N)S1

3N2(1 +N)2

]ζ2

+CAT

2F

− 8L2

1L2

(− 8 +N +N2

)3N(1 +N)

− 16L1L22

(− 4 +N +N2

)3N(1 +N)

+40L3

2

(12 +N +N2

)9N(1 +N)

+32L3

1

(15 +N +N2

)9N(1 +N)

− L1L2P25

27ηN2(1 +N)2+

2(L1 + L2)P34

27N3(1 +N)3

+P50

18η3(1 +N)4(2 +N)4(−1 + 2N)(1 + 2N)

+P61

7290η3N4(1 +N)4(2 +N)4(−3 + 2N)(−1 + 2N)(1 + 2N)

−8(η2 − 1)(L1 − L2)

3η+

1

54

(L21 + L2

2

)(36

η+ 36η +

P18

N2(1 +N)2

)

39

Page 50: and 3-loop corrections to hard scattering processes in QCD

+(H0,1

(√η)+H0,−1

(√η))[ (1 + η)P5

90N(1 +N)

H0

η3/2

−1

3(1 + η)

(4 + 11η + 4η2

)(L1 − L2)

1

η3/2

]+

[1

90

[P44

ηN(1 +N)2(−3 + 2N)(−1 + 2N)

(2N

N

)H0

N∑i=1

4i(

11−η

)iS1(1− η, i)

i(2ii

)+

P42

ηN(1 +N)2(−3 + 2N)(−1 + 2N)

(2N

N

) N∑i=1

4i(

11−η

)iS2(1− η, i)

i(2ii

)+

P44

ηN(1 +N)2(−3 + 2N)(−1 + 2N)

(2N

N

) N∑i=1

4i(

11−η

)iS1,1(1− η, 1, i)

i(2ii

) ]+

[− 8P28

135η2N(1 +N)2(−1 + 2N)− 2(η − 1)P27

81η2(1 +N)(−1 + 2N)H0

]22N

+1

η2N(1 +N)2(−3 + 2N)(−1 + 2N)

[1

180H2

0

N∑i=1

4i(

ηη−1

)ii(2ii

) P37

+1

90

(H0

N∑i=1

4i(

ηη−1

)iS1

(η−1η, i)

i(2ii

) P30 +N∑i=1

4i(

ηη−1

)iS2

(η−1η, i)

i(2ii

) P30

+N∑i=1

4i(

ηη−1

)iS1,1

(η−1η, 1, i

)i(2ii

) P37 +N∑i=1

4iS1(i)

i2(2ii

) P45 +H0

N∑i=1

4i

i2(2ii

)P46

+N∑i=1

4i

i3(2ii

)P47

)](2N

N

)+

[4(1 + η)P41

45N(1 +N)2(−3 + 2N)(−1 + 2N)

(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

− 2(1 + η)P41

45N(1 +N)2(−3 + 2N)(−1 + 2N)

(H0,1

(√η)+H0,−1

(√η)) H0

η3/2

+(1 + η)P41

90N(1 +N)2(−3 + 2N)(−1 + 2N)

(H1

(√η)+H−1

(√η)) H2

0

η3/2

](2N

N

)+

P44

180ηN(1 +N)2(−3 + 2N)(−1 + 2N)

(2N

N

)H2

0

N∑i=1

4i(

11−η

)ii(2ii

) ]2−2N

+

[1

ηN2(1 +N)2(−3 + 2N)(−1 + 2N)

(1

45H0S1(1− η,N)P38

+1

45S1,1(1− η, 1, N)P38 +

1

45S2(1− η,N)P40 +

H20P56

810(−1 + η)

)+

P43

810(−1 + η)ηN(1 +N)2(−1 + 2N)H2

0

](1

1− η

)N

− (1 + η)P6

45N(1 +N)

(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

+

[1

ηN2(1 +N)2(−3 + 2N)(−1 + 2N)

(1

45H0S1

(η − 1

η,N)P31

+1

45S2

(η − 1

η,N)P31 +

1

45S1,1

(η − 1

η, 1, N

)P35 +

H20P52

810(−1 + η)

)

40

Page 51: and 3-loop corrections to hard scattering processes in QCD

+P32

810(−1 + η)ηN(1 +N)2(−1 + 2N)H2

0

](η

1− η

)N

+4(L1 − L2)P16

9N2(1 +N)2H0

+P48

405η2N(1 +N)3(−1 + 2N)(1 + 2N)H0

+P58

405η2N2(1 +N)3(−3 + 2N)(−1 + 2N)(1 + 2N)H0

+4(16 + 3N + 3N2

)(L21 − L2

2

)N(1 +N)

H0 +

[− (1 + η)P5

360N(1 +N)

H−1

(√η)

η3/2

+P26

180ηN2(1 +N)2+

8(16 + 3N + 3N2

)(L1 + L2)

3N(1 +N)

]H2

0 −4(16 + 3N + 3N2

)27N(1 +N)

H30

+

[8

3

(L21 − 2L1L2 + L2

2

)− 8

(16 + 3N + 3N2

)9N(1 +N)

H20

]H1

+

[− (1 + η)

360N(1 +N)

H20

η3/2P5 −

1

12(1 + η)

(4 + 11η + 4η2

)(L1 − L2)

2 1

η3/2

]H1

(√η)

− 1

12(1 + η)

(4 + 11η + 4η2

)(L1 − L2)

2H−1

(√η)

η3/2+

[16

3(L1 − L2)

+16(16 + 3N + 3N2

)9N(1 +N)

H0

]H0,1 −

256H0,0,1

9N(1 +N)

+2P19

135η2N(1 +N)3(−1 + 2N)S1 +

[− 640L1L2

27+

8H0ζ2P22

45ηN2(1 +N)2

+8H0P23

45ηN2(1 +N)2− 8(L1 + L2)P17

27N2(1 +N)2+

2P57

3645η2N3(1 +N)3(−3 + 2N)(−1 + 2N)

−32

3L1L2(L1 + L2)−

1360

27

(L21 + L2

2

)− 80

3

(L31 + L3

2

)−8

9(1 + η)

(5 + 22η + 5η2

)(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

−8(− 93 + 37N + 46N2

)(L1 − L2)

9N(1 +N)H0 − 32

(L21 − L2

2

)H0

+4

9(1 + η)

(5 + 22η + 5η2

)(H0,1

(√η)+H0,−1

(√η)) H0

η3/2+

[2P3

9ηN(1 +N)

−64

3(L1 + L2)−

1

9(1 + η)

(5 + 22η + 5η2

)H−1

(√η)

η3/2

]H2

0 +32

27H3

0

+64

9H2

0H1 −1

9(1 + η)

(5 + 22η + 5η2

)H20H1

(√η)

η3/2− 128

9H0H0,1

+128

9H0,0,1 −

64L2

3ζ2 +

2P53

3645η2N3(1 +N)3(−3 + 2N)(−1 + 2N)ζ2

]S1

+

[− 4P11

135ηN2(1 +N)2− 16

3(L1 − L2)H0 −

16

3H2

0

]S21

+

[− 4P20

135ηN2(1 +N)2+

16

15η(1 +N)

(− 8 + 8η2 − 4N + 4η2N

)H0

−16(L1 − L2)H0 − 16H20

]S2 −

64

15η(1 +N)

(2 + 2η2 +N + η2N

)S3

+64

15η(1 +N)

(2 + 2η2 +N + η2N

)S2,1 −

32(2η + ηN)

15(1 +N)H2

0S1

( 1

1− η,N)

41

Page 52: and 3-loop corrections to hard scattering processes in QCD

−32(2 +N)H2

0S1

η−1, N)

15η(1 +N)− 64(2η + ηN)

15(1 +N)H0S1,1

( 1

1− η, 1− η,N

)+64(2 +N)H0S1,1

η−1, η−1

η, N)

15η(1 +N)+

64(2η + ηN)

15(1 +N)S1,2

( 1

1− η, 1− η,N

)+64(2 +N)S1,2

η−1, η−1

η, N)

15η(1 +N)− 64(2η + ηN)

15(1 +N)S1,1,1

( 1

1− η, 1− η, 1, N

)−64(2 +N)S1,1,1

η−1, η−1

η, 1, N

)15η(1 +N)

+8L2P29

3N(1 +N)(−3 + 2N)(−1 + 2N)(1 + 2N)ζ2

+P60

7290η3N4(1 +N)4(2 +N)4(−3 + 2N)(−1 + 2N)(1 + 2N)ζ2 +

[224L1

3N(1 +N)

− 4P14

27N2(1 +N)2− 8L2

(20 + 15N + 7N2

)3N(1 +N)

+4(48 + 15N + 7N2

)3N(1 +N)

H0

+

[− 112L1

3− 16L2 −

16(− 69 + 38N + 47N2

)27N(1 +N)

− 32

3H0

]S1

]ζ2

+P54

405η2N2(1 +N)3(−3 + 2N)(−1 + 2N)(1 + 2N)H0ζ2 +

[− 128

27N(1 +N)

+64

27S1

]ζ3

+ T 3

F

32

3

(L31 + 2L2

1L2 + 2L1L22 + L3

2

)+ 32(L1 + L2)ζ2 +

128

9ζ3

,

(3.70)

where the argument of the harmonic polylogarithms is implied to be η where omitted, and thatof the harmonic sums to be N where omitted.

The polynomials Pi are:

P1 = −27− 36N2 − 36N(−2 + η) + 54η + 5η2 (3.71)

P2 = 5− 2(− 11− 18N + 18N2

)η + 5η2 (3.72)

P3 = 372η +N2(5− 102η + 5η2

)+N

(5− 66η + 5η2

)(3.73)

P4 = −5 + 18(−3 + 2N)η + 9(−3 + 2N)(−1 + 2N)η2 (3.74)

P5 = −80(5 + 22η + 5η2

)+ 3N2

(71− 46η + 71η2

)+ 3N

(167 + 18η + 167η2

)(3.75)

P6 = −80(5 + 22η + 5η2

)+ 3N2

(111 + 64η + 111η2

)+ 3N

(207 + 128η + 207η2

)(3.76)

P7 = −(2 +N)[27 + 36N2 + 36N(−2 + η)− 54η − 5η2

](3.77)

P8 = 24− 48N − 18N3 + 5N2(9 + η) (3.78)

P9 = (2 +N)(−4 + 3N)(−2 + 3N)(1 + η) (3.79)

P10 = −24η + 48Nη + 18N3η − 5N2(1 + 9η) (3.80)

P11 = 9 + 160η + 50N2η + 140N3η + 9η2 − 9N(7 + 10η + 7η2

)(3.81)

P12 = (2 +N)[11− 54η + 11η2 + 18N2

(1 + η2

)− 36N

(1− η + η2

)](3.82)

P13 = (2 +N)[− 5 + 18(−3 + 2N)η + 9(−3 + 2N)(−1 + 2N)η2

](3.83)

P14 = 168− 536N − 407N2 − 278N3 − 167N4 (3.84)

P15 = −(2 +N)[− 24 + 48N + 18N3 − 5N2(9 + η)

](3.85)

P16 = −96 + 370N + 277N2 + 12N3 + 9N4 (3.86)

P17 = 48− 27N + 263N2 + 634N3 + 344N4 (3.87)

P18 = −1632 + 7072N + 8611N2 + 3078N3 + 1539N4 (3.88)

42

Page 53: and 3-loop corrections to hard scattering processes in QCD

P19 = −20N4(10 + 81η)− 4N3(41 + 855η + 135η2

)+N

(41 + 855η − 765η2 − 87η3

)−3(17 + 60η − 135η2 + 2η3

)+N2

(254 + 1125η + 180η2 + 45η3

)(3.89)

P20 = 50N2η − 660N3η − 440N4η − 3(3 + 160η + 3η2

)+ 9N

(7 + 30η + 7η2

)(3.90)

P21 = (2 +N)[− 24η + 48Nη + 18N3η − 5N2(1 + 9η)

](3.91)

P22 = 60N2(1 +N)2η (3.92)

P23 =(3− 21N + 25N2 + 50N3 + 25N4

)(−1 + η)(1 + η) (3.93)

P24 = −36N3(−1 + η)η + 36N4η2 +N(1 + 15η)(−5 + 21η)− 4(5 + 27η2

)−N2

(5 + 18η + 189η2

)(3.94)

P25 = 384η − 1664Nη + 18N3(4− 93η + 4η2

)+ 9N4

(4− 93η + 4η2

)+N2

(36− 2501η + 36η2

)(3.95)

P26 = −48(1 + 160η + η2

)− 16N

(4− 1405η + 4η2

)+ 3N4

(71 + 134η + 71η2

)+N2

(101 + 15234η + 101η2

)+ 2N3

(357 + 418η + 357η2

)(3.96)

P27 = 56N4(1 + η)(1 + η2

)− 6(1 + η)

(5 + 86η + 5η2

)−N(1 + η)

(41 + 390η + 41η2

)+4N3(1 + η)

(41 + 405η + 41η2

)+ 2N2(1 + η)

(53 + 972η + 53η2

)(3.97)

P28 = 3(17 + 62η − 270η2 + 62η3 + 17η4

)+ 20N4

(10 + 81η + 81η3 + 10η4

)−N

(41 + 768η − 1530η2 + 768η3 + 41η4

)+4N3

(41 + 855η + 270η2 + 855η3 + 41η4

)−2N2

(127 + 585η + 180η2 + 585η3 + 127η4

)(3.98)

P29 = 144− 51N − 585N2 + 190N3 + 36N4 + 56N5 (3.99)

P30 = −800N6 − 8N5(169 + 270η) + 4N4(599− 645η + 30η2

)− 2N3

(− 1565− 3810η

+225η2 + 6η3)+ 3N2

(− 355 + 2255η + 335η2 + 53η3

)+3(43 + 705η + 405η2 + 175η3

)− 2N

(349 + 4530η + 855η2 + 342η3

)(3.100)

P31 = −400N6 + 24η(80 + 3η)− 4N5(119 + 128η) +N3(847 + 2314η − 513η2

)+N

(129− 4882η − 171η2

)− 4N4

(− 359 + 172η + 3η2

)+4N2

(− 239 + 572η + 189η2

)(3.101)

P32 = −280N6 − 100N5(11 + 81η) +N3(13967 + 41445η − 1755η2 − 2325η3

)+27

(− 61− 160η − 45η2 + 2η3

)− 90N4

(− 65− 72η + 27η2 + 20η3

)+N2

(5143 + 15660η − 405η2 + 174η3

)+3N

(− 1141− 3285η + 1125η2 + 377η3

)(3.102)

P33 = 2(− 42− 29N + 68N2 + 47N3 + 88N4 + 99N5 + 33N6

)(3.103)

P34 = 528− 224N + 2008N2 + 7149N3 + 4239N4 + 279N5 + 93N6 (3.104)

P35 = 400N6 − 24η(80 + 3η) + 4N5(119 + 128η) + 4N4(− 359 + 172η + 3η2

)+N

(− 129 + 4882η + 171η2

)− 4N2

(− 239 + 572η + 189η2

)+N3

(− 847− 2314η + 513η2

)(3.105)

P36 = −1088− 800N + 1664N2 + 1081N3 + 1675N4 + 1899N5 + 633N6 (3.106)

P37 = 800N6 + 8N5(169 + 270η)− 4N4(599− 645η + 30η2

)+ 2N3

(− 1565− 3810η

+225η2 + 6η3)− 3N2

(− 355 + 2255η + 335η2 + 53η3

)−3(43 + 705η + 405η2 + 175η3

)+ 2N

(349 + 4530η + 855η2 + 342η3

)(3.107)

P38 = −400N6η2 + 24(3 + 80η)− 4N5η(128 + 119η) +N(− 171− 4882η + 129η2

)−4N2

(− 189− 572η + 239η2

)+ 4N4

(− 3− 172η + 359η2

)+N3

(− 513 + 2314η + 847η2

)(3.108)

P39 = −512η − 256Nη + 1024N2η + 3N3(5 + 282η + 5η2

)+ 9N5

(5 + 282η + 5η2

)43

Page 54: and 3-loop corrections to hard scattering processes in QCD

+3N6(5 + 282η + 5η2

)+N4

(45 + 2282η + 45η2

)(3.109)

P40 = 400N6η2 − 24(3 + 80η) + 4N5η(128 + 119η) +N3(513− 2314η − 847η2

)+N

(171 + 4882η − 129η2

)+ 4N2

(− 189− 572η + 239η2

)−4N4

(− 3− 172η + 359η2

)(3.110)

P41 = 400N6(1− η + η2

)− 3(109 + 446η + 109η2

)+ 3N2

(151− 1446η + 151η2

)+4N5

(169 + 101η + 169η2

)− 2N4

(599− 1214η + 599η2

)+N

(691 + 4694η + 691η2

)−N3

(1559 + 2026η + 1559η2

)(3.111)

P42 = −800N6η3 − 8N5η2(270 + 169η) + 4N4η(30− 645η + 599η2

)+3N2

(53 + 335η + 2255η2 − 355η3

)+ 3(175 + 405η + 705η2 + 43η3

)−2N

(342 + 855η + 4530η2 + 349η3

)+ 2N3

(− 6− 225η + 3810η2 + 1565η3

)(3.112)

P43 = −280N6η3 − 100N5η2(81 + 11η)− 27(− 2 + 45η + 160η2 + 61η3

)+90N4

(− 20− 27η + 72η2 + 65η3

)− 3N

(− 377− 1125η + 3285η2 + 1141η3

)+N2

(174− 405η + 15660η2 + 5143η3

)+N3

(− 2325− 1755η + 41445η2 + 13967η3

)(3.113)

P44 = 800N6η3 + 8N5η2(270 + 169η)− 4N4η(30− 645η + 599η2

)−3(175 + 405η + 705η2 + 43η3

)+ 2N

(342 + 855η + 4530η2 + 349η3

)+3N2

(− 53− 335η − 2255η2 + 355η3

)− 2N3

(− 6− 225η + 3810η2 + 1565η3

)(3.114)

P45 = −800N6(1 + η4

)+ 3(43 + 880η + 810η2 + 880η3 + 43η4

)+N3

(3130 + 7608η − 900η2 + 7608η3 + 3130η4

)− 8N5

(169 + 270η + 270η3 + 169η4

)−2N

(349 + 4872η + 1710η2 + 4872η3 + 349η4

)−3N2

(355− 2308η − 670η2 − 2308η3 + 355η4

)+4N4

(599− 645η + 60η2 − 645η3 + 599η4

)(3.115)

P46 = −800N6(−1 + η)(1 + η)(1 + η2

)− 698N(−1 + η)(1 + η)

(1 + 12η + η2

)+3(−1 + η)(1 + η)

(43 + 530η + 43η2

)− 8N5(−1 + η)(1 + η)

(169 + 270η + 169η2

)−3N2(−1 + η)(1 + η)

(355− 2202η + 355η2

)+4N4(−1 + η)(1 + η)

(599− 645η + 599η2

)+2N3(−1 + η)(1 + η)

(1565 + 3816η + 1565η2

)(3.116)

P47 = 800N6(1 + η4

)− 3(43 + 880η + 810η2 + 880η3 + 43η4

)+N

(698 + 9744η + 3420η2 + 9744η3 + 698η4

)+ 8N5

(169 + 270η + 270η3 + 169η4

)+3N2

(355− 2308η − 670η2 − 2308η3 + 355η4

)−4N4

(599− 645η + 60η2 − 645η3 + 599η4

)−2N3

(1565 + 3804η − 450η2 + 3804η3 + 1565η4

)(3.117)

P48 = −560N7 − 40N6(62 + 405η) + 20N5(− 190− 2187η + 729η2

)+N2

(1417 + 12690η − 5535η2 − 240η3

)− 9(17 + 60η − 135η2 + 2η3

)+10N4

(− 260− 3807η + 2430η2 + 15η3

)−N3

(107 + 9045η − 4455η2 + 75η3

)−3N

(− 91− 1665η + 1575η2 + 137η3

)(3.118)

P49 = −(2 +N)[− 216η − 144Nη − 696N2η + 148N6η − 30N4

(9− 16η + 9η2

)−9N5

(15− 38η + 15η2

)−N3

(135 + 1022η + 135η2

)](3.119)

P50 = 225 + 1630η + 3456η2 + 2466η3 + 415η4

+N(930 + 5372η + 6912η2 + 2820η3 + 350η4

)−152N6η(1 + η)

(5 + 22η + 5η2

)− 16N7η(1 + η)

(5 + 22η + 5η2

)44

Page 55: and 3-loop corrections to hard scattering processes in QCD

−192N3(− 5 + 3η + 135η2 + 157η3 + 30η4

)−72N4

(− 5 + 53η + 405η2 + 427η3 + 80η4

)−12N5

(− 5 + 218η + 1296η2 + 1318η3 + 245η4

)− 6N2

(− 225− 830η

+864η2 + 1854η3 + 385η4)

(3.120)

P51 = 396 + 690N + 518N2 + 240N3 − 289N4 − 432N5 + 494N6 + 588N7 + 147N8 (3.121)

P52 = 560N8 − 216(−1 + η)η(80 + 3η) + 40N7(34 + 405η) +N4(44539 + 73899η

+1629η2 − 7215η3)+ 60N6

(− 310− 561η + 81η2 + 60η3

)+9N

(− 420− 6451η + 4306η2 + 189η3

)− 2N5

(7334 + 31887η − 414η2 + 375η3

)−9N2

(1731− 919η + 137η2 + 391η3

)+ 3N3

(9966 + 26631η − 11136η2 + 959η3

)(3.122)

P53 = −1080N2(1 +N)2η2(207− 456N + 89N2 − 56N3 + 92N4

)(3.123)

P54 = −540N(1 +N)2η2(144− 51N − 585N2 + 190N3 + 36N4 + 56N5

)(3.124)

P55 = N2(1 +N)[288N5η2 − 36N4η(−8 + 3η)− 160

(1 + 3η2

)− 4N3

(− 5− 9η + 438η2

)+N

(− 275− 270η + 801η2

)+N2

(25− 522η + 1485η2

)](3.125)

P56 = 560N8η3 + 40N7η2(405 + 34η) + 216(−1 + η)(3 + 80η)− 60N6(− 60

−81η + 561η2 + 310η3)− 9N

(− 189− 4306η + 6451η2 + 420η3

)−9N2

(391 + 137η − 919η2 + 1731η3

)− 2N5

(375− 414η + 31887η2 + 7334η3

)+3N3

(959− 11136η + 26631η2 + 9966η3

)+N4

(− 7215 + 1629η + 73899η2 + 44539η3

)(3.126)

P57 = −51840η2 + 103680Nη2 + 80N8η(405− 10412η + 405η2

)−4N7

(− 2700− 20331η + 165688η2 + 1539η3

)−36N6

(204 + 378η − 49156η2 + 1863η3

)−9N2

(459 + 5184η + 20987η2 + 3618η3

)−2N5

(13500 + 171477η − 942766η2 + 3807η3

)−3N3

(− 2025− 24489η + 185329η2 + 4077η3

)+N4

(18360 + 94851η + 70490η2 + 58239η3

)(3.127)

P58 = N[2240N9(−1 + η)(1 + η)

(1 + η2

)+N4

(6264 + 156159η + 63990η2

−251679η3 − 13850η4)+N3

(− 6175− 104082η + 24435η2 + 51822η3 + 3020η4

)+N2

(− 525− 58899η − 7155η2 + 87081η3 + 4230η4

)+ 27

(− 17− 96η + 135η2

+34η3)+ 160N8

(− 48− 405η + 405η3 + 55η4

)+8N7

(− 450− 13887η + 17937η3 + 860η4

)+9N

(25− 482η − 1845η2 + 2134η3 + 100η4

)−10N5

(− 2214− 30615η + 486η2 + 36153η3 + 2834η4

)−4N6

(− 3660− 21279η + 7290η2 + 11559η3 + 3620η4

)](3.128)

P59 = 36288η − 19872Nη − 220032N2η − 252192N3η +N5(− 61155 + 394298η − 61155η2

)+N6

(− 17415 + 597938η − 17415η2

)− 320N4

(81 + 526η + 81η2

)+36N11

(405− 3766η + 405η2

)+ 12N12

(405− 3766η + 405η2

)−5N9

(3483− 56554η + 3483η2

)+N10

(3645 + 44314η + 3645η2

)+10N7

(4455− 2386η + 4455η2

)+ 2N8

(7695− 64514η + 7695η2

)(3.129)

P60 = 1080N3(1 +N)2(2 +N)4η3(576 + 1173N − 2988N2 − 4835N3 + 2674N4 + 572N5

+248N6)

(3.130)

45

Page 56: and 3-loop corrections to hard scattering processes in QCD

P61 = −5806080η3 − 7464960Nη3 + 39628800N2η3

+N4(273375− 2809566η + 5935680η2 + 522717086η3 + 2240865η4 − 4790016η5

)+864N15η

(400 + 3639η + 589η2 + 3639η3 + 400η4

)−768N3η

(1377 + 4293η − 244034η2 + 4293η3 + 1377η4

)+432N14η

(7856 + 80679η + 16689η2 + 80679η3 + 7856η4

)−16N11η

(450738− 6962355η − 48003782η2 − 6819795η3 + 483138η4

)+8N13η

(1570752 + 18898191η + 7445585η2 + 18898191η3 + 1570752η4

)+4N12η

(4566888 + 73693719η + 72807653η2 + 73622439η3 + 4550688η4

)+4N5

(236925 + 975942η + 27088992η2 + 117199930η3 + 25711587η4 − 325728η5

)−12N8

(28350 + 912078η + 59340789η2 + 250807007η3 + 58332339η4 + 564588η5

)−36N9

(6075 + 1870314η + 30831858η2 + 19135996η3 + 30932703η4 + 1867884η5

)−8N10

(6075 + 7288137η + 73658484η2 − 103483664η3 + 74427579η4 + 7437582η5

)+4N7

(18225 + 8623746η + 9768924η2 − 816997534η3 + 15310539η4 + 9807156η5

)+2N6

(443475 + 12987162η + 132854256η2 − 575608138η3 + 137257821η4

+12137472η5). (3.131)

3.2.2 The result in momentum fraction z-space

From theN -space result, the Mellin inversion has been performed using the algorithms encoded inHarmonicSums. The result, which we reproduce here from [198], is reported as a one-dimensionalintegral, in a form amenable to numerical evaluation. It depends on iterated integrals of thetype (2.147) on an alphabet of root-valued letters. The iterated integrals are the same as thoseappearing in the unpolarized calculation, and can be found in Appendix D of [172].

In what follows, the argument of the functionsGi is implied to be z in the formulas for a(3),+gg,Q (z)

and a(3),reggg,Q (z), and it is implied to be y in the functions Φi which follow. Such arguments are

omitted in the interest of brevity. Defining for the inverse Mellin transform of a(3)gg,Q

a(3)gg,Q(N) = a

(3),δgg,Q +

∫ 1

0

dz(zN−1 − 1

)a(3),+gg,Q (z) +

∫ 1

0

dz zN−1 a(3),reggg,Q (z) , (3.132)

we find

a(3),δgg,Q = T 3

F

32

3(L3

1 + L32) +

64

3(L2

1L2 + L1L22) + 32ζ2(L1 + L2) +

128

9ζ3

+CFT

2F

405− 3766η + 405η2

81η+ L1L2

[−5− 282η − 5η2

+1

8(1 + η)

(5− 2η + 5η2

)(H1

(√η)+H−1

(√η)) 1

η3/2

]+(L2

1 + L22)

[5− 422η + 5η2

− 1

16(1 + η)

(5− 2η + 5η2

)(H1

(√η)+H−1

(√η)) 1

η3/2

]+L1

[45− 784η − 45η2

18η

−1

4(1 + η)

(5− 2η + 5η2

)(H0,1

(√η)+H0,−1

(√η)) 1

η3/2

]

46

Page 57: and 3-loop corrections to hard scattering processes in QCD

+L2

[−45− 784η + 45η2

18η

+1

4(1 + η)

(5− 2η + 5η2

)(H0,1

(√η)+H0,−1

(√η)) 1

η3/2

]−1

2(1 + η)

(5− 2η + 5η2

)(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2− 176

3ζ2

+CAT

2F

38(21 + 31η + 21η2

)135η

+32L3

1

9− 8L2

1L2

3− 16L1L

22

3+

40L32

9

+L1L2

[−4 + 93η − 4η2

3η+

1

6(1 + η)

(4 + 11η + 4η2

)(H1

(√η)+H−1

(√η)) 1

η3/2

−16

3H1(η)

]+ L2

2

[4 + 171η + 4η2

− 1

12(1 + η)

(4 + 11η + 4η2

)(H1

(√η)+H−1

(√η)) 1

η3/2− 12H0(η) +

8

3H1(η)

]+L2

1

[4 + 171η + 4η2

6η− 1

12(1 + η)

(4 + 11η + 4η2

)(H1

(√η)+H−1

(√η)) 1

η3/2

+12H0(η) +8

3H1(η)

]+ L2

[2(− 12 + 31η + 12η2

)9η

+1

3(1 + η)

(4 + 11η + 4η2

)(H0,1

(√η)+H0,−1

(√η)) 1

η3/2− 4H0(η)

+8H20(η)−

16

3H0,1(η)

]+ L1

[− 2

(− 12− 31η + 12η2

)9η

−1

3(1 + η)

(4 + 11η + 4η2

)(H0,1

(√η)+H0,−1

(√η)) 1

η3/2+ 4H0(η) + 8H2

0(η)

+16

3H0,1(η)

]− 1

15(1 + η)

(111 + 64η + 111η2

)(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

+13(−1 + η)(1 + η)H0(η)

45η

+1

30(1 + η)

(71− 46η + 71η2

)(H0,1

(√η)+H0,−1

(√η))H0(η)

η3/2

+

[71 + 134η + 71η2

60η− 1

120(1 + η)

(71− 46η + 71η2

)H−1

(√η)

η3/2

]H2

0(η)

−4

9H3

0(η)−8

3H2

0(η)H1(η)−1

120(1 + η)

(71− 46η + 71η2

)H20(η)H1

(√η)

η3/2

+16

3H0(η)H0,1(η) +

88

3ζ2

, (3.133)

a(3),+gg,Q (z) = CAT

2F

1

1− z

2848L1L2

27+

8Q1

729η2+

64

3

(L21L2 + L1L

22

)+(L1 + L2)

(2752

27+

112ζ23

)+

256

27

(L21 + L2

2

)+ 16

(L31 + L3

2

)+(1− η)

[64

15η(G10 +G11 −K11 −K12)−

64(G8 +G9 −K8 −K9)

15η

]+(L1 − L2)

2

(32

3H0(z)−

32

3H1(z)

)

47

Page 58: and 3-loop corrections to hard scattering processes in QCD

+8

9(1 + η)

(5 + 22η + 5η2

)(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

+

[(1− η)

[64(G2 −K2)

15η+

64

15η(G3 −K5)

]+(1− η2)

[20Q3

9η2(1− z + ηz)(−η − z + ηz)− 64H0(z)

15η

]−4

9(1 + η)

(5 + 22η + 5η2

)(H0,1

(√η)+H0,−1

(√η)) 1

η3/2+

128

9H0,1(η)

]H0(η)

+

[− 2

(5− 102η + 5η2

)9η

+1

9(1 + η)

(5 + 22η + 5η2

)(H1

(√η)+H−1

(√η)) 1

η3/2

−32

3H0(z)−

64

9H1(η) +

32

3H1(z)

]H2

0(η)−32

27H3

0(η)

− 4Q4

27η2(1− z + ηz)(−η − z + ηz)H0(z) +

32(1 + η2

)H2

0(z)

15η

+64(1 + η2

)H0,1(z)

15η− 128

9H0,0,1(η)−

32(18− 175η + 18η2

)ζ2

135η− 64

27ζ3

+

100(1 + η)2

(1− η + η2

)27η2π

− 80K4(K8 +K9)

9(−1 + η)π

+40(1 + η)2

(1− η + η2

)9η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[− 80

(1 + η + η2

)G1

9η2+

5(1 + η + η2

9η2

−10η

9

[G12 +G13 −K13 −K14 +

8(K21 +K22 +K23 +K24)

π

]+

10

9η2

[G14 +G15 −K16 −K17 +

8(K25 +K26 +K27 +K28)

π

]]

−40(1 + η)(1− η + η2

)9π

(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

+

[80K2K4

9(−1 + η)π− 40(1 + η)

(1− η + η2

)(1 + η + η2

)27(−1 + η)η2π

+(1− η2)

[− 40

(1 + η + η2

)G1

9η2+

5(1 + η + η2

18η2

]+(1− η)2

[− 80ηK15

9π− 10

(G5 −K7 +

8K18

π

)9η2

− 10

9η(G4 −K6)

]+20(1 + η)

(1− η + η2

)9π

(H0,1

(√η)+H0,−1

(√η)) 1

η3/2

]H0(η)

+

[− 40K4

9(−1 + η)2π+

10(1 + η)2(1− η + η2

)9(−1 + η)2ηπ

−5(1 + η)(1− η + η2

)9π

(H1

(√η)+H−1

(√η)) 1

η3/2

]H2

0(η)

1

(1− z)3/2√z

+20Q2

9η2(1− z + ηz)(−η − z + ηz)H1(z)

, (3.134)

48

Page 59: and 3-loop corrections to hard scattering processes in QCD

a(3),reggg,Q (z) = CFT

2F

110432

243(1− z)

+16(1 + η2

)(− 1 +

√z)(

− 14− 14√z − 14z + 261z3/2 + 261z2

)135ηz3/2

+L1L2

[(1 + z)

(448

3H2

0(z) + 128H0,1(z)− 128ζ2

)− 64

3(−31 + 17z)H0(z)

+64

3(1− z)

(31 + 15H1(z)

)]+(L21 + L2

2

)[(1− z)

(− 72− 72H0(z)− 80H1(z)

)+(1 + z)

(− 56

3H2

0(z)− 32H0,1(z) + 32ζ2

)]+(1 + η)

− 32(8G1 − π)Q5

(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2

+

[32Q8

135π

(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2z3/2

−16Q8

135π

(H0,1

(√η)+H0,−1

(√η)) H0(η)

η3/2z3/2

+4Q8

135π

(H1

(√η)+H−1

(√η)) H2

0(η)

η3/2z3/2

]√1− z

+(L21L2 + L1L

22

)[80(1− z) + 32(1 + z)H0(z)

]+(L31 + L3

2

)[120(1− z) + 48(1 + z)H0(z)

]+(1− z)

[− 320

3(1− η)ηK3(K8 +K9) +

160

27H2

1(z) +160

27H3

1(z)

−640

27H0,1(z)−

640

3H0,0,1(η)−

640

9H0,0,1(z) +

3200

9H0,1,1(z)

]+(L1 + L2)

(1 + z)

(176

9H3

0(z)−128

3H0,0,1(z) +

64

3H0,1,1(z) +

64

3ζ3

)+

[16

27(859 + 217z) +

320

3(1− z)H1(z) +

128

3(1 + z)H0,1(z)

]H0(z)

−8

9(−149 + 73z)H2

0(z) + (1− z)

(22816

27+

832

9H1(z) +

80

3H2

1(z)

)+64

9(−2 + 7z)H0,1(z) +

[− 8

9(−121 + 161z) +

112

3(1 + z)H0(z)

]ζ2

+

(1− η2)

(440

27η− 232z

15η− 112

135ηz3/2

)+(1− z)

[320

3(1− η)ηK2K3 +

640

3H0,1(η)

]+16(1 + η)(8G1 − π)Q5

(H0,1

(√η)+H0,−1

(√η)) 1

η3/2

+

[− 16

(− 5 + 5η2 − 3z + 3η2z

)+(1 + z)

[128

3(1− η)ηK2K3 +

256

3H0,1(η)

]]H0(z)

H0(η)

49

Page 60: and 3-loop corrections to hard scattering processes in QCD

+

(1− z)

(160

3+

160ηK3

3− 320

3H1(η) + 160H1(z)

)−4(1 + η)(8G1 − π)Q5

(H1

(√η)+H−1

(√η)) 1

η3/2

+

[− 32

3(−11 + 7z) + (1 + z)

(64ηK3

3− 128

3H1(η) + 64H1(z)

)]H0(z)

+32(1 + z)H20(z)

H2

0(η) +

[− 160

9(1− z)− 64

9(1 + z)H0(z)

]H3

0(η)

+

− 32Q7

243η+ (1 + z)

[− 128

3(1− η)ηK3(K8 +K9) +

64

27H3

1(z)−256

3H0,0,1(η)

−256

9H0,0,1(z) +

1280

9H0,1,1(z)

]+

[16Q6

81η− 256

3(1 + z)H0,1(z)

]H1(z)

−32

27(−41 + 37z)H2

1(z)−512

27(−1 + 2z)H0,1(z)

H0(z) +

[16

81(577 + 379z)

+(1 + z)

(160

9H2

1(z) +128

9H0,1(z)

)− 160

27(−5 + z)H1(z)

]H2

0(z)

+

[− 16

81(−67 + 23z) +

64

27(1 + z)H1(z)

]H3

0(z) +40

27(1 + z)H4

0(z)

+

[5264

81(1− z)− 8

(1 + η2

)(− 1 +

√z)(

− 14− 14√z − 14z + 261z3/2 + 261z2

)135ηz3/2

−640

3(1− z)H0,1(z)

]H1(z) +

[− 16

9(−67 + 23z) +

704

9(1 + z)H1(z)

]H0(z)

+80

3(1 + z)H2

0(z) +880

9(1− z)

(1 + 2H1(z)

)ζ2 +

[− 1760

9(1− z)

−704

9(1 + z)H0(z)

]ζ3 +

∫ 1

z

dy

[ΦCF

1 (z, y)H30

(z

y

)+ ΦCF

2 (z, y)H20

(z

y

)+ΦCF

3 (y)z

y2H0

(z

y

)+ ΦCF

4 (y)1

y2H0

(z

y

)+ ΦCF

5 (z, y)z

y2+ ΦCF

6 (z, y)1

y

+ΦCF7 (y)

√y

z3/2

]+

∫ z

0

dy ΦCF8 (y)

+CAT

2F

− 4H2

1(z)Q16

135η+

8H0,1(z)Q17

135η− 4Q20

18225η2

+L1L2

[− 16

27(−817 + 1004z) +

64

9(17 + 5z)H0(z)−

16

3(−27 + 28z)H1(z)

]−64

15(1− η)K3z(K8 +K9)

+(1 + η)

[(H0,0,1

(√η)+H0,0,−1

(√η))(32G1Q14

45πη3/2− 4

45

1

η3/2Q18

)+4Q26

675π

(H0,0,1

(√η)+H0,0,−1

(√η)) 1

η3/2√1− zz3/2

]+(L21 + L2

2

)[ 8

27(−229 + 206z) +

16

9(−13 + 11z)H0(z) +

8

3(−27 + 28z)H1(z)

]+(1 + η2

)(− 196

675ηz3/2− 64zH0,0,1(z)

15η+

128zH0,1,1(z)

15η

)

50

Page 61: and 3-loop corrections to hard scattering processes in QCD

+(L1 + L2)

[− 688

27(−13 + 17z) + (1 + z)

(176

9H2

0(z) +128

9H0,1(z)

)− 8

27(−452 + 49z)H0(z)−

8

9(−41 + 23z)H1(z)−

16

9(−13 + 50z)ζ2

]+(1− 2z)

[64

3

(L21L2 + L1L

22

)+ 16

(L31 + L3

2

)− 32

27H3

0(η)−128

9H0,0,1(η)−

64

27ζ3

]+

− Q10

90η2π+

8(73 + 90η)K4(K8 +K9)

15(−1 + η)π

−4(1 + η)2(73 + 17η + 73η2

)15η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[8(73 + 163η + 73η2

)G1

15η2−(73 + 163η + 73η2

30η2

+1

15(90 + 73η)

[G12 +G13 −K13 −K14 +

8(K21 +K22 +K23 +K24)

π

]−73 + 90η

15η2

[G14 +G15 −K16 −K17 +

8(K25 +K26 +K27 +K28)

π

]]1√z

+

− 2(1 + η)Q26

675π

(H0,1

(√η)+H0,−1

(√η)) 1

η3/2z3/2

+

[− 4(−1 + η)(1 + η)

(73 + 163η + 73η2

)G1

15η2− 8(73 + 90η)K2K4

15(−1 + η)π

+(−1 + η)(1 + η)

(73 + 163η + 73η2

60η2+

(1 + η)Q9

180(−1 + η)η2π

+(1− η)2[1

15(90 + 73η)

(G4 −K6 +

8K15

π

)+(73 + 90η)

(G5 −K7 +

8K18

π

)15η2

]]1√z

H0(η)

+

[(1 + η)Q26

1350π

(H1

(√η)+H−1

(√η)) 1

η3/2z3/2+

[4(73 + 90η)K4

15(−1 + η)2π

−(1 + η)2(73 + 17η + 73η2

)15(−1 + η)2ηπ

]1√z

]H2

0(η)

1√1− z

+

64

15(1− η)K2K3z + (1 + η)

[(H0,1

(√η)+H0,−1

(√η))(

− 16G1Q14

45πη3/2

+2

45

1

η3/2Q18

)]− (−1 + η)(1 + η)

[− 2Q23

675η2(1− z + ηz)(−η − z + ηz)

− 2Q21

675η2(1− z + ηz)(−η − z + ηz)

1

z3/2− 64zH0,1(z)

15η

]+

[4

45η

(− 33 + 33η2 − 76z + 76η2z

)− 8

15η

(− 1 + η2 − 16z + 16η2z

)H1(z)

]H0(z) +

24

(1− η2 − z + η2z

)H1(z)

+128

9(1− 2z)H0,1(η)

H0(η) +

[32K3z

15+

4H0(z)Q11

15η+

2Q12

45η

51

Page 62: and 3-loop corrections to hard scattering processes in QCD

+(1 + η)

[(H1

(√η)+H−1

(√η))(4G1Q14

45πη3/2− 1

90

1

η3/2Q18

)]−64

9(1− 2z)H1(η)−

8

3(−27 + 28z)H1(z)

]H2

0(η) +

[4H2

1(z)Q15

135η

−2H1(z)Q19

405η+

2Q24

405η2(1− z + ηz)(−η − z + ηz)

− 8

135η

(9 + 320η + 9η2 + 320ηz

)H0,1(z)

]H0(z) +

[− 56

81(−47 + 4z)

+8H1(z)Q13

135η

]H2

0(z) +224

81(1 + z)H3

0(z)

+

[2Q25

2025η2(1− z + ηz)(−η − z + ηz)+

2Q22

2025η2(1− z + ηz)(−η − z + ηz)

1

z3/2

−64(1 + η2

)zH0,1(z)

15η

]H1(z) +

[− 224

27(−14 + 19z) +

224

9(1 + z)H0(z)

+64(1 + η2

)zH1(z)

15η

]ζ2 +

∫ 1

z

dy

[ΦCA

2 (z, y)H20

(z

y

)+ ΦCA

3 (y)z

y2H0

(z

y

)+ΦCA

4 (y)1

y2H0

(z

y

)+ ΦCA

5 (z, y)z

y2+ ΦCA

6 (z, y)1

y

+ΦCA7 (y)

√y

z3/2

]+

∫ z

0

dy ΦCA8 (y)

, (3.135)

with the polynomials

Q1 = −405− 405η + 10412η2 − 405η3 − 405η4 + 405z(−1 + η)2(1 + η + η2

)(3.136)

Q2 = −z(−1 + η)2(1 + η4

)− 2η

(1 + η4

)+ z2(−1 + η)2(1 + η)2

(1− η + η2

)(3.137)

Q3 = 2η(1− η + η2

)+ z3(−1 + η)2

(1 + η + η2

)+ z(1− 6η + 6η2 − 6η3 + η4

)−z2(−1 + η)2

(2− η + 2η2

)(3.138)

Q4 = 30η + 88η3 + 30η5 + z(15− 60η + 103η2 − 176η3 + 103η4 − 60η5 + 15η6

)+15z3(−1 + η)2(1 + η)2

(1− η + η2

)−z2(−1 + η)2

(30 + 15η + 88η2 + 15η3 + 30η4

)(3.139)

Q5 = 5 + 22η + 5η2 + 2z(1− 10η + η2

)(3.140)

Q6 = 45 + 302η + 45η2 + z(27− 10η + 27η2

)(3.141)

Q7 = 135− 3436η + 135η2 + z(81 + 596η + 81η2

)(3.142)

Q8 = z2(− 287 + 62η − 287η2

)+ 120z4

(1− 10η + η2

)− 7(1− η + η2

)+240z3

(1 + 8η + η2

)− 6z

(11 + 64η + 11η2

)(3.143)

Q9 = 16(73 + 90η + 163η2 + 90η3 + 73η4

)(3.144)

Q10 = 20(1 + η)2(73 + 17η + 73η2

)(3.145)

Q11 = 1− 70η + η2 + 8z(1 + 40η + η2

)(3.146)

Q12 = 29 + 2540η + 29η2 + 2z(16− 1523η + 16η2

)(3.147)

Q13 = 9 + 400η + 9η2 + 4z(9 + 100η + 9η2

)(3.148)

Q14 = 109 + 446η + 109η2 + 64z(1 + 14η + η2

)(3.149)

Q15 = 9 + 160η + 9η2 + 8z(9 + 20η + 9η2

)(3.150)

Q16 = −81− 410η − 81η2 + z(81 + 550η + 81η2

)(3.151)

Q17 = −81− 820η − 81η2 + 3z(27 + 260η + 27η2

)(3.152)

Q18 = 59 + 226η + 59η2 + 4z(59 + 346η + 59η2

)(3.153)

52

Page 63: and 3-loop corrections to hard scattering processes in QCD

Q19 = 9− 11246η + 9η2 + 8z(261 + 1568η + 261η2

)(3.154)

Q20 = −5(17739 + 24192η + 397052η2 + 24192η3 + 17739η4

)+z(88695 + 567η + 2287160η2 + 567η3 + 88695η4

)(3.155)

Q21 = −49η[− z(−1 + η)2 + z2(−1 + η)2 − η

](3.156)

Q22 = 147η(1 + η2

)[− z(−1 + η)2 + z2(−1 + η)2 − η

](3.157)

Q23 = 5η(807 + 574η + 807η2

)+ z(3285− 6985η − 7249η2 − 6985η3 + 3285η4

)+3z3(−1 + η)2

(1095 + 2693η + 1095η2

)−z2(−1 + η)2

(6570 + 11699η + 6570η2

)(3.158)

Q24 = η(2421 + 792η − 33824η2 + 792η3 + 2421η4

)+z(1971− 5121η − 40574η2 + 67548η3 − 40574η4 − 5121η5 + 1971η6

)+z3(−1 + η)2

(1971 + 7137η + 1684η2 + 7137η3 + 1971η4

)−z2(−1 + η)2

(3942 + 8379η − 32140η2 + 8379η3 + 3942η4

)(3.159)

Q25 = z(9855− 4695η − 27488η2 − 123060η3 − 27488η4 − 4695η5 + 9855η6

)+5η

(2421 + 4974η + 8324η2 + 4974η3 + 2421η4

)+z3(−1 + η)2

(9855 + 29223η + 89560η2 + 29223η3 + 9855η4

)−z2(−1 + η)2

(19710 + 56343η + 131180η2 + 56343η3 + 19710η4

)(3.160)

Q26 = 49(1− η + η2

)+ 3840z5

(1 + 14η + η2

)+ 60z4

(13− 898η + 13η2

)−58z3

(173 + 1102η + 173η2

)+ z(1463 + 412η + 1463η2

)+z2

(7187 + 64438η + 7187η2

)(3.161)

The functions Φ1, . . . ,Φ8, which appear as arguments of a further integral, are:

ΦCF1 (z, y) = − 64

27(1− y)y− 64z

27(1− y)y2, (3.162)

ΦCF2 (z, y) =

z

y2

[224

27(1− y)− 128H0(y)

9(1− y)− 64H1(y)

9(1− y)

]+

1

y

[− 352

27(1− y)− 128H0(y)

9(1− y)

−64H1(y)

9(1− y)

], (3.163)

ΦCF3 (y) =

1

1− y

− 16R3

81η2− 128

3(1− η)

(−G10 −G11 +G8 +G9 +K11 +K12 −K8 −K9

)−64H2

0(η) +

[− 8R5

27η2(1− y + ηy)(−η − y + ηy)− 256

9H1(y)

]H0(y)

+128

9H2

0(y)−8R6

27η2(1− y + ηy)(−η − y + ηy)H1(y)−

64

9H2

1(y)

+256

3H0,1(y)−

704

9ζ2

+

2R1

9η2π+

32η(− 27 + 18η + η2

)K4(K8 +K9)

3(−1 + η)π

−16(1 + η)2(1− 10η + η2

)3η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[− 32

(1 + 46η + η2

)G1

3η2+

2(1 + 46η + η2

3η2

−4(− 1− 18η + 27η2

)3η2

[G12 +G13 −K13 −K14 +

8(K21 +K22 +K23 +K24)

π

]

53

Page 64: and 3-loop corrections to hard scattering processes in QCD

−4(− 27 + 18η + η2

)3η

[G14 +G15 −K16 −K17 +

8(K25 +K26 +K27 +K28)

π

]]

+

[− 32η

(− 27 + 18η + η2

)K2K4

3(−1 + η)π− (−1 + η)(1 + η)

(1 + 46η + η2

3η2

+(1 + η)

[− R2

9(−1 + η)η2π+

16(−1 + η)(1 + 46η + η2

)G1

3η2

]+(1− η)2

[− 4

(− 1− 18η + 27η2

)3η2

(G4 −K6 +

8K15

π

)+4(− 27 + 18η + η2

)3η

(G5 −K7 +

8K18

π

)]]H0(η)

+

[− 4(1 + η)2

(1− 10η + η2

)3(−1 + η)2ηπ

+16η(− 27 + 18η + η2

)K4

3(−1 + η)2π

]H2

0(η)

1√

1− y√y

+

[− 8(−1 + η)(1 + η)R4

3η2(1− y + ηy)(−η − y + ηy)

−128(−1 + η)(G2 +G3 −K2 −K5)

3(1− y)

]H0(η) , (3.164)

ΦCF4 (y) =

1

1− y

− 16yR10

81η2+

128

3(−1 + η)y

(−G10 −G11 +G8 +G9

+K11 +K12 −K8 −K9

)−64yH2

0(η) +

[− 8R12

27η2(1− y + ηy)(−η − y + ηy)− 256

9yH1(y)

]H0(y)

+128

9yH2

0(y)−8R11

27η2(1− y + ηy)(−η − y + ηy)H1(y)−

64

9yH2

1(y)

+256

3yH0,1(y)−

704

9yζ2

+

2R7

27η2π+

32η(− 27 + 54η + 5η2

)K4(K8 +K9)

9(−1 + η)π

−16(1 + η)2(5 + 22η + 5η2

)9η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[− 32

(5 + 86η + 5η2

)G1

9η2+

2(5 + 86η + 5η2

9η2

−4(− 5− 54η + 27η2

)9η2

[G12 +G13 −K13 −K14 +

8(K21 +K22 +K23 +K24)

π

]−4(− 27 + 54η + 5η2

)9η

[G14 +G15 −K16 −K17 +

8(K25 +K26 +K27 +K28)

π

]]

+

[− 32η

(− 27 + 54η + 5η2

)K2K4

9(−1 + η)π− (−1 + η)(1 + η)

(5 + 86η + 5η2

9η2

+(1 + η)

[− R8

27(−1 + η)η2π+

16(−1 + η)(5 + 86η + 5η2

)G1

9η2

]+(1− η)2

[− 4

(− 5− 54η + 27η2

)9η2

(G4 −K6 +

8K15

π

)+4(− 27 + 54η + 5η2

)9η

(G5 −K7 +

8K18

π

)]]H0(η)

54

Page 65: and 3-loop corrections to hard scattering processes in QCD

+

[− 4(1 + η)2

(5 + 22η + 5η2

)9(−1 + η)2ηπ

+16η(− 27 + 54η + 5η2

)K4

9(−1 + η)2π

]H2

0(η)

√y√

1− y

+

[− 8(−1 + η)(1 + η)y2R9

9η2(1− y + ηy)(−η − y + ηy)

−128(−1 + η)y(G2 +G3 −K2 −K5)

3(1− y)

]H0(η) , (3.165)

ΦCF5 (z, y) = − 8R15

405η2− 320

3(−1 + η)(1 + y)

(−G10 −G11 +G8 +G9

+K11 +K12 −K8 −K9

)+

1

1− y

[16(27 + 110η + 27η2

)y2

81η

−128

3(1− η)y2

(G10 +G11 −G8 −G9 −K11 −K12 +K8 +K9

)−448

27y2H1(y) +

64

9y2H2

1(y)−256

3y2H0,1(y) +

704

9y2ζ2

]H0(z)

+

[− 224y2

27+

64

9y2H1(y)

]H2

0(z) +64

27y2H3

0(z)

+

− R13

45η2π

−16η(− 495 + 450η + 29η2

)K4(K8 +K9)

15(−1 + η)π

+8(1 + η)2

(29− 74η + 29η2

)15η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[16(29 + 974η + 29η2

)G1

15η2−(29 + 974η + 29η2

15η2

+2(− 29− 450η + 495η2

)15η2

[G12 +G13 −K13 −K14

+8(K21 +K22 +K23 +K24)

π

]+2(− 495 + 450η + 29η2

)15η

[G14 +G15 −K16 −K17

+8(K25 +K26 +K27 +K28)

π

]]

+

[− 8(−1 + η)(1 + η)

(29 + 974η + 29η2

)G1

15η2

+16η(− 495 + 450η + 29η2

)K2K4

15(−1 + η)π

+(−1 + η)(1 + η)

(29 + 974η + 29η2

30η2+

(1 + η)R14

90(−1 + η)η2π

+(1− η)2[2(− 29− 450η + 495η2

)15η2

(G4 −K6 +

8K15

π

)−2(− 495 + 450η + 29η2

)15η

(G5 −K7 +

8K18

π

)]]H0(η)

+

[2(1 + η)2

(29− 74η + 29η2

)15(−1 + η)2ηπ

55

Page 66: and 3-loop corrections to hard scattering processes in QCD

−8η(− 495 + 450η + 29η2

)K4

15(−1 + η)2π

]H2

0(η)

1√

1− y√y

+

[4(−1 + η)R16

15η2(1− y + ηy)(−η − y + ηy)

+320

3(−1 + η)(1 + y)(G2 +G3 −K2 −K5)

−128(1− η)y2(G2 +G3 −K2 −K5)

3(1− y)H0(z)

]H0(η) +

[160(1 + y)

+64y2H0(z)

1− y

]H2

0(η) +

− 4R17

135η2(1− y + ηy)(−η − y + ηy)

+1

1− y

[(− 896y2

27+

256

9y2H1(y)

)H0(z) +

128

9y2H2

0(z)

]+640

9(1 + y)H1(y)

H0(y) +

[− 320

9(1 + y)− 128y2H0(z)

9(1− y)

]H2

0(y)

− 4R18

135η2(1− y + ηy)(−η − y + ηy)H1(y)

+160

9(1 + y)H2

1(y)−640

3(1 + y)H0,1(y) +

1760

9(1 + y)ζ2 , (3.166)

ΦCF6 (z, y) =

8R21

81η2− 320

3(−1 + η)

(G10 +G11 −G8 −G9 −K11 −K12 +K8 +K9

)+

1

1− y

[16(45 + 182η + 45η2

)y

81η

−128

3(1− η)y

(G10 +G11 −G8 −G9 −K11 −K12 +K8 +K9

)+

704

27yH1(y)

+64

9yH2

1(y)−256

3yH0,1(y) +

704

9yζ2

]H0(z) +

(352y

27+

64

9yH1(y)

)H2

0(z)

+64

27yH3

0(z)

+

R19

81η2π+

(1− η)2(55 + 1594η + 55η2

27η2

−16(1− η)2(− 55− 810η + 729η2

)(K21 +K22 +K23 +K24)

27η2π

+16η(− 729 + 810η + 55η2

)K4(K8 +K9)

27(−1 + η)π

−8(1 + η)2(55 + 26η + 55η2

)27η2

[G6 +G7 −

8(K19 +K20)

π

]−2(1− η)2

(− 729 + 810η + 55η2

)27η

[G14 +G15 −K16 −K17

+8(K25 +K26 +K27 +K28)

π

]+ (1− η)2

[− 16

(55 + 1594η + 55η2

)G1

27η2

−2(− 55− 810η + 729η2

)(G12 +G13 −K13 −K14)

27η2

]+

[8(−1 + η)(1 + η)

(55 + 1594η + 55η2

)G1

27η2− 16η

(− 729 + 810η + 55η2

)K2K4

27(−1 + η)π

−(−1 + η)(1 + η)(55 + 1594η + 55η2

54η2− (1 + η)R20

162(−1 + η)η2π

56

Page 67: and 3-loop corrections to hard scattering processes in QCD

−2(1− η)2(− 55− 810η + 729η2

)27η2

(G4 −K6 +

8K15

π

)+2(1− η)2

(− 729 + 810η + 55η2

)27η

(G5 −K7 +

8K18

π

)]H0(η)

+

[− 2(1 + η)2

(55 + 26η + 55η2

)27(−1 + η)2ηπ

+8η(− 729 + 810η + 55η2

)K4

27(−1 + η)2π

]H2

0(η)

1√

1− y√y

+

[− 4(−1 + η)R22

27η2(1− y + ηy)(−η − y + ηy)− 320

3(−1 + η)(G2 +G3 −K2 −K5)

−128(1− η)y(G2 +G3 −K2 −K5)

3(1− y)H0(z)

]H0(η) +

(− 160 +

64yH0(z)

1− y

)H2

0(η)

+

4R23

27η2(1− y + ηy)(−η − y + ηy)+

1

1− y

[(1408y

27+

256

9yH1(y)

)H0(z)

+128

9yH2

0(z)

]− 640

9H1(y)

H0(y) +

(320

9− 128yH0(z)

9(1− y)

)H2

0(y)

+4R24

27η2(1− y + ηy)(−η − y + ηy)H1(y)−

160

9H2

1(y)

+640

3H0,1(y)−

1760

9ζ2 , (3.167)

ΦCF7 (y) = − 56

(H0(y) + H1(y)

)R27

135η2(1− y + ηy)(−η − y + ηy)

− 112

135η2(1 +

√y)(η + η3 + y − ηy − η3y + η4y +

1√yR25

)+

+

56(1 + η)2(1− η + η2

)81η2π

− 14(1− η)2(1 + η + η2

135η2

−224(1− η)2(K21 +K22 +K23 +K24)

135η2π− 224η3K4(K8 +K9)

135(−1 + η)π

+112(1 + η)2

(1− η + η2

)135η2

[G6 +G7 −

8(K19 +K20)

π

]+

28

135(1− η)2η

[G14 +G15 −K16 −K17 +

8(K25 +K26 +K27 +K28)

π

]+(1− η)2

[224(1 + η + η2

)G1

135η2− 28(G12 +G13 −K13 −K14)

135η2

]+

[224η3K2K4

135(−1 + η)π− 112(−1 + η)(1 + η)

(1 + η + η2

)G1

135η2

−112(1 + η)(1− η + η2

)(1 + η + η2

)405(−1 + η)η2π

+7(−1 + η)(1 + η)

(1 + η + η2

135η2

−28(1− η)2

135η2

(G4 −K6 +

8K15

π

)− 28

135(1− η)2η

(G5 −K7 +

8K18

π

)]H0(η)

+

[− 112η3K4

135(−1 + η)2π+

28(1 + η)2(1− η + η2

)135(−1 + η)2ηπ

]H2

0(η)

1√

1− y√y

57

Page 68: and 3-loop corrections to hard scattering processes in QCD

+56(−1 + η)R26

135η2(1− y + ηy)(−η − y + ηy)H0(η) , (3.168)

ΦCF8 (y) = −64(−1 + η)

3(−1 + y)

[G10 +G11 −G8 −G9 −K11 −K12 +K8 +K9

+(G2 +G3 −K2 −K5)H0(η)][5− 5z + 2(1 + z)H0(z)

], (3.169)

ΦCA2 (z, y) =

128(y + z)

27(−1 + y)y2, (3.170)

ΦCA3 (y) =

1

1− y

4R30

405η2− 2(−1 + η)(1 + η)R31

45η2(1− y + ηy)(−η − y + ηy)H0(η)

+2R32

135η2(1− y + ηy)(−η − y + ηy)H0(y)

+2R33

135η2(1− y + ηy)(−η − y + ηy)H1(y)

+

16(−1 + η)4G1

η2− (−1 + η)4π

η2

− R29

9η2π− 8

(− 7 + 165η + 75η2 + 23η3

)K4(K8 +K9)

15(−1 + η)π

+64(1 + η)2

(1 + 14η + η2

)15η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[−23− 75η − 165η2 + 7η3

15η2

[G12 +G13 −K13 −K14

+8(K21 +K22 +K23 +K24)

π

]+−7 + 165η + 75η2 + 23η3

15η2

[G14 +G15 −K16 −K17

+8(K25 +K26 +K27 +K28)

π

]]+

[− 8(−1 + η)3(1 + η)G1

η2

+(−1 + η)3(1 + η)π

2η2+

8(− 7 + 165η + 75η2 + 23η3

)K2K4

15(−1 + η)π+

(1 + η)R28

90(−1 + η)η2π

+(1− η)2[(− 23− 75η − 165η2 + 7η3

)15η2

(G4 −K6 +

8K15

π

)−(− 7 + 165η + 75η2 + 23η3

)15η2

(G5 −K7 +

8K18

π

)]]H0(η)

+

[16(1 + η)2

(1 + 14η + η2

)15(−1 + η)2ηπ

−4(− 7 + 165η + 75η2 + 23η3

)K4

15(−1 + η)2π

]H2

0(η)

1√

1− y√y, (3.171)

ΦCA4 (y) =

1

1− y

yR36

405η2− (−1 + η)(1 + η)y2R37

90η2(1− y + ηy)(−η − y + ηy)H0(η)

− R39

270η2(1− y + ηy)(−η − y + ηy)H0(y)

− R38

270η2(1− y + ηy)(−η − y + ηy)H1(y)

+

− R34

270η2π

58

Page 69: and 3-loop corrections to hard scattering processes in QCD

−2(43 + 705η + 405η2 + 175η3

)K4(K8 +K9)

45(−1 + η)π

+2(1 + η)2

(109 + 446η + 109η2

)45η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[8(11− 14η + 11η2

)G1

15η2−(11− 14η + 11η2

30η2

−175 + 405η + 705η2 + 43η3

180η2

[G12 +G13 −K13 −K14

+8(K21 +K22 +K23 +K24)

π

]+43 + 705η + 405η2 + 175η3

180η2

[G14 +G15 −K16 −K17

+8(K25 +K26 +K27 +K28)

π

]]+

[− 4(−1 + η)(1 + η)

(11− 14η + 11η2

)G1

15η2

+2(43 + 705η + 405η2 + 175η3

)K2K4

45(−1 + η)π+

(−1 + η)(1 + η)(11− 14η + 11η2

60η2

+(1 + η)R35

540(−1 + η)η2π

+(1− η)2[−(175 + 405η + 705η2 + 43η3

)180η2

(G4 −K6 +

8K15

π

)−(43 + 705η + 405η2 + 175η3

)180η2

(G5 −K7 +

8K18

π

)]]H0(η)

+

[(1 + η)2

(109 + 446η + 109η2

)90(−1 + η)2ηπ

−(43 + 705η + 405η2 + 175η3

)K4

45(−1 + η)2π

]H2

0(η)

√y√

1− y, (3.172)

ΦCA5 (z, y) =

2R42

2025η2+

64(−1 + η)(1 + y)(G8 +G9 −K8 −K9)

15η

−64

15(−1 + η)(G10 +G11 −K11 −K12)(η + ηy)

+1

1− y

[− 8

(279 + 796η + 279η2

)y2

405η+

64(9 + 20η + 9η2

)y2

135ηH1(y)

]H0(z)

+128

27y2H2

0(z)

+

R40

1350η2π

+4(− 865 + 11775η + 2625η2 + 1137η3

)K4(K8 +K9)

225(−1 + η)π

−32(1 + η)2(17 + 883η + 17η2

)225η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[− 8

(1001− 3574η + 1001η2

)G1

225η2+

(1001− 3574η + 1001η2

450η2

−−1137− 2625η − 11775η2 + 865η3

450η2

[G12 +G13 −K13 −K14

59

Page 70: and 3-loop corrections to hard scattering processes in QCD

+8(K21 +K22 +K23 +K24)

π

]−−865 + 11775η + 2625η2 + 1137η3

450η2

[G14 +G15 −K16 −K17

+8(K25 +K26 +K27 +K28)

π

]]+

[4(−1 + η)(1 + η)

(1001− 3574η + 1001η2

)G1

225η2

−4(− 865 + 11775η + 2625η2 + 1137η3

)K2K4

225(−1 + η)π

−(−1 + η)(1 + η)(1001− 3574η + 1001η2

900η2− (1 + η)R41

2700(−1 + η)η2π

+(1− η)2[−(− 1137− 2625η − 11775η2 + 865η3

)450η2

(G4 −K6 +

8K15

π

)+

(− 865 + 11775η + 2625η2 + 1137η3

)450η2

(G5 −K7 +

8K18

π

)]]H0(η)

+

[− 8(1 + η)2

(17 + 883η + 17η2

)225(−1 + η)2ηπ

+2(− 865 + 11775η + 2625η2 + 1137η3

)K4

225(−1 + η)2π

]H2

0(η)

1√

1− y√y

+

[− (−1 + η)R43

225η2(1− y + ηy)(−η − y + ηy)− 64(−1 + η)(1 + y)(G2 −K2)

15η

−64

15(−1 + η)(G3 −K5)(η + ηy) +

64

15η

(− 1 + η2 − y + η2y

)H0(y)

−64(−1 + η)(1 + η)y2

15η(1− y)H0(z)

]H0(η) +

224

3(1 + y)H2

0(η)

+

[R44

225η2(1− y + ηy)(−η − y + ηy)+

64(9 + 40η + 9η2

)y2

135η(1− y)H0(z)

]H0(y)

+32(1 + η2 + y + η2y

)15η

H20(y) +

R45

675η2(1− y + ηy)(−η − y + ηy)H1(y)

+64(1 + η2 + y + η2y

)15η

H0,1(y)−64(1 + η2 + y + η2y

)15η

ζ2 , (3.173)

ΦCA6 (z, y) = − 2R48

405η2+

1

1− y

[− 2

(981− 1406η + 981η2

)y

405η

+8(9 + 160η + 9η2

)yH1(y)

135η

]H0(z) +

128

27yH2

0(z)

+

− R46

1620η2π

−4(435 + 5940η + 1665η2 + 692η3

)K4(K8 +K9)

135(−1 + η)π

+2(1 + η)2

(1127 + 6478η + 1127η2

)135η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[4(257− 4018η + 257η2

)G1

135η2−(257− 4018η + 257η2

540η2

−692 + 1665η + 5940η2 + 435η3

270η2

[G12 +G13 −K13 −K14

60

Page 71: and 3-loop corrections to hard scattering processes in QCD

+8(K21 +K22 +K23 +K24)

π

]+435 + 5940η + 1665η2 + 692η3

270η2

[G14 +G15 −K16 −K17

+8(K25 +K26 +K27 +K28)

π

]]

+

[− 2(−1 + η)(1 + η)

(257− 4018η + 257η2

)G1

135η2

+4(435 + 5940η + 1665η2 + 692η3

)K2K4

135(−1 + η)π

+(−1 + η)(1 + η)

(257− 4018η + 257η2

1080η2+

(1 + η)R47

3240(−1 + η)η2π

+(1− η)2[−(692 + 1665η + 5940η2 + 435η3

)270η2

(G4 −K6 +

8K15

π

)−(435 + 5940η + 1665η2 + 692η3

)270η2

(G5 −K7 +

8K18

π

)]]H0(η)

+

[(1 + η)2

(1127 + 6478η + 1127η2

)270(−1 + η)2ηπ

−2(435 + 5940η + 1665η2 + 692η3

)K4

135(−1 + η)2π

]H2

0(η)

1√

1− y√y

+

[(−1 + η)R49

135η2(1− y + ηy)(−η − y + ηy)− 8(−1 + η)(1 + η)y

15η(1− y)H0(z)

]H0(η)

−72H20(η) +

[R50

135η2(1− y + ηy)(−η − y + ηy)

+8(9 + 320η + 9η2

)y

135η(1− y)H0(z)

]H0(y)

+R51

135η2(1− y + ηy)(−η − y + ηy)H1(y) , (3.174)

ΦCA7 (y) =

49(H0(y) + H1(y)

)R54

675η2(1− y + ηy)(−η − y + ηy)

+98

675η2(1 +

√y)(η + η3 + y − ηy − η3y + η4y +

1√yR52

)+

− 49(1 + η)2

(1− η + η2

)405η2π

+196η3K4(K8 +K9)

675(−1 + η)π

−98(1 + η)2(1− η + η2

)675η2

[G6 +G7 −

8(K19 +K20)

π

]+(1− η)2

[− 196

(1 + η + η2

)G1

675η2+

49(1 + η + η2

2700η2

+49

1350η2

[G12 +G13 −K13 −K14 +

8(K21 +K22 +K23 +K24)

π

]− 49η

1350

[G14 +G15 −K16 −K17 +

8(K25 +K26 +K27 +K28)

π

]]

61

Page 72: and 3-loop corrections to hard scattering processes in QCD

+

[− 196η3K2K4

675(−1 + η)π+

98(−1 + η)(1 + η)(1 + η + η2

)G1

675η2

+98(1 + η)

(1− η + η2

)(1 + η + η2

)2025(−1 + η)η2π

− 49(−1 + η)(1 + η)(1 + η + η2

5400η2

+(1− η)2[

49

1350η2

(G4 −K6 +

8K15

π

)+

49η

1350

(G5 −K7 +

8K18

π

)]]H0(η)

+

[98η3K4

675(−1 + η)2π− 49(1 + η)2

(1− η + η2

)1350(−1 + η)2ηπ

]H2

0(η)

1√

1− y√y

− 49(−1 + η)R53

675η2(1− y + ηy)(−η − y + ηy)H0(η) , (3.175)

ΦCA8 (y) = −64(−1 + η)z

15η(−1 + y)

−G8 −G9 +K8 +K9 + η2(G10 +G11 −K11 −K12)

+[G2 −K2 + η2(G3 −K5)

]H0(η)

. (3.176)

The polynomials Ri are:

R1 = −20(1 + η)2(1− 10η + η2

)(3.177)

R2 = −16(1− 9η − 8η2 − 9η3 + η4

)(3.178)

R3 = η(729− 862η + 729η2

)+ 27y2(−1 + η)2

(1 + 46η + η2

)−27y

(1 + 70η − 126η2 + 70η3 + η4

)(3.179)

R4 = 18η2 + 2yη(13− 50η + 13η2

)+ y3(−1 + η)2

(1 + 46η + η2

)−y2(−1 + η)2

(1 + 74η + η2

)(3.180)

R5 = 2η2(81− 34η + 81η2

)+y2

(9− 576η + 1391η2 − 1360η3 + 1391η4 − 576η5 + 9η6

)+9y4(−1 + η)2(1 + η)2

(1− 10η + η2

)− 18y3(−1 + η)2

(1− 21η − 21η3 + η4

)+2yη

(126− 385η + 302η2 − 385η3 + 126η4

)(3.181)

R6 = 2η2(81− 62η + 81η2

)+y2

(9− 576η + 1447η2 − 1472η3 + 1447η4 − 576η5 + 9η6

)+9y4(−1 + η)2(1 + η)2

(1− 10η + η2

)− 18y3(−1 + η)2

(1− 21η − 21η3 + η4

)+2yη

(126− 413η + 358η2 − 413η3 + 126η4

)(3.182)

R7 = −20(1 + η)2(5 + 22η + 5η2

)(3.183)

R8 = −16(5 + 27η + 32η2 + 27η3 + 5η4

)(3.184)

R9 = 2η(11− 70η + 11η2

)+ y2(−1 + η)2

(5 + 86η + 5η2

)−y(−1 + η)2

(5 + 118η + 5η2

)(3.185)

R10 = η(243− 790η + 243η2

)+ 9y2(−1 + η)2

(5 + 86η + 5η2

)−9y

(5 + 98η − 270η2 + 98η3 + 5η4

)(3.186)

R11 = y[− 280η3 + y2

(15− 96η + 757η2 − 1736η3 + 757η4 − 96η5 + 15η6

)+3y4(−1 + η)2(1 + η)2

(5 + 22η + 5η2

)−6y3(−1 + η)2

(5 + 21η + 108η2 + 21η3 + 5η4

)+4yη

(24− 79η + 254η2 − 79η3 + 24η4

)](3.187)

R12 = y[− 368η3 + y2

(15− 96η + 845η2 − 1912η3 + 845η4 − 96η5 + 15η6

)+3y4(−1 + η)2(1 + η)2

(5 + 22η + 5η2

)62

Page 73: and 3-loop corrections to hard scattering processes in QCD

−6y3(−1 + η)2(5 + 21η + 108η2 + 21η3 + 5η4

)+4yη

(24− 101η + 298η2 − 101η3 + 24η4

)](3.188)

R13 = −20(1 + η)2(29− 74η + 29η2

)(3.189)

R14 = 16(− 29 + 45η + 16η2 + 45η3 − 29η4

)(3.190)

R15 = −55η(243− 382η + 243η2

)+ y(783 + 23949η − 54320η2 + 23949η3 + 783η4

)(3.191)

R16 = (1 + η)[270η2 + 2yη

(233− 982η + 233η2

)+ y3(−1 + η)2

(29 + 974η + 29η2

)−y2(−1 + η)2

(29 + 1498η + 29η2

)](3.192)

R17 = −2η2(1215− 2686η + 1215η2

)−9y2(−1 + η)2

(29− 482η + 810η2 − 482η3 + 29η4

)+y3(−1 + η)2

(261− 144η − 1610η2 − 144η3 + 261η4

)−4yη

(1179− 3476η + 4250η2 − 3476η3 + 1179η4

)(3.193)

R18 = −2η2(1215− 2486η + 1215η2

)−9y2(−1 + η)2

(29− 482η + 810η2 − 482η3 + 29η4

)+y3(−1 + η)2

(261− 144η − 1210η2 − 144η3 + 261η4

)−4yη

(1179− 3376η + 4150η2 − 3376η3 + 1179η4

)(3.194)

R19 = −20(1 + η)2(55 + 26η + 55η2

)(3.195)

R20 = −16(55 + 81η + 136η2 + 81η3 + 55η4

)(3.196)

R21 = η(− 2187 + 4202η − 2187η2

)+ 3y(−1 + η)2

(55 + 1594η + 55η2

)(3.197)

R22 = (1 + η)[324η2 + 2yη

(337− 1526η + 337η2

)+ y3(−1 + η)2

(55 + 1594η + 55η2

)−y2(−1 + η)2

(55 + 2378η + 55η2

)](3.198)

R23 = −108(−3 + η)η2(−1 + 3η) + y3(−1 + η)2(1 + η)2(55 + 26η + 55η2

)−y2(−1 + η)2

(55− 538η + 1942η2 − 538η3 + 55η4

)−4yη

(196− 573η + 890η2 − 573η3 + 196η4

)(3.199)

R24 = −4η2(81− 250η + 81η2

)+ y3(−1 + η)2(1 + η)2

(55 + 26η + 55η2

)−y2(−1 + η)2

(55− 538η + 1862η2 − 538η3 + 55η4

)−4yη

(196− 553η + 850η2 − 553η3 + 196η4

)(3.200)

R25 = η + η3 + yη(1 + η2

)+ y2(−1 + η)2

(1 + η + η2

)(3.201)

R26 = y(1 + η)[− y(−1 + η)2(1 + η)2 + y2(−1 + η)2

(1 + η + η2

)−η(1 + η + η2

)](3.202)

R27 = 2η3 − yη(1 + η)2(1− η + η2

)+ y3(−1 + η)2(1 + η)2

(1− η + η2

)−y2(−1 + η)2

(1 + 2η + 2η3 + η4

)(3.203)

R28 = −128(1 + 15η + 16η2 + 15η3 + η4

)(3.204)

R29 = −32(1 + η)2(1 + 14η + η2

)(3.205)

R30 = 189 + 810y2(−1 + η)4 − 4518η − 2458η2 − 4518η3 + 189η4

−27y(37− 308η + 30η2 − 308η3 + 37η4

)(3.206)

R31 = 90y4(−1 + η)4 − 2η(7− 158η + 7η2

)+y(− 21 + 634η − 1418η2 + 634η3 − 21η4

)+4y2(−1 + η)2

(33− 296η + 33η2

)− 3y3(−1 + η)2

(67− 262η + 67η2

)(3.207)

R32 = y(63− 1488η + 5429η2 + 5816η3 + 5429η4 − 1488η5 + 63η6

)63

Page 74: and 3-loop corrections to hard scattering processes in QCD

+144y4(−1 + η)2(1 + η)2(1 + 14η + η2

)−45y3(−1 + η)2

(5 + 140η + 222η2 + 140η3 + 5η4

)+2η

(21− 474η − 470η2 − 474η3 + 21η4

)+2y2

(9 + 2640η − 3217η2 − 3472η3 − 3217η4 + 2640η5 + 9η6

)(3.208)

R33 = y(63− 1488η + 4789η2 + 7096η3 + 4789η4 − 1488η5 + 63η6

)+144y4(−1 + η)2(1 + η)2

(1 + 14η + η2

)−45y3(−1 + η)2

(5 + 140η + 222η2 + 140η3 + 5η4

)+2η

(21− 474η − 790η2 − 474η3 + 21η4

)+2y2

(9 + 2640η − 2897η2 − 4112η3 − 2897η4 + 2640η5 + 9η6

)(3.209)

R34 = −10(1 + η)2(109 + 446η + 109η2

)(3.210)

R35 = −8(109 + 555η + 664η2 + 555η3 + 109η4

)(3.211)

R36 = −387− 5958η − 10102η2 − 5958η3 − 387η4

+108y2(−1 + η)2(11− 14η + 11η2

)−9y

(89− 1312η − 210η2 − 1312η3 + 89η4

)(3.212)

R37 = 43 + 794η − 1530η2 + 794η3 + 43η4 + 12y3(−1 + η)2(11− 14η + 11η2

)−y2(−1 + η)2

(221− 866η + 221η2

)+2y

(23− 835η + 1576η2 − 835η3 + 23η4

)(3.213)

R38 = y[5120η3 + y

(129 + 1332η − 4129η2 − 18568η3 − 4129η4 + 1332η5 + 129η6

)−6y4(−1 + η)2(1 + η)2

(109 + 446η + 109η2

)+3y3(−1 + η)2

(479 + 3536η + 5250η2 + 3536η3 + 479η4

)−2y2

(456 + 3195η − 3680η2 − 7910η3 − 3680η4 + 3195η5 + 456η6

)](3.214)

R39 = y[2560η3 + y

(129 + 1332η − 6689η2 − 13448η3 − 6689η4 + 1332η5 + 129η6

)−6y4(−1 + η)2(1 + η)2

(109 + 446η + 109η2

)+3y3(−1 + η)2

(479 + 3536η + 5250η2 + 3536η3 + 479η4

)−2y2

(456 + 3195η − 4960η2 − 5350η3 − 4960η4 + 3195η5 + 456η6

)](3.215)

R40 = −160(1 + η)2(17 + 883η + 17η2

)(3.216)

R41 = −128(17 + 900η + 917η2 + 900η3 + 17η4

)(3.217)

R42 = −5(1557− 21798η + 3602η2 − 21798η3 + 1557η4

)+2y

(9009− 53793η + 49720η2 − 53793η3 + 9009η4

)(3.218)

R43 = (1 + η)[10η(53− 690η + 53η2

)+y(865− 15172η + 30678η2 − 15172η3 + 865η4

)+2y3(−1 + η)2

(1001− 3034η + 1001η2

)−y2(−1 + η)2

(2867− 17786η + 2867η2

)](3.219)

R44 = 2η(− 265 + 3450η + 2022η2 + 3450η3 − 265η4

)+8y3(−1 + η)2

(34 + 1969η + 4900η2 + 1969η3 + 34η4

)+y2(−1 + η)2

(593− 27584η − 34050η2 − 27584η3 + 593η4

)−y(865− 12898η + 35567η2 + 24180η3 + 35567η4 − 12898η5 + 865η6

)(3.220)

R45 = 2η(− 795 + 10350η + 10666η2 + 10350η3 − 795η4

)+8y3(−1 + η)2

(102 + 5907η + 13550η2 + 5907η3 + 102η4

)64

Page 75: and 3-loop corrections to hard scattering processes in QCD

+3y2(−1 + η)2(593− 27584η − 34050η2 − 27584η3 + 593η4

)−y(2595− 38694η + 97501η2 + 81740η3 + 97501η4 − 38694η5 + 2595η6

)(3.221)

R46 = −20(1 + η)2(1127 + 6478η + 1127η2

)(3.222)

R47 = −16(1127 + 7605η + 8732η2 + 7605η3 + 1127η4

)(3.223)

R48 = 1305 + 16902η + 1666η2 + 16902η3 + 1305η4

+3y(−1 + η)2(257− 4018η + 257η2

)(3.224)

R49 = (1 + η)[− 3η

(43 + 1046η + 43η2

)+ 2y2(−1 + η)2

(89 + 4957η + 89η2

)+y3(−1 + η)2

(257− 4018η + 257η2

)−y(435 + 5633η − 15640η2 + 5633η3 + 435η4

)](3.225)

R50 = y(− 435− 4249η + 17803η2 + 8690η3 + 17803η4 − 4249η5 − 435η6

)−y3(−1 + η)2(1 + η)2

(1127 + 6478η + 1127η2

)−η(129 + 3138η + 3074η2 + 3138η3 + 129η4

)+2y2(−1 + η)2

(781 + 7358η + 5990η2 + 7358η3 + 781η4

)(3.226)

R51 = y(− 435− 4249η + 14523η2 + 15250η3 + 14523η4 − 4249η5 − 435η6

)−y3(−1 + η)2(1 + η)2

(1127 + 6478η + 1127η2

)−3η

(43 + 1046η + 2118η2 + 1046η3 + 43η4

)+2y2(−1 + η)2

(781 + 7358η + 7630η2 + 7358η3 + 781η4

)(3.227)

R52 = η + η3 + yη(1 + η2

)+ y2(−1 + η)2

(1 + η + η2

)(3.228)

R53 = y(1 + η)[− y(−1 + η)2(1 + η)2 + y2(−1 + η)2

(1 + η + η2

)−η(1 + η + η2

)](3.229)

R54 = 2η3 − yη(1 + η)2(1− η + η2

)+ y3(−1 + η)2(1 + η)2

(1− η + η2

)−y2(−1 + η)2

(1 + 2η + 2η3 + η4

). (3.230)

In the Appendices of [198], a set of relations and evaluations of iterated integrals can be found,which were used for this calculation. We present further relations in Appendices A and B.

3.2.3 Numerical results

A numerical evaluation of the size of this correction compared to the total O(T 2F ) is shown in

Figure 6, depicting the ratio between the two-mass contribution and the total contribution toO(T 2

F ). Their appreciable size of O(0.4) makes it necessary to include them in numerical studies.

3.2.4 Summary

We computed the two-mass contributions to the polarized OMEs A(3)gg,Q and A

(3),PSQq in the Larin

scheme at O(a3s) in semi-analytic form in z-space and, for A(3)gg,Q, analytically in N -space. We

show that their numerical contribution is of the same order of magnitude as the single-masscontribution and conclude that two-mass effects should be taken into account in the variableflavour number scheme.

65

Page 76: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.1000.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

z

A˜gg,Q

(3)

Agg,Q

(3),TF2

Figure 6: The ratio of the two mass contribution to the total contribution at O(T 2F ) for the polarized

massive OME A(3)gg,Q as a function of the momentum fraction z and the virtuality µ2. Dashed line:

µ2 = 50 GeV2; Dash–dotted line: µ2 = 100 GeV2; Full line: µ2 = 1000 GeV2. For the values of mc

and mb we refer to the on–shell heavy quark masses mc = 1.59 GeV and mb = 4.78 GeV [280,281],from [198].

66

Page 77: and 3-loop corrections to hard scattering processes in QCD

4 The logarithmic single-mass contributions to the polarized

asymptotic O(a3s) Wilson coefficients in deeply inelastic scat-

tering

Heavy flavour contributions to the structure functions in deep-inelastic scattering need to betaken into account in precision studies of DIS. They arise when quark masses are not neglectedin the DIS process. These heavy flavour contributions can be attributed to the Wilson coefficients

CS,PS,NSi

(N,NF + 1,

Q2

µ2,m2

µ2

)= CS,PS,NS

i

(N,NF ,

Q2

µ2

)+HS,PS

i (N,NF + 1,Q2

µ2,m2

µ2

)+LS,PS,NS

i (N,NF + 1,Q2

µ2,m2

µ2

), (4.1)

where the symbol NF + 1 refers to NF massless flavours and one additional massive flavour[158, 159]. In this notation, the Wilson coefficients Hi identify the contributions where the off-shell photon couples to a heavy quark, and Li to those where it couples to a light quark. Thelight flavour Wilson coefficients are denoted by Ci.

In the asymptotic limit Q2 ≫ m2, where m is the mass of the heavy quark, the asymptoticform of the Wilson coefficients can be obtained through the factorization formula

CS,PS,NS,asympj

(N,NF + 1,

Q2

µ2,m2

µ2

)=∑

i

AS,PS,NSij

(N,NF + 1,

m2

µ2

)CS,PS,NS

i

(N,NF + 1,

Q2

µ2

)+O

(m2

Q2

)(4.2)

with AS,PS,NSi,j the matrix elements of twist-2 operators between partonic states, which contain

the contributions of heavy quarks in the loops:

AS,PS,NSi,j

(N,NF + 1,

m2

µ2

)= ⟨j|OS,NS

i |j⟩, j = q, g. (4.3)

Both the light Wilson coefficients Ci and the OMEs Aij can be calculated perturbatively in aseries in as,

Ci

(N,

Q2

µ2

)=

∞∑k=0

aks C(k)i

(N,

Q2

µ2

), (4.4)

AS,PS,NSij

(N,

m2

µ2

)=

∞∑k=0

aks A(k),S,PS,NSij

(N,

m2

µ2

). (4.5)

After the renormalization procedure is carried out, in our case in the MS scheme for the strongcoupling constant and the on-mass-shell scheme for the mass of the heavy quark, the light Wilsoncoefficients and the OMEs take the form

A(k)ij =

k∑ℓ=0

A(k,ℓ)ij lnℓ m

2

µ2, (4.6)

C(k)i =

k∑ℓ=0

C(k,ℓ)i lnℓ Q

2

µ2. (4.7)

Treating γ5, we work in the Larin scheme.

67

Page 78: and 3-loop corrections to hard scattering processes in QCD

With the definitions

f(Nf ) ≡ f(NF )

NF

, (4.8)

f(NF ) ≡ f(NF + 1)− f(NF ) , (4.9)

the heavy quark Wilson coefficients take the asymptotic form [158]

LNS,Qq,g1

(NF + 1) = a2s

[A

(2),NSqq,Q (NF + 1) + C(2),NS

q,g1(NF )

]+ a3s

[A

(3),NSqq,Q (NF + 1) + A

(2),NSqq,Q (NF + 1)C(1),NS

q,g1(NF + 1)

+C(3),NSq,g1

(NF )], (4.10)

LPSq,g1

(NF + 1) = a3s

[A

(3),PSqq,Q (NF + 1) + A

(2)gq,Q(NF + 1) NF C

(1)g,g1

(NF + 1)

+NFˆC(3),PSq,g1

(NF )], (4.11)

LSg,g1

(NF + 1) = a2sA(1)gg,Q(NF + 1)NF C

(1)g,g1

(NF + 1)

+ a3s

[A

(3)qg,Q(NF + 1) + A

(1)gg,Q(NF + 1) NF C

(2)g,g1

(NF + 1)

+A(2)gg,Q(NF + 1) NF C

(1)g,g1

(NF + 1)

+ A(1)Qg(NF + 1) NF C

(2),PSq,g1

(NF + 1) +NFˆC(3)g,g1

(NF )], (4.12)

HPSq,g1

(NF + 1) = a2s

[A

(2),PSQq (NF + 1) + C(2),PS

q,g1(NF + 1)

](4.13)

+ a3s

[A

(3),PSQq (NF + 1) + C(3),PS

q,g1(NF + 1)

+A(2)gq,Q(NF + 1) C(1)

g,g1(NF + 1) + A

(2),PSQq (NF + 1) C(1),NS

q,g1(NF + 1)

],

HSg,g1

(NF + 1) = as

[A

(1)Qg(NF + 1) + C(1)

g,g1(NF + 1)

]+ a2s

[A

(2)Qg(NF + 1) + A

(1)Qg(NF + 1) C(1),NS

q,g1(NF + 1)

+ A(1)gg,Q(NF + 1) C(1)

g,g1(NF + 1) + C(2)

g,g1(NF + 1)

]+ a3s

[A

(3)Qg(NF + 1) + A

(2)Qg(NF + 1) C(1),NS

q,g1(NF + 1)

+ A(2)gg,Q(NF + 1) C(1)

g,g1(NF + 1)

+ A(1)Qg(NF + 1)

C(2),NS

q,g1(NF + 1) + C(2),PS

q,g1(NF + 1)

+ A

(1)gg,Q(NF + 1) C(2)

g,g1(NF + 1) + C(3)

g,g1(NF + 1)

]. (4.14)

In the unpolarized case, the asymptotic form of the heavy flavour Wilson coefficients hasbeen computed with this method to O(a3) in [165,183] and in the case of the structure functiong1 the non-singlet Wilson coefficient LNS

q,g1was calculated in [184]; see also [284].

We briefly review how the logarithmic terms in the massless Wilson coefficients are obtainedfollowing [285]. From the renormalization group equation∑

i

[ ∂

∂ lnµ2+ β(as)

∂as− γij

]Ci

(as,

Q2

µ2

)= 0 (4.15)

and

β(as) = −∞∑k=0

ak+2s βk, (4.16)

68

Page 79: and 3-loop corrections to hard scattering processes in QCD

inserting the ansatz (4.7) into (4.15) one obtains the explicit form of C(k,ℓ)i for ℓ > 0 in terms

of lower-order quantities. For instance, one can write for the non-singlet Wilson coefficient inN -space

CNS(0,0)q = 1 (4.17)

CNS(1,1)q = −CNS(0,0)

q γNS(0)qq (4.18)

CNS(2,2)q =

1

2

(− β0C

NS(1,1)q − cNS(1,1)

q γNS(0)qq

)(4.19)

CNS(2,1)q = −β0CNS(1,0)

q − CNS(1,0)q γNS(0)

qq − CNS(0,0)q γNS(1)

qq . (4.20)

Formulas for CS(k,ℓ)g and C

S(k,ℓ)q can be derived in a very similar way.

In the case of the structure function g1, the massless Wilson coefficients are not currentlyknown to 3-loop accuracy. In the formulas reported in Appendix C and Appendix D, the termsC

(3)i are all left symbolic. However, they cannot affect the logarithmic terms ln(Q2/m2).The form of the renormalized massive OMEs has been derived in [158,175]. In [199] we have

collected the explicit form of the renormalized OMEs in the Larin scheme, in terms of harmonicsums [246,247,255,256]. These formulas, which we do not repeat here due to their length, havebeen collected using the Mathematica packages HarmonicSums and Sigma.

The explicit results on the logarithmic corrections are reported in Appendix C and Ap-pendix D.

69

Page 80: and 3-loop corrections to hard scattering processes in QCD
Page 81: and 3-loop corrections to hard scattering processes in QCD

5 N3LO scheme-invariant evolution of the non-singlet structure

functions FNS2 and gNS

1

The measurement of DIS structure functions provides an ideal framework for the measurementof the strong coupling constant as(MZ), which is known today with a precision of O(1%). Fitsof the experimental data are typically performed by parametrizing the non-perturbative partondistribution functions through an appropriate functional form with free parameters, and bybuilding the theoretical prediction for the structure functions through a convolution with the DISWilson coefficients. A global fit then delivers the parameters and the measurement of as(MZ)by an error minimization procedure, along with the respective uncertainties, see e.g. [211] for astudy of F2 and [212] for a study of g1.

In the non-singlet case, it is also possible to directly compare the structure functions at twovirtualities, considering an experimentally determined input at a starting scale Q2

0 and fittingdata at Q2 > Q2

0. In the massless case, the relationship between the structure function at twodifferent virtualities only depends on one parameter, namely as, and is scheme-invariant, i.e.independent on the factorization scheme which defines the factorization of the structure functioninto the Wilson coefficients and the parton distribution functions [41, 223], see also [286] forthe explicit treatment of the singlet case. In principle, this makes it possible to perform aone-parameter fit for as, potentially reducing the uncertainty on its measurement.

This type of framework could be extended by considering massive quarks, by importingprecision measurements of the masses mb, mc from other sources. In [200], we completed theformalism of [223] by also considering the asymptotic heavy Wilson coefficients, and performa numerical study of their effects. An implementation of the formalism has been developed ina numerical code which performs the evolution in N -space and obtains the structure functionsin momentum fraction space by performing the inverse Mellin transform through a numericalintegration in the complex N -plane. The evolution of the PDFs in N -space has been consideredbefore in [287]; the analyses of [211,212] have also been performed in N -space.

In an analysis on experimental data, it would be important to apply the cutsW 2 > 15 GeV2,Q2 > 10 GeV2, with W the invariant mass of the hadrons in the final state, in order to excludehigher-twist effects from the experimental sample and ensure that the description given by theasymptotic Wilson coefficients is sufficiently accurate.

5.1 Flavour decomposition

The non-singlet flavour distributions can be written as [287]

v±k2−1 =k∑

l=1

(ql ± ql)− k(qk ± qk), (5.1)

with qi the quark distributions. For three light flavours, they are

v±0 = 0 (5.2)

v±3 = (u± u)− (d± d) (5.3)

v±8 = (u± u) + (d± d)− 2(s± s) (5.4)

and in general

qi + qi =1

NF

Σ− 1

iv+i2−1 +

NF∑l=i+1

1

l(l − 1)v+l2−1, (5.5)

Σ =

NF∑l=1

(ql + ql), (5.6)

71

Page 82: and 3-loop corrections to hard scattering processes in QCD

and the nucleon structure functions are given by

F p2 = x

[29Σ +

1

6v+3 +

1

18v+8

](5.7)

F d2 =

1

2[F p

2 + P n2 ] = x

[29Σ +

1

18v+8

](5.8)

with a similar relation for gp,d1 . A projection on the singlet distribution would require chargedcurrent structure functions [134]

1

2[W p,+

2 +W p,−2 ] = xΣ (5.9)

with the index ± indicating the exchange of a W+ or W− boson. We will consider the flavournon-singlet combinations

FNS2 = F p

2 − F d2 =

1

6xCNS,+

q ⊗ v+3 , (5.10)

xgNS1 =

1

6x∆CNS,+

q ⊗∆v+3 . (5.11)

5.2 The non-singlet evolution

We derive a relation, valid in N -space,

FNS(Q2) = ENS(Q2, Q2

0)FNS(Q20), (5.12)

where FNS refers to FNS2 or to gNS

1 , solving the evolution equation

d

dtln[FNS(Q2)

]=

d

dtln[CNS(Q2)

]+d

dtln[qNS(Q2)

]. (5.13)

The Wilson coefficient is given by

C(Q2) = 1 +∞∑k=1

aks(Q2)Ck, Ck = ck + hk(Lc, Lb). (5.14)

Here ck denote the expansion coefficients of the massless Wilson coefficients and hk of the massiveWilson coefficient, with

Lc = lnQ2

m2c

, Lb = lnQ2

m2b

. (5.15)

In the non-singlet case the heavy flavor corrections contribute from O(a2s) onward. One has

h2 = h2(Lc) + h2(Lb) (5.16)

h3 = h3(Lc) + h3(Lb) +ˆh3(Lc, Lb) (5.17)

where h denote the single mass andˆh the double mass contributions.

One may rewrite the differential operator

d

d ln(Q2)=das(Q

2)

d ln(Q2)

d

das(Q2)(5.18)

withdas

d ln(Q2)= −

∞∑k=0

βkak+2s . (5.19)

72

Page 83: and 3-loop corrections to hard scattering processes in QCD

The evolution equation for the non-singlet quark density is

d

dtln[qNS(Q2)

]=

∞∑k=0

Pkak+1(Q2), (5.20)

where βk are the expansion coefficients of the QCD-β function and PNSk,qq ≡ PNS

k are the splittingfunctions. The anomalous dimensions are related to the splitting functions by1

γij,(k)(N) = −∫ 1

0

dxxN−1Pij,(k)(x), (5.21)

where γij,(k)(N) are the expansion coefficients of the non-singlet anomalous dimensions.One obtains to N3LO

ENS(Q2, Q2

0) =

(a

a0

)− P02β0

1 +

a− a02β2

0

[1 + a2C2(Q

2)− a20C2(Q20)](2β2

0C1 − β0P1 + β1P0

)−(a2 − a20

)4β3

0

(2β2

0C1 − β0P1 + β1P0

)[2β3

0C21 + β2

0P2 − β0β1P1 +(β21 − β0β2

)P0

]+

(a2 + aa0 + a20

)3β2

0

[2β4

0C31 − β3

0P3 + β20β1P2 +

(β20β2 − β0β

21

)P1

+(β20β3 − 2β0β1β2 + β3

1

)P0

]+a− a04β2

0

(2β2

0C1 − β0P1 + β1P0

)2+(a− a0)

2

24β40

(2β2

0C1 − β0P1 + β1P0

)3 − a+ a02β0

[2β3

0C21 + β2

0P2 − β0β1P1

+P0

(β21 − β0β2

)]+ a2C2(Q

2)− a20C2(Q20)− C1

[a3C2(Q

2)− a30C2(Q20)]

+a3C3(Q2)− a30C3(Q

20)

. (5.22)

Here we used the notation a = as(Q2), a0 = as(Q

20) and Pi = PNS

qq,(i), considered in N -space.The heavy quark contributions to the Wilson coefficients are given by [73,158,181,184]

h(Q)2 = −β0,Q

4Pqq,(0) ln

2

(Q2

m2

)+

1

2PNSqq,(1) ln

(Q2

m2

)+ a(2),NS

qq +β0,Q4ζ2Pqq,(0) + Cq

(2),NS(5.23)

h(Q)3 = −1

6Pqq,(0)β0,Q (β0 + 2β0,Q) ln

3

(Q2

m2

)+

1

4

[−2PNS

qq,(1)β0,Q + 2PNSqq,(1) (β0 + β0,Q)

−β1,QPqq,(0)

]ln2

(Q2

m2

)− 1

2

[−PNS

qq,(2) −(4a

(2),NSqq,Q + ζ2β0,QPqq,(0)

)(β0 + β0,Q)

−Pqq,(0)β(1)1,Q

]ln

(Q2

m2

)+ 4a

(2),NSqq,Q (β0 + β0,Q) + Pqq,(0)β

(2)1,Q +

1

6Pqq,(0)β0β0,Qζ3

+1

4PNSqq,(1)β0,Qζ2 − 2δm

(1)1 β0,QPqq,(0) − δm

(0)1 PNS

qq,(1) + 2δm(−1)1 a

(2),NSqq,Q + a

(3),NSqq,Q

+

[−β0,Q

4Pqq,(0) ln

2

(Q2

m2

)+

1

2PNSqq,(1) ln

(Q2

m2

)+ a(2),NS

qq +β0,Q4ζ2Pqq,(0)

]C(1),NS

q

+C(3),NSq . (5.24)

1Our normalizations are such that a factor of two has to be applied to those given in [69,70]

73

Page 84: and 3-loop corrections to hard scattering processes in QCD

and the two-mass contribution by [121]

ˆhNS3 = P (0)

qq β20,Q

[2

3

(L3c + L3

b

)+

1

2

(L2cLb + LcL

2b

)]− β0,QP

(1),NSqq

(L2c + L2

b

)−[4a

(2),NSqq,Q β0,Q

−1

2β20,QP

(0)qq ζ2

](Lc + Lb) + 8a

(2),NSqq,Q β0,Q + a

(3),NSqq,Q (mc,mb, Q

2). (5.25)

The two-mass term is the same in the unpolarized and polarized case. We employed the definition

f(x,NF ) = f(x,NF + 1)− f(x,NF ). (5.26)

The perturbative solution for as(Q2) is given in the MS scheme by [288]

as(Q2) =

1

β0L− β1β30L

2ln(L) +

1

β30L

3

[β21

β20

(ln2(L)− ln(L)− 1) +β2β0

]

+1

β40L

4

[β31

β30

(− ln3(L) +

5

2ln2(L) + 2 ln(L)− 1

2

)− 3

β1β2β20

ln(L) +β32β0

],(5.27)

with L = ln(Q2/Λ2QCD). Here the integration constant for solving (5.19) is chosen by (β1/β

20) ln(β0)

[40]. The expansion coefficients of the β-function to N3LO were calculated in [35,36,93–98]. Theflavor matching conditions were given in [288]. The expansion coefficients of the renormalizedmass were given in [234, 235]. The constant and O(ε) parts of the massive unrenormalized

operator matrix elements at O(aks) are denoted by a(k)ij and a

(k)ij , respectively, cf. [159–161,289].

In the numerical evaluation shown below, an approximate form is used for the three-loopmassless Wilson coefficients. For all other Wilson coefficients, the analytic Mellin-space repre-sentations are used. After reduction to a basis of independent harmonic sums [255], the objectsdepend on 32 harmonic sums [246, 247] up to weight 6; with weight-6 sums appearing only inthe 3-loop Wilson coefficient.

The harmonic sums in N space are calculated in the complex plane after representing themusing the Mellin transforms of harmonic polylogarithms, and computing their asymptotic expan-sions [247, 256, 257]. Together with exact step relations in N , an accurate numerical evaluationof the harmonic sums becomes possible in the complex plane. The analytic continuation ofharmonic sums needed for the anomalous dimensions up to 3 loops has first been performedin [258].

In the case of FNS2 , the relevant splitting functions are PNS,+

qq,(k) , whereas for gNS1 they are PNS,−

qq,(k) .

The massless Wilson coefficients have been calculated in [40,62–64,71] and [88,89] respectively.For the four-loop splitting functions, which are not currently known in analytic form, we employin numerical illustrations below the Pade approximant

P 3,±,NSqq (N) ≈ P 2,±,NS

qq (N)2

P 1,±,NSqq (N)

. (5.28)

Low moments of the four-loop splitting functions have been calculated in [290–295]. A com-parison of these exact moments to the Pade approximant is shown in Table 3.

A previous analysis [211] has showed that a 100% error on PNSqq,(3) would determine an error

of 2 MeV on ΛQCD, well below the experimental error currently of δΛQCD = 26 MeV.The leading small-x terms of PNS,+

3 and PNS,−2 have been studied in [296–298]; the leading

large-NF behaviour of the splitting functions has also been given in [299].

74

Page 85: and 3-loop corrections to hard scattering processes in QCD

N δγ+,NS N δγ−,NS

2 0.208822541 1 0.0

4 0.123728742 3 0.147102092

6 0.087155544 5 0.101634935

8 0.064949195 7 0.074593595

10 0.049680399 9 0.056598595

12 0.038394815 11 0.043633919

14 0.029638565 13 0.033767853

16 0.022602035 15 0.025956941

Table 3: The relative error comparing the exact moments of the four–loop anomalous dimensions,γ(3),±,NS, with the Pade approximation (5.28).

5.3 Numerical results

In our numerical illustration we employ the values of the charm and bottom quarks of mc =1.59 GeV [280] and mb = 4.78 GeV [300].

The input structure function in the unpolarized case is built from the non-singlet partondistribution [211]

xqNS(x,Q20) =

1

3

[0.262 x0.298(1− x)4.032(1 + 6.042

√x+ 35.49x)

−1.085 x0.5(1− x)5.921(1− 3.618√x+ 16.41x)

](5.29)

at Q20 = 4 GeV2; for the polarized case we use a fit of the structure function of [212] at Q2

0 =10 GeV2.

We also employ for the purpose of illustration the quantity

F h2 (N,Q

2) = [ENS − ENS|h=0]F2(N,Q20). (5.30)

In Fig. 7 we show the scheme-invariant evolution of the non-singlet structure functions FNS2

and xgNS1 , in the kinematic region Q2 ∈ [10, 104] GeV2. In Fig. 8 we expand the representation

for the region of larger values of x. In Fig. 9 we illustrate the relative effect of the scale evolutionin Q2 both for FNS

2 and xgNS1 comparing to the starting scale Q2

0. In Fig. 10 we show the ratioof the results obtained at leading order (LO), next-to-leading order (NLO), and next-to-next-toleading order (NNLO) to the N3LO results at Q2 = 100 GeV2. In Fig. 11 we illustrate therelative size of the heavy flavor parts for the same region in Q2 in the unpolarized and polarizedcases. In the important region x ≤ 0.4 the heavy flavor corrections reach the size of ∼ 1%.In Fig. 12 we illustrate the effect of the half difference if putting P 3,±,NS

qq = 2P 2,±,NSqq

2/P 2,±,NS

qq

and P 3,±,NSqq = 0 for both FNS

2 and xgNS1 . This rescaled correction is in the sub–percent range.

Moreover, the impact on ΛQCD comes from the slope in Q2 which is seen to be rather small.

75

Page 86: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

0.00

0.02

0.04

0.06

0.08

0.10

x

F2

NS(x

,Q2)

10-4 0.001 0.010 0.100 1

0.000

0.005

0.010

0.015

0.020

0.025

x

xg

1N

S(x

,Q2)

Figure 7: Left: The structure function FNS2 at N3LO. Right: The structure function xgNS

1 at N3LO.Full lines: Q2 = 10 GeV2; dashed lines: 100 GeV2; dash-dotted lines: 1000 GeV2; dotted lines:10000 GeV2.

0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

x

F2

NS(x

,Q2)

0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

x

xg

1N

S(x

,Q2)

Figure 8: The same as Figure 1 but with expanded large x region.

10-4 0.001 0.010 0.100 1

0.0

0.5

1.0

1.5

x

F2N

S(x

,Q2)/

F2N

S(x

,Q0

2)

10-4 0.001 0.010 0.100 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

xg

1NS(x

,Q2)/

xg

1NS(x

,Q0

2)

Figure 9: Left: The relative contribution of FNS2 in the evolution from Q2 = 10 GeV2 to 10000 GeV2.

Right: The same for the structure function xgNS1 .

76

Page 87: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

0.90

0.95

1.00

1.05

1.10

x

F2(i),

NS/

F2N

S

10-4 0.001 0.010 0.100 1

0.90

0.95

1.00

1.05

1.10

x

xg

1(i),

NS/

xg

1NS

Figure 10: Left: The relative contributions from LO (dotted lines), NLO (dashed lines) and NNLO(full lines) to the structure function FNS

2 at N3LO at Q2 = 100 GeV2 as an example. Right: Thesame for the structure function xgNS

1 .

10-4 0.001 0.010 0.100 1

-0.04

-0.02

0.00

0.02

0.04

x

F2h,N

S(x

,Q2)/

F2N

S(x

,Q2)

10-4 0.001 0.010 0.100 1

-0.04

-0.02

0.00

0.02

0.04

x

xg

1h,N

S(x

,Q2)/

xg

1NS(x

,Q2)

Figure 11: Left: The relative contribution of the heavy flavor contributions due to c and b quarksto the structure function FNS

2 at N3LO; dashed lines: 100 GeV2; dashed-dotted lines: 1000 GeV2;dotted lines: 10000 GeV2. Right: The same for the structure function xgNS

1 at N3LO.

10-4 0.001 0.010 0.100

-0.004

-0.002

0.000

0.002

0.004

x

ΔF

2(3) /

F2

10-4 0.001 0.010 0.100

-0.004

-0.002

0.000

0.002

0.004

x

Δg

1(3) /

g1(3)

Figure 12: The effect of the variation of P 3,±,NSqq around the value in Eq. (5.28) by ±100%. Dashed

lines: Q2 = 100 GeV2, Dash-dotted lines: Q2 = 1000 GeV2; Dotted lines: Q2 = 10000 GeV2. Left:FNS2 ; Right: xgNS

1 .

77

Page 88: and 3-loop corrections to hard scattering processes in QCD
Page 89: and 3-loop corrections to hard scattering processes in QCD

6 Hypergeometric functions and differential systems

Hypergeometric functions are known to occur in the computation of Feynman integrals [160,229,253, 301, 302]. In the mathematical literature, hypergeometric functions of various kinds havebeen studied by a number of authors [303–319].

A major methodological advance in the calculation of Feynman diagrams was the develop-ment of the method of integration by parts [320–328], used together with systems of differentialequations obeyed by sets of Feynman integrals [254,261,329–334]. Systems obtained as the resultof IBP reduction can be decoupled [335,336] using methods available in the package OreSys [337].In the case of partial differential equations, there exists the method of Janet bases [338].

Calculations in which hypergeometric functions have played a role are among others [339–343]at one loop, multileg level, and [344–347] at higher loop order.

Other authors [348, 349] have emphasized the relationship between Feynman integrals andGelfand-Kapranov-Zelevinsky hypergeometric systems [350–353], which have solutions in termsof hypergeometric functions.

In [201] we systematized the study of a class of differential systems obeyed by certain classes ofhypergeometric functions and investigated in some concrete examples how the series expansion ofhypergeometric functions with respect to a parameter is obtained in the context of difference ringmethods [354–362] implemented in the package Sigma [202–204] and EvaluateMultiSums [279].

We follow here the exposition of [201], in which we present our package HypSeries whichemploys strategies useful for the classifications of systems of differential equations having hyper-geometric solutions.

6.1 Differential equations

Hypergeometric functions satisfy differential equations and have integral representations. Forinstance, the function 2F1 has the property

2F1

[a1 a2b1

; z

]=

Γ(b1)

Γ(a1)Γ(b1 − a1)

∫ 1

0

dxxa1−1(1− x)b1−a1−1(1− zx)−a2 (6.1)

and satisfies the differential equation

x(1− x)d2

dx2+ (c− (a+ b+ 1)x)

d

dx− ab . (6.2)

For the function 3F2 one obtains

x2(1− x)d3

dx3+ x(A2 +B2x)

d2

dx2+ (A1 +B1x)

d

dx+ C, (6.3)

with A2 = b1 + b2 + 1, B2 = −(3 + a1 + a2 + a3), A1 = b1b2, B1 = −(a2a1 + a3a1 + a2a3 + a1 +a2 + a3 + 1), C = −a1a2a3, while p+1Fp can be represented by the iterative integral∫ 1

0

dxxa−1(1− x)b−1pFq

[a1 ... apb1 ...bq

;xz

]=

Γ(a)Γ(b)

Γ(a+ b)p+1Fq+1

[a1 ... ap a

b1 ...bq a+ b; z

](6.4)

and satisfies the differential equation

xp(1− x)dp+1

dxp+1+

p∑k=1

xk−1(Ak +Bkx)dk

dxk+ C (6.5)

since it is annihilated by the differential operator

xd

dx

(xd

dx+ b1 − 1

)...

(xd

dx+ bq − 1

)− x

(xd

dx+ a1

)...

(xd

dx+ ap

). (6.6)

79

Page 90: and 3-loop corrections to hard scattering processes in QCD

The products of the differential operators in (6.6) ϑ = x(d/dx) ≡ x∂x, can be written in thefollowing form

ϑ = x∂x (6.7)

ϑ2 = x∂x + x2∂2x (6.8)

ϑ3 = x∂x + 3x2∂2x + x3∂3x (6.9)

ϑ4 = x∂x + 7x2∂2x + 6x3∂3x + x4∂4x (6.10)

ϑ5 = x∂x + 15x2∂2x + 25x3∂3x + 10x4∂4x + x5∂5x, etc. (6.11)

One can parametrize the equations obeyed by the Horn hypergeometric functions [306–309,311] F1 to F4, G1 to G3, and H1 to H7, including the Appell functions [306,307] as follows:

a+ (bx+ c)∂x + x(d+ ex)∂2x + fy∂y + (gy + hxy)∂2x,y + jy2∂2y = 0 (6.12)

a1 + (b1y + c1)∂y + y(d1 + e1y)∂2y + f1x∂x + (g1x+ h1xy)∂

2x,y + j1x

2∂2x = 0, (6.13)

with the example of the Appell F1 function

F1 : x(1− x)∂2x + y(1− x)∂2x,y + (A+Bx)∂x + Cy∂y +D (6.14)

F1 : y(1− y)∂2y + x(1− y)∂2x,y + (A+B′y)∂y + C ′x∂x +D′. (6.15)

In physical applications, the functions S1 and S2 appeared in [344,345]. They are annihilatedby the differential operators

S1 : a+ (c+ bx)∂x + x(d+ ex)∂2x + x2(l + px)∂3x + fy∂y + x(q + rx)y∂2x∂y + jy2∂2y+sxy2∂x∂

2y + (gy + hxy)∂2x,y (6.16)

: a1 + f1x∂x + j1x2∂2x + (c1 + b1y)∂y + y(d1 + e1y)∂

2y + (g1x+ h1xy)∂

2x,y (6.17)

S2 : a+ (c+ bx)∂x + x(d+ ex)∂2x + x2(l + px)∂3x + fy∂y + x(q + rx)y∂2x∂y + jy2∂2y+sxy2∂x∂

2y + (gy + hxy)∂2x,y (6.18)

: a1 + f1x∂x + (c1 + b1y)∂y + j1x2∂2x∂y + y(d1 + e1y)∂

2y + q1xy∂x∂

2y + p1y

2∂3y+(g1x+ h1xy)∂

2x,y. (6.19)

For the Kampe de Feriet function

F p;q;kl;m;n

⎡⎣ (ap); (bq); (ck)x, y

(αl); (βm); (γn)

⎤⎦ =∞∑

r,s=0

∏pj=1(aj)r+s

∏qj=1(bj)r

∏kj=1(cj)s∏l

j=1(αj)r+s

∏mj=1(βj)r

∏nj=1(γj)s

xr

r!

ys

s!(6.20)

=∞∑

r,s=0

f [r, s]xrys (6.21)

one obtains the following annihilating differential operators [308,309]

p∏j=1

(x∂x + y∂y + aj)

q∏j=1

(x∂x + bj)− ∂x

l∏j=1

(x∂x + y∂y − 1 + αj)m∏j=1

(x∂x − 1 + βj) = 0, (6.22)

p∏j=1

(x∂x + y∂y + aj)k∏

j=1

(y∂y + cj)− ∂y

l∏j=1

(x∂x + y∂y − 1 + αj)n∏

j=1

(y∂y − 1 + γj) = 0. (6.23)

The differential operators for the triple hypergeometric series [315] read

D3,1 = A+ (B0 +B1x)∂x + x(E0 + E1x)∂2x + C1y∂y + F1y

2∂2y + (H0 +H1x)y∂2x,y

80

Page 91: and 3-loop corrections to hard scattering processes in QCD

+D1z∂z +G1z2∂2z + (L0 + L1x)z∂

2x,z + S1yz∂

2y,z (6.24)

D3,2 = A′ +B′1x∂x + E ′

1x2∂2x + (C ′

0 + C ′1y)∂y + y(F ′

0 + F ′1y)∂

2y + x(H ′

2 +H ′1y)∂

2x,y

+D′1z∂z +G′

1z2∂2z + L′

1xz∂2x,z + (S ′

0 + S ′1y)z∂

2y,z (6.25)

D3,3 = A′′ +B′′1x∂x + E ′′

1x2∂2x + C ′′

1 y∂y + F ′′1 y

2∂2y +H ′′1xy∂

2x,y + (D′′

0 +D′′1z)∂z

+z(G′′0 +G′′

1z)∂2z + x(L′′

2 + L′′1z)∂

2x,z + y(S ′′

2 + S ′′1z)∂

2y,z. (6.26)

The differential operators for the quadruple versions are given by

D4,1 = A+ E1t∂t + L1t2∂2t + (B0 +B1x)∂x + x(F0 + F1x)∂

2x + t(P0 + P1x)∂

2t,x + C1y∂y

+G1y2∂2y +R1ty∂

2t,y + (M0 +M1x)y∂

2x,y +D1z∂z +H1z

2∂2z + S1tz∂2t,z

+(N0 +N1x)z∂2x,z +Q1yz∂

2y,z (6.27)

D4,2 = A′ + E ′1t∂t + L′

1t2∂2t +B′

1x∂x + F ′1x

2∂2x + P ′1tx∂

2t,x + (C ′

0 + C ′1y)∂y + y(G′

0 +G′1y)∂

2y

+t(R′0 +R′

1y)∂2t,y + x(M ′

2 +M ′1y)∂

2x,y +D′

1z∂z +H ′1z

2∂2z + S ′1tz∂

2t,z +N ′

1xz∂2x,z

+(Q′0 +Q′

1y)z∂2y,z (6.28)

D4,3 = A′′ + E ′′1 t∂t + L′′

1t2∂2t +B′′

1x∂x + F ′′1 x

2∂2x + P ′′1 tx∂

2t,x + C ′′

1 y∂y +G′′1y

2∂2y +R′′1ty∂

2t,y

+M ′′1 xy∂

2x,y + (D′′

0 +D′′1z)∂z + z(H ′′

0 +H ′′1 z)∂

2z + t(S ′′

0 + S ′′1z)∂

2t,z + x(N ′′

2 +N ′′1 z)∂

2x,z

+y(Q′′2 +Q′′

1z)∂2y,z (6.29)

D4,4 = A′′′ + (E ′′′0 + E ′′′

1 t)∂t + t(L′′′0 + L′′′

1 t)∂2t +B′′′

1 x∂x + F ′′′1 x

2∂2x + (P ′′′2 + P ′′′

1 t)x∂2t,x

+C ′′′1 y∂y +G′′′

1 y2∂2y + (R′′′

2 +R′′′1 t)y∂

2t,y +M ′′′

1 xy∂2x,y +D′′′

1 z∂z +H ′′′1 z

2∂2z+(S ′′′

2 + S ′′′1 t)z∂

2t,z +N ′′′

1 xz∂2x,z +Q′′′

1 yz∂2y,z. (6.30)

They cover the functions Ki, i = 1...21 of Refs. [312,313].

6.2 Recursions

The formal power series ansatz

∞∑k1,...,kn=0

f [k1, ..., kn]xk11 ...x

knn (6.31)

with f [k1, ..., kn] hypergeometric induces a recurrence relation on the expansion coefficients,deriving from the differential equations of Section 6.1. (In addition, hypergeometric functionsobey contiguous relations in their parameters [301,363,364]).

We list here the recursions corresponding to the differential systems from the previous Section:

2F1 : (C + n(1− n+B1))f [n] + (1 + n)(n+ A1)f [1 + n] = 0 (6.32)

3F2 :(nB1 + (n− 1)nB2 + C − (n− 2)(n− 1)n

)f [n]

+((n+ 1)A1 + n(n+ 1)A2 + (n− 1)n(n+ 1)

)f [n+ 1] = 0 (6.33)

p+1Fp :

[C

n!− 1

(n− p− 1)!+

p∑k=1

Bk

(n− k)!

]f [n]

+(n+ 1)

[1

(n− p)!+

p∑k=1

Ak

(n− k + 1)!

]f [n+ 1] = 0. (6.34)

In the two–variable cases the expansion coefficients of the Horn–type functions obey[a+ bm+ e(m− 1)m+ n

(f + hm+ j(n− 1)

)]f [m,n]

81

Page 92: and 3-loop corrections to hard scattering processes in QCD

+(1 +m)(c+ dm+ gn)f [1 +m,n] = 0, (6.35)[a1 + f1m+ j1(m− 1)m+ n

(b1 + h1m+ e1(n− 1)

)]f [m,n]

+(1 + n)(c1 + g1m+ d1n)f [m, 1 + n] = 0, (6.36)

and for the S1-functions one has[a+ bm+ e(m− 1)m+ fn+ hmn+ j(n− 1)n+ (m− 2)(m− 1)mp+ (m− 1)mnr

+m(n− 1)ns]f [m,n] + (1 +m)

[c+ gn+m

(d+ l(m− 1) + nq

)]f [1 +m,n] = 0, (6.37)[

a1 + f1m+ j1(m− 1)m+ n(b1 + h1m+ e1(n− 1)

)]f [m,n]

+(1 + n)(c1 + g1m+ d1n)f [m, 1 + n] = 0, (6.38)

as, likewise, for the S2-functions[a+ bm+ e(m− 1)m+ fn+ hmn+ j(n− 1)n+ (m− 2)(m− 1)mp+ (m− 1)mnr +

m(n− 1)ns]f [m,n] + (1 +m)

[c+ gn+m

(d+ l(−1 +m) + nq

)]f [1 +m,n] = 0, (6.39)[

a1 + f1m+ n(b1 + h1m+ e1(n− 1)

)]f [m,n] + (1 + n)

[c1 + n(d1 + (−1 + n)p1)

+m(g1 + j1(m− 1) + nq1

)]f [m, 1 + n] = 0. (6.40)

For the expansion coefficients f [r, s] of the Kampe de Feriet functions the recurrences read

p∏j=1

(r + s+ aj)

q∏j=1

(r + bj)f [r, s]− (r + 1)l∏

j=1

(r + s+ αj)m∏j=1

(r + βj)f [r + 1, s] = 0, (6.41)

p∏j=1

(r + s+ aj)k∏

j=1

(s+ cj)f [r, s]− (s+ 1)l∏

j=1

(r + s+ αj)n∏

j=1

(s+ γj)f [r, s+ 1] = 0. (6.42)

The coefficients in the 3-variable cases obey[A+B1m+ E1(m− 1)m+ C1n+H1mn+ F1(n− 1)n+D1p+ L1mp+G1(p− 1)p

+npS1

]f [m,n, p] + (1 +m)(B0 + E0m+H0n+ L0p)f [1 +m,n, p] = 0, (6.43)[

A′ +B′1m+ E ′

1(m− 1)m+ C ′1n+H ′

1mn+ F ′1(n− 1)n+D′

1p+ L′1mp+G′

1(p− 1)p

+npS ′1

]f [m,n, p] + (1 + n)(C ′

0 +H ′2m+ F ′

0n+ pS ′0)f [m, 1 + n, p] = 0, (6.44)[

A′′ +B′′1m+ E ′′

1 (m− 1)m+ C ′′1n+H ′′

1mn+ F ′′1 (n− 1)n+D′′

1p+ L′′1mp+G′′

1(p− 1)p

+npS ′′1

]f [m,n, p] + (1 + p)(D′′

0 + L′′2m+G′′

0p+ nS ′′2 )f [m,n, 1 + p] = 0. (6.45)

For the 4-variable systems one has[A+B1m+ F1(m− 1)m+ C1n+mM1n+G1(n− 1)n+D1p+mN1p+H1(p− 1)p

+E1q +mP1q + L1(q − 1)q + npQ1 + nqR1 + pqS1

]f [m,n, p, q] + (1 +m)(B0 + F0m

+M0n+N0p+ P0q)f [1 +m,n, p, q] = 0, (6.46)[A′ +B′

1m+ F ′1(m− 1)m+ C ′

1n+mM ′1n+G′

1(n− 1)n+D′1p+mN ′

1p+H ′1(p− 1)p

82

Page 93: and 3-loop corrections to hard scattering processes in QCD

+E ′1q +mP ′

1q + L′1(q − 1)q + npQ′

1 + nqR′1 + pqS ′

1

]f [m,n, p, q] + (1 + n)(C ′

0 +mM ′2

+G′0n+ pQ′

0 + qR′0)f [m, 1 + n, p, q] = 0, (6.47)[

A′′ +B′′1m+ F ′′

1 (m− 1)m+ C ′′1n+mM ′′

1 n+G′′1(n− 1)n+D′′

1p+mN ′′1 p+H ′′

1 (p− 1)p

+E ′′1 q +mP ′′

1 q + L′′1(q − 1)q + npQ′′

1 + nqR′′1 + pqS ′′

1

]f [m,n, p, q] + (1 + p)(D′′

0 +mN ′′2

+H ′′0 p+ nQ′′

2 + qS ′′0 )f [m,n, 1 + p, q] = 0, (6.48)[

A′′′ +B′′′1 m+ F ′′′

1 (m− 1)m+ C ′′′1 n+mM ′′′

1 n+G′′′1 (n− 1)n+D′′′

1 p+mN ′′′1 p

+H ′′′1 (p− 1)p+ E ′′′

1 q +mP ′′′1 q + L′′′

1 (q − 1)q + npQ′′′1 + nqR′′′

1 + pqS ′′′1

]f [m,n, p, q]

+(1 + q)(E ′′′0 +mP ′′′

2 + L′′′0 q + nR′′′

2 + pS ′′′2 )f [m,n, p, 1 + q] = 0. (6.49)

6.3 The Solution of the Recursions

Given a field K with characteristic zero, a multiple hypergeometric series is a function

f(x1, . . . , xr) =∑ni≥0

A(n1, . . . , nr)xn11 · · · xnr

r (6.50)

where A : Nr → K, is hypergeometric, i.e.

siA(n1, . . . , ni, . . . , nr) = tiA(n1, . . . , ni + 1, . . . , nr), i = 1, . . . , r (6.51)

for polynomials si, ti ∈ K[n1, . . . , nr] being coprime.It was remarked in the previous sections how hypergeometric series satisfy differential equa-

tions which can be mapped into difference equations for the coefficients of the Taylor expansion.In general, not many algorithms exist to solve such a multivariate system of difference equationshaving the target solution space being that of hypergeometric functions; we refer the reader toSection 7 for an exposition of one direction more targeted toward the class of rational functions.

However, if a system of differential equations induces a system of recurrences of the form(6.51), then a method to investigate its solutions is possible using Sigma. Let us concentrate ona system of linear differential equations of the form[si

(x1

∂xi, . . . , xi

∂xi, . . . , xr

∂xr

)− 1

xiti

(x1

∂x1, . . . , xi

∂xi− 1, . . . , xr

∂xr

)]f(x1, . . . , xr) = 0.

(6.52)One has the property

xi∂

∂xixn11 · · ·xnr

r = nixn11 · · ·xnr

r (6.53)

which implies that for a polynomial p(n1, . . . , nr) we have

p(x1

∂x1, . . . , xi

∂xi, . . . , xr

∂xr

)xn11 · · ·xnr

r = p(n1, . . . , nr)xn11 · · ·xnr

r . (6.54)

Thus[si

(x1

∂x1, . . . , xi

∂xi, . . . , xr

∂xr

)]f(x1, . . . , xr)

=∑ni≥0

si(n1, . . . , ni, . . . , nr)A(n1, . . . , ni, . . . , nr)xn11 · · ·xnr

r (6.55)

[ti

(x1

∂x1, . . . , xi

∂xi− 1, . . . , xr

∂xr

)]f(x1, . . . , xr)

83

Page 94: and 3-loop corrections to hard scattering processes in QCD

=∑ni≥0

ti(n1, . . . , ni − 1, . . . , nr)A(n1, . . . , ni, . . . , nr)xn11 · · ·xnr

r (6.56)

and therefore, dividing the second equation by xi from the left,[ 1xiti

(x1

∂x1, . . . , xi

∂xi− 1, . . . , xr

∂xr

)]f(x1, . . . , xr)

=∑ni≥0

ti(n1, . . . , ni − 1, . . . , nr)A(n1, . . . , ni, . . . , nr)xn11 · · · xni−1

i · · ·xnrr .

(6.57)

The coefficient of the term xn11 · · ·xni

i · · ·xnrr in (6.55) and in (6.57) is respectively

si(n1, . . . , ni, . . . , nr)A(n1, . . . , ni, . . . , nr) (6.58)

andti(n1, . . . , ni, . . . , nr)A(n1, . . . , ni + 1, . . . , nr). (6.59)

This shows, due to (6.51), that (6.52) holds.For example, for the case of the Gauss hypergeometric function

2F1(a, b; c;x) =∑n≥0

(a)n(b)n(c)nn!

xn (6.60)

one has

A(n) =(a)n(b)n(c)nn!

(6.61)

s(n) = (a+ n)(b+ n) (6.62)

t(n) = (n+ 1)(c+ n) (6.63)

and the differential equation obeyed by 2F1(a, b; c;x) is, from (6.52),[(a+ x

∂x

)(b+ x

∂x

)− 1

x

(x∂

∂x

)(x∂

∂x− 1 + c

)]2F1(a, b; c;x) = 0. (6.64)

To summarize, a system of equations of the type (6.52) induces first-order recurrences, whichcan be studied using the methods of Sigma as described next.

6.4 An algorithm for hypergeometric products

We consider a system (6.51) and look for a hypergeometric solution A. The univariate case iswell-known and treatable under the methods of Sigma. To be explicit, for r = 1, the polynomialss1, t1 will be nonzero for all k > λ1, k, λ1 ∈ N. Then, using the hypergeometric property, onewrites

A(n1) =s1(n1 − 1)

t1(n1 − 1)A(n1 − 1)

=s1(n1 − 1)

t1(n1 − 1)

s1(n1 − 2)

t1(n1 − 2)A(n1 − 2) = · · · =

(n1∏

k=λ1+1

s1(k − 1)

t1(k − 1)

)A(λ1)

(6.65)

and a formula for A is obtained as a hypergeometric product∏n1

k=λ1+1s1(k−1)t1(k−1)

. For the multivariatecase, we seek a generalization and a solution in the form of a nested product.

84

Page 95: and 3-loop corrections to hard scattering processes in QCD

One calls a sequence non-trivial if its zero points vanish on a polynomial inK[n1, . . . , nr], [365].For such a sequence, the system (6.51) implies a compatibility condition: calling

Ri =siti

∈ K(n1, . . . , nr) (6.66)

then for there to be solutions it must also be that [365, Prop 4]

Ri(n1, . . . , nj + 1, . . . , nr)

Ri(n1, . . . , nj, . . . , nr)=Rj(n1, . . . , ni + 1, . . . , nr)

Rj(n1, . . . , ni, . . . , nr). (6.67)

Relevant to this context, the Ore-Sato theorem [366–368] states what a general form of thehypergeometric solution, if it exists, must have; it is a product of factorials and hypergeometricterms. Here we specialize to the additional assumption that si, ti = 0 for all (n1, . . . , nr) ∈ Nr

with ni > λi. (In general no algorithm exists [379] to find the λi, although it is often possible inpractically occurring cases).

Under these assumptions, one can write

A(n1, . . . , ni + 1, . . . , nr) = Ri(n1, . . . , nr)A(n1, . . . , ni, . . . , nr), i = 1, . . . , r (6.68)

andA(n1, . . . , nr) = cA(λ1, . . . , λr) (6.69)

for any (n1, . . . , nr) ∈ Nr with ni ≥ λi and some c ∈ K \ 0.One can derive under these assumptions a formula for A as the nested product

c

(n1∏

k=λ1

h1(k, n2, . . . , nr)

)(n2∏

k=λ2

h2(k, n3 . . . , nr)

). . .

(nr∏

k=λr

hr(k)

)(6.70)

with c = A(λ1, . . . , λr) ∈ K \ 0 in a recursive manner. The case r = 1 is treated in (6.65).Otherwise one can write

A(n1, . . . , nr) = A(λ1, n2, . . . , nr)

n1∏k=λ1+1

h1(k, n2, . . . , nr) (6.71)

with

h1(k, n2, . . . , nr) = R1(k − 1, n2, . . . , nr) =s1(k − 1, n2, . . . , nr)

t1(k − 1, n2, . . . , nr)(6.72)

Then one considersA′(n2, . . . , nr) := A(λ1, n2, . . . , nr) (6.73)

which satisfies

A′(n2, . . . , ni + 1, . . . , nr) = Ri(λ1, n2, . . . , nr)A′(n2, . . . , ni, . . . , nr), i = 2, . . . , r (6.74)

with Ri(λ1, n2, . . . , nr) ∈ K[n2, . . . , nr] and obtains

A′(n2, . . . , nr) = c

(n2∏

k=λ1

h2(k, n3 . . . , nr)

). . .

(nr∏

k=λr

hr(k)

), (6.75)

with c = A′(λ2, . . . , λr) = A(λ1, λ2, . . . , λr) ∈ K \ 0 and hi(x, ni+1, . . . , nr) ∈ K(x, ni, . . . , nr)with 2 ≤ i ≤ r.

Proceeding in the same way by recursion one obtains (6.70). We show now the results of theapplication of the algorithm in some examples.

85

Page 96: and 3-loop corrections to hard scattering processes in QCD

6.4.1 Examples

We consider the differential equation (6.2) which leads to the recurrence (6.32) for the expansioncoefficient f [n]. The recursion is of order one and is solved for f [n] = 0. Sigma obtains theproduct solution

f [n] =

∏ni1=1

(2 +B1 − C − 3i1 −B1i1 + i21

)n!(A1)n

≡∏n

i1=1

[− C +B1(1− i1) + (1− i1)(2− i1)

]n!(A1)n

,

(6.76)

One can factorize the product in (6.76) in terms of Pochhammer symbols by

f [n] =(α1)n(α2)n(A1)nn!

, (6.77)

with

α1(2) = −1

2(1 +B1)∓

1

2

√(1 +B1)2 + 4C. (6.78)

By replacing A1, B1 and C by

C → −ab, A1 → c, B1 → −1− a− b (6.79)

one obtains

f [n] =(a)n(b)n(c)nn!

. (6.80)

In the case of the hypergeometric function 3F2, the differential equation (6.3) implies therecurrence (6.33) for f [n] with f [n] = 1, which has the solution

f [n] =

∏ni1=1[−C +B1

(1− i1

)−B2

(2− i1

)(1− i1

)−(3− i1

)(2− i1

)(1− i1

)]

n!∏n

i1=1[A1 − A2

(1− i1

)+(2− i1

)(1− i1

)]

. (6.81)

Eq. (6.81) can be rewritten in terms of radicals by

f [n] =(α1)n(α2)n(α3)n

n!(− 1

2+ A2

2− z5

2

)n

(− 1

2+ A2

2+ z5

2

)n

, (6.82)

with

α1 = 1− z43+

3√z1 + z2

6 3√2

− i 3√z1 + z2

2 3√2√3

+3√−2z3

3 3√z1 + z2

(6.83)

α2 = 1− z43−

3√z1 + z2

3 3√2

−3√2z3

3 3√z1 + z2

(6.84)

α3 = 1− z43+

3√z1 + z2

6 3√2

+i 3√z1 + z2

2 3√2√3

− (−1)2/3 3√2z3

3 3√z1 + z2

(6.85)

z1 = 27C + (3 +B2)(9B1 +B2(3 + 2B2)) (6.86)

z2 =√

−4(3 + 3B1 +B2(3 +B2))3 + (27C + (3 +B2)(9B1 +B2(3 + 2B2)))2 (6.87)

z3 = 3 + 3B1 +B2(3 +B2) (6.88)

z4 = 6 +B2 (6.89)

z5 =√−4A1 + (A2 − 1)2. (6.90)

86

Page 97: and 3-loop corrections to hard scattering processes in QCD

After performing the replacements

A2 → b1 + b2 + 1, B2 → −(3 + a1 + a2 + a3), A1 → b1b2,

B1 → −(a2a1 + a3a1 + a2a3 + a1 + a2 + a3 + 1), C → −a1a2a3 (6.91)

one obtains

f [n] =(a1)n(a2)n(a3)n(b1)n(b2)nn!

. (6.92)

The replacements are related to Vieta’s theorem [369] for the roots ri of the algebraic equation

xn +n∑

k=1

an−kxn−k = 0, (6.93)

which obey

−an−1 = r1 + ...+ rn

an−2 = r1(r2 + ...+ rn) + r2(r3 + ...rn) + ...rn−1rn...

(−1)na0 = r1...rn. (6.94)

For the function p+1Fp the product solution is

f [n] =n∏

i=1

1(i−p−2)!

−∑pk=1

Bk

(i−k−1)!− C

(i−1)!

i(i−p−1)!

+∑p

k=1Aki

(i−k)!

. (6.95)

In the multivariate case, we list the product solutions for the Horn–type functions, from Eqs.(6.12), (6.13),

fH[m,n] =

[m∏

i1=1

−a+ b− 2e− fn+ hn+ jn− jn2 − bi1 + 3ei1 − hni1 − ei21(c− d+ gn+ di1

)i1

]

×[

n∏i1=1

−a1 + b1 − 2e1 − b1i1 + 3e1i1 − e1i21(

c1 − d1 + d1i1)i1

](6.96)

and for the functions S1 and S2 one has

fS1 [m,n] =

[n∏

i1=1

−a1 + b1 − 2e1 − b1i1 + 3e1i1 − e1i21(

c1 − d1 + d1i1)i1

]

×[

m∏i1=1

(1(

c− d+ 2l + gn− nq + di1 − 3li1 + nqi1 + li21)i1(−a+ b

−2e− fn+ hn+ jn− jn2 + 6p− 2nr − ns+ n2s− bi1

+3ei1 − hni1 − 11pi1 + 3nri1 + nsi1 − n2si1 − ei21 + 6pi21 − nri21

−pi31))]

(6.97)

fS2 [m,n] =

( n∏i1=1

−a1 + b1 − 2e1 − b1i1 + 3e1i1 − e1i21(

c1 − d1 + 2p1 + d1i1 − 3p1i1 + p1i21)i1

)

×[ m∏

i1=1

(1(

c− d+ 2l + gn− nq + di1 − 3li1 + nqi1 + li21)i1(−a+ b− 2e− fn

87

Page 98: and 3-loop corrections to hard scattering processes in QCD

+hn+ jn− jn2 + 6p− 2nr − ns+ n2s− bi1 + 3ei1 − hni1 − 11pi1 + 3nri1

+nsi1 − n2si1 − ei21 + 6pi21 − nri21 − pi31)

)]. (6.98)

Eq. (6.96) can be rewritten as

f [n,m] =(−1)m+n

m!n!

(c1d1

)n

(c

d+gn

d

)m

(e

d

)m(e1d1

)n(−1

2+

b12e1

− r12e1

)n

×(−1

2+

b12e1

+r12e1

)n

(−1

2+

b

2e+hn

2e− r2

2e

)m

(−1

2+

b

2e+hn

2e+r22e

)m

,

(6.99)

with

r1 =√

(b1 − e1)2 − 4a1e1 (6.100)

r2 =√

(b− 3e+ hn)2 − 4e(a− b+ 2e+ fn− hn− jn+ jn2). (6.101)

They can be factorized into the usual Pochhammer representation if appropriate replacementsare obeyed.

In the tri–variate cases one obtains

f [m,n, p] =

( m∏i1=1

−A+B1 − 2E1 −B1i1 + 3E1i1 − E1i21(

B0 − E0 + E0i1)i1

)

×[ n∏

i1=1

(1(

C ′0 − F ′

0 +H ′2m+ F ′

0i1)i1(−A′ + C ′

1 − 2F ′1 −B′

1m

+E ′1m+H ′

1m− E ′1m

2 − C ′1i1 + 3F ′

1i1 −H ′1mi1 − F ′

1i21)

)]×[ p∏

i1=1

(1(

D′′0 −G′′

0 + L′′2m+ nS ′′

2 +G′′0i1)i1(−A′′ +D′′

1 − 2G′′1 −B′′

1m+ E ′′1m

+L′′1m− E ′′

1m2 − C ′′

1n+ F ′′1 n−H ′′

1mn− F ′′1 n

2 + nS ′′1 −D′′

1i1 + 3G′′1i1 − L′′

1mi1

−nS ′′1 i1 −G′′

1i21)

)]. (6.102)

Finally, in the four–variable case the product solution reads

f [m,n, p, q] =

( m∏i1=1

−A+B1 − 2F1 −B1i1 + 3F1i1 − F1i21(

B0 − F0 + F0i1)i1

)

×[ n∏

i1=1

1(C ′

0 −G′0 +mM ′

2 +G′0i1)i1(−A′ + C ′

1 − 2G′1 −B′

1m+ F ′1m

−F ′1m

2 +mM ′1 − C ′

1i1 + 3G′1i1 −mM ′

1i1 −G′1i

21)

]×[ p∏

i1=1

1(D′′

0 −H ′′0 +mN ′′

2 + nQ′′2 +H ′′

0 i1)i1(−A′′ +D′′

1 − 2H ′′1 −B′′

1m+ F ′′1m

−F ′′1m

2 − C ′′1n+G′′

1n−mM ′′1 n−G′′

1n2 +mN ′′

1 + nQ′′1 −D′′

1i1 + 3H ′′1 i1

−mN ′′1 i1 − nQ′′

1i1 −H ′′1 i

21)

]88

Page 99: and 3-loop corrections to hard scattering processes in QCD

×[ q∏

i1=1

1(E ′′′

0 − L′′′0 +mP ′′′

2 + nR′′′2 + pS ′′′

2 + L′′′0 i1)i1(−A′′′ + E ′′′

1 − 2L′′′1 −B′′′

1 m

+F ′′′1 m− F ′′′

1 m2 − C ′′′

1 n+G′′′1 n−mM ′′′

1 n−G′′′1 n

2 −D′′′1 p+H ′′′

1 p−mN ′′′1 p

−H ′′′1 p

2 +mP ′′′1 − npQ′′′

1 + nR′′′1 + pS ′′′

1 − E ′′′1 i1 + 3L′′′

1 i1 −mP ′′′1 i1 − nR′′′

1 i1

−pS ′′′1 i1 − L′′′

1 i21)

]. (6.103)

6.5 Computing the expansion in ε

Algorithms for the series expansion of hypergeometric series would be of interest for their appli-cability to physics. One may try to obtain the ε-expansion of the hypergeometric series as nestedsums using the difference ring methods of EvaluateMultiSums, but this is not always possible.An alternative is to try to obtain the series expansion of the summand and to sum the termsof the expansion. For an explanation of an algorithms which can work on nested products ofthe type discussed in Section 6.4, we refer to [201, Sec. 5]. For these methods to be applicable,the convergence region of the hypergeometric function needs to be understood, as well as theconditions under which the summation quantifier commutes with the differential operator in ε.

Here we reproduce from [201] two examples in which these methods are employed to obtainthe ε expansion of hypergeometric functions.

6.5.1 Example 1

Consider for example the system of equations[(x− 1)y∂2x,y +

[x(2ε+

7

2

)− ε+ 1

]∂x + (x− 1)x∂2x

+y(2ε+ 1)∂y +3

2(2ε+ 1)

]f(x, y) = 0, (6.104)[

x(y − 1)∂2x,y + x(4− ε)∂x +[y(132

− ε)− ε+ 1

]∂y

+(y − 1)y∂2y +3(4− ε)

2

]f(x, y) = 0, (6.105)

for which we search for a solution of the form (6.50) with r = 2 where x1 = x and x2 = y.Computing a first–order recurrence system of A(n1, n2) = A(m,n) and solving it by the methodpresented in Section 6.4 provides the solution

f(x, y) =∞∑

m,n=0

A(m,n) =∞∑

m,n=0

xmyn(32

)m+n

(4− ε)n(1 + 2ε)m

m!n!(−1 + ε)m+n

. (6.106)

A series expansion of the summand A(m,n) in (6.106) up to O(ε0) gives

A(m,n) = −1

6

xmyn(3 + n)!(32

)m+n

n!(−2 +m+ n)!ε+

1

36

[− 1

(1 + n)(2 + n)(3 + n)(m+ n)(−1 +m+ n)

×(− 36− 30n+ 17n2 + 97n3 + 79n4 + 17n5 +m2

(36 + 115n+ 84n2 + 17n3

)+m

(36 + 89n+ 218n2 + 163n3 + 34n4

))− 12S1(m) + 6S1(n) + 6S1(m+ n)

]×xmyn(3 + n)!

(32

)m+n

n!(−2 +m+ n)!+O(ε). (6.107)

89

Page 100: and 3-loop corrections to hard scattering processes in QCD

A series expansion of (6.106) in the region 0 < x <√y, 0 < y < 1

2,

f(x, y) =1

εf−1(x, y) + f0(x, y) +O(ε) (6.108)

is possible using EvaluateMultiSum and results in an expression involving the sums

R0 =∞∑i=1

xi(32

)i

i!= −1 +

1

(1− x)3/2(6.109)

R1 =∞∑i=1

yi(32

)i

i!= −1 +

1

(1− y)3/2(6.110)

at O(ε−1). The function f−1(x, y) reads

f−1(x, y) = − 15x6

4(x− y)4(1− x)7/2− 15y3

64(x− y)4(1− y)13/2[y3(160 + 80y − 10y2 + y3

)−xy2

(576 + 176y − 64y2 + 5y3

)+ x3

(− 320 + 120y − 36y2 + 5y3

)+3x2y

(240 + 8y − 22y2 + 5y3

)]. (6.111)

In addition, one encounters at O(ε0) the sums

R2 =∞∑i=1

xi(32

)i

(1 + 2i)2i!= −1 +

1√xarcsin

(√x)

(6.112)

R3 =∞∑i=1

yi(32

)i

ii!= −2 + 2 ln(2) + 2

1√1− y

− 2H−1

(√1− y

)(6.113)

R4 =∞∑

i1=1

xi1(32

)i1

i1!

i1∑i2=1

1

1 + 2i2=

1

2

H1(x)

(1− x)3/2(6.114)

R5 =∞∑

i1=1

xi1(32

)i1

i1!

i1∑i2=1

y−i2i2!(32

)i2

=y

(1− x)(y − x)− 1

(1− x)3/2+

y

2(1− x)3/2√1− y

[iπ − H0

(√1− y −

√1− x

)−2H−1

(√1− y

)+H0(y) + H0

(√1− y +

√1− x

)](6.115)

R6 =∞∑

i1=1

xi1yi1((

32

)i1

)2(i1!)2 i1∑

i2=1

y−i2i2!(32

)i2

=1

2

∫ 1

0

dt

[ −1 + t

π(−1 + t+ y)

[ 1

(1− (1− t)x)2[4E(x− tx)− 2[1− (1− t)x]K(x− tx)

]−4E(xy) + 2(−1 + xy)K(xy)

(−1 + xy)2

] 1√t

](6.116)

R7 =∞∑

i1=1

xi1yi1((

32

)i1

)2(i1!)2(

1 + 2i1)2 i1∑

i2=1

y−i2i2!(32

)i2

=1

π

∫ 1

0

dtt− 1√

t(t+ y − 1)

[K(x(1− t))−K(xy)

](6.117)

R8 =∞∑

i1=1

yi1(32

)i1

i1!(1 + 2i1

) i1∑i2=1

xi2y−i2

i2= −2

H0

(√1− x+

√1− y

)√1− y

+ 2H−1

(√1− y

)√1− y

(6.118)

R9 =∞∑

i1=1

xi1(32

)i1

i1!

( i1∑i2=1

y−i2i2!(32

)i2

)( i1∑i2=1

yi2(32

)i2

i2!

)90

Page 101: and 3-loop corrections to hard scattering processes in QCD

=1

(1− y)5/2

[( 1

(1− x)3/2− 1

)((1− y)3/2 − 1

)(√1− yy

(H−1

(√1− y

)−H0(y)

2+iπ

2

)− y + 1

)]+

∞∑i1=1

1

π(1− y)2√1− yΓ

(1 + i1

)Γ(2 + i1

)×[4xi1y1+i1

[1− y +

√1− yy

(iπ2

− 1

2H0(y) + H−1

(√1− y

))]Γ(32+ i1

)×Γ(52+ i1

)2F1

(− 1

2, 1 + i1; 2 + i1; y

)]− 1

(−1 + y)√π − πyΓ

(1 + i1

)×[2xi1Γ

(32+ i1

)2F1

(− 1

2, 1 + i1; 2 + i1; y

)2F1

(1, 2 + i1;

5

2+ i1;

1

y

)]− 1

(−1 + y)√π − πy

(3 + 2i1

)[2√πxi1y−1−i1(− 1 + (1− y)3/2

)× 2F1

(1, 2 + i1;

5

2+ i1;

1

y

)(1 + i1

)](6.119)

R10 =∞∑

i1=1

yi1(32

)i1S1

(i1)i1

i1!= −3 ln(2)y

1

(1− y)5/2+

3

2y

H1(y)

(1− y)5/2

+3yH−1

(√1− y

)(1− y)5/2

+[1 + y

(3− 2

√1− y

)−√

1− y] 1

(1− y)5/2, (6.120)

as well as the combination

R11 =(1−

(1− x

)3/2) ∞∑i1=1

yi1(32

)i1

i1!(1 + 2i1

) i1∑i2=1

y−i2i2!(32

)i2

−(1− x

)3/2 ∞∑i1=1

yi1(32

)i1

i1!(1 + 2i1

)( i1∑i2=1

y−i2i2!(32

)i2

)( i1∑i2=1

xi2(32

)i2

i2!

)=

1

4

[2− 2

√1− x+ 2x

√1− x− 3xF1

(52;1

2, 1; 2;xy, x

)(1− x

)3/2][iπy

+2√1− y − yH0(y) + 2yH−1

(√1− y

)] 1√1− y

−∞∑

i1=1

[x1+i1(1− x

)3/2Γ(12+ i1

)√πyΓ

(1 + i1

) 2F1

(1, 2 + i1;

5

2+ i1;

1

y

)× 2F1

(1,

5

2+ i1; 2 + i1;x

)]. (6.121)

The harmonic polylogarithms [263] are defined by Eqs. (2.149)-(2.151).One can further employ the relations

2F1

(32,3

2; 1, z

)=

2(z − 1)K(z) + 4E(z)

π(z − 1)2(6.122)

K(z) =

∫ 1

0

1√(1− t2)(1− zt2)

dt =π

22F1

(12,1

2; 1; z

)(6.123)

E(z) =

∫ 1

0

√1− zt2√1− t2

dt =π

22F1

(−1

2,1

2, 1, z

). (6.124)

The function f0(x, y) reads

f0(x, y) =5R10y

2

16(1− y)4(x− y)4

[y3(160 + 80y − 10y2 + y3

)− xy2

(576 + 176y − 64y2 + 5y3

)91

Page 102: and 3-loop corrections to hard scattering processes in QCD

+x3(− 320 + 120y − 36y2 + 5y3

)+ 3x2y

(240 + 8y − 22y2 + 5y3

)]− 15R8y

3

32(1− y)6(x− y)4

[y3(160 + 80y − 10y2 + y3

)− xy2

(576 + 176y − 64y2 + 5y3

)+x3

(− 320 + 120y − 36y2 + 5y3

)+ 3x2y

(240 + 8y − 22y2 + 5y3

)]+

1

128(1− x)2(1− y)6y(x− y)4(− 960x7(−1 + y)7 + y5

(128− 1344y + 1536y2

−4240y3 + 4110y4 − 223y5 + 33y6)+ 8x6y

(4− 24y + 60y2 − 4880y3 + 1860y4

−564y5 + 79y6)+ x5y

(− 832 + 2752y − 1920y2 + 76160y3 + 69280y4 − 8772y5

+2427y6 − 495y7)− xy4

(512− 4544y + 3264y2 − 34480y3 + 4240y4 + 3363y5

−141y6 + 66y7)+ x3y2

(− 512 + 384y + 11008y2 + 83680y3 + 169980y4 + 6287y5

+5931y6 + 747y7 − 305y8)+ x2y3

(768− 4736y − 2272y2 − 84288y3 − 56570y4

+11627y5 − 3549y6 + 387y7 + 33y8)+ x4y

(128 + 1984y − 9792y2 − 29440y3

−180320y4 − 63768y5 + 10536y6 − 8583y7 + 2055y8))

+R1

[− 1

128(1− x)2(1− y)5y(x− y)5

[960x7(−1 + y)6 − y6

(128 + 4800y − 4640y2

+4480y3 − 270y4 + 33y5)+ 2xy5

(320 + 10944y − 4016y2 + 4664y3 + 1749y4

−101y5 + 33y6)+ x6y

(− 448 + 1920y − 12800y2 + 5440y3 + 1920y4 − 628y5 + 65y6

)−x2y4

(1280 + 38080y + 20128y2 − 6304y3 + 18546y4 − 4204y5 + 406y6 + 33y7

)+2x3y3

(640 + 15040y + 32080y2 − 9896y3 + 11559y4 − 3791y5 − 491y6 + 169y7

)−5x4y2

(128 + 1856y + 11712y2 + 1856y3 − 2076y4 + 1727y5 − 2058y6 + 448y7

)+2x5y

(64 + 320y + 8000y2 + 15360y3 − 12080y4 + 5164y5 − 4170y6 + 935y7

)]− 15R5x

6(1− y)2

2(1− x)2y(x− y)4

]+R0

[1

16(1− x)2(1− y)6y(x− y)5

[−120x8(−1 + y)7

+y6(− 32 + 384y + 2988y2 + 140y3 − 15y4

)+ 5xy5

(32− 352y − 2676y2 − 1772y3

−95y4 + 12y5)+ 5x2y4

(− 64 + 608y + 4688y2 + 7516y3 + 1723y4 + 100y5 − 18y6

)+x6y

(20− 624y + 3324y2 + 8040y3 + 18380y4 − 6720y5 + 2164y6 − 329y7

)+5x3y3

(64− 448y − 4056y2 − 12396y3 − 6809y4 − 612y5 − 10y6 + 12y7

)−5x4y2

(32− 64y − 1888y2 − 9120y3 − 11664y4 − 1436y5 − 158y6 + 40y7 + 3y8

)+x5y

(32 + 416y − 2848y2 − 12000y3 − 46800y4 − 11880y5 + 430y6 − 200y7 + 85y8

)+x7

(− 60 + 304y − 444y2 − 360y3 − 2780y4 − 1080y5 + 1536y6 − 701y7 + 120y8

)]+

15R3x6

4(1− x)2(x− y)4− 15R1x

6(1− y)

2(1− x)2y(x− y)4

]+

15R9x6(1− y)2

2(1− x)2y(x− y)4

+15R6x

6(1− y)(−1 + (2 + x)y)

4(1− x)2y(x− y)4+

15R3x6

4(1− x)2(x− y)4+

15R2x6(1− y)

4(1− x)2y(x− y)4

+15R4x

6(1− y)

2(1− x)2y(x− y)4− 15R7x

6(1− y)

4(1− x)2y(x− y)4− 15R11x

6(1− y)

2y(x− y)4(1− x)7/2. (6.125)

The sums Ri could be treated using the methods of [252] which are encoded in HarmonicSums.

6.5.2 Example 2

Consider for example the system of equations

1 + ε+ (2− x+ ε)∂x + 2x(1 + x)∂2x = 0 (6.126)

92

Page 103: and 3-loop corrections to hard scattering processes in QCD

2− ε+ (1− 2y + 2ε)∂y + y(3 + y)∂2y = 0 . (6.127)

We can write its solution asF(x, y) =

∑x,y≥0

A(m,n)xmyn (6.128)

with

A(m,n) =

( m∏i1=1

−6− ε+ 7i1 − 2i21(ε+ 2i1

)i1

) n∏i1=1

−6 + ε+ 5i1 − i21(− 2 + 2ε+ 3i1

)i1. (6.129)

The quantity A(m,n) can also be expressed as

A(m,n) =(−1)m

(− 3

4− 1

4

√1− 8ε

)m

(14

(− 3 +

√1− 8ε

))m(

1 + ε2

)mΓ(1 +m)

×(−1)n3−n

(− 3

2− 1

2

√1 + 4ε

)n

(12

(− 3 +

√1 + 4ε

))n(

13+ 2ε

3

)nΓ(1 + n)

(6.130)

and F(x, y) can be rewritten as

F(x, y) =(∑

m≥0

xmf1(m, ε))(∑

n≥0

ynf2(n, ε)). (6.131)

= F1(x, ε)F2(y, ε). (6.132)

Expanding F1 and F2 in a series in ε using EvaluateMultiSums, one can write an expressioncontaining infinite (nested) sums. These are rewritten as iterated integrals following [252]. Twoof the sums are written in semi-analytic form as definite integrals by writing part of the summandas the Mellin transform of a function. For example, we encounter the sum

s1 =∞∑i=1

(−1)ixi(− 3

2+ i)!(∑i

j=11

1+2j

)S1(i)

ii!. (6.133)

By isolating the term i = 1 and applying the Legendre duplication formula

Γ(z +

1

2

)=

√π

Γ(2z)

22z−1Γ(z)(6.134)

and the identity

Γ(2z) =1

2

(2z

z

)Γ(z)Γ(z + 1) (6.135)

we write

s1 = −1

3x√π +

∞∑i=1

(−1)1+i2−2i√πx1+i

(2ii

)(1 + i)3(3 + 2i)

+∞∑i=1

(−1)1+i2−2i√πx1+i

(2ii

)∑ij=1

11+2j

(1 + i)3

+∞∑i=1

(−1)1+i2−2i√πx1+i

(2ii

)S1(i)

(1 + i)2(3 + 2i)

+∞∑i=1

(−1)1+i2−2i√πx1+i

(2ii

)(∑ij=1

11+2j

)S1(i)

(1 + i)2. (6.136)

The first three sums are treated following [252]. The fourth sum can be written as

t1 =∞∑i=1

(−1)1+i2−2i√πx1+i

(2ii

)(∑ij=1

11+2j

)S1(i)

(1 + i)2

93

Page 104: and 3-loop corrections to hard scattering processes in QCD

=∞∑i=1

(−1)1+i2−2i√πx1+i

(2ii

)(1 + i)2

∫ 1

0

dz

(zi − 1)

1

2(−1 + z)

[− 2 + 2z +

(1 +

√z)G( √

τ

1− τ; z)

+2√z(1− ln(2)

)]=

∫ 1

0

dz

1

2(z − 1)

[− 2 + 2z +

(1 +

√z)G( √

τ

1− τ; z)+ 2

√z(1− ln(2)

)]×

∞∑i=1

(− 1 + zi

)(−1)1+i2−2i

√πx1+i

(2ii

)(1 + i)2

=

∫ 1

0

dz

1

2(z − 1)

[− 2 + 2z +

(1 +

√z)G( √

τ

1− τ; z)+ 2

√z(1− ln(2)

)][− 4

z

[− 1 + z

+√1 + xz − z

√1 + x+ zH0

(12

(1 +

√1 + x

))− H0

(12

(1 +

√1 + xz

))]√π

]. (6.137)

The ε expansion of F1(x, ε) and F2(x, ε) then can be written by

F1(x, ε) = 1− x

2+ ε

−1 +

√1 + x+

1

4x(− 9 + 4

√1 + x

)+

1

2(−2 + x)H0(x)

+1

2(2− x)G3(x)

+ ε2

1

8

[20(− 1 +

√1 + x

)+ x(− 33 + 4x+ 20

√1 + x

)]+(−2 + x)

(−1

4H0(x)

2 +1

4H0,−1(x) +

G11(x)

4− G12(x)

4+G5(x)

2

8

)+1

2(2− x)

(G8(x) +G9(x)

)+

1

4(−4 + 13x)H0(x) +

1

2(1 + x)3/2H−1(x)

+

[1− 13x

4+

1

2(−2 + x)H0(x)

]G3(x) +

[1

2(1 + x)3/2 +

1

4(2− x)H0(x)

]G5(x)

+ε3

G5(x)

2

16

[x(17− 4

√1 + x

)− 4(3 +

√1 + x

)]+G11(x)

[18

(x(13− 6

√1 + x

)−6

√1 + x

)+

1

8(−2 + x)H0(x)

]+G12(x)

[1

8

[2(6 +

√1 + x

)+ x(− 17 + 2

√1 + x

)]+3

8(−2 + x)H0(x)

]+G3(x)

[9

2− 105x

8+

1

4(−14 + 17x)H0(x) +

1

4(2− x)H0(x)

2

]+G5(x)

[(−2 + x)

(− 1

16H0(x)

2 +1

8H0,−1(x) +

3G11(x)

8− G12(x)

8

)+1

4

[−6x− 2x2 + (1 + x)(5 + 16x)

√1 + x

]+

1

8

[x(− 13 + 6

√1 + x

)+6

√1 + x

]H0(x)−

1

4(1 + x)3/2H−1(x)

]+ (−2 + x)

( 112

H0(x)3 − 3

8H0,0,−1(x)

−1

8H0,−1,−1(x)−

G18(x)

8− 5G19(x)

8− 3G20(x)

8+G21(x)

8− 3G22(x)

4+G23(x)

4

− 1

24G5(x)

3)+

1

2(2− x)(G14(x) +G15(x) +G16(x) +G17(x))

+1

240

−60(−2 + x)

∫ 1

0

dz

− 1

(−1 + z)z2√π[−2 + 2z +

(1 +

√z)G1(z)

−2√z(−1 + ln(2)

)][−1 + z −

√1 + xz +

√1 + xz + zH0

(12

(1 +

√1 + x

))94

Page 105: and 3-loop corrections to hard scattering processes in QCD

−H0

(12

(1 +

√1 + xz

))]+ 180x

∫ 1

0

dz

− 1

4√1 + xz

√πx(− 1 +

√1 + xz

)[4

+2√z[−8 + 2z3/2 − 3

√z(2 + ζ2

)+ z(6− 4 ln(2)

)+ 8 ln(2)

]+ 4H0(z)

+4H1(z) + 2[−3− 4

√z + 3z + 2z3/2 + (−1 + z)H0(z) + (−1 + z)H1(z) + 2 ln(2)

−2z ln(2)]G1(z) + (−1 + z)G1(z)

2 − 2(−1 + z)G6(z)− 2(−1 + z)G7(z) + 6ζ2

]+

[x[−2215 + 4x

(435 + 96x− 500

√1 + x

)+ 60

√1 + x

]+2060

(− 1 +

√1 + x

)]√π

1√π+

3

8(−12 + 35x)H0(x) +

1

8(14− 17x)H0(x)

2

+1

4(11− 16x)(1 + x)3/2H−1(x) +

5

8(1 + x)3/2H−1(x)

2 +1

8

[x(17− 2

√1 + x

)−2(6 +

√1 + x

)]H0,−1(x) + 8

√xG10(x) + 8

√xG13(x) +

G2(x)

2

+[2(17− 4x)

√x− 8

√xG5(x)

]G4(x) + 2(−9 + 4x)

√xG4(x) +

[7

2− 17x

4

+1

2(−2 + x)H0(x)

]G8(x) +

[−7

2(−1 + x) +

1

2(−2 + x)H0(x)

]G9(x)

+O(ε4), (6.138)

F2(y, ε) = 1− 2y − 1

4(−20 + y)yε+ ε2

− 1

48y(480− 765y − 56y2 + 64y3 + 12y4

)+1

4(−9 + 4y)y2/3(3 + y)4/3G26(y) + (1− 2y)G30(y)

+ ε3

1

192y(3840− 21453y

−1672y2 + 1638y3 + 280y4 − 6y5)+G26(y)

[1

16

(243− 108y + 2y2

)y2/3(3 + y)4/3

+1

6(9− 4y)y2/3(3 + y)4/3H0(y) +

1

6(−9 + 4y)y2/3(3 + y)4/3H−3(y)

+1

270

(− 1215 + 108y + 4y2

)y2/3G24(y) +

7

5(−1 + 2y)G25(y) +

2

3(−1 + 2y)G28(y)

−2

3(−1 + 2y)G29(y)

]+(− 1215 + 108y + 4y2

)[− 1

270y2/3G27(y)−

1

270y2/3G33(y)

]+(−1 + 2y)

(−7G34(y)

5+

2G35(y)

3

)+

[(23− 4y

3

)G31(y) +

2

3(−1 + 2y)G32(y)

]G25(y)

+1

20

(− 52 + 204y − 5y2

)G30(y) +

1

6(−9 + 4y)y2/3(3 + y)4/3G31(y)

−1

6(3 + y)(−9 + 4y)y2/3 3

√3 + yG32(y)−

2

3(−1 + 2y)G36(y)

+O(ε4). (6.139)

By multiplying F1(x) and F2(y) one obtains the series expansion of F(x, y), with 0 < x < 1, 0 <y < 1. The functions Gi are iterated integrals [252] defined as in Eq. (2.147), and they are listedin Appendix E.

95

Page 106: and 3-loop corrections to hard scattering processes in QCD

6.6 Example 3

In [201] we also considered as an example the system of two differential equations in two variablesimplied by the following differential operators,

−αβ − x6∂6x − βx5∂5x − 5x5y∂5x∂y − 15x5∂5x − 10βx4∂4x − 10x4y2∂4x∂2y − 5βx4y∂4x∂y

−60x4y∂4x∂y − 66x4∂4x − 26βx3∂3x − 10x3y3∂3x∂3y − 10βx3y2∂3x∂

2y − 90x3y2∂3x∂

2y

−40βx3y∂3x∂y − 198x3y∂3x∂y − 96x3∂3x − 18βx2∂2x − 5x2y4∂2x∂4y − 10βx2y3∂2x∂

3y

−60x2y3∂2x∂3y − 60βx2y2∂2x∂

2y − 198x2y2∂2x∂

2y − 78βx2y∂2x∂y − 192x2y∂2x∂y

−38x2∂2x − αx∂x − 2βx∂x + γ∂x − xy5∂x∂5y − 5βxy4∂x∂

4y − 15xy4∂x∂

4y

−40βxy3∂x∂3y − 66xy3∂x∂

3y − 78βxy2∂x∂

2y − 96xy2∂x∂

2y − 36βxy∂xy − 38xy∂xy

+y∂xy + x∂2x − 2x∂x − βy5∂5y − 10βy4∂4y − 26βy3∂3y − 18βy2∂2y − 2βy∂y, (6.140)

−αβ1 − β1x5∂5x − x5y∂5x∂y − 10β1x

4∂4x − 5x4y2∂4x∂2y − 5β1x

4y∂4x∂y − 15x4y∂4x∂y

−26β1x3∂3x − 10x3y3∂3x∂

3y − 10β1x

3y2∂3x∂2y − 60x3y2∂3x∂

2y − 40β1x

3y∂3x∂y

−66x3y∂3x∂y − 18β1x2∂2x − 10x2y4∂2x∂

4y − 10β1x

2y3∂2x∂3y − 90x2y3∂2x∂

3y

−60β1x2y2∂2x∂

2y − 198x2y2∂2x∂

2y − 78β1x

2y∂2x∂y − 96x2y∂2x∂y − 2β1x∂x

−5xy5∂x∂5y − 5β1xy

4∂x∂4y − 60xy4∂x∂

4y − 40β1xy

3∂x∂3y − 198xy3∂x∂

3y

−78β1xy2∂x∂

2y − 192xy2∂x∂

2y − 36β1xy∂xy + x∂xy − 38xy∂xy − y6∂6y − β1y

5∂5y−15y5∂5y − 10β1y

4∂4y − 66y4∂4y − 26β1y3∂3y − 96y3∂3y − 18β1y

2∂2y − 38y2∂2y − αy∂y

−2β1y∂y + γ∂y + y∂2y − 2y∂y. (6.141)

Assuming a hypergeometric solution

F(x, y) =∑

m,n≥0

f(m,n)xmyn, (6.142)

the coefficients f(m,n) must obey

(m+ 1)(γ +m+ n)f(m+ 1, n)− (β +m)(α + (m+ n)5 + (m+ n)3

)f(m,n) = 0, (6.143)

(n+ 1)(γ +m+ n)f(m,n+ 1)− (β1 + n)(α + (m+ n)5 + (m+ n)3

)f(m,n) = 0. (6.144)

Solving these two equations with the help of Sigma, one obtains

f(m,n) =

( n∏i1=1

(− 1 + β1 + i1

)(− 2 + α + 8i1 − 13i21 + 11i31 − 5i41 + i51

)(− 1 + γ + i1

)i1

)

×m∏

i1=1

(− 1 + β + i1

)(− 1 + n+ γ + i1

)i1

(− 2 + 8n− 13n2 + 11n3 − 5n4 + n5 + α + 8i1 − 26ni1

+33n2i1 − 20n3i1 + 5n4i1 − 13i21 + 33ni21 − 30n2i21 + 10n3i21 + 11i31 − 20ni31+10n2i31 − 5i41 + 5ni41 + i51

). (6.145)

This quantity cannot be analytically expressed as a product of Pochhammer symbols due to thehigh degree of the polynomials appearing.

6.7 A brief descriptions of the commands of HypSeries

Techniques for the solution and classification of the hypergeometric systems (6.52) are imple-mented in the Mathematica package HypSeries, which is attached to the paper [201]. Thepackage requires Sigma, EvaluateMultiSums and HarmonicSums [202–204,260,279] to be loaded.

96

Page 107: and 3-loop corrections to hard scattering processes in QCD

The commandssolveDE1, solveDE2, solveDE3, solveDE4

check whether the corresponding set of one to four equations in as many variables has hypergeo-metric solutions by consulting internal lists of cases, i.e. those discussed in Sec. 6.1. The syntaxis e.g.

solveDE4[eq1 == 0, eq2 == 0, eq3 == 0, eq4 == 0, x, y, z, t, m, n, p, q].

More general solutions are possible by using the command DEProductSolution. One has toprovide the required n differential equations in the list

sys = eq1 == 0, ..., eqn == 0.

ThenDEProductSolution[sys, x, y, ..., m, n, ...]

returns the respective expansion coefficient f[m,n,p,q]. Here the tools described in Section 6.4are utilized.

Conversely, from a Pochhammer ratio A = f[m,n,p,q] the command

findDE[A, x, y, ..., m, n, ...]

returns the system of differential equations obeyed by

f(x, y, ...) =∞∑

m,n,...≥=0

f [m,n, ...]xmyn · · ·

Given a differential equation eq in n variables, the command findRE

findRE[eq == 0, x, y, . . ., f[m, n, . . .]]

returns a corresponding recurrence for f[m,n,...]. The last two commands implement thetechniques presented in the beginning of Section 6.3.

The convergence conditions for a number of two- and three-variate hypergeometric functionscan be accessed from internal tables using the commands findCond2 and findCond3. One firsthas to determine the corresponding function label fcn via classifier2, classifier3, as e.g.

classifier3[f[m, n, p], x, y, z, m, n, p]

returning fcn. ThenfindCond3[fcn, x, y, z]

returns the convergence conditions, which are in some cases given in implicit form and are takenfrom the tabulation in [315].

The function CheckDE[sol,eq] provides a way to check if an expression satisfies a differentialequation in a series expansion. It returns a sum which, in that case, should be of higher orderin ε if evaluated.

In [201] a notebook is attached where the usage of the package is presented along with theexamples from the previous Sections, together with Mathematica files containing the defini-tions of the hypergeometric series treated by the package, their convergence conditions, and thetranslation table to their differential systems.

97

Page 108: and 3-loop corrections to hard scattering processes in QCD
Page 109: and 3-loop corrections to hard scattering processes in QCD

7 Partial difference equations with rational coefficients

We examine the problem of linear partial difference equations in several variables, with thesolution space being that of rational functions, possibly containing harmonic sums or Pochham-mer symbols in the numerator. The corresponding problem in one variable is widely studied,and algorithms exist to find not only rational solutions but also hypergeometric solutions ina wide class of cases [370–375]; these algorithms are implemented in the package Sigma. It iswell-known how univariate difference equations arise frequently in the calculation of Feynmandiagrams, for example, in calculating the master integrals in many applications in QCD, one canreduce the problem to a difference equation, which, for OMEs, is in the Mellin variable N , seee.g. [160,206,207].

In the multivariate case, there are fewer known algorithms that deal with difference equationsthan in the univariate case. We implemented in a Mathematica package called SolvePartialLDE

[201] the algorithms of [376, 377] and describe here how we complemented them with flexibleheuristic methods that may be useful, potentially, in future applications to Feynman integrals.As we will see in greater detail in the following sections, the basic idea is to constrain thedenominator of the solution or at least parts of the denominator, in a way that we will describemore precisely. Once the denominator is constrained, the problem of finding the numerator canbe reduced to that of a linear system of equations, and our program can accept an ansatz providedby a user for what type of object may appear in the numerator, chosen in the space of harmonicsums and/or Pochhammer symbols. The package can also solve the difference equation in a seriesexpansion in one parameter, which in applications would be the dimensional parameter ε, andcan factor out a hypergeometric factor chosen by the user as we will elucidate in the followingsections. The exposition in this chapter follows [201].

7.1 Description of the basic problem

A partial linear difference equation (PLDE) is an equation for an unknown function y(n1, . . . , nr) ∈K(n1, . . . , nr), here a rational function in r variables. We define the shift operators Ns with re-spect to the shift s = (s1, . . . , sr) ∈ Zr as:

Nsy(n1, . . . , nR) = y(n1 + s1, . . . , nr + sr). (7.1)

A PLDE is then an equation of the type∑s∈S

asNsy = f (7.2)

with as and f polynomials in n1, . . . , nr and S is a finite subset of Zr called the shift set orstructure set. Because (7.2) is linear, its general solution is the sum of a particular solution andof a linear combination of solutions of the homogeneous equation with f = 0.

An example of the type of equation under consideration is:

− (1 + k + n2)y(n, k) + (4 + k + 2n+ n2)y(1 + n, 2 + k) = 0. (7.3)

It has the shift set S = (0, 0), (1, 2) and its coefficients are

a(0,0) = −(1 + k + n2), (7.4)

a(1,2) = (4 + k + 2n+ n2). (7.5)

For the purpose of the algorithms dealt with in our package, one must distinguish betweenperiodic and aperiodic polynomials [376,377]. A polynomial p is periodic if there exist infinitelymany shifts, mapping p into p′, such that gcd(p, p′) = 1. A polynomial is aperiodic if it is not

99

Page 110: and 3-loop corrections to hard scattering processes in QCD

periodic. For example, with respect to the variables n, k, the polynomial (n+k+2) is periodicand the polynomial (n2 + k + 6) is aperiodic. Any polynomial can be factorized into a periodicand an aperiodic part. Given a PLDE, there are algorithms which constrain the periodic andthe aperiodic part of the denominator of the solution. As we will describe further, the aperiodicpart can always be constrained, but this is not guaranteed for the periodic part. In the followingwe describe our implementation choices in our Mathematica package [201].

7.2 Denominator bounds

The algorithms in [376, 377] aim at formulating a denominator bound for the solution of (7.2).A denominator bound is a polynomial d such that for any solution y = n

pof (7.2) it must be p|d.

As observed already in the univariate case [370,371], obtaining a denominator bound is valuablefor the following reason: a naive way to solve the PLDE is by formulating an ansatz for thesolution, i.e. a rational function in the variables n1, . . . , nk with undetermined coefficients ck,

y(n1, . . . , nr) =

∑k

ck∏i

nkii∑

k′ck′∏i

nk′ii

. (7.6)

By plugging this ansatz in (7.2) and clearing denominators one obtains a set of constraints onthe ck and ck′ by imposing the equality of every monomial in the variables ni on both sides ofthe equation. However, these equations are, in general, non-linear.

However, if the denominator bound can be obtained, then only an ansatz for the numerator isrequired and the equations for the unknown coefficients are linear. The ansatz for the numeratorcan then be made to involve harmonic sums [246,247] and/or Pochhammer symbols.

If we write the solution to a partial linear difference equation as y = nuv

with u aperiodic and vperiodic, it is always possible to calculate a bound da for the aperiodic part u of the denominator.We refer to [376] for a description of how the aperiodic denominator bound is calculated.

For the periodic part v it is not always possible to obtain a complete denominator bound fora PLDE. This is illustrated for example by the equation

y(n+ 1, k)− y(n, k + 1) = 0, (7.7)

which is satisfied by 1(n+k)α

for any α ∈ N. Clearly, no polynomial can be a denominator bound

for Eq. (7.7). This example shows that it is impossible to formulate in all cases a completedenominator bound, because arbitrary powers of periodic factors can appear in the denominatorof the solution of some equations. However, it is often possible to formulate a partial bound for vand to deduce some properties of its unknown factors. (A partial bound is a bound for some, butnot all, the periodic factors). Specifically, the algorithm in [377] works by successively examiningthe periodic factors of ap with p a “corner point” of the shift set of the equation (see [377] for adefinition). It guarantees that v has the property

v | (dp · vsemi-known · vunknown) (7.8)

where dp is an explicitly given polynomial obtained through the algorithm, vsemi-known is a poly-nomial whose factors are to be taken from Ns(p

m)|s ∈ Zr,m ∈ Z, where p ∈ P and P is asubset of the periodic factors of the coefficients of the corner points, which is identified by thealgorithm; and vunknown is a polynomial such that spread(vunknown) = V and V is a lattice in Zr

identified by the algorithm. The spread of a polynomial u is defined by

spread(u) = s ∈ Zr | gcd(u,Nsu) = 1. (7.9)

In our implementation, if P = ∅ or V = ∅, then corresponding pieces of information areprinted in order to guide the user to the formulation of an ansatz for vsemi-known and vunknown.

100

Page 111: and 3-loop corrections to hard scattering processes in QCD

Once the user has decided on an ansatz duser for the missing factors in the denominator, it canbe included in the search when looking for the numerator of the solution through the optionInsertDenFactor → duser of our package.

7.3 Determination of the numerator

Once the denominator has been constrained, possibly including an ansatz chosen by the user,one may look for the numerator of the solution. It has been shown in [378] based on [379] thatin general the problem is unsolvable, and no algorithm exists that can find all solutions. Still,one can find some solutions by taking a polynomial ansatz num(ci) and substituting the rationalfunction

y =num(ci)

dadpduser(7.10)

into the equation (7.2). After clearing denominators, one can formulate a linear system for theunknown coefficients ci such that the equation is satisfied.

In our experience, the determination of the ci is more computationally demanding than thedetermination of the denominator bound; for this reason we propose the following strategy,which is implemented in our package as released in [201]. When the PLDE does not containany symbolic parameters (such as the dimensional regulator ε, or ratios of invariants) otherthan the shift variables, one may obtain constraints on the undetermined ci simply by plugging,sufficiently many times, random numerical values for the shift variables. This allows to quicklyobtain a linear system for the ci without resorting to more expensive symbolic comparisons ofthe coefficients of many monomials and to Gaussian elimination in a potentially large and highlyredundant system.

If there are symbols present, instead, one may consider performing a first pass with thesymbols replaced by random numbers, with the purpose of identifying and removing redundantconstraints. Then, after removing the redundant equations for the ci, the system can be solvedin a stepwise manner, i.e. considering one at a time the constraints produced by one monomial,and plugging the result in the rest of the equation. This is what our package does when thefunction SolvePLDE is called.

It is certainly possible that the use of random numbers to generate constraints can cause thesystem to generate two (or more) equations for the ci which are not independent. The probabilityof such an occurrence can be made arbitrarily small by choosing a sufficiently large range overwhich the random numbers are chosen. In any event, the consequence of an unfortunate draw ofrandom numbers can only cause the software to output more functions misidentified as solutionswhen in fact they are not; it cannot cause the software to miss any solutions. By explicitlychecking the result, one can guard against this remote possibility, at the expense of additionalcomputation time. The user should be aware of this aspect when calling the function SolvePLDE.

In the following we elaborate further enhancements in order to extend the solution spacefrom the rational function case to more general classes of functions. Besides the examples below,further examples for each aspect can be found in the Mathematica notebooks attached to thepaper [201].

7.3.1 Treatment of a hypergeometric prefactor

Given a PLDE (7.2) ∑s∈S

asNsy = f (7.11)

one may want to identify solutions of the form

y′ = ry (7.12)

101

Page 112: and 3-loop corrections to hard scattering processes in QCD

with r = r(n1, . . . , nr) a hypergeometric function of its arguments, i.e. a function such that theratio

Neir

r=r(n1, . . . , ni + 1, . . . nr)

r(n1, . . . , ni, . . . , nr)(7.13)

is for all i a rational function of the variables ni. Examples of hypergeometric functions arePochhammer symbols, factorials, Γ-functions, binomial symbols, and obviously rational functionsand polynomials.

The demand (7.12) implies that y must satisfy another PLDE,∑s∈S

a′sNsy′ = f ′, (7.14)

The transformation from (7.11) to (7.14) is useful whenever it is possible to formulate anansatz for r. Once some specific form can be postulated for r, the equation (7.11) is obtained bysubstitution and by exploiting the hypergeometric property. Consider for example the equation

(1 + k)(ε+ k)(1 + k + n2) y(n, k)− 2k(2 + k + n2) y(n, 1 + k)

+(1 + k)(ε+ k)(2 + k + 2n+ n2) y(1 + n, k) = 0. (7.15)

We assume that its solution isy(n, k) = (ε)k y

′(n, k) (7.16)

with y′ a rational function of n and k and (ε)k the Pochhammer symbol

(ε)k = ε(ε+ 1) · · · (ε+ k − 1). (7.17)

Then one derives a difference equation for y′, namely

(ε+ k)[(1 + k2 + n2 + k(2 + n2))y′(n, k)− 2k(2 + k + n2)y′(n, 1 + k)

+(2 + k2 + 2n+ n2 + k(3 + 2n+ n2))y′(1 + n, k)]= 0. (7.18)

We can now solve the new equation, obtaining

y′(n, k) =k

1 + k + n2. (7.19)

From this we conclude that the solution of (7.15) is

y(n, k) = (ε)kk

1 + k + n2C, (7.20)

for some constant C ∈ K(ε).

7.3.2 Finding solutions in terms of nested sums

In physical applications, it is known that the solutions of difference equations occurring in ac-tual problems contain (cyclotomic) harmonic sums [246, 247, 249] or their generalizations. Thealgorithm we described can be adapted to look for these objects in the numerator of the solutionby modifying the ansatz (7.10) to be formed by a linear combination, with unknown coefficients,of a polynomial expression in a finite list of harmonic sums having coefficients in K[n1, . . . , nr].The list of harmonic sums must be shift-stable, i.e. a shift in any of the variables must notintroduce new harmonic sums not already included in the list, and they also should be linearlyindependent. These properties can be guaranteed by the quasi-shuffle algebra that the harmonicsums satisfy or by difference ring methods [255,362,380].

102

Page 113: and 3-loop corrections to hard scattering processes in QCD

After plugging the ansatz into the equation and clearing denominators, the nested sums atshifted arguments can be rewritten using relations of the type

S1(n+ i) =1

n+ i+ S1(n+ i− 1) (7.21)

and similarly for all other nested sums, until only unshifted nested sums appear. Then oneapplies a coefficient comparison on the power products in the harmonic sums and the shiftvariables. One notices how the number of unknowns ci and of equations rises very fast with thedegree of the polynomial chosen for the ansatz and with the number of harmonic sums underconsideration; the homomorphic image techniques described in the beginning of Section 7.3 areinstrumental to perform these calculations in reasonable time.

This heuristic method provides in many cases the desired solution. For instance, consider theequation from [201]

(−k − 1)(k + n2 + 2n+ 1

)f(n, k) + k

(k + n2 + 2n+ 2

)f(n, k + 1)

+2(k + 1)(k + n2 + 4n+ 4

)f(n+ 1, k)− 2k

(k + n2 + 4n+ 5

)f(n+ 1, k + 1)

−(k + 1)(k + n2 + 6n+ 9

)f(n+ 2, k) + k

(k + n2 + 6n+ 10

)f(n+ 2, k + 1) = 0,

(7.22)

Looking for solutions of the form described, with a numerator of degree up to 2, containing theharmonic sums S1(n), S1(k), S2,1(n) the algorithm finds the denominator

dp = 1 + k + 2n+ n2 (7.23)

and the corresponding numerators of the solutions of the homogeneous equation:

1, k, k2, n, kn, S1(k), kS1(k), nS1(k), S1(k)2, kS1(n), kS2,1(n). (7.24)

7.3.3 Matching the solution to initial values

Our package allows to look for solutions that conform to a given set of initial conditions. Thisgeneral solution is found by building a linear combination with undetermined coefficients of thesolutions of the homogeneous equation, plus a particular solution of the equation. Next, theinitial values are plugged in, and a system of equations is obtained. In the case that the systemcontains symbolic parameters other than the shift variables, the undetermined coefficients to besearched are not just numbers. In that case, the coefficients of the linear combination are takento be general rational functions in the parameters up to some chosen degree. The combinationof the solutions will be of particular importance for the next subsection.

7.3.4 Finding the solution in a series expansion

In many applications it is desirable to obtain the Laurent series expansion of the solution of adifference equation. This may be easier to achieve than the derivation of a complete solution,because, at each order in the expansion, it is possible to derive a difference equation wherethe expansion parameter is absent, therefore the linear system to find the coefficients ci canpotentially be solved much more quickly. The procedure, described in the following, generalizesthe univariate case given in [381]. It assumes that the initial values of the solution in its ε-expansion are known.

Consider the case where (7.2) contains a parameter ε in the coefficients:∑s∈S

as(ni, ε)Nsy(ni) = f(ni, ε), (7.25)

103

Page 114: and 3-loop corrections to hard scattering processes in QCD

where the coefficients as(ni, ε) are polynomials in the shift variables and in the parameter ε. Wesearch for a solution of (7.25) which has, around ε = 0, a Laurent expansion starting from thepower ε−ℓ of the parameter, with ℓ known,

yε(ni) = ε−ℓy−ℓ(ni) + · · ·+ y0(ni) + εy1(ni) + · · ·+ εcyc(ni), (7.26)

and we assume that the right-hand side of the equation can be expanded in a series in ε as

f = ε−ℓf−ℓ(ni) + ε−ℓ+1f−ℓ+1(ni) + · · · . (7.27)

We assume also that the as(ni, ε = 0) are not all zero, so that an overall power of ε, if present inthe equation, has been factored out. Then, one may proceed by inserting (7.26) and (7.27) into(7.25) and doing a coefficient comparison of the ε−ℓ terms, obtaining∑

s∈S

as(ni, ε = 0)Nsy−ℓ(ni) = f−ℓ(ni). (7.28)

Equation (7.28) is now free of ε, which facilitates the task of finding a solution and reduces thecomputational time required. If (7.28) can be uniquely solved for y−ℓ and the solution matchedto initial values, one can move to the next higher power in ε by plugging the solution into (7.26).In this new equation one does a coefficient comparison of the next power in ε and solves for yℓ+1.The process is repeated as many times as needed until all the terms of interest in the Laurentexpansion are obtained.

For instance, consider the equation[3(k + 1)(n+ 1) + 4(n+ 1) + 1

](4kn2ε3 + 5nε+ 6ε2 + 1)f(n+ 1, k + 1)

−(3kn+ 4n+ 1)[4(k + 1)(n+ 1)2ε3 + 5(n+ 1)ε+ 6ε2 + 1

]f(n, k) = 0. (7.29)

Together with a list of 25 initial values, our procedure to compute the expansion encounters atorder ε−2, ε−1, ε0 the equations

(−3kn− 4n− 1)f(n, k) + (3kn+ 3k + 7n+ 8)f(n+ 1, k + 1) = τ, (7.30)

with τ = 0, 5, 0, respectively, which are free of ε. The series solution of (7.29) is found to be

f(n, k) =1

ε2(3kn+ 4n+ 1)+

5n

ε(3kn+ 4n+ 1)+

6

3kn+ 4n+ 1+O(ε). (7.31)

7.3.5 A brief descriptions of the commands of solvePartialLDE

The Mathematica package SolvePartialLDE.m implements the aforementioned algorithms forsolving partial linear difference equations. It requires Sigma and HarmonicSums to be loaded.Additionally, the software Singular [382] must be installed, and made available by the inter-face [383] to Mathematica. The installation path of Singular can be set using the commandappropriate for the user’s system, e.g.

< <Singular.m

SingularCommand = "(path to)/Singular-4.1.3-x86_64-Linux/bin/Singular" .

The functions available are

• spread[p, q, n, k, ...(, eps, ...)]: this function calculates the spread, Eq. (7.9), of thepolynomials p and q, in the variables n, k, . . .. The symbols in the optional list are treatedas an extension to the field over which the polynomials are defined. If the polynomials pand q contain symbolic parameters other than n, k, . . ., such as for instance the dimensionalregulator ε, they must be declared in the second list.

104

Page 115: and 3-loop corrections to hard scattering processes in QCD

• dispersion[p, q, n, k, ...(, eps, ...)]: this function calculates the dispersion (it is themaximum of the spread) of the polynomials p and q in the variables n, k, . . .. The secondoptional list has the same function as in the function spread.

• SolvePLDE[eq == rhs, f[n, k, ...], (options)]. This command solves the linear partial dif-ference equation. It has the following available options:

– UseObject → list of Harmonic sums and/or Pochhammer symbolsAllows to define a list of harmonic sums and Pochhammer symbols to be searched inthe numerator of the solution.

– PLDEdegBound → dAllows to choose the total degree d of the ansatz for the numerator of the solution.Defaults to 0.

– InsertDenFactor → factorsIn the case the periodic denominator bound was not complete, the user may force thesearch to include factors in the denominator.

– PLDESymbols → listAny symbols appearing other than the shift variables must be declared in list.

– InitialValues → listA list of initial values in the form var1 → val1, var2 → val2, . . . , initialvalue, . . .

– SymbolDegree → dWhen initial conditions are provided, a linear combination of the homogeneous so-lutions is built, having as coefficients rational functions in the symbols. This optionsets the maximum total degree of the numerator and denominator of those rationalfunctions.

• SolveExpand[eq == rhs, f[n, k, ...], PLDEExpandIn → ε, ℓmin, ℓmax,InitialValues → . . ., (options)] : this command solves the PLDE in a series expan-sion in the parameter ε, as described in Section 7.3.4. The options are the same as forSolvePLDE.

• expandHypergPref[eq == rhs, f[n, k, ...], fac]. This command derives a new equationwhose solution has the hypergeometric factor fac removed, as described in Section 7.3.1.

105

Page 116: and 3-loop corrections to hard scattering processes in QCD
Page 117: and 3-loop corrections to hard scattering processes in QCD

8 A numerical library for DIS structure functions

We present a Fortran library [384] of use for numerically calculating the structure functionsF2(x,Q

2), g1(x,Q2) for electromagnetic current exchange and FW+±W−

3 (x,Q2) for charged-current exchange in the asymptotic regime of large exchanged momentum Q2, by convolutionin N -space of parametrized parton distribution functions (PDFs) with Wilson coefficients. ThePDFs can be evolved by the library from a parametrization in N -space at an initial scale Q2

0

specifiable by the user, and are evolved in the fixed-flavour-number scheme by employing thesplitting functions which are known up to O(a3s) [69, 70, 83]. The library accepts as inputs thecombinations u±u, d± d and s± s in the unpolarized case and ∆u+∆u, ∆d+∆d, ∆s+∆s in thepolarized case. It also encodes the Wilson coefficients for the above-mentioned deep-inelastic pro-cesses and for the Drell-Yan process and Higgs production, which have been calculated in [397].In the case of F2(x,Q

2), the known two-mass contributions of the Wilson coefficients are in-cluded up to O(a3s) [121], whereas for g1(x,Q

2) and FW+±W−

3 (x,Q2) single-mass contributionsare considered [184–187,199,284].

The applicability of these asymptotic representations is due to the factorization theoremsfor QCD [59, 112], and any intervening corrections due to heavy quark effects to the Wilsoncoefficients are suppressed as O(m2

c,b/Q2) in the region Q2 ≫ m2

b,c. Furthermore, the asymptoticvalues of the structure functions are used as an ingredient in many definitions of variable flavournumber schemes [112,118].

The N -space evaluation is obtained by the asymptotic expansion of the harmonic sums in thelimit |N | → ∞, see [247,256,257], together with recursion relations. In this way, it is possible toexpress the physical quantities in the complex N plane. We show what accuracy is attainable inthe evaluation of moments of the Wilson coefficients and perform the evolution of a set of testPDFs with our library.

8.1 The structure functions F2 and FL

In the fixed flavour number scheme with NF = 3, the structure functions F2,L(x,Q2) are written

as the sum of purely massless and massive contributions as follows [121]:

Fi(x,Q2) = Fmassless

i (x,Q2) + F heavyi (x,Q2) , i = 2, L. (8.1)

The massless part can be written as

1

xFmasslessi (x,Q2) =

∑q

e2q

1

NF

[Σ(x, µ2)⊗ CS

i,Q

(x,Q2

µ2

)+G

(x, µ2

)⊗ Ci,g

(x,Q2

µ2

)]

+∆q(x, µ2)⊗ CNS

i,q

(x,Q2

µ2

), i = 2, L , (8.2)

with Σ and ∆k the flavor singlet and non-singlet distributions given by Eqs. (2.51) and (2.52),and G denoting the gluon density.

In our code, for F2, we consider the contributions of both the c and the b quark in theasymptotic region Q2 ≫ m2

c,b, limited to the OMEs which are fully known in N -space, asspecified below. The heavy quark part is then given by

1

xF heavy(2,L) (x,NF + 2, Q2,m2

1,m22) =

NF∑k=1

e2k

LNSq,(2,L)

(x,NF + 2,

Q2

µ2,m2

1

µ2,m2

2

µ2

)⊗[fk(x, µ

2, NF ) + fk(x, µ2, NF )

]

107

Page 118: and 3-loop corrections to hard scattering processes in QCD

+1

NF

LPSq,(2,L)

(x,NF + 2,

Q2

µ2,m2

1

µ2,m2

2

µ2

)⊗ Σ(x, µ2, NF )

+1

NF

LSg,(2,L)

(x,NF + 2,

Q2

µ2,m2

1

µ2,m2

2

µ2

)⊗G(x, µ2, NF )

+ ˜HPSq,(2,L)

(x,NF + 2,

Q2

µ2,m2

1

µ2,m2

2

µ2

)⊗ Σ(x, µ2, NF )

+ ˜HSg,(2,L)

(x,NF + 2,

Q2

µ2,m2

1

µ2,m2

2

µ2

)⊗G(x, µ2, NF ) . (8.3)

The massive Wilson coefficients in their asymptotic form are given in [121] and read:

LNSq,(2,L)(NF + 2) = a2s

[A

(2),NSqq,Q (NF + 2) δ2 + C

(2),NSq,(2,L)(NF )

]+ a3s

[A

(3),NSqq,Q (NF + 2) δ2 + A

(2),NSqq,Q (NF + 2)C

(1),NSq,(2,L)(NF + 2)

+C(3),NSq,(2,L)(NF )

], (8.4)

LPSq,(2,L)(NF + 2) = a3s

[A

(3),PSqq,Q (NF + 2) δ2 + A

(2)gq,Q(NF + 2)NF C

(1)g,(2,L)(NF + 2)

+NFˆC(3),PSq,(2,L)(NF )

], (8.5)

LSg,(2,L)(NF + 2) = a2sA

(1)gg,Q(NF + 2)NF C

(1)g,(2,L)(NF + 2)

+ a3s

[A

(3)qg,Q(NF + 2) δ2 + A

(1)gg,Q(NF + 2)NF C

(2)g,(2,L)(NF + 2)

+A(2)gg,Q(NF + 2)NF C

(1)g,(2,L)(NF + 2)

+ A(1)Qg(NF + 2)NF C

(2),PSq,(2,L)(NF + 2) +NF

ˆC(3)g,(2,L)(NF )

], (8.6)

˜HPSq,(2,L)(NF + 2) =

2∑i=1

e2Qia2s

[A

(2),PSQq (NF + 2,m2

i ) δ2 + C(2),PSq,(2,L)(NF + 2)

](8.7)

+ a3s

[˜A(3),PSQq (NF + 2) δ2 +

2∑i=1

e2Qi

[C

(3),PSq,(2,L)(NF + 2)

+A(2)gq,Q(NF + 2) C

(1)g,(2,L)(NF + 2)

+A(2),PSQq (NF + 2) C

(1),NSq,(2,L)(NF + 2)

]],

˜HSg,(2,L)(NF + 2) =

2∑i=1

e2Qi

[as

[A

(1)Qg(NF + 2) δ2 + C

(1)g,(2,L)(NF + 2)

]+ a2s

[A

(2)Qg(NF + 2) δ2 + A

(1)Qg(NF + 2) C

(1),NSq,(2,L)(NF + 2)

+ A(1)gg,Q(NF + 2) C

(1)g,(2,L)(NF + 2) + C

(2)g,(2,L)(NF + 2)

]]+ a3s

[˜A(3)Qg(NF + 2) δ2 +

2∑i=1

e2Qi

[A

(2)Qg(NF + 2) C

(1),NSq,(2,L)(NF + 2)

+ A(2)gg,Q(NF + 2) C

(1)g,(2,L)(NF + 2)

+ A(1)Qg(NF + 2)

C

(2),NSq,(2,L)(NF + 2) + C

(2),PSq,(2,L)(NF + 2)

+ A

(1)gg,Q(NF + 2) C

(2)g,(2,L)(NF + 2) + C

(3)g,(2,L)(NF + 2)

]]. (8.8)

108

Page 119: and 3-loop corrections to hard scattering processes in QCD

Here the symbol δ2 takes the values

δ2 =

1 for F2

0 for FL.(8.9)

In this notation, we use

f(x) =f(x)

x, (8.10)

f(x) = f(x+ 2)− f(x) . (8.11)

The OMEs Aij(NF + 2) have the structure

Aij(NF + 2) = Aij(m1) + Aij(m2) + Aij(m1,m2) + Aij(m2,m1) (8.12)

in which Aij(m1,m2) denotes the part for which the current couples to the quark of mass m1.

The double tilde in ˜Hq,(2,L) and˜HSg,(2,L) refers to the charge weighting in the third-order OMEs:

˜A(3)ij = e2Q1

A(3)ij (m1) + e2Q2

A(3)ij (m2) + e2Q1

A(3)ij (m1,m2) + e2Q2

A(3)ij (m2,m1) . (8.13)

We implement in a numerical program the evolution of the structure function F2(x,Q2)

according to Eq. (8.1), (8.2), (8.3), by performing in N -space the evolution of the PDFs andpairing them to the Wilson coefficients by multiplication in N -space. As a last step, by anumerical contour integral, F2(x,Q

2) is obtained.At present, some of the quantities in Eqs. (8.4)-(8.8) are unknown in full analytic form. They

are: a(3)Qg and the two-mass asymmetrical OMEs A

(3)Qg and A

(3),PSQq . For this reason, A

(3),PSQq and

˜A(3)Qg are not implemented in our code. For a

(3),PSQq , which depends on generalized harmonic sums,

we employ an approximate representation.For a

(3)Qg, approximate representations exist, based on partial information obtained from in-

terpolations of fixed moments and from the known leading-logarithmic contributions to theheavy Wilson coefficients in the small-x limit and their double-log contributions in the large-xlimit [183]. The approximation in [183] was further refined in [78]; it is not included at presentin our code.

As for the massless Wilson coefficients, pertaining the approximate parametrizations of thethree-loop Wilson coefficients, there appear to be discrepancies between Eq. (4.13) in the textof [71] and the attachments to the paper. In particular, an inverse Mellin transform of theformula presented in the attachments would suggest that a term in the 4th line in the text needsto be corrected to read +932.089L0 i.e. a sign flip. A second inconsistency is in the attachment tothe paper where the N -space approximation is given. There, it appears that the flavour constantflg11 should be multiplied by N2

F instead of NF . We suggest these changes so that the formulasbecome the Mellin transforms of each other and agree numerically with the moments presentedin [67]: with the definitions

x1 = 1− x, L0 = ln(x), L1 = ln(x1), f lg11 =⟨e⟩2⟨e2⟩ (8.14)

where ⟨ei⟩ refers to the average of the i-th power of the quark charges, the correct formulaappears to be:

c(3)2,g(x)

∼= NF

96681

L51 −

1871

18L41 + 89.31L3

1 + 979.2L21 − 2405L1 + 1372x1L

41

−15729− 310510x+ 331570x2 − 244150xL20 − 253.3xL5

0

+L0L1(138230− 237010L0)− 11860L0 − 700.8L20 − 1440L3

0

109

Page 120: and 3-loop corrections to hard scattering processes in QCD

+4961

162L40 −

134

9L50 − x−1(6362.54+932.089L0) + 0.625δ(x1)

+N2

F

13181

L41 − 14.72L3

1 + 3.607L21 − 226.1L1 + 4.762− 190x− 818.4x2

−4019xL20 − L0L1(791.5 + 4646L0) + 739.0L0 + 418.0L2

0 + 104.3L30

+809

81L40 +

12

9L50 + 84.423x−1

+flg11N

2F

3.211L2

1 + 19.04xL1 + 0.623x1L31 − 64.47x+ 121.6x2 − 45.82x3

−xL0L1(31.68 + 37.24L0) + 11.27x2L30 − 82.40xL0 − 16.08xL2

0

+520

81xL3

0 +20

27xL4

0

. (8.15)

The difference to the text of [71] is marked in red. The Mellin transform of (8.15) is

c(3)2,g(N) ∼= NF

1

27000(N − 1)2N6(1 +N)6(2 +N)

(96480000 + 473848000N + 1224036000N2

+2069001600N3 + 1862075200N4 − 699200400N5 − 39517220484N6

−70794783706N7 + 37122825948N8 + 130572396885N9 + 45633145850N10

−51332369409N11 − 42336233496N12 − 9514319157N13 − 27750330N14

+16875N15)+[ 1

N3(1 +N)4(474020 + 2034310N + 3399445N2 + 2702152N3

+1041370N4 + 147850N5 + 2405N6)− 3(8931 + 566662N + 8931N2

)S2

100N(1 +N)2

−1610S22

9N− 4(−22825 + 1871N)S3

9N(1 +N)− 3220S4

9N

]S1 +

[ 48

5N(1 +N)3(102− 1409N

+306N2 + 102N3)+

(22825− 1871N)S2

3N(1 +N)− 6440S3

27N

]S21

+(−8931− 566662N − 8931N2

100N(1 +N)2− 3220S2

27N

)S31 +

(22825− 1871N)S41

18N(1 +N)− 322S5

1

27N

+[2(1185050 + 3903173N + 4558059N2 + 2229119N3 + 348023N4

)5N2(1 +N)3

− 6440S3

27N

]S2

+(22825− 1871N)S2

2

6N(1 +N)+

(23692069 + 46835338N + 23692069N2

)S3

50N(1 +N)2

+(22825− 1871N)S4

3N(1 +N)− 2576S5

9N− 10(47402 + 13823N)ζ2

N2− 474020ζ3

N

+N2

F

1

27000(N − 1)N6(1 +N)3(2 +N)

(8640000 + 8656000N + 10073200N2

+9115000N3 − 30552800N4 + 8345452N5 + 539404372N6 − 148164201N7

−258366915N8 − 67625199N9 − 24818805N10)+(92920− 7915N + 2261N2

10N3

+1104S2

25N+

1048S3

81N

)S1 +

( 3607

1000N+

262S2

27N

)S21 +

368S31

25N+

131S41

81N

+(9292000− 787893N)S2

1000N2+

131S22

27N+

233036S3

25N+

262S4

27N+

(−18584 + 1583N)ζ22N2

−9292ζ3N

+flg11N

2F

1

13500(1 +N)5(2 +N)4(3 +N)

(97917774 + 305888240N

110

Page 121: and 3-loop corrections to hard scattering processes in QCD

+418317438N2 + 369372616N3 + 267827242N4 + 162867261N5 + 71110703N6

+19153530N7 + 2741175N8 + 152685N9)+(13749− 34880N − 9520N2

500(1 +N)3

− 1869S2

1000N(1 +N)

)S1 +

(3211 + 8291N + 3211N2

)S21

1000N(1 +N)2− 623S3

1

1000N(1 +N)

+

(3211 + 51091N − 28469N2

)S2

1000N(1 +N)2+

7(−89 + 5320N)S3

500N(1 +N)+

2(−535 + 396N)ζ225(1 +N)2

− 1862ζ325(1 +N)

. (8.16)

The difference to the attachment of [71] is marked in red.For the structure function FL for photon exchange, the charm-quark contributions to the

Wilson coefficients have been calculated to O(a2) in [159,181] with full mass dependence and inthe asymptotic approximation, and to O(a3) in [165]. The massless Wilson coefficients are knownfrom [64, 71, 76]. It is known that the asymptotic approximation to the charm contribution atO(a2) differs significantly from the analytic expression for virtualities below Q2 ∼ 1000 GeV2.For this reason, in our numerical library, only the massless Wilson coefficient for FL are coded.At O(a3), our program uses the approximate formulas of [76]. The structure function FL(x,Q

2)is coded according to Eq. (8.2).

8.2 The structure function g1

In the case of g1(x,Q2), we consider the contributions to the Wilson coefficients due to one heavy

quark. Their explicit form can be found in [184,199], and reads:

1

xg1(x,Q

2) =

NF∑k=1

e2k

LNSq,g1

(x,NF + 1,

Q2

µ2,m2

µ2

)⊗[∆fk(x, µ

2, NF ) + ∆fk(x, µ2, NF )

]+

1

NF

LPSq,g1

(x,NF + 1,

Q2

µ2,m2

µ2

)⊗∆Σ(x, µ2, NF )

+1

NF

LSg,g1

(x,NF + 1,

Q2

µ2,m2

µ2

)⊗∆G(x, µ2, NF )

+ e2Q

[HPS

q,g1

(x,NF + 1,

Q2

µ2,m2

µ2

)⊗∆Σ(x, µ2, NF )

+HSg,g1

(x,NF + 1,

Q2

µ2,m2

µ2

)⊗∆G(x, µ2, NF )

]. (8.17)

In our numerical program, the polarized splitting functions and Wilson coefficients are coded.They can be obtained from [83,385] and from [85].

8.3 The structure function xFW+−W−

3

For charged-current DIS processes, the structure functions FW±i are defined by [388]

dσν(ν)

dxdy=

G2F s

M4W

(M2W +Q2)2

(8.18)

×(

1 + (1− y)2)FW±

2 (x,Q2)− y2FW±

L (x,Q2)±(1− (1− y)2

)xFW±

3 (x,Q2)

111

Page 122: and 3-loop corrections to hard scattering processes in QCD

dσl(l)

dxdy=

G2F s

M4W

(M2W +Q2)2

(8.19)

×(

1 + (1− y)2)FW∓

2 (x,Q2)− y2FW∓

L (x,Q2)±(1− (1− y)2

)xFW∓

3 (x,Q2)

in terms of the differential cross sections, with y = q.P/l.P , x = Q2/ys, s = (l + P )2, GF theFermi constant, MW the W -boson mass and l, P are the momenta of the incoming lepton andproton. The combinations

xFW+∓W−

3 (x,Q2) = xFW+

3 (x,Q2)± xFW−

3 (x,Q2) (8.20)

are usually considered because they exist for odd or even moments respectively [40].Here we consider the combination xFW+−W−

3 (x,Q2), for which the asymptotic charm contri-butions to the Wilson coefficients have been calculated in [187] to O(a2) correcting the resultsin [188], and in [284] to O(a3), and the exact O(a) in [186].

One can write from the factorization theorems [284]

FW+−W−

3 (x,Q2) =[|Vdu|2(d− d) + |Vsu|2(s− s) + Vu(u− u)

]⊗[CW+−W−,NS

q,3 + LW+−W−,NSq,3

]

+[|Vdc|2(d− d) + |Vsc|2(s− s)

]⊗HW+−W−,NS

q,3 . (8.21)

Notice how there is no dependence on the gluon density. The coefficients Vij are those of theCKM matrix, whose values are [389]

|Vdu| = 0.97370 (8.22)

|Vsu| = 0.2245 (8.23)

|Vdc| = 0.221 (8.24)

|Vsc| = 0.987 (8.25)

andVu = |Vdu|2 + |Vsu|2. (8.26)

The asymptotic expressions of the heavy quark Wilson coefficients take the form [284]

LW+−W−,NSq,3 (NF + 1) = a2sA

(2),NSqq,Q + C

(2),W+−W−,NSq,3 (NF ) + a3s

[A

(3),NSqq,Q

+A(2),NSqq,Q C

(1),W+−W−,NSq,3 (NF + 1) + C

(3),W+−W−,NSq,3 (NF )

], (8.27)

HW+−W−,NSq,3 (NF + 1) = LW+−W−,NS

q,3 (NF + 1) + CW+−W−,NSq,3 (NF ), (8.28)

with the notationf(NF ) = f(NF + 1)− f(NF ). (8.29)

In our program, we calculate xFW+−W−

3 (x,Q2) numerically in N -space using Eq. (8.21) bypairing the valence PDFs obtained by evolving an input parametrization and the logarithmiccontributions to the Wilson coefficients computed for µ2 = Q2 where µ2 denotes the factorizationand renormalization scales.

112

Page 123: and 3-loop corrections to hard scattering processes in QCD

8.4 The structure function xFW++W−

3

For the structure function xFW++W−

3 , defined as in (8.20), the asymptotic factorization derivedin [187] reads:

FW++W−

3 =(|Vdu|2(d+ d) + |Vsu|2(s+ s)− Vu(u+ u)

)(CW++W−,NS

3,q + LW++W−,NS3,q )

+(|Vdc|2(d+ d) + |Vsc|2(s+ s)

)HW++W−,NS

3,q

+ 2Vc

[HW,PS

3,q Σ +HW3,gG

]. (8.30)

Explicit formulas for the asymptotic Wilson coefficients are given in [187] in N -space, obtainedfrom the factorization theorem. These formulas are encoded in our numerical program.

8.5 Drell-Yan process

The Drell-Yan process refers to the inclusive lepton pair production from two hadrons,

H1 +H2 → ℓ1 + ℓ2 +X, (8.31)

with the invariant mass of the lepton pair denoted by Q2 and the CM energy of the hadronsby s. From the mass factorization theorems [57,58,390], the hadronic structure function can bewritten as

WDY (x,Q2) =∑

i,j=q,q,g

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dz δ(x−x1x2z) fi/H1(x1, µ2) fj/H2(x2, µ

2) ∆DYij

(z,Q2

µ2

),

(8.32)where fi,j are the parton distribution functions, and µ2 is the mass factorization and renormal-ization scale, here set to be equal, and

x =Q2

s. (8.33)

The Drell-Yan structure function is related to the differential cross-section by

1

x

dσDY (x,Q2)

dQ2= σV (Q2) WDY (x,Q2), (8.34)

and σV (Q2) is the point-like cross-section, which depends on which of the standard-model bosonsV is exchanged. In the case of photon exchange, one has [391]

σγ(Q2) =16π2a2s3NcQ4

. (8.35)

The Wilson coefficients, ∆DYij , can be calculated in perturbation theory and have been com-

puted at order as in [392–395] and at order a2s in [391], see also [193]. Recently, the order a3s hasbeen discussed in [398]; the calculation limited to photon exchange only was presented in [399]and for charged-current exchange in [400].

After a Mellin transform, Eq. (8.32) can be written as:

M[WDY ](N,Q2) = M[fi](N,µ2) M[fj](N,µ

2) M[∆DYij ](N,

Q2

µ2

). (8.36)

In [397], the analytic expressions for the Mellin transforms of the Wilson coefficients ∆DYij have

been given. InN -space, these Wilson coefficients are written in terms of harmonic sums. We have

113

Page 124: and 3-loop corrections to hard scattering processes in QCD

included the implementation of the quantities ∆DYij (N) in our numerical library and evaluated

some of the lower moments in Table 12. We adopt the same notation as [391], namely

∆ij = ∆(0)ij + as∆

(1)ij + as∆

(2)ij . (8.37)

At lowest order, the only relevant process is q + q → V , corresponding to

∆(0)qq (N) = 1. (8.38)

At order as, one has the one-loop correction to this process, and the processes q + q → V + gand q(q) + g → V + q(q) giving rise to ∆

(1)qq and ∆

(1)qg . At order a2s one additionally finds the qq

and gg processes, and up to three particles are present in the final state. In [391], the diagramsfor the process qq → V + q+ q have been classified into six groups labeled from A to F , and thepossible interference terms between them has been calculated. In their notation, for example,∆

(2)

qq,ACrefers to the interference AC† + CA†. At order a2s, the Wilson coefficients fall into five

types: (i) the qq non-singlet, itself divided into a collinearly singular part

∆(2),NSqq = ∆

(2),S+Vqq +∆

(2),CAqq +∆

(2),CFqq +∆

(2)

qq,AA+ 2∆

(2)

qq,AC+ β0∆

(1)qq ln

(µ2R

µ2

), (8.39)

where the notation S + V refers to pieces obtainable in a soft gluon approximation, and a partfree of mass singularities, denoted by the terms ∆

(2)

qq,BB, ∆

(2)

qq,BCand, contributing only for V = γ,

∆(2)

qq,AB; (ii) the q(q)g

∆(2)qg = ∆

(2)qg = ∆(2),CA

qg +∆(2),CFqg + β0∆

(1)qg ln

(µ2R

µ2

)(8.40)

(iii) the qq singlet and non-identical quark (composed of the contributions ∆(2)

qq,CCand ∆

(2)

qq,CD),

(iv) the identical qq (formed by the contributions ∆(2)

qq,CEand ∆

(2)

qq,CF); (v) the gg contribution

∆(2)gg = ∆(2),CA

gg +∆(2),CFgg . (8.41)

The same formalism applies to the case of longitudinally polarized hadrons. In the paper [397],drawing from the O(a2s) results of [396, 401], the polarized Wilson coefficients δ∆DY

ij have beengiven analytically in N -space. A numerical implementation is included in our numerical libraryand an evaluation of the first Mellin moments is in Table 14.

8.6 Higgs boson production

In [402], the production of Higgs bosons from a hadronic collision was studied. The total cross-section for the process

H1 +H2 → B +X, (8.42)

inclusive over unobserved hadrons X, where B = (H,A) denotes a scalar or a pseudoscalar Higgsboson, is given by

σtot,B(x,m2) =

πG2B

8(N2c − 1)

∑i,j=q,q,g

∫ 1

x

dx1

∫ 1

x/x1

dx2 fi/H1(x1, µ2) fj/H2(x2, µ

2) ∆ij,B

( x

x1x2,m2

µ2

).

(8.43)Here, m is the mass of the Higgs boson, µ2 is the factorization and renormalization scale. In [402],the calculation was performed in the limit of large top-quark mass, mt → ∞. In this model, theeffective coupling constant GB is defined through

GB = −25/4as(µ2R) G

1/2F τB FB(τB) CB

(as(µ

2R),

µ2R

m2t

), (8.44)

114

Page 125: and 3-loop corrections to hard scattering processes in QCD

τ =4m2

t

m2, (8.45)

FH(τ) = 1 + (1− τ)f(τ), FA(τ) = f(τ) cot β, (8.46)

f(τ) =

arcsin2 1√

τif τ ≥ 1,

−14

(ln 1−

√1−τ

1+√1−τ

+ πi)

if τ < 1,(8.47)

with GF the Fermi constant and cot β the mixing angle in the two-Higgs-doublet model. Thecoefficients CB are computable in a series in as and can be found in [402], where the authors alsocalculated the Wilson coefficients ∆ij,H and ∆ij,A−H = ∆ij,A −∆ij,H .

In lowest order, Higgs production proceeds via the gluon fusion process gg → B througha top quark triangle loop, corresponding to ∆

(0)gg . At NLO, the possible partonic reactions are

g+ g → g+B, g+ q(q) → q(q) +B and q+ q → g+B, from which the Wilson coefficients ∆(1)gg ,

∆(1)qg and ∆

(1)qq are obtained. At NNLO, the notation employed is

∆(2)gg = C2

A∆(2),C2

Agg + CATFNF∆

(2),CATFNFgg + CFTFNF∆

(2),CFTFNFgg , (8.48)

∆(2)qg = C2

F∆(2),C2

Fqg + CACF∆

(2),CACFqg + CFTFNF∆

(2),CFTFNFqg , (8.49)

∆(2)q1q2

= C2F∆

(2),C2F

q1q2 , (8.50)

∆(2)qq = CAC

2F∆

(2),CAC2F

qq + C3F∆

(2),C3F

qq + C2F∆

(2),C2F

qq . (8.51)

In the paper [397] the Mellin transform of the Wilson coefficients was calculated analytically;these quantities are included in our numerical library. An evaluation of the lowest moments canbe found in Tables 14 and 15.

We remark that inclusive Higgs production has been studied at N3LO in [403–405] and anx-space program has been released in [406].

8.7 Notation and conventions

We follow the conventions in [175] for the normalization of the anomalous dimensions. Theparton densities satisfy2

∂ lnQ2

(Σ(x,Q2)G(x,Q2)

)= −1

2

(γqq γqgγgq γgg

)(Σ(x,Q2)G(x,Q2)

), (8.52)

and we will use the notations a = as(Q2) and a0 = as(Q

20). The anomalous dimensions are

expanded in a series in as as follows:

γij = aγ(0)ij + a2γ

(1)ij + a3γ

(2)ij , (8.53)

while the running of a is given by

∂a

∂ lnQ2= −β0a2 − β1a

3 − β2a4. (8.54)

We further define3

γij = −M[Pij]. (8.55)

We systematically follow [175] in all conventions. The running of the coupling is performed byEq. (5.27). 4

2As in [175] Eq. (2.115)3As in [175] Eq. (2.117)4The definition of the anomalous dimensions in [175] differs from the one adopted in [69, 70]. To recover the

anomalous dimensions of [175], it is sufficient to replace NF → 2TFNF from those of [69, 70] and multiply bytwo. In the convention of [69,70], the Altarelli-Parisi equation (8.52) loses the factor one-half.

115

Page 126: and 3-loop corrections to hard scattering processes in QCD

8.8 Evolution of the singlet PDFs

The singlet PDFs satisfy the equation [223,386]

∂a

(Σ(N, a)G(N, a)

)=

1

2(a2β0 + a3β1 + a4β2 + · · · )

(γSqq γqgγgq γgg

)(Σ(N, a)G(N, a)

)(8.56)

= −1

a

[R0 +

∞∑k=1

akRk

](Σ(N, a)G(N, a)

)(8.57)

where

γjk =∞∑i=0

ai+1γ(i)jk (8.58)

γS(i)qq = γ(+),(i)qq + γPS,(i)

qq (8.59)

and

γ(i) =

(γ(i)qq γ

(i)qg

γ(i)gq γ

(i)gg

)= −P(i), (8.60)

R0 =1

2β0P(0), (8.61)

Rk =1

2β0P(k) −

k∑i=1

βiβ0

Rk−i. (8.62)

Its perturbative solution can be given as a series expansion around the lowest order solution L,as in [41,386]:(

Σ(N, a)G(N, a)

)=

[1+

∞∑k=1

akUk

]L(a, a0)

[1+

∞∑k=1

ak0Uk

]−1(Σ(N, a0)G(N, a0)

)(8.63)

with

L(a, a0) =( aa0

)−R0

(8.64)

= e−

( aa0

)−r−+ e+

( aa0

)−r+(8.65)

where r± are the eigenvalues of R0,

r± =1

4β0[P (0)

qq + P (0)gg ±

√(P

(0)qq − P

(0)gg )2 + 4P

(0)gq P

(0)qg ] (8.66)

and e± are the projectors

e± =1

r± − r∓[R0 − r∓1] (8.67)

such thatR0 = r−e− + r+e+. (8.68)

The matrices Ui are calculated by

[U1,R0] = R1 +U1,

[U2,R0] = R2 +R1U1 + 2U2,

116

Page 127: and 3-loop corrections to hard scattering processes in QCD

...

[Uk,R0] = Rk +k−1∑i=1

Rk−iUi + kUk = ˜Rk + kUk, (8.69)

which implies

Uk = −1

k

[e− ˜Rke− + e+ ˜Rke+

]+

e+ ˜Rke−r− − r+ − k

+e− ˜Rke+

r+ − r− − k. (8.70)

To O(a2), the perturbative solution of (8.57) then reads(Σ(N, a)G(N, a)

)=

[L+ aU1L− a0LU1 + a2U2L

−aa0U1LU1 + a20L(U21 −U2)

]( Σ(N, a0)G(N, a0)

). (8.71)

8.9 Evolution of the non-singlet PDFs

Analogous to (8.57), one can write for the non-singlet case [386]

∂aqNS(N, a) =

1

2(a2β0 + a3β1 + a4β2)γNSqq q

NS(N, a) = −1

a

[RNS

0 + akRNSk

]qNS(N, a),

(8.72)

γNSqq =

∞∑k=1

ak+1γ(k)NSqq , (8.73)

with

RNS0 =

1

2β0P (0)NSqq , (8.74)

RNSk =

1

2β0P (k)NSqq −

k∑i=1

βiβ0RNS

k−i . (8.75)

A solution in a series expansion in a, a0 can be written similarly to the non-singlet case, withmatrix relations reducing to scalar relations, as follows:

qNS(N, a) = (1 + aU1 + a2U2)L(1 + a0U1 + a20U2)−1qNS(N, a0)

= L[1 + (a− a0)U1 + a2U2 − aa0U

21 + a20(U

21 − U2)

]qNS(N, a0)

= L[1 + (a− a0)U1 + (a− a0)

2U21

2+ (a2 − a20)

(U2 −

U21

2

)]qNS(N, a0) (8.76)

with L the lowest-order solution

L =( aa0

)−RNS0

(8.77)

and the quantities Ui determined by

0 = RNS1 + U1, (8.78)

0 = RNS2 +RNS

1 U1 + 2U2 (8.79)...

0 = RNSk +

k−1∑i=1

RNSk−iUi + kUk (8.80)

117

Page 128: and 3-loop corrections to hard scattering processes in QCD

or explicitly

U1 =1

2β0(−P (1)NS

qq +β1β0P (0)NSqq ) (8.81)

U2 =1

2β0

[β2P (0)NSqq

2β0+

1

4β0

(P (1)NSqq − β1P

(0)NSqq

β0

)2+

β12β0

(P (1)NSqq − β1P

(0)NSqq

β0

)−P

(2)NSqq

2

]. (8.82)

8.10 Implementation

The evolution program works in N -space by analytically continuing the relevant harmonic sumsthrough their asymptotic representation and recursion properties [221,256].

The PDFs are decomposed in SU(NF = 3)

v+3 (N,Q20) = (u+ u)(N,Q2

0)− (d+ d)(N,Q20), (8.83)

v+8 (N,Q20) = (u+ u)(N,Q2

0) + (d+ d)(N,Q20)− 2(s+ s)(N,Q2

0), (8.84)

Σ(N,Q20) = (u+ u)(N,Q2

0) + (d+ d)(N,Q20) + (s+ s)(N,Q2

0), (8.85)

for the case of F2; the same decomposition is applied to the polarized PDFs for the calculationof g1.

For xFW+−W−

3 , the analogous decomposition

v−3 (N,Q20) = (u− u)(N,Q2

0)− (d− d)(N,Q20), (8.86)

v−8 (N,Q20) = (u− u)(N,Q2

0) + (d− d)(N,Q20)− 2(s− s)(N,Q2

0), (8.87)

qV (N,Q20) = (u− u)(N,Q2

0) + (d− d)(N,Q20) + (s− s)(N,Q2

0) (8.88)

is used. Furthermore, one majorly has s = s. The non-singlet distributions v±3 , v±8 are evolved to

the virtuality Q2 by applying (8.76), and the singlet distribution Σ by applying (8.71). Equations(8.83)-(8.85) are then inverted to obtain the quark and antiquark PDFs (q + q), and similarlyfor the valence distributions.

Next, the structure functions F2(N,Q2) and g1(x,Q

2) are formed from (8.1), (8.2) and (8.3)and their polarized counterpart, and are Mellin-inverted to x-space by integrating numericallyover a contour. The inverse Mellin transform of the function Fi(N,Q

2) is performed by

Fi(x,Q2) =

1

πIm

[∫C

dN x−NFi(N,Q2)

], (8.89)

with the contour defined by

N = c0 + teiϕ, c0 = 1.5, 0 < t < 103, ϕ =3π

4. (8.90)

This contour is subdivided into 20 segments, logarithmically spaced, and each of the 20 integralsis evaluated by a Gaussian quadrature with 32 points.

8.10.1 Analytic continuation

The harmonic sums need to be analytically continued to complex values of N , which is done bythe asymptotic expansion and recursion relations [221, 256]. To make a concrete example, oneobtains for S1 the asymptotic expansion

S1(N) = lnN + γE +1

2N− 1

12N2+

1

120N4− 1

252N6+

1

240N8− 1

132N10+

691

32760N12

118

Page 129: and 3-loop corrections to hard scattering processes in QCD

− 1

12N14+

3617

8160N16− 43867

14364N18+

174611

6600N20+O

( 1

N21

)(8.91)

valid for N → ∞, which, together with the repeated application of the recurrence

S1(N) = − 1

N + 1+ S1(N + 1), N ∈ C, N /∈ Z− ∪ 0, (8.92)

allows to compute the analytic continuation with high accuracy in the complex plane.Let us first present a list of harmonic sums which is sufficient to encode the anomalous

dimensions up to three loops and the Wilson coefficients up to two loops. The non-alternatingharmonic sums encountered are

S1, S2, S3, S4, S5, S6, S2,1, S3,1, S4,1, S2,3, S2,1,1, S2,2,1, S3,1,1, S2,1,1,1. (8.93)

They are coded by asymptotic expansion for |N | > 15 and by applying recursions inside the disk|N | < 15. The alternating harmonic sums up to weight 5 which we encounter are

S−1, S−2, S−3, S−4, S−5, S2,−1, S−2,1, S−3,1, S−2,2, S−3,2, S2,−3, S−2,3, S−4,1,

S−2,1,1, S−2,2,1, S2,1,−2, S−3,1,1, S−2,1,−2, S−2,1,1,1.(8.94)

In order to code their analytic continuation, we employ the functions

β(N) =1

2

(N + 1

2

)− ψ

(N

2

)](8.95)

β(k)(N) =dk

dNkβ(N) (8.96)

f1(N) = M

[H0,1

x+ 1

](N) (8.97)

f2(N) = M

[H0,−1

x+ 1

](N) (8.98)

f3(N) = M

[H0,0,1

x+ 1

](N) (8.99)

f4(N) = M

[H0,1,0

x+ 1

](N) (8.100)

f5(N) = M

[H0,0,1,0

x+ 1

](N) (8.101)

f6(N) = M

[H0,−1,0,0

x+ 1

](N) (8.102)

f7(N) = M

[H0,1,1

x+ 1

](N) (8.103)

f8(N) = M

[H0,1,0,1

x+ 1

](N) (8.104)

f9(N) = M

[H0,−1,−1,0

x+ 1

](N) (8.105)

f10(N) = M

[H0,1,1,1

x+ 1

](N) (8.106)

f11(N) = M

[H0,0,1,1

x+ 1

](N) (8.107)

f12(N) = M

[H0,0,0,1

x+ 1

](N) (8.108)

119

Page 130: and 3-loop corrections to hard scattering processes in QCD

f13(N) = M

[H0,1,0,0

x+ 1

](N) (8.109)

f14(N) =3

8ζ2ζ3 +M

[4H2

0,−1 − 8H0H0,−1,−1 − 4ζ2H0,−1 + ζ22 + ζ3H0

8(1− x)

](8.110)

There exist relations [255] between these functions, namely:

f4(N) = M

[H0H0,1

x+ 1

]− 2f3(N), (8.111)

f5(N) = M

[H0H0,0,1

x+ 1

]− 3f12(N), (8.112)

f8(N) = M

[H2

0,1

x+ 1

]− 2f11(N), (8.113)

f13(N) = M

[H2

0H0,1

2(x+ 1)− 2

H0H0,0,1

x+ 1

]+ 3f12(N). (8.114)

The asymptotic expansion of these functions can be obtained similarly to the case non-alternatingharmonic sums, for example:

f7(N) =1

4N3+

5

16N4− 7

48N5− 553

576N6− 449

2880N7+

14143

2880N8+

13523

3360N9− 48812441

1209600N10

− 76577261

1209600N11+

7416007

15120N12+

2236826303

1900800N13− 2317056701681

279417600N14− 4517188480391

165110400N15

+1074395008571

5765760N16+

1441529428321447

1816214400N17− 413219201857699

76876800N18− 777809511672210671

27445017600N19

+13589624465891861

70171920N20+ (ln(N) + γE)

[− 1

3N4− 11

24N5+

149

240N6

+469

240N7− 661

252N8− 67379

5040N9+

9179

480N10+

1393813

10080N11− 7033

33N12− 5001819

2464N13

+220711619

65520N14+

19348413013

480480N15− 860107

12N16− 499342522543

480480N17+

32237449303

16320N18

+553305879870769

16336320N19− 491600492471

7182N20

]+ (ln(N) + γE)

2

[− 1

4N2− 1

4N3+

1

4N5

− 3

4N7+

17

4N9− 155

4N11+

2073

4N13− 38227

4N15+

929569

4N17− 28820619

4N19

]+

[− 1

4N2− 1

4N3+

1

4N5− 3

4N7+

17

4N9− 155

4N11+

2073

4N13− 38227

4N15+

929569

4N17

−28820619

4N19

]ζ2 +

[1

2N+

1

4N2− 1

8N4+

1

4N6− 17

16N8+

31

4N10− 691

8N12+

5461

4N14

−929569

32N16+

3202291

4N18− 221930581

8N20

]ζ3 +O

( 1

N21

)(8.115)

f14 =1

16ζ2ζ3 +

5

8ζ5 −

1

16N4+

1

8N6− 1

16N7− 13

32N8+

1

2N9+

33

16N10− 73

16N11

− 1517

96N12+

109

2N13+

527

3N14− 13821

16N15− 261131

96N16+

17899

N17+

2709997

48N18− 7590505

16N19

−729036941

480N20+O

( 1

N21

)(8.116)

One also has the relations

S−1(N) = (−1)Nβ(N + 1)− ln(2) (8.117)

120

Page 131: and 3-loop corrections to hard scattering processes in QCD

S−2(N) = (−1)N+1β(1)(N + 1)− ζ22

(8.118)

S−3(N) = (−1)Nβ(2)(N + 1)

2− 3

4ζ3 (8.119)

S−4(N) = (−1)N+1β(3)(N + 1)

6− 7

20ζ22 (8.120)

S−5(N) = (−1)Nβ(4)(N + 1)

24− 15

16ζ5 (8.121)

S2,−1(N) =(−S2(N) + S−2(N)− ζ2

2

)ln(2)− 1

2S−1(N)ζ2 +

1

4ζ3

+(−1)Nf2(N + 1) (8.122)

S−2,1(N) = ln(2)ζ2 + S−1(N)ζ2 −5

8ζ3 + (−1)1+Nf1(N + 1) (8.123)

S−3,1(N) = 2Li4

(12

)+

ln(2)4

12− 1

2ln(2)2ζ2 + S−2(N)ζ2 −

3

5ζ22 +

3

4ln(2)ζ3 − S−1(N)ζ3

+(−1)Nf3(N + 1) (8.124)

S−2,2(N) = −4Li4

(12

)− ln(2)4

6+ ln(2)2ζ2 +

51

40ζ22 −

3

2ln(2)ζ3 + 2S−1(N)ζ3

+(−1)Nf4(N + 1) (8.125)

S−3,2(N) = −6

5ln(2)ζ22 −

6

5S−1(N)ζ22 + 2S−2(N)ζ3 +

3

8ζ2ζ3 +

11

32ζ5

+(−1)1+Nf5(N + 1) (8.126)

S2,−3(N) = −21

20ln(2)ζ22 −

21

20S−1(N)ζ22 −

3

4S2(N)ζ3 +

3

4S−2(N)ζ3 + ζ2ζ3 −

41

32ζ5

+(−1)Nf6(N + 1) (8.127)

S−2,3(N) =6

5ln(2)ζ22 +

6

5S−1(N)ζ22 −

3

4ζ2ζ3 +

21

32ζ5 + (−1)1+Nf13(N + 1) (8.128)

S−4,1(N) = S−3(N)ζ2 +2

5ln(2)ζ22 +

2

5S−1(N)ζ22 − S−2(N)ζ3 +

3

4ζ2ζ3 −

59

32ζ5

+(−1)1+Nf12(N + 1) (8.129)

S−2,1,1(N) = −Li4

(12

)− ln(2)4

24+

1

4ln(2)2ζ2 +

1

8ζ22 +

1

8ln(2)ζ3 + S−1(N)ζ3

+(−1)1+Nf7(N + 1) (8.130)

S−2,2,1(N) = 4Li5

(12

)+ 4Li4

(12

)ln(2) +

2 ln(2)5

15− 2

3ln(2)3ζ2 + S−2,1(N)ζ2

− 3

10ln(2)ζ22 −

3

10S−1(N)ζ22 +

7

4ln(2)2ζ3 −

9

8ζ2ζ3 −

89

64ζ5

+(−1)Nf8(N + 1) (8.131)

S2,1,−2(N) =1

2ln(2)S2(N)ζ2 −

1

2ln(2)S−2(N)ζ2 −

1

2S2,1(N)ζ2 +

1

2S2,−1(N)ζ2

+1

8ln(2)ζ22 +

1

8S−1(N)ζ22 −

1

8S2(N)ζ3 +

1

8S−2(N)ζ3 +

11

8ζ2ζ3 −

177

64ζ5

+(−1)Nf9(N + 1) (8.132)

S−3,1,1(N) = −2Li5

(12

)− 2Li4

(12

)ln(2)− ln(2)5

15+

1

3ln(2)3ζ2 −

1

10ln(2)ζ22

− 1

10S−1(N)ζ22 −

7

8ln(2)2ζ3 + S−2(N)ζ3 +

7

8ζ2ζ3 +

15

32ζ5

+(−1)Nf11(N + 1) (8.133)

S−2,1,−2(N) =1

8

(−4S−2,1(N)ζ2 − S−2(N)ζ3 − 3ζ2ζ3

)+ f14(N + 1) (8.134)

121

Page 132: and 3-loop corrections to hard scattering processes in QCD

S−2,1,1,1(N) = Li5

(12

)+ Li4

(12

)ln(2) +

ln(2)5

30− 1

6ln(2)3ζ2 +

2

5ln(2)ζ22

+2

5S−1(N)ζ22 +

7

16ln(2)2ζ3 −

7

16ζ2ζ3 −

27

32ζ5 + (−1)1+Nf10(N + 1) (8.135)

The asymptotic expansions have been obtained using HarmonicSums, [260]. The Fortran

routines have been created using Form [278]. Historically, the analytic continuation of theseharmonic sums has first been given in an accurate numerical representation in [258].

We also produced Fortran routines for the analytic continuation of the weight-6 harmonicsums which contribute to the Wilson coefficient c

(3)NS2,q and a code to calculate the analytic

continuation of the coefficient itself. The relevant sums are

S−6, S−5,1, S−4,−2, S−4,2, S−3,3, S−2,−3, S4,−2, S4,2, S5,1, S−4,1,1, S−3,−2,1, S−3,1,−2,

S−3,2,1, S−2,2,−2, S−2,2,2, S−2,3,1, S2,−3,1, S2,3,1, S3,1,−2, S3,2,1, S4,1,1, S−3,1,1,1,

S−2,−2,1,1, S−2,1,1,2, S−2,2,1,1, S2,−2,1,1, S2,2,1,1, S3,1,1,1, S−2,1,1,1,1, S2,1,1,1,1

(8.136)

and their analytic continuation is obtained in the same way as for the weight-5 sums, i.e. byrewriting them as Mellin transforms of HPLs, and through asymptotic expansion for N → ∞ andby recursion relations. In addition to the constants found for the weight-5 sums, one encountersthe constants

s6 ≡ S−5,−1(∞) (8.137)

and Li6(12). For example,

S2,−2,1,1(N) = 4Li6

(12

)+ 4Li5

(12

)ln(2) +

ln(2)6

18+

ln(2)4

24N2+ s6 + Li4

(12

)(2 ln(2)2 +

1

N2

)+(−1)N

−Li4

(12

)N2

− ln(2)4

24N2+( ln(2)2

4N2− 11ζ3

16N

)ζ2 +

ζ228N2

+ln(2)ζ38N2

+41ζ532N

+M[H0,−1,0,1,1(x)

1 + x

](N)

+[−Li4

(12

)− ln(2)4

24+

1

4ln(2)2ζ2

+1

8ζ22 +

1

8ln(2)ζ3

]S2(N) +

(− ζ3N2

+11ζ2ζ316

− 41ζ532

)S−1(N)

+[Li4

(12

)+

ln(2)4

24− 1

4ln(2)2ζ2 −

1

8ζ22 −

1

8ln(2)ζ3

]S−2(N) +

S−2,1,1(N)

N2

+[−2Li4

(12

)− ln(2)4

3− ln(2)2

4N2− 17 ln(2)ζ3

16

]ζ2 +

( ln(2)22

− 1

8N2

)ζ22

− 87

280ζ32 +

(7 ln(2)312

− ln(2)

8N2

)ζ3 + S2,−1(N)ζ3 +

105

128ζ23 −

103

32ln(2)ζ5 . (8.138)

In this way, it is possible to evaluate the quantity c(3)NS2,q at complex N without resorting to the

approximate formulas in [71]. The accuracy of this evaluation for integer moments can be foundin Table 10.

8.10.2 Structure of the massive OMEs

The two-mass OMEs have been employed in our library to assemble the heavy quark contribu-tions to the Wilson coefficients in the asymptotic regime. They have the following structure,which we repeat here from [121] for clarity:

ANSqq,Q(NF + 2) = 1 + a2A

NS(2)qq,Q (NF + 2) + a3A

NS(3)qq,Q (NF + 2) (8.139)

ANS(2)qq,Q (NF + 2) = A

NS(2)qq,Q (mc) + A

NS(2)qq,Q (mb) (8.140)

122

Page 133: and 3-loop corrections to hard scattering processes in QCD

ANS(3)qq,Q (NF + 2) = A

NS(3)qq,Q (mc) + A

NS(3)qq,Q (mb) + A

NS(3)qq,Q (mc,mb) (8.141)

APSQq (NF + 2) = a2A

PS(2)Qq (NF + 2) + a3A

PS(3)Qq (NF + 2) (8.142)

APS(2)Qq (NF + 2) = A

PS(2)Qq (mc) + A

PS(2)Qq (mb) (8.143)

˜APS(3)Qq (NF + 2) = e2cA

PS(3)Qq (mc) + e2bA

PS(3)Qq (mb) + e2cA

PS(3)Qq (mc,mb) + e2bA

PS(3)Qq (mb,mc)

(8.144)

APSqq,Q(NF + 2) = a3A

PS(3)qq,Q (NF + 2) (8.145)

APS(3)qq,Q (NF + 2) = A

PS(3)qq,Q (mc) + A

PS(3)qq,Q (mb) (8.146)

AQg(NF + 2) = aA(1)Qg(NF + 2) + a2A

(2)Qg(NF + 2) + a3A

(3)Qg(NF + 2) (8.147)

A(1)Qg(NF + 2) = A

(1)Qg(mc) + A

(1)Qg(mb) (8.148)

A(2)Qg(NF + 2) = A

(2)Qg(mc) + A

(2)Qg(mb) + A

(2)Qg(mb,mc) (8.149)

˜A(3)Qg(NF + 2) = e2cA

(3)Qg(mc) + e2bA

(3)Qg(mb) + e2cA

(3)Qg(mc,mb) + e2bA

(3)Qg(mb,mc) (8.150)

Aqg,Q(NF + 2) = a2A(2)qg,Q(NF + 2) + a3A

(3)qg,Q(NF + 2) (8.151)

A(2)qg,Q(NF + 2) = A

(2)qg,Q(mc) + A

(2)qg,Q(mb) (8.152)

A(3)qg,Q(NF + 2) = A

(3)qg,Q(mc) + A

(3)qg,Q(mb) + A

(3)qg,Q(mc,mb) (8.153)

Agg,Q(NF + 2) = 1 + aA(1)gg,Q(NF + 2) + a2A

(2)gg,Q(NF + 2) + a3A

(3)gg,Q(NF + 2) (8.154)

A(1)gg,Q(NF + 2) = A

(1)gg,Q(mc) + A

(1)gg,Q(mb) (8.155)

A(2)gg,Q(NF + 2) = A

(2)gg,Q(mc) + A

(2)gg,Q(mb) + A

(2)gg,Q(mc,mb) (8.156)

A(3)gg,Q(NF + 2) = A

(3)gg,Q(mc) + A

(3)gg,Q(mb) + A

(3)gg,Q(mc,mb) . (8.157)

The two-mass unpolarized OMEs have been calculated in [121, 171, 172]. The single-mass

three-loop OMEs have been presented in [73, 165–167, 169]. The objects ˜APS(3)Qq (NF + 2) and

˜A(3)Qg(NF + 2) are set to zero in our library.In the polarized case, the program considers contributions to g1 due to one massive quark.

The three-loop polarized OMEs have been presented in [179,180,184,198]. The program includesthe O(a3s) logarithmic contributions to the one-mass Wilson coefficients as presented in [184,199].

123

Page 134: and 3-loop corrections to hard scattering processes in QCD

8.11 Structure of the library

The library is composed of a set of main files called F2.f, FL.f, F3WMW.f, F3WPW.f, g1.f.Each will compute and print on screen the respective structure function. These programs drawson a set of shared routines which are described in the next section.

8.11.1 List of routines

Function AS(ΛQCD, Q2, nf)

This function returns the value of as(Q2) computed with Eq. (5.27) for nf decoupling flavours.

Subroutine DISTTESTSPL

Prints diagnostic messages consisting in the difference between the inverse Mellin transform ofcertain convolutions of splitting functions with a test function, and their expected value.

Subroutine EVOLVE, EVOLVEM and EVOLVEPOL

Apply the respective evolution operators to v3,8(N,Q20) and Σ(N,Q2

0); the combinations (u +u), (d+ d), (s+ s) and polarized counterparts are formed.

Subroutines F2MASSLESS, F2HEAVY

The structure functions Fmassless2 (N,Q2) and F heavy

2 (N,Q2) are assembled using (8.2) and (8.3).

Subroutines F3WMWMASSLESS, F3WMWHEAVY

The structure function FW+−W−

3 (N,Q2), massless and charm quark contributions, as in (8.21).

Subroutines F3WMPMASSLESS, F3WPWHEAVY

The structure function FW++W−

3 (N,Q2), massless and charm quark contributions, as in (8.30).

Subroutines G1MASSLESS, G1HEAVY

The structure functions gmassless1 (N,Q2) and gheavy1 (N,Q2) are assembled.

Subroutine INIT

Provides the initialization of mathematical constants, including parameters for the Gaussianintegration.

Subroutine INVERT(dat(640), x)Evaluates numerically at x the inverse Mellin transform of a function whose values along thecontour are given as input in the array dat(640). The result is stored in the common block INV.The code is derived from the program Ancont [387].

Subroutines MOMCHECKSPL, MOMCHECKSPLMPrints diagnostic messages consisting in the difference between the evaluation of moments ofsplitting functions and known values for the moments.

Subroutines PRECOMP1, PRECOMP1M and PRECOMP1POL

Evaluate on the contour the quantities R0,U1,2 required for the evolution of the singlet PDF, asin (8.68), (8.70), and the corresponding non-singlet quantities R0, U1,2, Eq. (8.74), (8.81), (8.82).They are stored in common blocks.

Subroutines PRECOMP2, PRECOMP2M and PRECOMP2POL

In this routines the assembly of the evolution operators of the PDFs is completed in those partswhich depend on as.

Subroutines PRECOMPINIT, PRECOMPINITM and PRECOMPINITPOL

Initialize the contour and evaluates the user-defined PDFs over the contour, by calling thefunctions UPUB, DPDB, SPSB, GLU and their polarized counterparts UPUBPOL, DPDBPOL, SPSBPOL,GLUPOL which are described below.

Subroutines PRECOMPWCF2, PRECOMPWCF3WMW, PRECOMPWCF3WPW, PRECOMPWCG1, PRECOMPWCFL

124

Page 135: and 3-loop corrections to hard scattering processes in QCD

Evaluation of massless Wilson coefficients and of the logarithmic terms of the massive Wilsoncoefficients.

Subroutine SETAS(ΛQCD, nf)

Fills the common block AA0 with a = a2Q and a0 = a(Q20). The parameter nf refers to the

number of decoupling flavours in the running of the coupling constant. The values of a and a0are calculated in the function AS using Eq. (5.27) truncated according to the parameter ORDER.

Subroutine SETMASSES(m2c, m2

b)

Fills in the common block MCONST the values of the quark masses.

Subroutine SETPOINTSX

Here the user may choose the points in x for which the output will be calculated.

Subroutine SETQ2(Q2)

Sets the virtuality to Q2 in the common block PHYCONS.

Functions UMUB, DMDB, SMSB

User-defined input distributions (u− u), (d− d), (s− s) in N -space at the scale Q20.

Functions UPUB, DPDB, SPSB, GLU, UPUBPOL, DPDBPOL, SPSBPOL, GLUPOL

User-defined input distributions (u+ u), (d+ d), (s+ s) and the gluon density in N -space at thescale Q2

0, and their polarized counterparts.

Subroutine USERINIT

Initializes user options including output control, the order of the perturbative truncation, andthe physical constants Q2

0,ΛQCD, and the values of the quark charges.

Subroutine WRITEUPF2, WRITEUPF3WMW, WRITEUPF3WPW, WRITEUPFL, WRITEUPG1Prints as output the values of Q2

0, Q2,ΛQCD, a, a0 and the PDFs together with the respective

structure functions. These routines also create a file containing moment and convolution checks.

Functions for the analytic continuation of sumsThe functions required for the analytic continuation of harmonic sums are defined in the fileallfuncs.f. The weight-6 functions are defined in w6func.f.

8.11.2 User options

In the source code file userinit.f, the following switches can be modified:

ORDER=0,1,2,3: chooses the order of the calculation. The possible values and their effects areexplained in Table 4.

ORDER (8.71) (5.27) Wilson coefficients0 LO LO O(a0s)1 NLO NLO O(as)2 NNLO NNLO O(a2s)3 NNLO N3LO O(a3s), see

5.

Table 4: Truncations applied according to the value of the switch ORDER.

MOMCHK=0,1: chooses whether or not to calculate and save numerical self-checks on the program,consisting on the evaluation of fixed moments and convolutions, compared with expected values

5The OMEs ˜APS(3)Qq and ˜A

(3)Qg are set to zero, and so are the O(a3s) polarized massless Wilson coefficients. For

the unpolarized ones, the approximate representations given in [71] are used after Mellin transforming them toN -space.

125

Page 136: and 3-loop corrections to hard scattering processes in QCD

hard-coded in the program. The differences to the expected values are saved in files calledF2_checks.txt, FL_ckecks.txt, etc. If the program is running correctly, these differences donot significantly depart from zero. The precision expected from the programs is discussed morein what follows.

8.11.3 User initialization

The programs accept as input the following parameters and settings:

• For F2, FL, xFW++W−

3 and g1, parametrizations of the PDFs (u+u)(N,Q20), (d+d)(N,Q

20),

(s+ s)(N,Q20) and g(N,Q

20) in the complex plane, as well as of the corresponding polarized

PDFs. These parametrizations must be defined in the functions UPUB,DPDB,SPSB,GLU; thepolarized ones in UPUBPOL,DPDBPOL,SPSBPOL,GLUPOL.

• For xFW+−W−

3 , parametrizations of the valence distributions (u−u)(N,Q20), (d−d)(N,Q2

0),(s− s)(N,Q2

0) must be defined in the functions UMUB,DMDB,SMSB.

• Values of the virtualities Q20 and Q2 must be set through a subroutine call to SETQ02 and

to SETQ2.

• The values of the OMS masses m2c and m

2b are set through a call to the routine SETMASSES.

The bottom quark mass is only used for the computation of F2.

• The values of ΛQCD and of the number of decoupling quarks in the running of as are setby calling the subroutine SETAS.

• The user can choose the order of the evolution by setting the switch ORDER in the sourcecode.

• The values of x to be computed are programmed by the user through the function SETPOINTSX.

8.11.4 Output

The program prints the values of Q20, Q

2, a(Q2), a0(Q20), m

2c and m2

b , and tabulates the valuesof x and the corresponding values of the PDFs x(q ± q)(x,Q2) and xg(x,Q2), and separatelythe values of the structure functions. Optionally, the moment test and convolution test are alsoprinted.

8.11.5 Estimates of the numerical accuracy

We reproduce in the following a short sample of the checks produced by the programs, to illus-trate the accuracy in the numerical inverse Mellin transformation. The evaluation of harmonicpolylogarithms was obtained using the code [267].

In Tables 5-9 we reproduce the results of the inverse Mellin transform of individual functions,and compare to a direct evaluation in x-space.

126

Page 137: and 3-loop corrections to hard scattering processes in QCD

x a = 1/(x− 1) b = M−1[S1(N − 1)](x) (b− a)/a

1.000000000000E-04 -1.000100010001E+00 -1.000099987789E+00 -2.220935986079E-08

1.584893192461E-04 -1.000158514442E+00 -1.000158502934E+00 -1.150539496217E-08

2.511886431509E-04 -1.000251251754E+00 -1.000251245838E+00 -5.914269026505E-09

3.981071705534E-04 -1.000398265722E+00 -1.000398262715E+00 -3.006285850799E-09

6.309573444801E-04 -1.000631355702E+00 -1.000631354196E+00 -1.505841968705E-09

1.000000000000E-03 -1.001001001001E+00 -1.001001000260E+00 -7.397988681656E-10

1.584893192461E-03 -1.001587409066E+00 -1.001587408710E+00 -3.549958361238E-10

2.511886431509E-03 -1.002518211893E+00 -1.002518211727E+00 -1.658781496371E-10

3.981071705534E-03 -1.003996983985E+00 -1.003996983909E+00 -7.550888326096E-11

6.309573444801E-03 -1.006349636945E+00 -1.006349636911E+00 -3.372868363612E-11

1.000000000000E-02 -1.010101010101E+00 -1.010101010085E+00 -1.497991730659E-11

1.584893192461E-02 -1.016104165751E+00 -1.016104165744E+00 -6.611049988000E-12

2.511886431509E-02 -1.025766078956E+00 -1.025766078953E+00 -2.718826733572E-12

3.981071705534E-02 -1.041461322014E+00 -1.041461322014E+00 -7.850202576436E-13

6.309573444801E-02 -1.067344911073E+00 -1.067344911073E+00 -1.474964870854E-13

1.000000000000E-01 -1.111111111111E+00 -1.111111111111E+00 -5.381695089567E-13

1.584893192461E-01 -1.188339046515E+00 -1.188339046516E+00 -7.150860737426E-13

2.511886431509E-01 -1.335449831060E+00 -1.335449831061E+00 -7.992575917488E-13

3.981071705534E-01 -1.661425341982E+00 -1.661425341983E+00 -8.347595087882E-13

6.309573444801E-01 -2.709713863811E+00 -2.709713863814E+00 -8.473002428732E-13

9.000000000000E-01 -1.000000000000E+01 -1.000000000000E+01 -8.512301974405E-13

9.499999999999E-01 -1.999999999999E+01 -2.000000000001E+01 -8.521183758603E-13

Table 5: Accuracy in the inverse Mellin transform of S1(N − 1). The program output isreproduced with 13 digits for reasons of space.

x a = lnxx+1 b = M−1[β1(N)− ζ2

2 ](x) (b− a)/a

1.000000000000E-04 -9.209419430033E+00 -9.209419470448E+00 -4.388443722660E-09

1.584893192461E-04 -8.748436819581E+00 -8.748436839625E+00 -2.291173719895E-09

2.511886431509E-04 -8.287224678056E+00 -8.287224687898E+00 -1.187672521548E-09

3.981071705534E-04 -7.825673859301E+00 -7.825673864078E+00 -6.103743606524E-10

6.309573444801E-04 -7.363626163571E+00 -7.363626165861E+00 -3.110277938206E-10

1.000000000000E-03 -6.900854424557E+00 -6.900854425642E+00 -1.572016298233E-10

1.584893192461E-03 -6.437036245458E+00 -6.437036245967E+00 -7.905129767632E-11

2.511886431509E-03 -5.971720956940E+00 -5.971720957177E+00 -3.977833130825E-11

3.981071705534E-03 -5.504291245051E+00 -5.504291245162E+00 -2.022241689528E-11

6.309573444801E-03 -5.033925283296E+00 -5.033925283349E+00 -1.056461036735E-11

1.000000000000E-02 -4.559574441572E+00 -4.559574441598E+00 -5.788308115063E-12

1.584893192461E-02 -4.079989688562E+00 -4.079989688576E+00 -3.395767201996E-12

2.511886431509E-02 -3.593862406631E+00 -3.593862406638E+00 -2.171968528102E-12

3.981071705534E-02 -3.100198023848E+00 -3.100198023853E+00 -1.533299120142E-12

6.309573444801E-02 -2.599109395380E+00 -2.599109395383E+00 -1.207994830544E-12

1.000000000000E-01 -2.093259175449E+00 -2.093259175451E+00 -1.044424505925E-12

1.584893192461E-01 -1.590060472541E+00 -1.590060472543E+00 -9.557330066054E-13

2.511886431509E-01 -1.104190853520E+00 -1.104190853521E+00 -9.091396253330E-13

3.981071705534E-01 -6.587721289155E-01 -6.587721289161E-01 -8.825871230364E-13

6.309573444801E-01 -2.823599404100E-01 -2.823599404103E-01 -8.579498338942E-13

9.000000000000E-01 -5.545290297780E-02 -5.545290297784E-02 -7.716847343866E-13

9.499999999999E-01 -2.630425353207E-02 -2.630425353209E-02 -6.234761888181E-13

Table 6: Accuracy in the inverse Mellin transform of β1.

127

Page 138: and 3-loop corrections to hard scattering processes in QCD

x a = Li2(x)−ζ21−x b = M−1[S2,1(N − 1)](x) (b− a)/a

1.000000000000E-04 -1.644998564204E+00 -1.644998540407E+00 -1.446647820702E-08

1.584893192461E-04 -1.645036291930E+00 -1.645036279635E+00 -7.474110813401E-09

2.511886431509E-04 -1.645096091884E+00 -1.645096085586E+00 -3.828541288504E-09

3.981071705534E-04 -1.645190882335E+00 -1.645190879148E+00 -1.937364086139E-09

6.309573444801E-04 -1.645341150031E+00 -1.645341148443E+00 -9.650914623935E-10

1.000000000000E-03 -1.645579396133E+00 -1.645579395357E+00 -4.711063973839E-10

1.584893192461E-03 -1.645957211621E+00 -1.645957211251E+00 -2.245911407573E-10

2.511886431509E-03 -1.646556564352E+00 -1.646556564180E+00 -1.042902219387E-10

3.981071705534E-03 -1.647507872860E+00 -1.647507872782E+00 -4.725261822036E-11

6.309573444801E-03 -1.649019119964E+00 -1.649019119929E+00 -2.103084084651E-11

1.000000000000E-02 -1.651423186977E+00 -1.651423186962E+00 -9.254507404824E-12

1.584893192461E-02 -1.655255929989E+00 -1.655255929983E+00 -3.943331715728E-12

2.511886431509E-02 -1.661387852969E+00 -1.661387852966E+00 -1.437673816447E-12

3.981071705534E-02 -1.671253765538E+00 -1.671253765537E+00 -1.953058093093E-13

6.309573444801E-02 -1.687273908713E+00 -1.687273908714E+00 -3.912456697356E-13

1.000000000000E-01 -1.713684750832E+00 -1.713684750833E+00 -6.404716396125E-13

1.584893192461E-01 -1.758360042961E+00 -1.758360042962E+00 -7.580550801870E-13

2.511886431509E-01 -1.837462925114E+00 -1.837462925115E+00 -8.120652257532E-13

3.981071705534E-01 -1.990498234443E+00 -1.990498234445E+00 -8.357496386142E-13

6.309573444801E-01 -2.355468624473E+00 -2.355468624475E+00 -8.459583217938E-13

9.000000000000E-01 -3.452193438432E+00 -3.452193438435E+00 -8.495367348769E-13

9.499999999999E-01 -4.086005397563E+00 -4.086005397567E+00 -8.512242038690E-13

Table 7: Accuracy in the inverse Mellin transform of S2,1(N − 1).

x a =H0,1,1

x2(1+x)b = M−1[f7(N − 2)](x) (b− a)/a

1.000000000000E-04 2.499916688546E-01 2.499916756757E-01 2.728536296967E-08

1.584893192461E-04 2.499867975171E-01 2.499868010011E-01 1.393687802374E-08

2.511886431509E-04 2.499790801242E-01 2.499790817952E-01 6.684638324199E-09

3.981071705534E-04 2.499668557469E-01 2.499668565807E-01 3.335627022470E-09

6.309573444801E-04 2.499474989831E-01 2.499474993735E-01 1.561576512285E-09

1.000000000000E-03 2.499168644706E-01 2.499168646514E-01 7.236653027069E-10

1.584893192461E-03 2.498684222556E-01 2.498684223412E-01 3.426906042173E-10

2.511886431509E-03 2.497919230923E-01 2.497919231306E-01 1.530682820801E-10

3.981071705534E-03 2.496713736071E-01 2.496713736252E-01 7.270504517586E-11

6.309573444801E-03 2.494820529162E-01 2.494820529246E-01 3.353604243581E-11

1.000000000000E-02 2.491863455175E-01 2.491863455214E-01 1.583557950207E-11

1.584893192461E-02 2.487285250337E-01 2.487285250356E-01 7.781940476849E-12

2.511886431509E-02 2.480298918862E-01 2.480298918872E-01 4.048020924753E-12

3.981071705534E-02 2.469893222921E-01 2.469893222926E-01 2.278190730003E-12

6.309573444801E-02 2.455038639210E-01 2.455038639214E-01 1.489280827377E-12

1.000000000000E-01 2.435479273673E-01 2.435479273676E-01 1.137355787167E-12

1.584893192461E-01 2.414097389914E-01 2.414097389916E-01 9.760048719883E-13

2.511886431509E-01 2.403559269819E-01 2.403559269822E-01 9.044156761646E-13

3.981071705534E-01 2.446909830076E-01 2.446909830079E-01 8.748943344455E-13

6.309573444801E-01 2.711423442143E-01 2.711423442145E-01 8.586403903031E-13

9.000000000000E-01 3.802317499521E-01 3.802317499524E-01 8.577085251947E-13

9.499999999999E-01 4.374596695453E-01 4.374596695457E-01 8.550139887979E-13

Table 8: Accuracy in the inverse Mellin transform of f7.

128

Page 139: and 3-loop corrections to hard scattering processes in QCD

x a =H0,1,1,1(x)

1−x − 2ζ225(1−x) b = M−1[S2,1,1,1(N − 1)](x) (b− a)/a

1.000000000000E-04 5.555638071193E-02 5.555625334407E-02 2.292587369082E-06

1.584893192461E-04 5.555664409123E-02 5.555665887067E-02 2.660248001242E-07

2.511886431509E-04 5.555729293858E-02 5.555730385240E-02 1.964426350397E-07

3.981071705534E-04 5.555832437271E-02 5.555832866686E-02 7.729080447635E-08

6.309573444801E-04 5.555995611372E-02 5.555995782154E-02 3.073829955091E-08

1.000000000000E-03 5.556255083106E-02 5.556255146465E-02 1.140314245553E-08

1.584893192461E-03 5.556669059384E-02 5.556669087928E-02 5.136982282049E-09

2.511886431509E-03 5.557332337352E-02 5.557332348222E-02 1.955951471582E-09

3.981071705534E-03 5.558401636196E-02 5.558401640846E-02 8.366584091823E-10

6.309573444801E-03 5.560141809671E-02 5.560141811601E-02 3.470683809650E-10

1.000000000000E-02 5.563014003017E-02 5.563014003790E-02 1.390042926803E-10

1.584893192461E-02 5.567853150687E-02 5.567853151009E-02 5.796285222075E-11

2.511886431509E-02 5.576244532849E-02 5.576244532979E-02 2.345220891379E-11

3.981071705534E-02 5.591362216565E-02 5.591362216618E-02 9.432983307131E-12

6.309573444801E-02 5.619919413788E-02 5.619919413809E-02 3.791382036271E-12

1.000000000000E-01 5.676911112229E-02 5.676911112238E-02 1.609525904497E-12

1.584893192461E-01 5.797855415690E-02 5.797855415696E-02 9.753948876302E-13

2.511886431509E-01 6.073950831360E-02 6.073950831365E-02 9.513924303335E-13

3.981071705534E-01 6.777446683517E-02 6.777446683523E-02 8.819196207566E-13

6.309573444801E-01 9.071028395085E-02 9.071028395093E-02 8.464949793590E-13

9.000000000000E-01 1.891923641417E-01 1.891923641419E-01 8.547067122406E-13

9.499999999999E-01 2.538238785232E-01 2.538238785235E-01 8.544588835467E-13

Table 9: Accuracy in the inverse Mellin transform of S2,1,1,1(N − 1).

We compared the numerical evaluation in N -space of the massless Wilson coefficients toknown results. In Tables 11 and 10 we quantify the numerical discrepancies,

∆a =

athis program − aexact

aexact

. (8.158)

129

Page 140: and 3-loop corrections to hard scattering processes in QCD

a ∆a

N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

c(1)2,q 6.4948E-15 5.85612E-16 1.58934E-16 2.28766E-16 1.84073E-16 1.57002E-16

c(1)2,g 4.44089E-16 0. 0. 1.14914E-16 0. 0.

c(2)NS2,q 2.37352E-5 9.33086E-16 3.9048E-16 6.36842E-16 1.14E-16 1.77746E-16

c(2)PS2,q 6.76151E-16 3.04694E-16 1.52019E-16 0. 1.21499E-16 1.50975E-16

c(2)2,g 4.12294E-6 3.42287E-16 1.06955E-16 1.27729E-17 8.36773E-17 7.10658E-16

c(3)NS,appr.2,q 3.93616E-2 1.11349E-4 6.75312E-5 5.36697E-5 4.67686E-5 4.25631E-5

c(3)NS2,q 2.47144E-5 2.58686E-10 1.13248E-9 3.39733E-10 1.6304E-11

c(3)PS2,q 2.18454E-5 9.60885E-5 5.23834E-5 8.06659E-5 9.16942E-5 9.66326E-5

c(3)2,g 4.53521E-5 1.81324E-4 4.07667E-5 2.0697E-6 1.40843E-5 2.10654E-5

c(1)L,q 0. 0. 0. 0. 0. 0.

c(1)L,g 0. 0. 1.29526E-16 0. 0. 0.

c(2)NSL,q 1.6779E-7 9.41017E-17 4.04832E-17 1.06525E-16 1.18235E-16 1.48074E-16

c(2)PSL,q 0. 0. 0. 1.51994E-16 0. 0.

c(2)L,g 2.1386E-7 3.42845E-16 1.15412E-16 0. 0. 2.4515E-16

c(3)NSL,q 7.83837E-7 9.91557E-6 1.49838E-5 1.59852E-5 1.36995E-5 8.8628E-6

c(3)PSL,q 5.11562E-5 3.35633E-5 3.05032E-5 4.14035E-5 5.79093E-5 7.5186E-5

c(3)L,g 1.27371E-5 9.99753E-5 1.00776E-4 9.06315E-5 7.55299E-5 5.71978E-5

cW+±W−,(1)3,q 1.3739E-15 5.47507E-16 6.86427E-16 4.76866E-16 1.89059E-16 3.20049E-16

cW++W−,NS,(2)3,q 2.39981E-15 7.05237E-16 3.87358E-16 1.74118E-16 6.03027E-16 5.54728E-16

Table 10: Accuracy in the library’s evaluation of integer moments of massless Wilsoncoefficients. The evaluations refer to NF = 3 light flavours. The quantities c

(3)NS,appr.2,q , c

(3)PS2,q , c

(3)2,g

refer to the approximate formulas given in [71] whereas c(3)NS2,q refers to the analytic continuation

of the exact formula.The second moment of a = c

(2)NS2,q , c

(2)2,g, c

(2)NSL,q , c

(2)L,g is evaluated numerically as

1

2[a(N = 2 + ε) + a(N = 2− ε)], ε = 10−9.

For c(3)NS2,q , the accuracy is shown for ε = 10−5.

130

Page 141: and 3-loop corrections to hard scattering processes in QCD

a ∆a

N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

cW+±W−,(1)3,q 1.77636E-15 5.32907E-16 2.29262E-16 8.3774E-16 2.1003E-16 1.72896E-16

cW+−W−,NS,(2)3,q 4.0864E-7 1.18963E-14 1.23781E-15 2.23423E-16 1.42485E-16 6.27689E-16

cW+−W−,NS,(3)3,q 4.69528E-5 2.05149E-4 2.06337E-4 7.25476E-5 4.1283E-5 2.7121E-5

c(1)g1,q 5.70972E-16 2.71212E-15 3.60433E-16 7.08728E-16 0. 1.73578E-16

c(1)g1,g 4.51589E-16 0. 0. 0. 1.11982E-16 2.48665E-16

c(2),NSg1,q 1.07975E-8 6.11274E-15 1.54687E-15 3.96442E-16 0. 7.35235E-16

c(2),PSg1,q 1.07975E-8 0. 0. 1.53761E-16 2.20764E-16 2.97226E-16

c(2)g1,g 9.21074E-7 6.99694E-17 1.55394E-16 8.18172E-17 7.9721E-17 1.59193E-16

Table 11: Accuracy in the library’s evaluation of integer moments of massless Wilson coefficients.

The first moment of cW+−W−,NS,(2)3,q , c

(1)g1,g, c

(2),PSg1,q , c

(2)g1,g is evaluated numerically as

1

2[a(N = 1 + 10−9) + a(N = 1− 10−9)].

In the case of c(1)g1,g, c

(2),PSg1,q , c

(2)g1,g, we show the absolute error.

N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

∆(2),CAgg -8.57019E-02 -8.06314E-03 -1.96624E-03 -7.03654E-04 -3.12204E-04 -1.59213E-04

∆(2),CFgg 1.08208E+00 9.35395E-01 7.36498E-01 5.82599E-01 4.70983E-01 3.89033E-01

∆(2),CAqg -1.81706E+01 -2.72475E+01 -3.06467E+01 -3.20367E+01 -3.25043E+01 -3.25071E+01

∆(2),CFqg -2.55081E+01 -3.67969E+01 -4.15168E+01 -4.34496E+01 -4.40779E+01 -4.40482E+01

∆(2)

qq,CE2.24711E-03 -1.57089E-02 -9.44382E-03 -5.86092E-03 -3.92770E-03 -2.80004E-03

∆(2)

qq,CF-1.12471E-01 -9.03905E-03 -2.00897E-03 -6.79961E-04 -2.90890E-04 -1.44607E-04

∆(1)qq 3.70178E+01 5.94904E+01 7.74200E+01 9.22970E+01 1.05079E+02 1.16334E+02

∆(2)

qq,AA-1.71367E+02 -1.35350E+02 -1.13349E+02 -9.85219E+01 -8.77308E+01 -7.94559E+01

∆(2)

qq,AC-3.90245E+00 -2.54535E+00 -1.91964E+00 -1.55866E+00 -1.32124E+00 -1.15196E+00

∆(2)

qq,BB4.55339E-02 1.60061E-03 1.96688E-04 4.21689E-05 1.24460E-05 4.52546E-06

∆(2)

qq,BC6.35907E-02 4.10797E-03 8.04686E-04 2.50991E-04 1.01396E-04 4.83097E-05

∆(2),CA

qq 6.38582E+02 5.65000E+02 4.93668E+02 4.39274E+02 3.97207E+02 3.63728E+02

∆(2)

qq,CC2.09305E+00 1.17181E+00 7.80317E-01 5.59664E-01 4.24532E-01 3.35383E-01

∆(2)

qq,CD2.95342E+00 2.66503E-01 6.74218E-02 2.59248E-02 1.24901E-02 6.92420E-03

∆(2),CF

qq 7.33957E+02 9.55661E+02 9.91477E+02 9.82852E+02 9.60469E+02 9.33912E+02

∆(2),S+Vqq 1.61679E+02 1.65599E+03 3.41258E+03 5.18771E+03 6.92816E+03 8.61957E+03

Table 12: Mellin moments of the Wilson coefficients for the Drell-Yan process.

131

Page 142: and 3-loop corrections to hard scattering processes in QCD

N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

∆(1)gg 1.52650E+02 1.99742E+02 2.37478E+02 2.69033E+02 2.96335E+02 3.20510E+02

∆(2),C2

Agg 1.65181E+03 2.77754E+03 3.85776E+03 4.89074E+03 5.88033E+03 6.83078E+03

∆(2),CATFNFgg -2.47950E+02 -3.38074E+02 -4.13326E+02 -4.79228E+02 -5.38449E+02 -5.92551E+02

∆(2),CFTFNFgg 6.82658E+00 1.64545E+00 -9.12071E-01 -2.35346E+00 -3.25173E+00 -3.85374E+00

∆(1)gq -3.01851E+00 -2.29037E+00 -1.82594E+00 -1.53336E+00 -1.33113E+00 -1.18186E+00

∆(2)C2

Fq1q2 6.82972E+00 3.11709E+00 1.92019E+00 1.34053E+00 1.00564E+00 7.90772E-01

∆(2),CACFqg -1.47342E+02 -1.23953E+02 -1.09978E+02 -1.00549E+02 -9.35410E+01 -8.80073E+01

∆(2),C2

Fqg -8.56482E+00 -1.63375E+01 -1.94112E+01 -2.07630E+01 -2.13430E+01 -2.15314E+01

∆(2),CFTFNFqg 1.65789E+01 1.11063E+01 8.69434E+00 7.27149E+00 6.31066E+00 5.60875E+00

∆(2),CAC2

Fqq -6.23101E-01 -8.16917E-02 -2.35849E-02 -9.66799E-03 -4.83050E-03 -2.73995E-03

∆(2),C3

Fqq 1.24620E+00 1.63383E-01 4.71698E-02 1.93359E-02 9.66100E-03 5.47991E-03

∆(1)qq 2.37037E-01 3.38624E-02 9.40623E-03 3.59147E-03 1.65760E-03 8.68267E-04

∆(2),CAC2

Fqq 8.39792E-01 3.76668E-01 1.54603E-01 7.48312E-02 4.09579E-02 2.45098E-02

∆(2),C2

FTFNF

qq -4.62222E-01 -1.32003E-01 -4.58497E-02 -1.97860E-02 -9.90172E-03 -5.50229E-03

∆(2),C3

Fqq 6.56292E+00 1.13663E+00 3.55301E-01 1.47112E-01 7.20582E-02 3.95033E-02

Table 13: Mellin moments of the Wilson coefficients for Higgs production.

N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

δ∆(2),CAgg 7.45059E-01 1.16898E-02 2.21010E-03 7.42325E-04 3.21754E-04 1.62305E-04

δ∆(2),CFgg -2.70548E+00 -6.91115E-01 -7.02238E-01 -5.94443E-01 -4.91636E-01 -4.09331E-01

δ∆(2),CAqg 3.86088E+01 2.34024E+01 2.81792E+01 3.06162E+01 3.16928E+01 3.20546E+01

δ∆(2),CFqg -2.15459E+01 2.17852E+01 3.49012E+01 4.00584E+01 4.22081E+01 4.29881E+01

δ∆(2)

qq,CC4.05315E+00 -2.21268E+00 -1.33162E+00 -8.96581E-01 -6.51721E-01 -4.99097E-01

δ∆(2)

qq,CD5.37496E+00 -2.49894E-02 -2.84472E-02 -1.46864E-02 -8.12490E-03 -4.89008E-03

Table 14: Mellin moments of the Wilson coefficients for the polarized Drell-Yan process.

N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

∆(1)gg,A−H 2.40000E+01 2.40000E+01 2.40000E+01 2.40000E+01 2.40000E+01 2.40000E+01

∆(2)C2

A

gg,A−H 4.10884E+02 5.44791E+02 6.57038E+02 7.48636E+02 8.26657E+02 8.95012E+02

∆(2)CATFNF

gg,A−H -4.88888E+00 -6.35555E+00 -6.53121E+00 -6.58994E+00 -6.61710E+00 -6.63196E+00

∆(2)CFTFNF

gg,A−H -5.13333E+01 -5.00333E+01 -5.00042E+01 -5.00009E+01 -5.00003E+01 -5.00001E+01

∆(2)C2

F

q1q2,A−H -5.33333E+00 -1.22222E-01 -1.86243E-02 -5.24376E-03 -2.01122E-03 -9.30046E-04

∆(2)CACF

qg,A−H -2.04444E+01 -1.64511E+01 -1.24188E+01 -1.01209E+01 -8.62627E+00 -7.56492E+00

∆(2)C2

F

qg,A−H 0.00000E+00 4.16666E-01 2.07407E-01 1.20535E-01 7.82222E-02 5.47138E-02

∆(2)CAC2

F

qq,A−H 4.00000E+00 1.66666E-01 2.96296E-02 8.92857E-03 3.55555E-03 1.68350E-03

∆(2)C3

F

qq,A−H -8.00000E+00 -3.33333E-01 -5.92592E-02 -1.78571E-02 -7.11111E-03 -3.36700E-03

∆(2)CAC2

F

qq,A−H 8.88888E-01 -1.00000E-01 -5.92592E-02 -3.24735E-02 -1.91784E-02 -1.21545E-02

∆(2)C2

FTFNF

qq,A−H -1.77777E+00 -8.88888E-02 -1.69312E-02 -5.29100E-03 -2.15488E-03 -1.03600E-03

∆(2)C3

F

qq,A−H 4.00000E+00 4.33333E-01 1.31216E-01 5.65476E-02 2.94141E-02 1.72235E-02

Table 15: Mellin moments of the Wilson coefficients for pseudoscalar Higgs boson production.

132

Page 143: and 3-loop corrections to hard scattering processes in QCD

8.11.6 List of mathematical functions

In our Fortran code, we implemented the special functions and Mellin transforms as listed inTable 17. Further special functions whose implementation is in part taken from [387] are listedin Table 16. Among these are the classical polylogarithms,

Lik+1(z) =

∫ z

0

Lik(t)

tdt, Li1(z) = − ln(1− z), (8.159)

and Euler’s Γ-function,

Γ(z) =

∫ ∞

0

e−t tz−1 (8.160)

for Re(z) > 0, and Euler’s Beta function

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt =Γ(z)Γ(w)

Γ(z + w). (8.161)

Name Definition Name DefinitionBETA Euler’s B(z, w) GAMMAL ln Γ(z)FLIi Lii(x), i = 2, 3, 4 SUMi, i = 1, 2, 3, 4 Harmonic sums of integer argument and depth i

Table 16: Special functions whose code is partly lifted from [387].

Name Name, Definition Name Name, Definition|z| > 15 |z| > 15

S1 ASYS1 S1(z) S31 ASYS31 S3,1(z)S2 ASYS2 S2(z) S41 ASYS41 S4,1(z)S3 ASYS3 S3(z) S23 ASYS23 S2,3(z)S4 ASYS4 S4(z) S211 ASYS211 S2,1,1(z)S5 ASYS5 S5(z) S221 ASYS221 S2,2,1(z)S6 ASYS6 S6(z) S311 ASYS311 S3,1,1(z)S21 ASYS21 S2,1(z) S2111 ASYS2111 S2,1,1,1(z)B ASYB β(z) MM1H0M100 ASYMM1H0M100 f6(z)B1 ASYB1 β1(z) MM1H011 ASYMM1H011 f7(z)B2 ASYB2 β2(z) MM1H0101 ASYMM1H0101 f8(z)B3 ASYB3 β3(z) MM1H0M1M10 ASYMM1H0M1M10 f9(z)B4 ASYB4 β4(z) MM1H0111 ASYMM1H0111 f10(z)MM1H01 ASYMM1H01 f1(z) MM1H0011 ASYMM1H0011 f11(z)MM1H0M1 ASYMM1H0M1 f2(z) MM1H0001 ASYMM1H0001 f12(z)MM1H001 ASYMM1H001 f3(z) MM1H0100 ASYMM1H0100 f13(z)MM1H010 ASYMM1H010 f4(z) M1F ASYM1F f14(z)MM1H0010 ASYMM1H0010 f5(z)

Table 17: Special functions implemented in the Fortran code covering harmonic sums up toweight 5. Their interface is: COMPLEX*16 name(COMPLEX*16 z). A larger set of about 50 morefunctions has been coded, targeting the weight-6 sums appearing in c

(3)NS2,q . These follow the

same naming convention and are not listed here.

133

Page 144: and 3-loop corrections to hard scattering processes in QCD

8.11.7 Comparison to the code Pegasus

We perform the evolution of the input distributions u + u, d + d, s + s and g with NF = 3active flavours and with the same input as in the software Pegasus [287]. For the purpose ofcomparison, we import the same routine for the running of as, which, differing from our library, isbased on a numerical solution of the renormalization group equation rather than a perturbativesolution. Within these assumptions, our code delivers the same results largely within 10−5. Weshow in Table 18 the discrepancies at LO, NLO and NNLO,

∆a = maxx

athis program − aPegasus

athis program

,

x ∈ 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.3, 0.5, 0.7, 0.9.(8.162)

Q2 ∆u+u ∆d+d ∆s+s ∆g ∆v+3∆v+8

LO

10 1.47881E-5 1.48382E-5 2.18277E-5 2.67289E-5 3.38616E-5 4.34145E-5

102 1.52455E-5 1.5381E-5 3.75231E-5 1.01455E-5 9.12542E-5 8.97385E-6

103 1.52071E-5 8.00595E-6 3.0937E-5 3.44221E-5 1.56461E-5 8.29479E-5

104 2.17135E-5 2.17248E-5 1.67569E-5 7.7087E-6 6.02844E-5 3.55746E-4

NLO

10 1.02625E-5 1.26863E-5 2.03265E-5 3.52649E-5 2.35638E-5 4.16867E-4

102 2.0161E-5 2.85297E-5 2.76987E-5 2.16919E-5 6.44566E-5 6.64705E-4

103 8.31654E-6 5.64951E-6 2.13323E-5 2.36291E-5 5.47708E-5 2.49781E-4

104 2.4118E-5 2.10801E-5 2.7311E-5 2.25101E-5 7.49564E-5 4.19059E-5

NNLO

10 4.83695E-6 3.21303E-5 1.32566E-5 3.80698E-5 8.5179E-5 5.08875E-5

102 1.68509E-5 1.73187E-5 3.68565E-5 1.53346E-5 1.60866E-5 4.45352E-4

103 2.5088E-5 2.51587E-5 2.82473E-5 2.96935E-5 8.42049E-5 8.62838E-4

104 3.66124E-5 2.93829E-5 3.27043E-5 1.57975E-5 5.42801E-5 6.54498E-4

Table 18: Relative errors in the evolution of the PDFs with respect to Pegasus. The input usedis the default input of Pegasus, with NF = 3.

Q2 ∆∆u+∆u ∆∆d+∆d ∆∆s+∆s ∆∆g ∆∆v+3∆∆v+8

LO

10 2.81877E-4 1.08887E-4 9.39064E-5 3.11749E-4 2.4857E-4 4.38255E-4

102 4.26776E-3 1.6991E-4 2.44907E-4 1.42952E-4 2.96073E-4 7.90195E-4

103 9.36861E-3 3.57655E-4 1.81351E-4 1.25137E-4 1.29966E-4 1.43862E-3

104 3.10387E-4 2.39955E-4 3.15498E-4 3.10184E-4 1.18058E-4 3.17004E-3

NLO

10 3.15904E-3 2.29253E-4 1.84147E-4 2.69914E-4 1.93248E-4 1.53125E-3

102 1.20987E-3 1.8644E-4 2.63862E-4 3.1633E-4 2.31416E-4 1.28598E-3

103 1.48338E-3 2.67103E-4 5.67934E-4 2.38033E-4 1.41118E-4 1.34927E-3

104 4.21179E-4 3.92808E-4 9.55412E-4 2.21378E-4 1.52547E-4 1.02015E-2

Table 19: Relative errors in the evolution of the polarized PDFs as compared to Pegasus. Theinput used is the default input of Pegasus, with NF = 3.

134

Page 145: and 3-loop corrections to hard scattering processes in QCD

8.11.8 Numerical results

In the following we plot the evolution of polarized and unpolarized input PDFs obtained usingour numerical evolution library to the scales Q2 = 10, 102, 103, 104 GeV2. For the unpolarizedPDFs, we use, after Mellin-transforming it, the input [287]

xuv(x,Q20) = 5.107200 x0.8 (1− x)3,

xdv(x,Q20) = 3.064320 x0.8 (1− x)4,

xg(x,Q20) = 1.7 x−0.1 (1− x)5,

xd(x,Q20) = 0.1939875 x−0.1 (1− x)6,

xu(x,Q20) = (1− x) xd(x,Q2

0),

xs(x,Q20) = xs(x,Q2

0) = 0.2 x(u+ d)(x,Q20)

(8.163)

at Q20 = 2 GeV2 and ΛQCD = 0.226 GeV with three light flavours. In producing Figures 13-37 we

kept the same functional form for as(Q2), namely obtained from Eq. (5.27) truncated to NNLO.

In Fig. 13-16 we show the lowest order result of the evolution, obtained by truncating Eqs. (8.71)and (8.72) to lowest order. In Fig. 17-20 we show the relative size of the NLO corrections to theLO evolved PDFs. For v+3 , their size is of O(10-15%) at x = 10−4 and decreases at larger valuesof x, but become sizeable again at very large x. For v+8 , the NLO corrections are appreciable atlarge x, reaching O(5%). For Σ, the NLO corrections are of O(30%) at x = 10−4, and decreasewith increasing x, but are again sizeable at very large x. A similar pattern is visible for thegluon density, with corrections of O(10%) at x = 10−4 and O(20%) at large x. In Fig. 21-24 therelative size of the NNLO corrections to the NLO evolved PDFs is shown. These corrections arewithin O(0.5%) for v+3 and v+8 in the range x ∈ (10−4, 1), and within O(5%) for Σ and g, with alarger impact in the small-x region than at moderate x.

For the polarized input PDFs we use [212]

x∆uv(x,Q20) = 0.130669 x0.239 (1− x)3.031(1 + 27.64x),

x∆dv(x,Q20) = −0.0270518 x0.128 (1− x)4.055(1 + 44.26x),

x∆u(x,Q20) = x∆d(x,Q2

0) = x∆s(x,Q20) = x∆s(x,Q2

0)

= −0.059801 x0.365 (1− x)8.08,

x∆g(x,Q20) = 7.08988 x1.365 (1− x)5.61

(8.164)

at Q20 = 4 GeV2 and ΛQCD = 0.226 GeV with three light flavours. We kept the same functional

form for as(Q2) as for the unpolarized case. In Fig. 25-36, the same plots as for the unpolarized

case are presented. In Fig. 25-28 we plot the LO evolved PDFs. In Fig. 29-32, where the NLOcorrections are shown, we can see that in the region x ∈ (10−4, 1) they are within 10% for ∆v+3and ∆v+8 , within 5% for ∆Σ (except where it vanishes) and can exceed 80% for ∆g at small andat large x. The NNLO corrections (Fig. 33-36) are within 1% for ∆v+3 and ∆v+8 , with the largestimpact at large x; within 5% for ∆Σ and of O(10%) for ∆g. In Fig. 37 we show the differenceof the NNLO and LO evolved gluon PDF normalized to the LO-evolved one.

135

Page 146: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x

xv3+

Figure 13: The unpolarized PDF v+3 (x,Q2) resulting from the LO evolution of the input (8.163).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

0.6

0.7

0.8

0.9

1.0

1.1

1.2

x

xv8+

Figure 14: The unpolarized PDF v+8 (x,Q2) resulting from the LO evolution of the input (8.163).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

136

Page 147: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

0

2

4

6

8

10

12

14

x

Figure 15: The unpolarized PDF Σ(x,Q2) resulting from the LO evolution of the input (8.163).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

0

20

40

60

80

x

xg

Figure 16: The unpolarized PDF g(x,Q2) resulting from the LO evolution of the input (8.163). Solidlines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2; Dottedlines: Q2 = 104 GeV2.

137

Page 148: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.10

-0.05

0.00

0.05

0.10

0.15

x

(xv3+,NLO-xv3+,LO)/(x

v3+,LO)

Figure 17: Relative size of the NLO corrections to the PDF evolution for the unpolarized PDFv+3 (x,Q

2). Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 =103 GeV2; Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.04

-0.03

-0.02

-0.01

0.00

x

(xv8+,NLO-xv8+,LO)/(x

v8+,LO)

Figure 18: Relative size of the NLO corrections to the evolution for the unpolarized PDF v+8 (x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

138

Page 149: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.1

0.0

0.1

0.2

0.3

x

(xΣNLO-xΣLO)/(x

ΣLO)

Figure 19: Relative size of the NLO corrections to the evolution for the unpolarized PDF Σ(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.1

0.0

0.1

0.2

x

(xgNLO-xgLO)/(x

gLO)

Figure 20: Relative size of the NLO corrections to the evolution for the unpolarized PDF g(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

139

Page 150: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.005

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

x

(xv3+,NNLO-xv3+,NLO)/(x

v3+,NLO)

Figure 21: Relative size of the NNLO corrections to the evolution for the unpolarized PDF v3(x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

x

(xv8+,NNLO-xv8+,NLO)/(x

v8+,NLO)

Figure 22: Relative size of the NNLO corrections to the evolution for the unpolarized PDF v8(x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

140

Page 151: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

x

(xΣNNLO-xΣNLO)/(x

ΣNLO)

Figure 23: Relative size of the NNLO corrections to the evolution for the unpolarized PDF Σ(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.04

-0.02

0.00

0.02

x

(xgNNLO-xgNLO)/(x

gNLO)

Figure 24: Relative size of the NNLO corrections to the evolution for the unpolarized PDF g(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

141

Page 152: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

0.0

0.1

0.2

0.3

x

xΔv3+

Figure 25: The polarized PDF ∆v+3 (x,Q2) resulting from the LO evolution of the input (8.164).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

0.00

0.05

0.10

0.15

0.20

x

xΔv8+

Figure 26: The polarized PDF ∆v+8 (x,Q2) resulting from the LO evolution of the input (8.164).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

142

Page 153: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

0.00

0.05

0.10

0.15

0.20

x

xΔΣ

Figure 27: The polarized PDF ∆Σ(x,Q2) resulting from the LO evolution of the input (8.164). Solidlines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2; Dottedlines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

0.00

0.05

0.10

0.15

0.20

0.25

x

xΔg

Figure 28: The polarized PDF ∆g(x,Q2) resulting from the LO evolution of the input (8.164). Solidlines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2; Dottedlines: Q2 = 104 GeV2.

143

Page 154: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.08

-0.06

-0.04

-0.02

0.00

0.02

x

(xΔv3+,NLO-xΔv3+,LO)/(x

Δv3+,LO)

Figure 29: Relative size of the NLO corrections to the evolution of the polarized PDF ∆v+3 (x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

x

(xΔv8+,NLO-xΔv8+,LO)/(x

Δv8+,LO)

Figure 30: Relative size of the NLO corrections to the evolution of the polarized PDF ∆v+8 (x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

144

Page 155: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.2

-0.1

0.0

0.1

0.2

0.3

x

(xΔΣNLO-xΔΣLO)/(x

ΔΣLO)

Figure 31: Relative size of the NLO corrections to the evolution of the polarized PDF ∆Σ(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

x

(xΔgNLO-xΔgLO)/(x

ΔgLO)

Figure 32: Relative size of the NLO corrections to the evolution of the polarized PDF ∆g(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

145

Page 156: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1-0.005

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

x

(xΔv3+,NNLO-xΔv3+,NLO)/(x

Δv3+,NLO)

Figure 33: Relative size of the NNLO corrections to the evolution of the polarized PDF ∆v+3 (x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.006

-0.004

-0.002

0.000

0.002

0.004

x

(xΔv8+,NNLO-xΔv8+,NLO)/(x

Δv8+,NLO)

Figure 34: Relative size of the NNLO corrections to the evolution of the polarized PDF ∆v+8 (x,Q2).

Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

146

Page 157: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.04

-0.02

0.00

0.02

x

(xΔΣNNLO-xΔΣNLO)/(x

ΔΣNLO)

Figure 35: Relative size of the NNLO corrections to the evolution of the polarized PDF ∆Σ(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

10-4 0.001 0.010 0.100 1

-0.05

0.00

0.05

x

(xΔgNNLO-xΔgNLO)/(x

ΔgNLO)

Figure 36: Relative size of the NNLO corrections to the evolution of the polarized PDF ∆g(x,Q2).Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dotted lines: Q2 = 103 GeV2;Dotted lines: Q2 = 104 GeV2.

147

Page 158: and 3-loop corrections to hard scattering processes in QCD

10-4 0.001 0.010 0.100 1

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

x

(xΔgNNLO-xΔgLO)/(x

ΔgLO)

Figure 37: Comparison of the NNLO-evolved polarized gluon PDF to the LO-evolved one. Therelative difference is shown. Solid lines: Q2 = 10 GeV2. Dashed lines: Q2 = 102 GeV2, Dash-dottedlines: Q2 = 103 GeV2; Dotted lines: Q2 = 104 GeV2.

148

Page 159: and 3-loop corrections to hard scattering processes in QCD
Page 160: and 3-loop corrections to hard scattering processes in QCD

9 Conclusions

In order to match the increasing experimental precision delivered by colliders, the precise deter-mination of the parameters of the Standard Model, such as the strong coupling constant, themasses of the heavy quarks, as well as the parton distributions functions, is of great interest.Important experimental input comes from the study of structure functions in deep-inelastic scat-tering. The variable flavour number scheme, which constitutes a practical operational frameworkfor experimental fits, requires the calculation of universal OMEs, which have been known for along time at O(a2s), and which, starting to O(a3s), acquire contributions due to diagrams withtwo quark lines. Because the ratio of the masses of charm and bottom quarks, m2

c/m2b ∼ 0.1,

is not negligible, and in order to be fully consistent on theoretical grounds, it is desirable toconsider a VNFS where the two quarks are decoupled together, not one at a time. This requiresthe calculation of two-mass contributions to the OMEs analytically in the quark mass ratio.

In this thesis, two such two-mass contributions to the polarized OMEs ∆A(3)gg,Q and ∆A

PS(3)Qq

have been calculated at N3LO in analytic and semi-analytic form in Chapter 3, using Mellin-Barnes integrals and with the help of computer-algebraic packages for summation theory, namelySigma [202–204], HarmonicSums [260], EvaluateMultiSums and SumProduction [279], mirroring

previous work on the unpolarized case. In N -space, the result for ∆A(3)gg,Q is given in analytic form

involving binomial sums. In the case of ∆APS(3)Qq it was not possible with our methods to derive

the N -space OME, and only a momentum-fraction z-space semi-analytic result is presented. Forboth OMEs the result is given in terms of iterated integrals over root-valued alphabets. Weconclude that the size of the two-mass corrections to these OMEs is not negligible if comparedto the single-mass corrections, hence they should be taken into account in the definition of theVFNS at O(a3s). Only the OME AQg remains to be computed both in the polarized and in theunpolarized case to be able to complete all the OMEs required to define the VFNS at O(a3s).

It is, however, known by now that the OME AQg as well as the N -space OME ∆APS(3)Qq satisfy

difference equations which do not factorize to first order and therefore belong to a wider class offunctions than the one considered in this thesis, possibly leading to elliptic integrals or to otherclasses of functions, of a form to date unknown.

The factorization of massive Wilson coefficients into universal OMEs and massless Wilsoncoefficients, which holds for Q2 ≫ m2 with m the quark mass, was employed in Chapter 4 towrite the asymptotic logarithmic charm contributions to the single-mass Wilson coefficients forthe polarized structure function g1, following earlier work for the unpolarized case, to O(a3s).Such logarithmic terms are determined by the renormalization structure of the theory and canbe reconstructed from the knowledge of lower-order OMEs and anomalous dimensions. Contraryto the logarithmic terms, the constant part of the Wilson coefficients is still out of reach, becausethe corresponding massless Wilson coefficients are still unknown, as is the polarized ∆A

(3)Qg.

Fits of DIS structure functions are historically performed by choosing the parametrizationof some functional form for the PDFs at an initial scale Q2

0, evolving such parametrizationsto the relevant scale Q2, and applying a convolution with the relevant Wilson coefficients. Anerror minimization procedure simultaneously delivers the maximum-likelihood values of the PDFparameters and of the physical constants such as as(M

2Z). Such a procedure inevitably incurs in

sources of theoretical uncertainty, among which, at higher perturbative order, a dependence ofthe PDF evolution as well as of the Wilson coefficients on the factorization scale and scheme.By contrast, a scheme-invariant evolution procedure takes as input the observable structurefunction and evolves it to a different scale: in this way all dependence on the factorizationscheme is cancelled. In Chapter 5 we have extended such an evolution procedure for F2(x,Q

2)and g1(x,Q

2) to include the heavy flavour contributions and given some numerical illustrations toN3LO, using Pade approximants, of the effects of the (unknown) four-loop anomalous dimensions.

Feynman integrals form a fertile ground for mathematical exploration into integration theory,

150

Page 161: and 3-loop corrections to hard scattering processes in QCD

and novel insight into integration techniques and into unexplored classes of functions has histor-ically been gained from their study. New classes of functions have been systematized in order todeal with the results of Feynman integration, for example, in the classes of harmonic polyloga-rithms and iterated integrals. Feynman integrals which evaluate to hypergeometric series are alsoknown. In Chapter 6 we considered the properties of hypergeometric series in several variables,among which the classical functions examined by Horn, Appell, Lauricella and Exton, and weexamine a class of systems of differential equations obeyed by them, and describe an algorithmto solve such systems. The solutions appear as series having a nested hypergeometric product assummand. It is well-known that classical hypergeometric series have appeared in particle physicscalculations, and, additionally, series containing hypergeometric (nested) products as summandarise in certain algorithms for the solutions of GKZ systems, which have been examined in theliterature in the context of Feynman integrals. We give examples of the series expansion of suchfunctions using Sigma and show some classes of functions which arise in these expansions.

In Chapter 7 we described the problem of solving partial linear difference equations in severalvariables. These problems arise in particle physics, among others, when the Laporta algorithm isapplied to Feynman integrals. In the univariate case, which is well studied, many algorithms andimplementations are available; it is ubiquitous in the case study of deep-inelastic scattering, wherethe difference equations are in the variable N . In the multivariate case, we restricted our focusto the solution space of rational functions, possibly containing harmonic sums and Pochhammersymbols in the numerator. We implemented in a Mathematica package one algorithm to constrainthe denominator of the solution, and a solver for the numerator based on heuristic methodsand user-programmable anzatze, with an eye to delivering some solutions within an acceptableamount of computing time, rather than on the completeness of the solution space.

In Chapter 8 we describe a Mellin-space numerical library which encodes the splitting func-tions and asymptotic logarithmic corrections for a number of structure functions, namely F2,FL, g1 under photon exchange, and FW+±W−

3 under charged-current exchange. It also containsan implementation of the known Wilson coefficients for the Drell-Yan process and for Higgs pro-duction to order a2s. The N -space evaluation is achieved by analytically continuing the harmonicsums in the complex plane: an asymptotic expansion is obtained in the large-N limit for theMellin transform of harmonic polylogarithms, which are related to harmonic sums, and recursionrelations can be used to compute the analytic continuation of the harmonic sums for smaller |N |.The library encodes all the special functions necessary to calculate in N -space the two-loops Wil-son coefficients for DIS and the 3-loop splitting functions, which are expressible using weight-5harmonic sums, and several weight-6 harmonic sums, namely those contained in c

(3)NS2,q . The

other three-loop Wilson coefficients are encoded using the approximate representations given inthe literature. The library can perform a fast numerical evolution of the PDFs and the numericalMellin inversion to momentum fraction space, and may be suitable for experimental fits in futureapplications. It can accept a user-provided parametrization of the light-quark PDF combinationsu±u, d±d, and s±s, which are the relevant combinations for the calculation of the DIS structurefunctions in the asymptotic region Q2 ≫ m2

c,b in the fixed flavour number scheme. The codecan compute the running of as(Q

2) from the solution of the renormalization-group equationsin perturbation theory, with a fixed number of light flavours, from a value of ΛQCD chosen bythe user. We provided some indications of the numerical precision attainable by the library bycomputing fixed Mellin moments of Wilson coefficients and of individual harmonic sums, and acomparison to the code Pegasus [287]. We showed the results of the numerical evolution of aninput set of PDFs to various scales under the fixed flavour number regime.

151

Page 162: and 3-loop corrections to hard scattering processes in QCD

A Representation of certain iterated integrals

In the following we present a series of integrals and relations which appeared in intermediatesteps of the calculation of A

(3),two-massgg,Q and which may be of further use in similar applications,

extending the results given in [172] before. We obtained the following iterative integrals

G44 = G

(√1− x

x

, z

)= −H−1

(u1)− H1

(u1)+ 2 ln(2)− 2

+u1

[H0(z) + H1

(u1)− H−1

(u1)+ 2], (A.1)

G45 = G

( √1− x√

x(η − xη + x)

, z

)

=π√η + η

+ 2arcsin(

√1− z)

1− η− 2

arctan(√

η√1−z√z

)√η(1− η)

, (A.2)

G46 = G

( √1− x√

x(xη − x+ 1)

, z

)=

1

η − 1

[π(√

η − 1)− 2

√η arctan

(u1√ηz

)+ 2arctan

(u1√z

)], (A.3)

G47 = G

( √x

xη − x+ 1

, z

)=

1

v31

[2H−1

(v1√z)+H1(z − zη)

]− 2

√z

v21, (A.4)

G48 = G(√

1− x√xη − x+ 1

, z)=

2− η

4(1− η)− u31u2

4

− u1u32

4(1− η)+

η2

4v31

[arcsinh

(u1v1√η

)− arcsinh

(v1√η

)], (A.5)

G49 = G

(√xη − x+ 1

x

, z

)= −H1

(u2)− H0(z − zη)− H−1

(u2)

+H0(z) + 2 ln(2)− 2 + u2

[H0(z − zη) + 2 + H1

(u2)− H−1

(u2)], (A.6)

G50 = G

(√1− x

x,1

x

, z

)= u1

[1

2H2

0 (z)− 4

]+ 2 ln2(2)

−4 ln(2) + 4 +(1 + u1

)[2H−1

(u1)− 1

2H2

−1

(u1)+H−1,1

(u1)]

+(1− u1

)[2H1

(u1)− H1,−1

(u1)+

1

2H2

1

(u1)]

− ζ2, (A.7)

G51 = G

( √x

η − xη + x,1

x

, z

)=

2√z

v21

(H0(z)− 2

)+

√η

v31

[−2H0(z)H4,0

(v1

√z

η

)+ 4H0,0,4,0

(v1

√z

η

)], (A.8)

G52 = G

(√xη − x+ 1

x,1

x

, z

)= u2

(2H0(z)− 4

)+

1

2H2

0 (z)

+(1 + u2

)[−H−1

(u2)H0(z) + H−1,−1

(u2)− H1,−1

(u2)]

152

Page 163: and 3-loop corrections to hard scattering processes in QCD

−2H0(z) +(1− u2

)[−H0(z)H1

(u2)− H0(z)H0(z − zη)

+1

2H2

0(z − zη) + H−1,1

(u2)− 1

2H2

1

(u2)]

+ 4H−1

(u2)− ζ2

+2 ln2(2) + 2 ln(2)

[H1

(u2)− H−1

(u2)+H0(z)

]− 4 ln(2) + 4, (A.9)

G53 = G

(√1− x

x,

√1− x

x,1

x

, z

)= zH0(z)−

z

2H2

0 (z) +1

6H3

0 (z)

+2u1

[−1

2H2

−1

(u1)+H−1,1

(u1)− H1,−1

(u1)+

1

2H2

1

(u1)]

−(z + 2)H1

(u1)H−1

(u1)+z − 2

2

[H2

−1

(u1)+H2

1

(u1)]

+2H−1,1,−1

(u1)− 2H−1,1,1

(u1)+ 2H1,−1,−1

(u1)− 2H1,−1,1

(u1)

+(ζ2 + 4 ln(2)− 2 ln2(2) + 4u1

)[H−1

(u1)+H1

(u1)]

− 3

2ζ3

−(3z + 4)H−1

(u1)+ (3z − 4)H1

(u1)+

4

3ln3(2)

+(8− 8 ln(2) + 4 ln2(2)− 2ζ2

)u1 − 4 ln2(2) + 8 ln(2) + 6z − 8, (A.10)

G54 = G

(1

xη − x+ 1,1

x,1

x

, z

)=

1

1− η

[1

2H2

0 (z)H1(z − zη)

−H0(z)H0,1(z − zη) + H0,0,1(z − zη)

], (A.11)

G55 = G

(√xη − x+ 1

x,1

x,1

x

, z

)= −8 +

4 ln3(2)

3

+ ln(2)[8− 4H1(η)− 2ζ2 +H1(η)

2]

+u2

8 +

1

2

[− H1(u2) + H−1(u2)

]2[2− H1(η)

]−1

2

[− H1(u2) + H−1(u2)

][− 4 + H1(η)

]H1(η) +

1

6H0(z)

3 − 4H1(η)−1

6H1(η)

3

−1

2H−1(u2)H1(u2)

2 +1

6H1(u2)

3 − 4H−1(u2)−1

6H−1(u2)

3 +H1(η)2

+1

2H1(u2)

[8 + H−1(u2)

2]

+

4 +

1

2H1(u2)

2 + 2H−1(u2)−1

2H−1(u2)

2 − ζ2

+H1(u2)[2− H−1(u2)

]H1(η)− H1(η)

2 − 1

2

[H1(u2) + H−1(u2)

]H1(η)

2

+1

6H1(η)

3 − 1

6H1(u2)

3 − 4H−1(u2)−1

6H−1(u2)

3

+[− 4 + 2H1(η) + 2H−1(u2)

]H−1,1(u2)− 2H−1,1,1(u2)− 2H−1,−1,1(u2)

+2ζ2 + 2ζ3 + 2 ln2(2)[− 2 + H1(η)

]+

1

2H1(u2)

2[− 2 + H−1(u2)

]+H−1(u2)

2

+1

2H1(u2)

[− 8 + 4H−1(u2)− H−1(u2)

2], (A.12)

G56 = G

(√xη − x+ 1

x,

1

xη − x+ 1,1

x

, z

)=

u21− η

4H−1,0(u2)− 4H1,0(u2)− 4H−1,−1,0(u2) + 4H−1,1,0(u2)

153

Page 164: and 3-loop corrections to hard scattering processes in QCD

+[4− 4H0(u2) + 2H−1,0(u2) + H0,1(z − zη)− 2H1,0(u2)− ζ2

]H0(z)

−4H1,1,0(u2)− 2H0,0,1(z − zη) + 4H1,−1,0(u2) + 2ζ2H−1(u2)

−2ζ2H1(u2)− 2ζ2 + 2ζ3 − 8

+

1

1− η

−4H−1,−1,0(u2)

+[2H−1,0(u2) + 2H1,0(u2) + 3ζ2 − 4

]H0(z) + 8− 7

2ζ3

+4H1,1,0(u2)− 2(ζ2 − 4

)H−1(u2) + 4H1(u2)ζ2 − 8 ln(2)

, (A.13)

where

u1 =√1− z, (A.14)

u2 =√

1− z(1− η), (A.15)

v1 =√1− η. (A.16)

We also encountered the following iterated integrals Ki, which evaluate to:

K49 = G

(√1− x

x

, 1

)= 2 ln(2)− 2, (A.17)

K50 = G

( √1− x√

x(η − xη + x)

, 1

)=

π

η +√η, (A.18)

K51 = G

( √x

−η + xη + 1

, 1

)=

2v1η3/2

H4,0

(1− 2v1

√η

1− 2η

)+

1(1− 2v1

√η)2[2π + 2

η− 2π − π

v1

√η

(2η − 4 +

3

2η+

1

2η2

)

+8− 8η + v1√η(16η − 24

)+

8

v1

√η

(2η2 − 5η + 4− 1

η

)], (A.19)

K52 = G

( √1− x√

x(xη − x+ 1)

, 1

)=

π

1 +√η, (A.20)

K53 = G

( √x

xη − x+ 1

, 1

)=

1

1− η

[H−1(v1)− H1(v1)− H0(η)− 2

]+

1

v31

[H−1(v1) + H1(v1)

], (A.21)

K54 = G(√

1− x√xη − x+ 1

, 1)= − 2− η

4(η − 1)

+η2

8(1− η)

[H1(v1)− H−1(v1) + H0(η)

]− η2

8v31

[H−1(v1) + H1(v1)

], (A.22)

K55 = G

(√xη − x+ 1

x

, 1

)= 2

√η − 2H−1

(√η)+ 2 ln(2)− 2, (A.23)

K56 = G

(√1− x

x,1

x

, 1

)= 2 ln2(2)− 4 ln(2)− π2

6+ 4, (A.24)

K57 = G

( √1− x√

x(η − xη + x),

1

1− x

, 1

)=

1− η

[H−1

(√η)

√η

− ln(2)

], (A.25)

K58 = G

( √1− x√

x(η − xη + x),1

x

, 1

)

154

Page 165: and 3-loop corrections to hard scattering processes in QCD

(1− η)√η

[− 2H−1

(√η)+H0(η)

]+

2 ln(2)π

1− η, (A.26)

K59 = G

( √1− x√

x(η − xη + x),√1− x

√x

, 1

)= − 1

8(1− η)√η

[H1,0(η) + 4H−1,0

(√η)]

+1

2(η − 1)2

+π2

16(η − 1)− H0

(√η)

2(η − 1)− (3− η)η

4(η − 1)3H0(η), (A.27)

K60 = G

( √x

η − xη + x,1

x

, 1

)= −16Cη + 4

v21v22

+16√η

v1v22− 16η

v22

+

√η

v31v22

(2η2 − 2η − 1

2

)−8C + π

[ln(2) + H1(η) + 2H4,1(v3)

]+16η3/2

v31v22

(2η2 − 3η + 1

)[− ln(2)

2+ H−1(v3) +

H1(η)

2− H4,1(v3)

]+4√η

v31

[ln(2)

2H4,0(v3)−

π

4H0(η)−

π

4H1(v3)−

1

2H1(η)H4,0(v3)

+H1,4,0(v3)− H4,0,−1(v3) + H4,0,4,1(v3) + H4,1,4,0(v3)

]+

η

v21v22

(16η3 − 24η2 + 4η + 2

)[ln(2)− 2H−1(v3)− H1(η)

+2H4,1(v3)]+

2πη

v21v22

[ln(2) + H1(η) + 2H4,1(v3)

], (A.28)

K61 = G

( √1− x√

x(xη − x+ 1),

1

1− x

, 1

)=

π

1− η

[2 ln(2)− 2

√ηH−1

(√η)+√ηH0(η)

], (A.29)

K62 = G

( √1− x√

x(xη − x+ 1),1

x

, 1

)=

1− η

[√ηH−1

(√η)− ln(2)

], (A.30)

K63 = G

( √1− x√

x(xη − x+ 1),√1− x

√x

, 1

)=

(3− η)η2

4(1− η)3H0(η)

−√η

2(1− η)

[1

4H1,0(η) + H−1,0

(√η)]

2(1− η)2

+π2

8(1− η)2

(η3/2 − η

2−√

η +1

2

)+

η

2(1− η)H0

(√η), (A.31)

K64 = G

(√1− x

√xη − x+ 1,

√1− x

x

, 1

)=

η2 ln(2)

4(1− η)

[H1(v1)− H−1(v1) + H0(η)

]− η2

4v31ln(2)

[H−1(v1) + H1(v1)

]+(4η2 − 4η − 1

)(3π − 2π2)η2

16v31v22

− 1

v22(η − 1)

[1

2ln(2)(η − 2) +

π2η2

48

+1

1 +√η

(η5/2

4− 3

10η3/2 +

η3

4+

7

10η2 − 22

15η +

8

15

√η +

23

15

)]+η2

8v31

[2H−1(v1) + 2H1(v1) + 6H4,0(v3) + 2H−1,0(v1) + 2H1,0(v1)

155

Page 166: and 3-loop corrections to hard scattering processes in QCD

−G(√

1− x

x,

√x

1− x

, η

)]+

(3π − 2π2

)η5/2

4v22(1− η)+

4 ln(2)(η − 1)η(1 +

√η)v31v

22

+

√η − 1

v31v22

(−6η9/2 − 6η4 + 3η7/2 + 3η3 − 32

15η

)+

π2

12v1v22η5/2

+1

v1v22(1 +

√η)[14

5η5/2 + 2 ln(2)

√η(√

η − 1)(η + 2

√η + 2

)− 2

15

√η(45η4 + 45η7/2 − 30η3 − 30η5/2 + 9η3/2 + 44η − 46

)]+

η2

4(1− η)

[H−1(v1) + 2H−1

(√η)− 2H0(v1)− H0(η)− H1(v1)

+H−1,0(v1) +1

2H0,1(η)− H1,0(v1)

]+

η − 2

2(1− η)H−1

(√η), (A.32)

K65 = G

(√xη − x+ 1

x,1

x

, 1

)= 2H−1,1

(√η)− 2H−1,−1

(√η)− 4

√η

+2(1 +

√η)H−1

(√η)+ 2(1−√

η)H1

(√η)− 2H−1

(√η)H1(η)

+2(− 1 + ln(2) +

√η)H1(η) + 2 ln2(2)− 4 ln(2) + 4− π2

6, (A.33)

K66 = G

(√xη − x+ 1

x,

√1− x

x

, 1

)= −H1,0(η) + ηH0(η)

+4(1− ln(2))[−√

η +H−1

(√η)]

− η

(1 +

1

v1

)H−1(v1)

(1− 1

v1

)H1(v1) + 2 ln2(2)− 4 ln(2) + 2, (A.34)

K67 = G

(√1− x

x,1

x,1

x

, 1

)= 2ζ3 +

4

3ln3(2)− 4 ln2(2) + 8 ln(2)− ln(2)π2

3− 8 +

π2

3, (A.35)

K68 = G

(√1− x

x,

√1− x

x,1

x

, 1

)= −3

2ζ3 +

4

3ln3(2)− 4 ln2(2) + 8 ln(2)− 2, (A.36)

K69 = G

( √1− x√

x(η − xη + x),

1

1− x,√1− x

√x

, 1

)=

1

2(1− η)

[−π

2

16+ H−1

(√η)+

1

2H0

(√η)+H1(η)− H0

(√η)H1(η)

−H0

(√η)H−1

(√η)+H0,1

(√η)− 7

4ζ3

]+

H1

(√η)− H1,0

(√η)

2(η +

√η)

+π2

8(1− η)√η

(H−1

(√η)+

H1(η)

2

)+

η(1 + η)

8(η − 1)3H0(η)

+1

2(1− η)√η

[−H−1

(√η)− H1(η) +

3

8H1,0(η) +

1

2H−1,0

(√η)

+H1(η)H−1,0

(√η)+

1

4H1,1,0(η)− H−1,0,1

(√η)− H−1,1,0

(√η)

+H−1,−1,0

(√η)+H−1,0,−1

(√η)]

− η

4(1− η)2, (A.37)

156

Page 167: and 3-loop corrections to hard scattering processes in QCD

K70 = G

( √1− x√

x(η − xη + x),1

x,√1− x

√x

, 1

)=

2− η

4(η − 1)2

+1

2(1− η)

[π2

16− H−1

(√η)+

3

4H0

(η)− H1(η) + H0

(√η)H1(η)

+H0

(√η)H−1

(√η)− H0,1

(√η)− 7

4ζ3

]+

(5− 3η)η

8(1− η)3H0(η)

+H1,0

(√η)− H1

(√η)

2(η +

√η) − π2

8(1− η)√η

[H−1

(√η)+

1

2H1(η)

]+

1

2(1− η)√η

[H−1

(√η)+H1(η)−

3

8H1,0(η)−

1

2H−1,0

(√η)

−H1(η)H−1,0

(√η)− 1

4H1,1,0(η) + H−1,0,1

(√η)+H−1,1,0

(√η)

−H−1,−1,0

(√η)− H−1,0,−1

(√η)− 2H0,−1,0

(√η)− 1

4H0,1,0(η)

], (A.38)

K71 = G

( √1− x√

x(η − xη + x),√1− x

√x,

1

1− x

, 1

)=

1

2(1− η)

[H−1,0

(√η)− 1

2H0

(√η)]

+1

2(1− η)√η

[−1

2H−1,0

(√η)

+1

4H1,1,0(η)− H−1,−1,0

(√η)+H−1,1,0

(√η)]

+H1,0

(√η)

2(η +

√η)

+π2

24(1− η)√η

[H−1

(√η)+

1

2H1(η)

]+

1

1− η

(7ζ316

− π2

8ln(2)

)+

3

(1− η)3

[1

8− η2

8+

η

24(η + 1)H0(η)−

π2

48

(1

6+

3− η2

2

)+

(η2

12− η3/2

16− η

4+

√η

8− 1

16√η

)H1,0(η)

], (A.39)

K72 = G

( √1− x√

x(η − xη + x),√1− x

√x,

1

x

, 1

)= − H1,0

(√η)

2(η +

√η) + 1

2(1− η)

[−3

4H0(η) +

1

4H2

0(η)− H−1,0

(√η)]

+1

8(1− η)√η

[2H−1,0

(√η)− H1,1,0(η) + 4H−1,−1,0

(√η)

−8H−1,0,0

(√η)− 4H−1,1,0

(√η)− H1,0,0(η)

]+η(3η − 5)

8(1− η)3H0(η)

− π2

24(1− η)√η

[H−1

(√η)+

1

2H1(η)

]+

1

1− η

(π2

8ln(2) +

7ζ316

)+

3

(1− η)3

−3

8+η

2− η2

8+π2

3

(−η

2

32+

48+

1

96

)−[η2

12− η3/2

16− η

4+

√η

8− 1

16√η

]H1,0(η) +

η

24(3− η)H2

0(η)

, (A.40)

K73 = G

(1

xη − x+ 1,1

x,1

x

, 1

)=

1

η − 1

[H1,1,0(η)− ζ3 + ζ2H1(η)

], (A.41)

K74 = G

( √1− x√

x(xη − x+ 1),

1

1− x,√1− x

√x

, 1

)= − 1

4(η − 1)2

157

Page 168: and 3-loop corrections to hard scattering processes in QCD

2(1− η)

[H−1

(√η)− 3

4H0(η) + H1(η)−

1

2H0(η)H1(η)

−H0

(√η)H−1

(√η)+H0,1

(√η)]

+

√η

2(1− η)

[−H−1

(√η)

−H1(η) +3

8H1,0(η) +

1

2H−1,0

(√η)+H1(η)H−1,0

(√η)

+1

4H1,1,0(η) + H−1,−1,0

(√η)+H−1,0,−1

(√η)− H−1,0,1

(√η)

−H−1,1,0

(√η)+ 2H0,−1,0

(√η)+

1

4H0,1,0(η)

]+π2(1− 2

√η)

32(1− η)

+

√η

2(1 +

√η)[H1

(√η)− H1,0

(√η)]

+2 ln(2)π2√η + 7ζ3

8(1− η)

+π2√η

8(1− η)

[H0(η)− H−1

(√η)+

H1(η)

2

]+η2(3η − 5)

8(1− η)3H0(η), (A.42)

K75 = G

( √1− x√

x(xη − x+ 1),1

x,√1− x

√x

, 1

)=

η

2(1− η)

[−H−1

(√η)− 1

4H0(η)− H1(η) +

1

2H0(η)H1(η)

+1

2H0(η)H−1

(√η)− H0,1

(√η)]

+

√η

2(1− η)

[H−1

(√η)

+H1(η)−3

8H1,0(η)−

1

2H−1,0

(√η)− H1(η)H−1,0

(√η)

+H−1,1,0

(√η)− H−1,0,−1

(√η)+H−1,0,1

(√η)− 1

4H1,1,0(η)

−H−1,−1,0

(√η)]

+

√η

2(1 +

√η)[− H1

(√η)+H1,0

(√η)]

+π2√η

8(1− η)

[1

2− 2 ln(2) + H−1

(√η)− 1

2H1(η)

]+

28ζ3 − π2

32(1− η)

+η2(1 + η)

8(1− η)3H0(η) +

2η − 1

4(1− η)2, (A.43)

K76 = G

( √1− x√

x(xη − x+ 1),√1− x

√x,

1

1− x

, 1

)=

√η

2(1 +

√η)H1,0

(√η)+

1

(1− η)3

[π2

8

(η5/2

2− 7η2

12− η3/2 +

η

6− 1

4

)+

(η3

4− 3η5/2

16− 3η2

4+

3η3/2

8− 3

√η

16

)H1,0(η) +

η2

8(η − 3)H2

0(η)

+η2

8(5− 3η)H0(η) +

π2

16

√η

]+

1− 2√η

8(1− η)ln(2)π2 +

3(η + 1)

8(η − 1)2

2(1− η)

[3

4H0(η)−

1

4H2

0 (η) + H−1,0

(√η)]

+7ζ3

16(η − 1)

+

√η

8(1− η)

[π2

3H−1

(√η)+π2

6H1(η) + H1,0,0(η)− 2H−1,0

(√η)

+H1,1,0(η) + 8H−1,0,0

(√η)− 4H−1,−1,0

(√η)+ 4H−1,1,0

(√η)], (A.44)

K77 = G

( √1− x√

x(xη − x+ 1),√1− x

√x,

1

x

, 1

)

158

Page 169: and 3-loop corrections to hard scattering processes in QCD

=1

(1− η)3

[3

8− 3η

2+

9η2

8− π2

8

(η5/2

2− 7

12η2 − η3/2 +

η

6− 1

4

)−√η

4

(η5/2 − 3η2

4− 3η3/2 +

2− 3

4

)H1,0(η)

]+

7ζ316(η − 1)

−√η

2(1 +

√η)H1,0

(√η)+

η

2(1− η)

[1

2H0

(√η)− H−1,0

(√η)]

+

√η

2(1− η)

[1

2H−1,0

(√η)− 1

4H1,1,0(η) + H−1,−1,0

(√η)

−H−1,1,0

(√η)− π2

12H−1

(√η)− π2

24H1(η)

]− π2√η

16(1− η)3

−η2(η + 1)

8(1− η)3H0(η)−

1− 2√η

8(1− η)ln(2)π2, (A.45)

K78 = G

(√xη − x+ 1

x,1

x,1

x

, 1

)= −π

2

3ln(2)− π2

6H1(η)

−H1(η)H2−1

(√η)+ 4

√η

[2− H−1

(√η)+H1

(√η)− H1(η)

+1

4

(H1(η) + H−1

(√η)− H1

(√η))2]

+H2−1

(√η)− H2

1(η)

−2H−1,1

(√η)+ 2H1(η)H−1,1

(√η)+ 2H1,−1

(√η)− H2

1

(√η)

−2H−1

(√η)H1,1(η) + 2H−1,1,−1

(√η)+ 2H−1,−1,1

(√η)

−1

3H3

−1

(√η)− 2H−1,1,1

(√η)+ ln(2)

[8− 4H1(η) + H2

1(η)]

+2ζ3 − 4H−1

(√η)− 4H1

(√η)+ 4H1(η) + 2H−1

(√η)H1(η)

+2H1

(√η)H1(η) + 2 ln2(2)

[H1(η)− 2

]+

4

3ln3(2)− 8 +

π2

3, (A.46)

K79 = G

(√xη − x+ 1

x,

√1− x

x,

√1− x

x

, 1

)=

π2

6v22(3− 8η)η +

16v1v22

(2− 3η)η2 +ln2(2)

v22

(− 20η2 + 40η + 9

)−4 ln(2)

v22

(4η2 + 6η + 1

)+

π2

6v22

(4η3 + 1

)− 2

v22

[28η3

3− 5η2

3− 4η − 2

3

]+4

√η[H1

(√η)− H−1

(√η)− H1(η)

]+ ln(2)

[2ηH0(η) + 2ηH1(v1)

−2ηH−1(v1) + 8H−1

(√η)− 2H1,0(η) +

628

3H−1,0

(1√2

)−25

3

√2H−1,0

(1√2

)]+ η[2H−1(v1) + 4H−1

(√η)− 4H0(v1)

−2H0(η)− 2H1(v1) + 2H−1,0(v1) + H0,1(η)− 2H1,0(v1)]

+2η

v1

− ln(2)

[H−1(v1) + H1(v1)

]− 1

2G

(√1− x

x,

√x

1− x

, η

)+H−1(v1) + H1(v1) + 3H4,0(v3) + H−1,0(v1) + H1,0(v1)

+v1v22

√η

32√2

3+

(2828

9− 4

√2

3

)ln3(2) +

134√2

9ln2(2)

159

Page 170: and 3-loop corrections to hard scattering processes in QCD

+4 ln(2)

[(16

9+

√2

3

)π2 − 5

√2

]+ 8

[16√2

9+

(17√2

9− 8

3

)ln(2)

+

(5√2

3− 623

9

)ln2(2)− 7

3π2 − 2

3

]ln(2 +

√2)− 77

3ζ3

+

[−68

√2

9+

(224 +

16√2

3

)ln(2)

]ln2(2 +

√2)− 37

9√2π2

+

√η v1(

1 +√η)v22

[−16

3− 32

3η − ln2(2)

(16η + 36

)+ 16 ln(2)

(1 + 2η

)+2

3π2(η3/2 + η − 1

)]+

η v1(1 +

√η)v22

[48 ln(2)− 52 ln2(2)

]+

1

v22

(1 + 4η − 4η2

)[−8

√2

3− 67

9√2ln2(2)− 707

9ln3(2) +

√2

3ln3(2)

+37π2

36√2− 16

9ln(2)π2 +

√2 ln(2)

(5− π2

3

)+ 2

(2

3− 5

3

√2 ln2(2)

+623

9ln2(2)− 17

√2

9ln(2) +

8

3ln(2) +

7

3π2 − 16

√2

9

)ln(2 +

√2)

+

(−4

√2

3ln(2)− 56 ln(2) +

17√2

9

)ln2(2 +

√2)+

77

12ζ3

]+

1

v1v22

[72η3 − 4π2η3 − 48η4 + πη

(6η2 − 6η − 3

2

)]+

8(1 +

√η)v1v22

[π2

8

(4η5/2 +

14

3η2 + η3/2 +

η

3

)− 8η

3− η2

3− 3η5/2

]+

1(1 +

√η)v22

[[4 ln(2)− 2 ln2(2)

](8η3 + 16η5/2 − 6η3/2 − 2

√η)

+4√η +

34

3η3/2 − 98

3η5/2 +

80

3η7/2 + 8η4 +

(6π − 4π2

)(η2 + η3/2

)]+

1√2G

(√2− x

x,

√1− x

x,

√1− x

x

, 1

)− 4 ln2(2)H−1

(√η)

−4H1

(√η)+ 4H1(η)−

π2

3H1(η) + 2H1,0(η)− 4H0,1,−1

(√η)

+10√2H−1,0

(1√2

)+ 4H1(η)H0,−1

(√η)− 112H−1,0,1

(1√2

)−216H0,−1,−1

(1√2

)+ 8H0,−1,−1

(√η)− 4H0,−1,1

(√η)

−112H−1,0

(1√2

)ln(2 +

√2), (A.47)

K80 = G

(√xη − x+ 1

x,

1

xη − x+ 1,1

x

, 1

)=

4H1

(√η)

1 +√η

+4√η

1− η

[H−1

(√η)+H1(η)− H0

(√η)H1(η) + H0,1

(√η)

−H0,−1

(√η)− 2− π2

12

]+

4

1− η

[2− 2 ln(2) +

(1 +

π2

12

)H−1

(√η)

−H1(η) +

(π2

6+ H−1,0

(√η))

H1(η) +1

2H1,1,0(η) + H−1,0,−1

(√η)

160

Page 171: and 3-loop corrections to hard scattering processes in QCD

−H−1,0,1

(√η)− 7

8ζ3

], (A.48)

where C is Catalan’s constant

C =∞∑n=0

(−1)n

(2n+ 1)2≈ 0.915965594, (A.49)

and

v2 = 1− 2√

(1− η)η, (A.50)

v3 =v2

1− 2η, (A.51)

and

G

(√1− x

x,

√x

1− x

, η

)= π2 − 2

√(1− η)η − 2 arcsin(

√η)

+4√1− η arctanh(

√η) + 8 arctan

[−1 +

√1− η√η

]−8 arctanh

[√1−√

η√1 +

√η

]arctanh(

√η)

+4Li2

(−√1−√

η√1 +

√η

)− 4Li2

(√1−√

η√1 +

√η

). (A.52)

The following constant is calculated numerically

G

(√2− x

x,

√1− x

x,

√1− x

x

, 1

)= 0.413734026910741614953 . (A.53)

161

Page 172: and 3-loop corrections to hard scattering processes in QCD

B Relations between certain functions

We further present representations of a series of functions gi which are functions of x and η.These functions emerged in the calculation of A

(3)two-massgg,Q . The symbol y, not to be confused

with its meaning in the main text, is defined here as

y =1− 2

√1− x

√x

1− 2x, (B.1)

and the formulas are valid for0 < η < 1,

0 < x < 1,(B.2)

g1(x) =

∫ y

0

dzarctan(z)

(ln(1− z)− ln(1 + z)

)(1− z)2 + η(1 + z)2

,

=(1 + y) arctan(y)

2(1 + η)(1− y)

[1 + ln(1− y)− ln(1 + y)

]+

1

1 + η

1

12

[π2 − 6π arctan

(y +

√1 + y2

)+ 3 ln2(2)− 6

(− 1 + ln(2)

)ln(1− y)

+3 ln2(1− y)− 3 ln(1 + y2

)]+

1

2Li2

(12− y

2

)− 1

4Li2

[1− y

2− i(1 + y

2

)]−1

4Li2

[1− y

2+ i(1 + y

2

)]+

1

4Li2

[1 + y

2+ i(1− y

2

)]+1

4Li2

[1 + y

2− i(1− y

2

)], (B.3)

g5(x) =

∫ y

0

dzln(1− z)− ln(1 + z)

(1− z)2 + η(1 + z)2

=

− i

1

8Li2

(− η(1 + y)2

(1− y)2

)+ arctan

(√η(1 + y)

1− y

)[1

2ln(1− y)− 1

2ln(1 + y)

]+1

2iLi2

(i√η)− 1

8iLi2(−η) +

1

2iLi2

(− i

√η(1 + y)

1− y

)1√η, (B.4)

g6(x) =

∫ y

0

dzz(− ln(1− z) + ln(1 + z)

)(1− z)2 + η(1 + z)2

= − 3π2

8(1 + η)− π arctan

(√η)

2(1 + η)+

π

2(1 + η)arctan

(2√η

1− η

)

1 + ηarctan

(1− y − η(1 + y) +√

(1 + η)((1− y)2 + η(1 + y)2

)2√η

)+

(1

2(1 + η)+i(1− η)

4(1 + η)

1√η

)Li2

(1 + y

2+i(1− y)

2√η

)+

(1

2(1 + η)− i(1− η)

4(1 + η)

1√η

)Li2

(1 + y

2− i(1− y)

2√η

)−(

1

2(1 + η)+i(1− η)

4(1 + η)

1√η

)Li2

(1− y

2− 1

2i√η(1 + y)

)−(

1

2(1 + η)− i(1− η)

4(1 + η)

1√η

)Li2

(1− y

2+

1

2i√η(1 + y)

)− 1

1 + η

− 1

8(1− η)π ln

[(1− y)2 + η(1 + y)2

]162

Page 173: and 3-loop corrections to hard scattering processes in QCD

+(1− η)

[i ln2(2)

2− iπ2

48− 1

4iπ arctan

(√η)+

1

2i arctan2

(√η)

+i1

2Li2

(1

2+

i

2√η

)+ i

1

2Li2

(1

2+i√η

2

)+

1

8(−4i ln(2) + π) ln(1 + η)

+1

8i ln2(1 + η)

]1√η−

− ln(2)

2(1 + η)+

1

4(1 + η)ln[(1− y)2 + η(1 + y)2

]+

1

1 + η

− 1

2(1− η) arctan

(1− y − η(1 + y) +√

(1 + η)((−1 + y)2 + η(1 + y)2

)2√η

)+(1− η)

[i ln(2)

4+π

4− 1

4arctan

(2√η

1− η

)− 1

8i ln(1 + η)

]1√η

ln(η)

−[− 1

8(1 + η)+

i(1− η)

16(1 + η)

1√η

]ln2(η) , (B.5)

g7(x) =

∫ y

0

dz

(− 2 ln(1− z) + ln

(1 + z2

))2((1− z)2 + η(1 + z)2

)=

− i ln2(2)

4+

7iπ2

96+

1

4iπ arctan

(√η)− 1

4i arctan2

(√η)− i

1

2Li2

(12+

i

2√η

)−1

2ln(1− y) arctan

(√η(1 + y)

1− y

)

+

[− arctan

(1− y − η(1 + y)−√(1 + η)

((1− y)2 + η(1 + y)2

)2√η

)

− arctan

(1− y − η(1 + y) +√(1 + η)

((1− y)2 + η(1 + y)2

)2√η

)− arctan

(2√η

1− η

)]×[ln(2)

4+

1

4ln(1− η)− 1

4ln(1 + η)

]+[ln(1−√

η)− ln

(1 +

√η)][i ln(2)

8− 1

8i ln(1 + η)

]+arctan

(1−√

η

1 +√η

)[ln(2)

2− 3iπ

8+

1

2ln(1 + η)

]

+

[− arctan

(1 +√η(1− y) + y −

√2√

(1 + η)(1 + y2

)1− y −√

η(1 + y)

)

+arctan

(1−√η(1− y) + y −

√2√(1 + η)

(1 + y2

)1− y +

√η(1 + y)

)]

×[− ln(2)

2− 1

2i arctan

(1− y − η(1 + y)−√

(1 + η)((1− y)2 + η(1 + y)2

)2√η

)

+1

2i arctan

(1− y − η(1 + y) +√

(1 + η)((1− y)2 + η(1 + y)2

)2√η

)− 1

4ln(1 + η)

−1

4ln[(1− y)2 + η(1 + y)2

]]+

1

8i ln2

(1−√

η)− 1

8i ln2

(1 +

√η)

+1

8π ln(1− η) +

[− i ln(2)

4+

1

8i ln(1 + η)

]ln(η)− 1

16i ln2(η)

163

Page 174: and 3-loop corrections to hard scattering processes in QCD

+1

4i(ln(2) + iπ

)ln(1 + η)− 1

16i ln2(1 + η) +

1

4π ln(1− y)

−1

4iLi2

(1− y

2− i(1− y)

2√η

)+

1

4iLi2

(1− y

2+i(1− y)

2√η

)+1

4iLi2

[1

2+ i(12− 1

1−√η

)]− 1

4iLi2

[1

2+ i(12− 1

1 +√η

)]−1

8iLi2

[− y

1−√η+

1 + y

2− i( 1

1−√η− 1 + y

2

)]+1

8iLi2

[− y

1−√η+

1 + y

2+ i( 1

1−√η− 1 + y

2

)]−1

8iLi2

[− y

1 +√η+

1 + y

2+ i( 1

1 +√η− 1 + y

2

)]+1

8iLi2

[− y

1 +√η+

1 + y

2− i( 1

1 +√η− 1 + y

2

)] 1√η, (B.6)

g8(x) =

∫ y

0

dz

(− 2 ln(1− z) + ln

(1 + z2

))2(η(1− z)2 + (1 + z)2

)=

i

8√η

− 2 ln2(2)− 5π2

12− 2 arctan2

(√η)− 4Li2

(12+i√η

2

)−i[4 ln(1− y)

]arctan

(√η(1− y)

1 + y

)

− arctan

(1 + y − η(1− y)−√(1 + η)

(η(1− y)2 + (1 + y)2

)2√η

)×[2i ln(2) + 2i ln(1− η)− 2i ln(1 + η)

]+

[arctan

(2√η

1− η

)+ arctan

(1 + y − η(1− y) +√

(1 + η)(η(1− y)2 + (1 + y)2

)2√η

)]×[− 2i ln(2)− 2i ln(1− η) + 2i ln(1 + η)

]+arctan

(1−√

η

1 +√η

)[4i ln(2) + 3π + 4i ln(1 + η)

]+

[arctan

(1− y +√η(1 + y)−

√2√(1 + η)

(1 + y2

)1−√

η(1− y) + y

)

− arctan

(1− y −√η(1 + y)−

√2√(1 + η)

(1 + y2

)1 +

√η(1− y) + y

)]

×[4i ln(2) + 4 arctan

(1 + y − η(1− y) +√

(1 + η)(η(1− y)2 + (1 + y)2

)2√η

)

−4 arctan

(1 + y − η(1− y)−√(1 + η)

(η(1− y)2 + (1 + y)2

)2√η

)+ 2i ln(1 + η)

+2i ln(η(1− y)2 + (1 + y)2

)]+

[− ln

(1−√

η)+ ln

(1 +

√η)][

ln(2)− ln(1 + η)]

− ln2(1−√

η)+ ln2

(1 +

√η)+ iπ ln(1− η) + 2

[ln(2)− iπ

]ln(1 + η)

−1

2ln2(1 + η)− 2Li2

(1− y

2− 1

2i√η(1− y)

)+ 2Li2

(1− y

2+

1

2i√η(1− y)

)

164

Page 175: and 3-loop corrections to hard scattering processes in QCD

−2Li2

(12+ i(12− 1

1−√η

))+ 2Li2

(12+ i(12− 1

1 +√η

))−Li2

(1− y

2+

y

1 +√η− i( 1

1 +√η− 1− y

2

))+Li2

(1− y

2+

y

1−√η− i( 1

1−√η− 1− y

2

))−Li2

(1− y

2+

y

1−√η+ i( 1

1−√η− 1− y

2

))+Li2

(1− y

2+

y

1 +√η+ i( 1

1 +√η− 1− y

2

)), (B.7)

g9(x) =

∫ y

0

dzarctan(z)

η(1− z)2 + (1 + z)2

=

− π2

32+

1

8π arctan

(1−√

η

1 +√η

)− arctan

(1−

√1 + y2

y

)×[− arctan

(1 + y +

√η(1− y)−

√2√η(1− y)2 + (1 + y)2

1−√η(1− y) + y

)+arctan

(1 + y −√

η(1− y)−√2√η(1− y)2 + (1 + y)2

1 +√η(1− y) + y

)]+[− ln

(1−√

η)+ ln

(1 +

√η)][ ln(2)

8− 1

8ln(1 + η)− 1

8ln(1 + y2

)]−1

8ln2(1−√

η)+

1

8ln2(1 +

√η)

−1

8Li2

[− y

1−√η+

1 + y

2− i( 1

1−√η− 1− y

2

)]+1

8Li2

[− y

1 +√η+

1 + y

2− i( 1

1 +√η− 1− y

2

)]−1

8Li2

[− y

1−√η+

1 + y

2+ i( 1

1−√η− 1− y

2

)]+1

8Li2

[− y

1 +√η+

1 + y

2+ i( 1

1 +√η− 1− y

2

)] 1√η, (B.8)

g10(x) =

∫ y

0

dzz

(1− z)2 + η(1 + z)2

=1

2(1 + η)

[− ln(1 + η) + ln

((1− y)2 + η(1 + y)2

)]+

1− η

2(1 + η)

arctan

(1− η

2√η

)− arctan

(1− η − (1 + η)y

2√η

)1√η, (B.9)

g11(x) =

∫ y

0

dz1

η(1− z)2 + (1 + z)2

=1

2√η

− arctan

(1− η

2√η

)+ arctan

(1 + y − η(1− y)

2√η

), (B.10)

g12(x) =

∫ x

0

dz− ln(1− z) ln(z)

1− (1− η)z

=1

1− η

− ln(1− η) ln2(1− x) + ln2(x) ln

[1 + (−1 + η)x

]

165

Page 176: and 3-loop corrections to hard scattering processes in QCD

+(− iπ + ln(1− η)

)Li2(x) + i

[[π + i ln(1− η)

]Li2(x− ηx)

]−Li3

(− η

(1− η)(1− x)

)−1

6ln(1− η)

[π2 − 3iπ ln(1− η) + 3 ln2(1− η)− 3 ln2

[1− (1− η)x

]]+

[1

2ln(1− η)

[ln(1− η)− 2 ln

[1− (1− η)x

]]+[2 ln(1− η)− ln(x)

]ln(1− x)

+ ln(x) ln[1− (1− η)x

]+ Li2(η) + Li2

(− η

(1− η)(1− x)

)− Li2(x)

−Li2

(− ηx

1− x

)+ Li2(x− ηx)

]ln(η) +

[i[ln(1− η)

[π + i ln(1− η)

]]−Li2

(− η

(1− η)(1− x)

)+ ln(1− η) ln(x)− ln2(x) + Li2(x) + Li2

(− ηx

1− x

)−Li2(x− ηx)

]ln(1− x) +

1

6ln3(1− x) +

16

[π2 −

[6 ln(1− η) ln

[1− (1− η)x

]]−3 ln2

[1− (1− η)x

]− 6Li2

(1− x

1− (1− η)x

)+ 6Li2(x− ηx)

]− Li2(x)

ln(x)

+[iπ − ln(1− η)

]Li2(η) +

[iπ − ln(1− η)

]Li2

(− η

(1− η)(1− x)

)−iπLi2

(− ηx

1− x

)+ ln(1− η)Li2

(1− x

1− (1− η)x

)+ Li3

(− η

1− η

)−Li3

(− x

1− x

)+ Li3

(− ηx

1− x

)− Li3(x− ηx)

+

[ln(x) ln(1− (1− η)x)

1− η

+Li2(x− ηx)

1− η

]ln(1− x) , (B.11)

g13(x) =

∫ x

0

dz−(ln(1− z) ln(z) + Li2(z)

)1− (1− η)z

=ln(1− x) ln(x) ln

[1− (1− η)x

]1− η

+ln[1− (1− η)x

]Li2(x)

1− η

+1

1− η

ln2(x) ln

[1 + (−1 + η)x

]− ln(1− η) ln2

[1 + (−1 + η)x

]+ ln

[1− (1− η)x

]Li2

1− (1− η)x

)− ln

[1− (1− η)x

]Li2(x− ηx)

+

[ln(1− η) ln

[1− (1− η)x

]− Li2

1− (1− η)x

)+[− 2 ln(x) + 2 ln

[1− (1− η)x

]]ln(1− x) + 2 ln(x) ln

[1− (1− η)x

]−2 ln2

[1 + (−1 + η)x

]+ Li2(η)− Li2(x)− Li2

(1− x

1− (1− η)x

)+Li2(x− ηx) + ζ2

]ln(η) +

[− ln(1− x) + ln

[1− (1− η)x

]]ln2(η)

+[− ln2(x) + ln(x) ln

[1− (1− η)x

]− ln2

[1− (1− η)x

]]ln(1− x)

+

[− 2 ln2

[1 + (−1 + η)x

]− Li2(x)

166

Page 177: and 3-loop corrections to hard scattering processes in QCD

−Li2

(1− x

1− (1− η)x

)+ Li2(x− ηx) + ζ2

]ln(x) + ln3

[1− (1− η)x

]+ ln

[1− (1− η)x

]Li2

(1− x

1− (1− η)x

)− Li3(η) + Li3(x) + Li3

1− (1− η)x

)−Li3

(ηx

1− (1− η)x

)− Li3

[1− (1− η)x

]− Li3(x− ηx) + ζ3

. (B.12)

167

Page 178: and 3-loop corrections to hard scattering processes in QCD

C Polarized operator matrix elements

In the following we present all logarithmic single-mass contributions to the polarized operatormatrix elements of twist-two operators in DIS, cf. Ref. [199], discussed in Section 4. We use theabbreviations

LQ = lnQ2

µ2, (C.1)

LM = lnm2

µ2, (C.2)

where µ2 refers to the renormalization and factorization scale.In z-space, the OME AS

gg,Q is distribution-valued, while the other OMEs presented herecontain only regular contributions. For AS

gg,Q(z) we present separately three terms, namely

ASgg,Q(N) =

∫ 1

0

dzzN−1[Areg

gg,Q + δ(1− z)A(δ)gg,Q] +

∫ 1

0

dz(zN−1 − 1)A(+)gg,Q (C.3)

C.1 APS(3)qq,Q in N space

APS(3)qq,Q = a3s

aPS(3)qq,Q + CFNFT

2F

−32L3

M(N − 1)(2 +N)

9N2(1 +N)2

+32(N − 1)(2 +N)

(98 + 369N + 408N2 + 164N3

)81N2(1 +N)5

+L2M

[−32(2 +N)

(3 + 4N − 3N2 + 8N3

)9N3(1 +N)3

+32(N − 1)(2 +N)

3N2(1 +N)2S1

]+LM

[− 32(2 +N)P1

27N4(1 +N)4+

64(2 +N)(3 + 4N − 3N2 + 8N3

)9N3(1 +N)3

S1

−32(N − 1)(2 +N)

3N2(1 +N)2S21 −

32(N − 1)(2 +N)

3N2(1 +N)2S2

]+

[−32(N − 1)(2 +N)

(22 + 41N + 28N2

)27N2(1 +N)4

− 16(N − 1)(2 +N)S2

3N2(1 +N)2

]S1

+16(N − 1)(2 +N)(2 + 5N)

9N2(1 +N)3(S2

1 + S2)−16(N − 1)(2 +N)

9N2(1 +N)2(S3

1 + 2S3)

+

[16(2 +N)

(3 + 2N − 6N2 + 13N3

)9N3(1 +N)3

− 32(N − 1)(2 +N)S1

3N2(1 +N)2

]ζ2

+32(N − 1)(2 +N)

9N2(1 +N)2ζ3

, (C.4)

P1 = 86N5 + 38N4 + 40N3 − 8N2 − 15N − 9 (C.5)

C.2 AS(3)qg,Q in N space

Aqg,Q = a3s

a(3)qg,Q + CANFT

2F

− 8(N − 1)P8

81N5(1 +N)5+ L3

M

[− 64(N − 1)

9N2(1 +N)2+

32(N − 1)

9N(1 +N)S1

]

168

Page 179: and 3-loop corrections to hard scattering processes in QCD

+L2M

[8P4

9N3(1 +N)3+

32(1 + 5N2

)9N(1 +N)2

S1 −16(N − 1)

3N(1 +N)(S2

1 + S2)−32(N − 1)

3N(1 +N)S−2

]+LM

[16P7

27N4(1 +N)4+

[16(− 1 + 44N + 67N2 + 94N3

)27N(1 +N)3

− 16(N − 1)S2

3N(1 +N)

]S1

−32(− 2 + 5N2

)9N(1 +N)2

S21 +

16(N − 1)

9N(1 +N)S31 −

32(− 2 + 6N + 5N2

)9N(1 +N)2

S2 +32(N − 1)

9N(1 +N)S3

−64(−2 + 5N)

9N(1 +N)S−2 +

64(N − 1)

3N(1 +N)S−3 +

64(N − 1)

3N(1 +N)S2,1

]

−16(N − 1)(283 + 584N + 328N2

)81N(1 +N)3

S1 −8(N − 1)

3N(1 +N)2S21 +

8(N − 1)(1 + 2N)

3N(1 +N)2S2

+

[− 8P3

9N3(1 +N)3− 32

(− 2 + 5N2

)9N(1 +N)2

S1 +8(N − 1)S2

1

3N(1 +N)

+8(N − 1)S2

3N(1 +N)+

16(N − 1)S−2

3N(1 +N)

]ζ2 +

[64(N − 1)

9N2(1 +N)2− 32(N − 1)S1

9N(1 +N)

]ζ3

+CFNFT

2F

− (N − 1)P10

81N6(1 +N)6+ L3

M

[8(N − 1)P2

9N3(1 +N)3− 32(N − 1)

9N(1 +N)S1

]+L2

M

[4(N − 1)P6

9N4(1 +N)4− 32(N − 1)(3 + 5N)

9N2(1 +N)S1 +

16(N − 1)

3N(1 +N)(S2

1 + S2)

]+LM

[4P9

27N5(1 +N)5+

[−16

(− 24− 52N + 103N2

)27N2(1 +N)

− 16(N − 1)

3N(1 +N)S2

]S1

+16(N − 1)(3 + 10N)

9N2(1 +N)S21 −

16(N − 1)

9N(1 +N)S31 +

16(− 3 + 5N + 10N2

)9N2(1 +N)

S2

+64(N − 1)

9N(1 +N)S3

]+

5248(N − 1)S1

81N(1 +N)− 896(N − 1)S2

27N(1 +N)+

160(N − 1)S3

9N(1 +N)

− 32(N − 1)

3N(1 +N)S4 +

[− 4(N − 1)P5

9N4(1 +N)4+

16(N − 1)(3 + 10N)

9N2(1 +N)S1

−8(N − 1)S21

3N(1 +N)− 8(N − 1)S2

N(1 +N)

]ζ2 +

[− 8(N − 1)P2

9N3(1 +N)3+

32(N − 1)S1

9N(1 +N)

]ζ3

(C.6)

P2 = 3N4 + 6N3 −N2 − 4N + 12, (C.7)

P3 = 6N5 + 6N4 − 67N3 + 6N2 + 43N − 18, (C.8)

P4 = 9N5 + 9N4 − 79N3 + 15N2 + 22N − 24, (C.9)

P5 = 18N6 + 54N5 + 5N4 − 20N3 + 95N2 − 132N − 108, (C.10)

P6 = 33N6 + 99N5 + 41N4 − 11N3 + 86N2 − 216N − 144, (C.11)

P7 = 99N7 + 198N6 − 410N5 − 344N4 + 128N3 − 130N2 − 39N + 90, (C.12)

P8 = 255N8 + 1020N7 − 532N6 − 4536N5 − 4344N4 − 1138N3 + 3N2 + 36N

+108, (C.13)

P9 = 159N9 + 477N8 − 220N7 − 710N6 + 117N5 − 1081N4 + 2536N3

+1026N2 − 1800N − 1080, (C.14)

P10 = 1551N10 + 7755N9 + 10982N8 + 1910N7 + 2427N6 + 14975N5

+13952N4 − 1488N3 − 7488N2 − 6912N − 2592 (C.15)

169

Page 180: and 3-loop corrections to hard scattering processes in QCD

C.3 ASQg in N space

AQg = −as4LM(N − 1)

N(1 +N)TF + a2s

−16L2

M(N − 1)T 2F

3N(1 +N)

+CFTF

2P95

N4(1 +N)4(2 +N)+ L2

M

[2(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

− 8(N − 1)S1

N(1 +N)

]+LM

[−4(N − 1)P23

N3(1 +N)3+

16(N − 1)S1

N2(1 +N)− 8(N − 1)S2

1

N(1 +N)+

8(N − 1)S2

N(1 +N)

]+

[4(− 36− 22N − 2N2 +N3

)N2(1 +N)(2 +N)

− 4(N − 1)S2

N(1 +N)

]S1 +

4(− 2 + 3N + 3N2

)N2(1 +N)(2 +N)

S21

−4(N − 1)S31

3N(1 +N)+

4P16

N2(1 +N)2(2 +N)S2 +

16(N − 1)S3

3N(1 +N)

+CATF

4P92

N4(1 +N)4(2 +N)+ L2

M

[− 16(N − 1)

N2(1 +N)2+

8(N − 1)S1

N(1 +N)

]+LM

[− 8P43

N3(1 +N)3− 32S1

N(1 +N)2+

8(N − 1)S21

N(1 +N)+

8(N − 1)S2

N(1 +N)

+16(N − 1)S−2

N(1 +N)

]+

[− 4P14

N(1 +N)3(2 +N)+

12(N − 1)S2

N(1 +N)

]S1

− 4(5 + 4N +N2

)N(1 +N)2(2 +N)

S21 +

4(N − 1)S31

3N(1 +N)− 4

(− 16 + 15N + 24N2 + 7N3

)N2(1 +N)2(2 +N)

S2

+32(N − 1)S3

3N(1 +N)+

[16(N − 1)

N(1 +N)2+

16(N − 1)S1

N(1 +N)

]S−2 +

8(N − 1)S−3

N(1 +N)

−16(N − 1)S−2,1

N(1 +N)

+ a3s

a(3)Qg + CAT

2F

8P106

81N5(1 +N)5(2 +N)

+L3M

[− 448(N − 1)

9N2(1 +N)2+

224(N − 1)S1

9N(1 +N)

]+ L2

M

[− 8P53

9N3(1 +N)3

+32(− 23 + 5N2

)9N(1 +N)2

S1 +16(N − 1)S2

1

N(1 +N)+

16(N − 1)S2

N(1 +N)+

32(N − 1)S−2

N(1 +N)

]+LM

[16P97

27N4(1 +N)4(2 +N)+

[16P39

27N(1 +N)3(2 +N)

+80(N − 1)S2

3N(1 +N)

]S1 −

32(11 + 10N + 13N2 + 5N3

)9N(1 +N)2(2 +N)

S21 +

16(N − 1)S31

3N(1 +N)

− 32P25

9N2(1 +N)2(2 +N)S2 +

32(N − 1)S3

N(1 +N)+

[−64

(4− 3N + 5N2

)9N(1 +N)2

+128(N − 1)S1

3N(1 +N)

]S−2 +

128(N − 1)S−3

3N(1 +N)+

64(N − 1)S2,1

3N(1 +N)− 128(N − 1)S−2,1

3N(1 +N)

]

+

[− 16P60

81N(1 +N)4(2 +N)− 32

(− 13 + 3N2

)3N(1 +N)2(2 +N)

S2 −640(N − 1)S3

9N(1 +N)

+256(N − 1)S−2,1

3N(1 +N)

]S1 +

[8P18

3N(1 +N)3(2 +N)− 80(N − 1)S2

3N(1 +N)

]S21

+32(5 + 4N +N2

)9N(1 +N)2(2 +N)

S31 −

8(N − 1)S41

9N(1 +N)+

8P66

3N3(1 +N)3(2 +N)S2 −

8(N − 1)S22

3N(1 +N)

170

Page 181: and 3-loop corrections to hard scattering processes in QCD

+256(− 6 + 8N + 7N2 +N3

)9N2(1 +N)2(2 +N)

S3 −48(N − 1)S4

N(1 +N)+

[128(3 +N2

)3N(1 +N)3

−256(N − 1)S1

3N(1 +N)2− 128(N − 1)S2

1

3N(1 +N)− 128(N − 1)S2

3N(1 +N)

]S−2

+

[− 128(N − 1)

3N(1 +N)2− 128(N − 1)S1

3N(1 +N)

]S−3 −

64(N − 1)S−4

3N(1 +N)+

64(N − 1)S3,1

3N(1 +N)

+256(N − 1)S−2,1

3N(1 +N)2+

128(N − 1)S−2,2

3N(1 +N)+

128(N − 1)S−3,1

3N(1 +N)+

64(N − 1)S2,1,1

3N(1 +N)

−256(N − 1)S−2,1,1

3N(1 +N)+

[4P56

9N3(1 +N)3− 160(−2 +N)(2 +N)S1

9N(1 +N)2

−40(N − 1)S21

3N(1 +N)− 40(N − 1)S2

3N(1 +N)− 80(N − 1)S−2

3N(1 +N)

]ζ2 +

[448(N − 1)

9N2(1 +N)2

−224(N − 1)S1

9N(1 +N)

]ζ3

+ CANFT

2F

16P102

3N5(1 +N)5(2 +N)+ L3

M

[− 64(N − 1)

9N2(1 +N)2

+32(N − 1)S1

9N(1 +N)

]+ L2

M

[− 8P48

9N3(1 +N)3− 32

(1 + 5N2

)9N(1 +N)2

S1 +16(N − 1)S2

1

3N(1 +N)

+16(N − 1)S2

3N(1 +N)+

32(N − 1)S−2

3N(1 +N)

]+ LM

[8P98

27N4(1 +N)4(2 +N)

+

[16P36

27N(1 +N)3(2 +N)+

32(N − 1)S2

3N(1 +N)

]S1 −

16(7 + 8N + 23N2 + 10N3

)9N(1 +N)2(2 +N)

S21

+32(N − 1)S3

1

9N(1 +N)− 16P29

9N2(1 +N)2(2 +N)S2 +

160(N − 1)S3

9N(1 +N)+

[−64

(1 + 5N2

)9N(1 +N)2

+64(N − 1)S1

3N(1 +N)

]S−2 +

32(N − 1)S−3

N(1 +N)+

64(N − 1)S2,1

3N(1 +N)− 64(N − 1)S−2,1

3N(1 +N)

]

+

[− 16P45

3N(1 +N)4(2 +N)− 16

(− 13 + 3N2

)3N(1 +N)2(2 +N)

S2 −320(N − 1)S3

9N(1 +N)

+128(N − 1)S−2,1

3N(1 +N)

]S1 +

[8P13

3N(1 +N)3(2 +N)− 40(N − 1)S2

3N(1 +N)

]S21

+16(5 + 4N +N2

)9N(1 +N)2(2 +N)

S31 −

4(N − 1)S41

9N(1 +N)+

8P62

3N3(1 +N)3(2 +N)S2

−4(N − 1)S22

3N(1 +N)+

128(− 6 + 8N + 7N2 +N3

)9N2(1 +N)2(2 +N)

S3 −24(N − 1)S4

N(1 +N)

+

[64(3 +N2

)3N(1 +N)3

− 128(N − 1)S1

3N(1 +N)2− 64(N − 1)S2

1

3N(1 +N)− 64(N − 1)S2

3N(1 +N)

]S−2

+

[− 64(N − 1)

3N(1 +N)2− 64(N − 1)S1

3N(1 +N)

]S−3 −

32(N − 1)S−4

3N(1 +N)+

32(N − 1)S3,1

3N(1 +N)

+128(N − 1)S−2,1

3N(1 +N)2+

64(N − 1)S−2,2

3N(1 +N)+

64(N − 1)S−3,1

3N(1 +N)+

32(N − 1)S2,1,1

3N(1 +N)

−128(N − 1)S−2,1,1

3N(1 +N)+

[4P49

9N3(1 +N)3+

16(7 + 5N2

)9N(1 +N)2

S1 −16(N − 1)S2

1

3N(1 +N)

−16(N − 1)S2

3N(1 +N)− 32(N − 1)S−2

3N(1 +N)

]ζ2 +

[64(N − 1)

9N2(1 +N)2− 32(N − 1)S1

9N(1 +N)

]ζ3

+CFNFT

2F

− 4P111

3N6(1 +N)6(2 +N)+ L3

M

[8(N − 1)P20

9N3(1 +N)3− 32(N − 1)S1

9N(1 +N)

]

171

Page 182: and 3-loop corrections to hard scattering processes in QCD

+L2M

[− 4(N − 1)P72

9N4(1 +N)4+

32(N − 1)(3 + 5N)

9N2(1 +N)S1 −

16(N − 1)S21

3N(1 +N)− 16(N − 1)S2

3N(1 +N)

]+LM

[2P107

27N5(1 +N)5(2 +N)+

[−32

(138 + 91N + 58N2 + 19N3

)27N2(1 +N)(2 +N)

−32(N − 1)S2

3N(1 +N)

]S1 +

32(− 6− 4N + 11N2 + 5N3

)9N2(1 +N)(2 +N)

S21 −

32(N − 1)S31

9N(1 +N)

+16P63

3N3(1 +N)3(2 +N)S2 +

224(N − 1)S3

9N(1 +N)

]+

[16P17

3N2(1 +N)2(2 +N)

−16(− 2 + 3N + 3N2

)3N2(1 +N)(2 +N)

S2 +32(N − 1)S3

9N(1 +N)+

64(N − 1)S2,1

3N(1 +N)

]S1

+

[−8(− 36− 22N − 6N2 +N3

)3N2(1 +N)(2 +N)

+8(N − 1)S2

3N(1 +N)

]S21 −

16(− 2 + 3N + 3N2

)9N2(1 +N)(2 +N)

S31

+4(N − 1)S4

1

9N(1 +N)− 8P94

3N4(1 +N)4(2 +N)S2 +

4(N − 1)S22

3N(1 +N)− 16P65

9N3(1 +N)3(2 +N)S3

−8(N − 1)S4

N(1 +N)+

64S2,1

3N2+

64(N − 1)S3,1

3N(1 +N)− 128(N − 1)S2,1,1

3N(1 +N)

+

[− 2(N − 1)P84

9N4(1 +N)4− 16(N − 1)(6 + 5N)

9N2(1 +N)S1 +

16(N − 1)S21

3N(1 +N)

]ζ2

+

[− 8(N − 1)P20

9N3(1 +N)3+

32(N − 1)S1

9N(1 +N)

]ζ3

+ CFT

2F

− 2P112

3N6(1 +N)6(2 +N)

+L3M

[16(N − 1)P27

9N3(1 +N)3− 128(N − 1)S1

9N(1 +N)

]+ L2

M

[− 4(N − 1)P79

9N4(1 +N)4

+32(N − 1)(9 + 5N)

9N2(1 +N)S1 −

16(N − 1)S21

N(1 +N)+

16(N − 1)S2

3N(1 +N)

]+LM

[2P109

27N5(1 +N)5(2 +N)+

[−16

(600 + 380N + 134N2 + 29N3

)27N2(1 +N)(2 +N)

−16(N − 1)S2

N(1 +N)

]S1 +

16(− 18 +N + 31N2 + 10N3

)9N2(1 +N)(2 +N)

S21 −

16(N − 1)S31

3N(1 +N)

+16P19

3N2(1 +N)2(2 +N)S2 +

32(N − 1)S3

N(1 +N)

]+

[32P17

3N2(1 +N)2(2 +N)

−32(− 2 + 3N + 3N2

)3N2(1 +N)(2 +N)

S2 +64(N − 1)S3

9N(1 +N)+

128(N − 1)S2,1

3N(1 +N)

]S1

+

[−16

(− 36− 22N − 6N2 +N3

)3N2(1 +N)(2 +N)

+16(N − 1)S2

3N(1 +N)

]S21

−32(− 2 + 3N + 3N2

)9N2(1 +N)(2 +N)

S31 +

8(N − 1)S41

9N(1 +N)− 16P64

3N3(1 +N)3(2 +N)S2

+8(N − 1)S2

2

3N(1 +N)− 32P22

9N2(1 +N)2(2 +N)S3 −

16(N − 1)S4

N(1 +N)+

128S2,1

3N2+

128(N − 1)S3,1

3N(1 +N)

−256(N − 1)S2,1,1

3N(1 +N)+

[2(N − 1)P82

9N4(1 +N)4− 80(N − 1)(3 +N)S1

9N2(1 +N)+

40(N − 1)S21

3N(1 +N)

−8(N − 1)S2

N(1 +N)

]ζ2 +

[−16(N − 1)P27

9N3(1 +N)3+

128(N − 1)S1

9N(1 +N)

]ζ3

172

Page 183: and 3-loop corrections to hard scattering processes in QCD

+CACFTF

P113

3N6(1 +N)6(2 +N)+ L3

M

[−2(N − 1)

(2 + 3N + 3N2

)9N3(1 +N)3

×(− 48 + 11N + 11N2

)− 8(N − 1)

(60 + 7N + 7N2

)9N2(1 +N)2

S1 +64(N − 1)S2

1

3N(1 +N)

]+L2

M

[− 8S1P52

9N3(1 +N)3+

P61

9N3(1 +N)3+

8(27− 40N − 12N2 +N3

)3N2(1 +N)2

S21

+32(N − 1)S3

1

N(1 +N)+

8(N − 1)(9 +N +N2

)3N2(1 +N)2

S2 −16(N − 1)S3

N(1 +N)− 24(N − 1)S−2

N(1 +N)

−16(N − 1)S−3

N(1 +N)+

32(N − 1)S−2,1

N(1 +N)

]+ LM

[P100

54N5(1 +N)5(2 +N)

+

[8P90

27N4(1 +N)3(2 +N)− 8P34

3N2(1 +N)2(2 +N)S2 +

128(N − 1)S3

N(1 +N)

−192(N − 1)S2,1

N(1 +N)− 64(N − 1)S−2,1

N(1 +N)

]S1 +

[− 4P77

9N3(1 +N)3(2 +N)

+144(N − 1)S2

N(1 +N)

]S21 +

8P30

9N2(1 +N)2(2 +N)S31 +

16(N − 1)S41

N(1 +N)

+4P71

3N3(1 +N)3(2 +N)S2 −

32(N − 1)S22

N(1 +N)− 8(N − 1)

(216 + 41N + 77N2

)9N2(1 +N)2

S3

+

[− 32P46

N3(1 +N)3(2 +N)− 16(N − 1)

(20 + 4N +N2 + 3N3

)N2(1 +N)2(2 +N)

S1

+160(N − 1)S2

1

N(1 +N)

]S−2 +

48(N − 1)S2−2

N(1 +N)+

[8(N − 1)(3 +N)(−2 + 3N)

N2(1 +N)2

+32(N − 1)S1

N(1 +N)

]S−3 +

80(N − 1)S−4

N(1 +N)+

48(N − 1)(4 +N +N2

)N2(1 +N)2

S2,1

+32(N − 1)S3,1

N(1 +N)+

16(N − 1)(6−N + 3N2

)N2(1 +N)2

S−2,1

+32(N − 1)S−2,2

N(1 +N)+

96(N − 1)S2,1,1

N(1 +N)− 128(N − 1)S−2,1,1

N(1 +N)

+

[−96(N − 1)

(− 5 + 3N + 3N2

)N2(1 +N)2

− 96(N − 1)S1

N(1 +N)

]ζ3

]+

[8P105

3N5(1 +N)5(2 +N)

+8P55

3N2(1 +N)3(2 +N)S2 −

8(N − 1)S22

N(1 +N)+

8P40

9N2(1 +N)2(2 +N)S3 −

48(N − 1)S4

N(1 +N)

−16(36− 11N + 12N2 + 11N3

)3N2(1 +N)2

S2,1 −32(N − 1)S3,1

N(1 +N)

−32(N − 1)(2−N + 3N2

)N2(1 +N)2

S−2,1 +64(N − 1)S−2,2

N(1 +N)

+64(N − 1)S−3,1

N(1 +N)+

160(N − 1)S2,1,1

N(1 +N)− 128(N − 1)S−2,1,1

N(1 +N)

]S1

+

[− 4P89

3N3(1 +N)4(2 +N)+

4P35

3N2(1 +N)2(2 +N)S2 −

352(N − 1)S3

3N(1 +N)

−64(N − 1)S2,1

N(1 +N)+

128(N − 1)S−2,1

N(1 +N)

]S21 +

[8P74

9N3(1 +N)3(2 +N)− 48(N − 1)S2

N(1 +N)

]S31

− 2P12

9N2(1 +N)2(2 +N)S41 −

8(N − 1)S51

3N(1 +N)− 4P96

3N4(1 +N)4(2 +N)S2

173

Page 184: and 3-loop corrections to hard scattering processes in QCD

−2(N − 1)(− 15 +N +N2

)3N2(1 +N)2

S22 +

4P83

9N3(1 +N)3(2 +N)S3

+4(N − 1)

(− 3 + 19N + 19N2

)N2(1 +N)2

S4 +

[− 16P47

N2(1 +N)4+

[32P26

N2(1 +N)3

−64(N − 1)S2

N(1 +N)

]S1 +

16(N − 1)2(−2 + 3N)

N2(1 +N)2S21 −

64(N − 1)S31

N(1 +N)

+16(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

S2

]S−2

+

[16(N − 1)

(2 + 9N + 15N2 + 6N3

)N2(1 +N)3

+16(N − 1)

(2−N + 3N2

)N2(1 +N)2

S1

−64(N − 1)S21

N(1 +N)

]S−3 +

[8(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

− 32(N − 1)S1

N(1 +N)

]S−4

−16(− 24 + 11N + 11N2

)3N3(1 +N)

S2,1 −8(N − 1)

(− 42 + 31N + 31N2

)3N2(1 +N)2

S3,1

−32(N − 1)(2 + 9N + 15N2 + 6N3

)N2(1 +N)3

S−2,1 −16(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

S−2,2

−16(N − 1)(2 + 3N + 3N2

)N2(1 +N)2

S−3,1 +8(N − 1)

(− 102 + 35N + 35N2

)3N2(1 +N)2

S2,1,1

+32(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

S−2,1,1 +(192 ln(2)(N − 1)

N(1 +N)+

4S1P59

9N3(1 +N)3

+P86

18N4(1 +N)4− 8

(27− 40N − 12N2 +N3

)3N2(1 +N)2

S21 −

32(N − 1)S31

N(1 +N)

+12(N − 1)2(2 +N)

N2(1 +N)2S2 +

8(N − 1)S3

N(1 +N)+

[8(N − 1)

(1 + 3N + 3N2

)N2(1 +N)2

−16(N − 1)S1

N(1 +N)

]S−2 +

8(N − 1)S−3

N(1 +N)− 16(N − 1)S−2,1

N(1 +N)

)ζ2 +

[− 2(N − 1)P42

9N3(1 +N)3

+8(N − 1)

(60 + 7N + 7N2

)9N2(1 +N)2

S1 −64(N − 1)S2

1

3N(1 +N)

]ζ3

+ C2

FTF

P110

N6(1 +N)6

+L3M

[−2(N − 1)

(2 + 3N + 3N2

)23N3(1 +N)3

+16(N − 1)

(2 + 3N + 3N2

)3N2(1 +N)2

S1 −32(N − 1)S2

1

3N(1 +N)

]+L2

M

[(N − 1)P73

N4(1 +N)4+

[−8(N − 1)P24

N3(1 +N)3+

48(N − 1)S2

N(1 +N)

]S1

+4(N − 1)(2 +N)(5 + 3N)

N2(1 +N)2S21 −

16(N − 1)S31

N(1 +N)− 12(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

S2

+32(N − 1)S3

N(1 +N)+

[− 32(N − 1)

N2(1 +N)2+

64(N − 1)S1

N(1 +N)

]S−2 +

32(N − 1)S−3

N(1 +N)

−64(N − 1)S−2,1

N(1 +N)

]+ LM

[P101

2N5(1 +N)5(2 +N)+

[8P93

N4(1 +N)4(2 +N)

+16P15

N2(1 +N)2(2 +N)S2 −

96(N − 1)S3

N(1 +N)+

128(N − 1)S2,1

N(1 +N)

]S1

+

[− 8P67

N3(1 +N)3(2 +N)− 16(N − 1)S2

N(1 +N)

]S21 +

64(− 1 +N +N2

)N2(1 +N)(2 +N)

S31 −

8(N − 1)S41

N(1 +N)

174

Page 185: and 3-loop corrections to hard scattering processes in QCD

+4P70

N3(1 +N)3(2 +N)S2 −

24(N − 1)S22

N(1 +N)− 8(N − 1)

(− 6 + 11N + 3N2

)N2(1 +N)2

S3

−80(N − 1)S4

N(1 +N)+

[32P44

N2(1 +N)3(2 +N)− 128(N − 1)S1

N(1 +N)2− 64(N − 1)S2

N(1 +N)

]S−2

−32(N − 1)S2−2

N(1 +N)+

[− 64(N − 1)2

N2(1 +N)2− 128(N − 1)S1

N(1 +N)

]S−3 −

160(N − 1)S−4

N(1 +N)

−64(N − 1)S2,1

N2(1 +N)2+

32(N − 1)S3,1

N(1 +N)+

128(N − 1)S−2,1

N(1 +N)2+

64(N − 1)S−2,2

N(1 +N)

+128(N − 1)S−3,1

N(1 +N)− 96(N − 1)S2,1,1

N(1 +N)+

48(N − 1)(− 2 + 3N + 3N2

)N2(1 +N)2

ζ3

]

+

[− 4P103

N5(1 +N)5(2 +N)− 4P69

N3(1 +N)3(2 +N)S2 +

4(N − 1)S22

N(1 +N)

− 8P28

3N2(1 +N)2(2 +N)S3 −

24(N − 1)S4

N(1 +N)− 16

(− 6− 9N − 4N2 + 3N3

)N2(1 +N)2

S2,1

+64(N − 1)S3,1

N(1 +N)− 128(N − 1)S2,1,1

N(1 +N)

]S1 +

[2P54

N3(1 +N)2(2 +N)

− 2P21

N2(1 +N)2(2 +N)S2 +

32(N − 1)S3

3N(1 +N)+

64(N − 1)S2,1

N(1 +N)

]S21

+

[− 4P50

3N3(1 +N)2(2 +N)+

8(N − 1)S2

N(1 +N)

]S31 +

P11

3N2(1 +N)2(2 +N)S41

+4(N − 1)S5

1

3N(1 +N)+

2P91

N4(1 +N)4(2 +N)S2 −

(N − 1)(2 + 3N + 3N2

)N2(1 +N)2

S22

+4P76

3N3(1 +N)3(2 +N)S3 +

6(N − 1)(2 + 3N + 3N2

)N2(1 +N)2

S4 −16(2 + 3N + 3N2

)N3(1 +N)

S2,1

−16(N − 1)(2 + 3N + 3N2

)N2(1 +N)2

S3,1 +32(N − 1)

(2 + 3N + 3N2

)N2(1 +N)2

S2,1,1

+

[−384 ln(2)(N − 1)

N(1 +N)+

(N − 1)P85

2N4(1 +N)4+

[−8(N − 1)P33

N3(1 +N)3− 32(N − 1)S2

N(1 +N)

]S1

−4(N − 1)(2 +N)(5 + 3N)

N2(1 +N)2S21 +

16(N − 1)S31

N(1 +N)+

8(N − 1)(2 + 3N + 3N2

)N2(1 +N)2

S2

−16(N − 1)S3

N(1 +N)+

[16(N − 1)

N2(1 +N)2− 32(N − 1)S1

N(1 +N)

]S−2 −

16(N − 1)S−3

N(1 +N)

+32(N − 1)S−2,1

N(1 +N)

]ζ2 +

[2(N − 1)P41

3N3(1 +N)3− 16(N − 1)

(2 + 3N + 3N2

)3N2(1 +N)2

S1

+32(N − 1)S2

1

3N(1 +N)

]ζ3

+C2

ATF

−4(− 24 + 11N + 11N2

)P102

3N6(1 +N)6(2 +N)+ L3

M

[16(N − 1)

(− 24 + 11N + 11N2

)9N3(1 +N)3

−8(N − 1)(− 48 + 11N + 11N2

)9N2(1 +N)2

S1 −32(N − 1)S2

1

3N(1 +N)

]+L2

M

[16P87

9N4(1 +N)4+

[8P57

9N3(1 +N)3− 48(N − 1)S2

N(1 +N)

]S1

175

Page 186: and 3-loop corrections to hard scattering processes in QCD

−4(24− 83N + 11N3

)3N2(1 +N)2

S21 −

16(N − 1)S31

N(1 +N)− 4(N − 1)

(− 72 + 11N + 11N2

)3N2(1 +N)2

S2

−16(N − 1)S3

N(1 +N)+

[−8(N − 1)

(− 48 + 11N + 11N2

)3N2(1 +N)2

− 64(N − 1)S1

N(1 +N)

]S−2

−16(N − 1)S−3

N(1 +N)+

32(N − 1)S−2,1

N(1 +N)

]+ LM

[− 4P108

27N5(1 +N)5(2 +N)

+

[− 8P99

27N4(1 +N)4(2 +N)− 8P32

3N2(1 +N)2(2 +N)S2 −

160(N − 1)S3

N(1 +N)

+64(N − 1)S2,1

N(1 +N)+

320(N − 1)S−2,1

N(1 +N)

]S1 +

[4P80

9N3(1 +N)3(2 +N)− 128(N − 1)S2

N(1 +N)

]S21

−8(− 184− 119N + 4N2 + 11N3

)9N(1 +N)2(2 +N)

S31 −

8(N − 1)S41

N(1 +N)+

4P81

9N3(1 +N)3(2 +N)S2

−8(N − 1)S22

N(1 +N)− 8

(441− 568N + 55N3

)9N2(1 +N)2

S3 −16(N − 1)S4

N(1 +N)+

[16P78

9N3(1 +N)3(2 +N)

−16(54− 113N + 24N2 + 11N3

)3N2(1 +N)2

S1 −160(N − 1)S2

1

N(1 +N)− 64(N − 1)S2

N(1 +N)

]S−2

−48(N − 1)S2−2

N(1 +N)+

[−8(54− 73N + 11N3

)N2(1 +N)2

− 288(N − 1)S1

N(1 +N)

]S−3 −

176(N − 1)S−4

N(1 +N)

−16(N − 1)(24 + 11N + 11N2

)3N2(1 +N)2

S2,1 −64(N − 1)S3,1

N(1 +N)+

16(66− 101N + 11N3

)3N2(1 +N)2

S−2,1

+224(N − 1)S−2,2

N(1 +N)+

256(N − 1)S−3,1

N(1 +N)− 384(N − 1)S−2,1,1

N(1 +N)

+

[48(N − 1)

(− 8 + 3N + 3N2

)N2(1 +N)2

+96(N − 1)S1

N(1 +N)

]ζ3

]+

[− 4P104

3N5(1 +N)5(2 +N)

− 4P68

3N3(1 +N)3(2 +N)S2 +

4(N − 1)S22

N(1 +N)+

16P37

9N2(1 +N)2(2 +N)S3 +

72(N − 1)S4

N(1 +N)

−32(N − 1)S3,1

N(1 +N)− 32(N − 1)

(− 24 + 23N + 11N2

)3N2(1 +N)2

S−2,1 −64(N − 1)S−2,2

N(1 +N)

−64(N − 1)S−3,1

N(1 +N)− 32(N − 1)S2,1,1

N(1 +N)+

128(N − 1)S−2,1,1

N(1 +N)

]S1 +

[2P75

3N2(1 +N)4(2 +N)

+2P38

3N2(1 +N)2(2 +N)S2 +

320(N − 1)S3

3N(1 +N)− 128(N − 1)S−2,1

N(1 +N)

]S21

+

[− 4P51

9N2(1 +N)3(2 +N)+

40(N − 1)S2

N(1 +N)

]S31 +

P31

9N2(1 +N)2(2 +N)S41

+4(N − 1)S5

1

3N(1 +N)− 2

(− 24 + 11N + 11N2

)P62

3N4(1 +N)4(2 +N)S2 +

(N − 1)(− 24 + 11N + 11N2

)3N2(1 +N)2

S22

−32(− 24 + 11N + 11N2

)(− 6 + 8N + 7N2 +N3

)9N3(1 +N)3(2 +N)

S3

+6(N − 1)

(− 24 + 11N + 11N2

)N2(1 +N)2

S4 +

[−16

(3 +N2

)(− 24 + 11N + 11N2

)3N2(1 +N)4

+

[32(−3 +N)

(− 8 + 15N + 5N2

)3N2(1 +N)3

+64(N − 1)S2

N(1 +N)

]S1

176

Page 187: and 3-loop corrections to hard scattering processes in QCD

+16(N − 1)

(− 24 + 35N + 11N2

)3N2(1 +N)2

S21 +

64(N − 1)S31

N(1 +N)

+16(N − 1)

(− 24 + 11N + 11N2

)3N2(1 +N)2

S2

]S−2 +

[16(N − 1)

(− 24 + 11N + 11N2

)3N2(1 +N)3

+16(N − 1)

(− 24 + 23N + 11N2

)3N2(1 +N)2

S1 +64(N − 1)S2

1

N(1 +N)

]S−3

+

[8(N − 1)

(− 24 + 11N + 11N2

)3N2(1 +N)2

+32(N − 1)S1

N(1 +N)

]S−4

−8(N − 1)(− 24 + 11N + 11N2

)3N2(1 +N)2

S3,1 −32(N − 1)

(− 24 + 11N + 11N2

)3N2(1 +N)3

S−2,1

−16(N − 1)(− 24 + 11N + 11N2

)3N2(1 +N)2

S−2,2 −16(N − 1)

(− 24 + 11N + 11N2

)3N2(1 +N)2

S−3,1

−8(N − 1)(− 24 + 11N + 11N2

)3N2(1 +N)2

S2,1,1 +32(N − 1)

(− 24 + 11N + 11N2

)3N2(1 +N)2

S−2,1,1

+

[− 2P88

9N4(1 +N)4+

[− 4P58

9N3(1 +N)3+

32(N − 1)S2

N(1 +N)

]S1 +

4(24− 83N + 11N3

)3N2(1 +N)2

S21

+16(N − 1)S3

1

N(1 +N)+

4(N − 1)(− 48 + 11N + 11N2

)3N2(1 +N)2

S2 +8(N − 1)S3

N(1 +N)

+

[8(N − 1)

(− 36 + 11N + 11N2

)3N2(1 +N)2

+48(N − 1)S1

N(1 +N)

]S−2 +

8(N − 1)S−3

N(1 +N)

−16(N − 1)S−2,1

N(1 +N)

]ζ2 +

[−16(N − 1)

(− 24 + 11N + 11N2

)9N3(1 +N)3

+8(N − 1)

(− 48 + 11N + 11N2

)9N2(1 +N)2

S1 +32(N − 1)S2

1

3N(1 +N)

]ζ3

+T 3

F

[−64L3

M(N − 1)

9N(1 +N)+

64(N − 1)ζ39N(1 +N)

], (C.16)

with the polynomials

P11 = −3N4 − 54N3 − 95N2 − 12N + 36, (C.17)

P12 = N4 − 94N3 − 256N2 − 161N + 78, (C.18)

P13 = N4 + 2N3 − 5N2 − 12N + 2, (C.19)

P14 = N4 + 4N3 −N2 − 10N + 2, (C.20)

P15 = N4 + 10N3 + 27N2 + 30N + 4, (C.21)

P16 = N4 + 17N3 + 43N2 + 33N + 2, (C.22)

P17 = 2N4 − 4N3 − 3N2 + 20N + 12, (C.23)

P18 = 2N4 + 3N3 − 12N2 − 23N + 6, (C.24)

P19 = 2N4 + 39N3 + 100N2 + 73N + 2, (C.25)

P20 = 3N4 + 6N3 −N2 − 4N + 12, (C.26)

P21 = 3N4 + 30N3 + 47N2 + 4N − 20, (C.27)

P22 = 3N4 + 48N3 + 123N2 + 98N + 8, (C.28)

P23 = 5N4 + 10N3 + 8N2 + 7N + 2, (C.29)

P24 = 5N4 + 13N3 + 14N2 + 16N + 6, (C.30)

177

Page 188: and 3-loop corrections to hard scattering processes in QCD

P25 = 5N4 + 37N3 + 82N2 + 41N − 48, (C.31)

P26 = 6N4 + 11N3 − 6N2 −N − 2, (C.32)

P27 = 6N4 + 12N3 + 7N2 +N + 6, (C.33)

P28 = 9N4 + 102N3 + 245N2 + 192N + 12, (C.34)

P29 = 10N4 + 53N3 + 92N2 + 37N − 48, (C.35)

P30 = 11N4 − 68N3 − 263N2 − 184N + 72, (C.36)

P31 = 11N4 − 26N3 − 227N2 − 286N + 48, (C.37)

P32 = 11N4 + 4N3 − 239N2 − 304N + 240, (C.38)

P33 = 13N4 + 23N3 + 4N2 − 14N − 5, (C.39)

P34 = 13N4 + 140N3 + 365N2 + 190N − 276, (C.40)

P35 = 17N4 + 34N3 + 82N2 + 161N − 78, (C.41)

P36 = 29N4 + 60N3 + 149N2 + 336N + 74, (C.42)

P37 = 55N4 + 86N3 − 343N2 − 422N + 384, (C.43)

P38 = 55N4 + 182N3 − 175N2 − 542N + 240, (C.44)

P39 = 76N4 + 183N3 + 196N2 + 267N − 38, (C.45)

P40 = 97N4 + 494N3 + 1079N2 + 898N − 408, (C.46)

P41 = 153N4 + 306N3 + 165N2 + 12N + 4, (C.47)

P42 = 183N4 + 366N3 + 305N2 + 122N + 96, (C.48)

P43 = N5 +N4 − 4N3 + 3N2 − 7N − 2, (C.49)

P44 = 2N5 + 6N4 + 3N3 + 11N + 2, (C.50)

P45 = 2N5 + 10N4 + 29N3 + 64N2 + 67N + 8, (C.51)

P46 = 3N5 + 8N4 + 6N3 + 10N2 + 7N + 2, (C.52)

P47 = 8N5 + 7N4 − 9N3 + 7N2 + 13N + 6, (C.53)

P48 = 9N5 + 9N4 − 79N3 + 15N2 + 22N − 24, (C.54)

P49 = 15N5 + 15N4 − 103N3 + 33N2 − 20N − 36, (C.55)

P50 = 18N5 − 15N4 − 198N3 − 381N2 − 216N + 4, (C.56)

P51 = 18N5 + 47N4 − 35N3 − 141N2 − 5N − 120, (C.57)

P52 = 40N5 + 73N4 − 142N3 − 163N2 − 150N + 54, (C.58)

P53 = 45N5 + 45N4 − 47N3 + 27N2 − 190N − 24, (C.59)

P54 = 51N5 + 89N4 + 6N3 − 66N2 − 104N − 72, (C.60)

P55 = 66N5 + 336N4 + 627N3 + 415N2 − 10N − 194, (C.61)

P56 = 69N5 + 69N4 − 55N3 + 51N2 − 338N − 36, (C.62)

P57 = 85N5 + 85N4 − 73N3 + 197N2 − 342N − 108, (C.63)

P58 = 103N5 + 103N4 − 79N3 + 317N2 − 612N − 144, (C.64)

P59 = 337N5 + 403N4 − 541N3 − 583N2 − 300N + 108, (C.65)

P60 = 436N5 + 1780N4 + 2689N3 + 2782N2 + 2167N − 134, (C.66)

P61 = 489N5 + 489N4 − 1187N3 − 57N2 − 742N − 144, (C.67)

P62 = N6 + 18N5 + 63N4 + 84N3 + 30N2 − 64N − 16, (C.68)

P63 = N6 + 23N5 + 73N4 + 85N3 + 58N2 + 24N − 24, (C.69)

P64 = 3N6 + 30N5 + 107N4 + 124N3 + 48N2 + 20N + 8, (C.70)

P65 = 3N6 + 51N5 + 153N4 + 185N3 + 160N2 + 80N − 72, (C.71)

P66 = 4N6 + 41N5 + 126N4 + 163N3 + 58N2 − 128N − 32, (C.72)

178

Page 189: and 3-loop corrections to hard scattering processes in QCD

P67 = 5N6 + 26N5 + 77N4 + 168N3 + 159N2 + 19N − 22, (C.73)

P68 = 6N6 + 75N5 + 345N4 + 719N3 + 323N2 − 696N − 96, (C.74)

P69 = 18N6 + 87N5 + 199N4 + 185N3 + 63N2 + 44N + 20, (C.75)

P70 = 23N6 + 39N5 − 89N4 − 219N3 − 172N2 − 130N − 28, (C.76)

P71 = 25N6 − 118N5 − 662N4 − 500N3 + 421N2 + 186N − 264, (C.77)

P72 = 33N6 + 99N5 + 41N4 − 11N3 + 86N2 − 216N − 144, (C.78)

P73 = 33N6 + 99N5 + 137N4 + 157N3 + 62N2 + 8N − 16, (C.79)

P74 = 36N6 + 48N5 − 297N4 − 977N3 − 976N2 − 362N + 24, (C.80)

P75 = 37N6 + 207N5 + 753N4 + 1771N3 + 1598N2 − 118N + 48, (C.81)

P76 = 57N6 + 297N5 + 567N4 + 615N3 + 468N2 + 220N + 16, (C.82)

P77 = 80N6 + 201N5 − 775N4 − 3495N3 − 4405N2 − 2238N − 72, (C.83)

P78 = 94N6 + 282N5 + 79N4 + 42N3 + 286N2 − 585N − 18, (C.84)

P79 = 129N6 + 387N5 + 509N4 + 349N3 + 50N2 + 240N + 144, (C.85)

P80 = 170N6 + 543N5 + 221N4 − 15N3 + 425N2 − 864N − 288, (C.86)

P81 = 170N6 + 873N5 + 1547N4 + 951N3 − 1717N2 − 2976N + 864, (C.87)

P82 = 243N6 + 729N5 + 923N4 + 583N3 + 14N2 + 300N + 216, (C.88)

P83 = 321N6 + 1353N5 + 1521N4 − 713N3 − 2842N2 − 2216N + 96, (C.89)

P84 = 333N6 + 999N5 + 1075N4 + 389N3 − 68N2 + 384N + 216, (C.90)

P85 = 633N6 + 1899N5 + 1967N4 + 697N3 − 4N2 − 48N + 8, (C.91)

P86 = −891N7 − 1782N6 − 3712N5 − 3058N4 + 6775N3

+7144N2 + 276N − 144, (C.92)

P87 = 9N7 + 18N6 − 124N5 − 109N4 + 199N3 − 191N2 + 138N + 72, (C.93)

P88 = 69N7 + 138N6 − 667N5 − 541N4 + 952N3 − 1277N2 + 990N + 432, (C.94)

P89 = 95N7 + 378N6 + 853N5 + 1832N4 + 2190N3 + 364N2 − 780N − 432, (C.95)

P90 = 251N7 + 1335N6 + 1745N5 + 243N4 − 529N3 − 4161N2 − 5400N − 756, (C.96)

P91 = N8 + 427N7 + 2161N6 + 4081N5 + 3554N4

+1404N3 + 228N2 + 64N + 16, (C.97)

P92 = 2N8 + 10N7 + 22N6 + 36N5 + 29N4 + 4N3 + 33N2 + 12N + 4, (C.98)

P93 = 2N8 + 29N7 + 135N6 + 297N5 + 333N4 + 204N3 + 28N2 − 44N − 24, (C.99)

P94 = 3N8 + 33N7 + 149N6 + 267N5 + 196N4 + 104N3 + 64N2 − 88N − 48, (C.100)

P95 = 12N8 + 52N7 + 60N6 − 25N4 − 2N3 + 3N2 + 8N + 4, (C.101)

P96 = 36N8 + 348N7 + 1210N6 + 2229N5 + 2168N4 + 505N3 − 424N2

−68N + 48, (C.102)

P97 = 111N8 + 480N7 + 286N6 − 468N5 + 82N4 + 246N3 + 295N2

+228N + 252, (C.103)

P98 = 201N8 + 840N7 + 565N6 − 699N5 − 344N4 − 645N3 − 314N2

+324N + 360, (C.104)

P99 = 296N8 + 1184N7 + 2744N6 + 5900N5 + 4088N4 + 476N3 + 9477N2

+4725N + 702, (C.105)

P100 = −7299N10 − 39375N9 − 79900N8 − 85198N7 − 17323N6 + 129917N5

+137090N4 + 25904N3 + 12072N2 + 30672N + 8640, (C.106)

P101 = −149N10 − 793N9 − 1404N8 − 1170N7 − 1341N6 − 1221N5 + 1710N4

179

Page 190: and 3-loop corrections to hard scattering processes in QCD

+2800N3 + 2256N2 + 368N − 32, (C.107)

P102 = 4N10 + 22N9 + 45N8 + 36N7 − 11N6 − 15N5 + 25N4 − 41N3 − 21N2

−16N − 4, (C.108)

P103 = 10N10 + 62N9 + 403N8 + 1523N7 + 2997N6 + 3197N5

+1812N4 + 478N3 + 46N2 + 24N + 8, (C.109)

P104 = 26N10 + 132N9 + 159N8 − 351N7 − 877N6 + 531N5 + 1820N4 − 300N3

−252N2 − 192N − 48, (C.110)

P105 = 28N10 + 139N9 + 444N8 + 803N7 + 451N6 + 3N5 + 490N4 + 219N3

+51N2 − 60N − 12, (C.111)

P106 = 435N10 + 2391N9 + 6946N8 + 11512N7 + 4822N6 − 7016N5 − 5369N4

−6743N3 − 2406N2 − 1764N − 216, (C.112)

P107 = 531N10 + 2799N9 + 4124N8 + 446N7 − 3445N6 − 5245N5 + 4358N4

+18128N3 − 1968N2 − 10800N − 4320, (C.113)

P108 = 939N10 + 4893N9 + 5386N8 − 5198N7 − 10400N6 − 17636N5 − 18137N4

+7177N3 − 21672N2 − 14112N − 4104, (C.114)

P109 = 1773N10 + 9153N9 + 14204N8 + 2930N7 − 9151N6 − 8431N5 − 250N4

+13772N3 + 1920N2 − 8928N − 4320, (C.115)

P110 = −23N11 − 92N10 − 53N9 + 322N8 + 465N7 − 348N6 − 929N5 − 384N4

+132N3 + 102N2 + 32N + 8, (C.116)

P111 = 87N12 + 490N11 + 949N10 + 368N9 − 1285N8 − 2214N7 − 1591N6

−126N5 + 644N4 − 86N3 − 268N2 − 184N − 48, (C.117)

P112 = 385N12 + 2182N11 + 4181N10 + 1458N9 − 5589N8 − 8414N7 − 5041N6

−1754N5 − 760N4 − 176N3 + 152N2 + 224N + 96, (C.118)

P113 = 1623N12 + 9602N11 + 20093N10 + 15520N9 − 3305N8 − 13494N7 − 5099N6

+9414N5 + 10456N4 + 5270N3 + 1624N2 + 40N − 96. (C.119)

C.4 AS(3)gg,Q in N space

Agg,Q =4asLMTF

3+ a2s

16L2

MT2F

9+ CFTF

[4LMP147

N3(1 +N)3+

P166

N4(1 +N)4

+4L2

M(N − 1)(2 +N)

N2(1 +N)2

]+ CATF

2P155

27N3(1 +N)3+ LM

[16P134

9N2(1 +N)2− 80

9S1

]+L2

M

[16

3N(1 +N)− 8

3S1

]− 4(47 + 56N)S1

27(1 +N)

+ a3s

64L3

M

27T 3F

+CFT2F

2P177

9N5(1 +N)5+

80L3M(N − 1)(2 +N)

9N2(1 +N)2+ L2

M

[8P153

9N3(1 +N)3

+32(N − 1)(2 +N)S1

3N2(1 +N)2

]+ LM

[− 8P173

27N4(1 +N)4

+32(N − 1)(2 +N)

(− 6− 8N +N2

)9N3(1 +N)3

S1 +16(N − 1)(2 +N)S2

1

3N2(1 +N)2

−16(N − 1)(2 +N)S2

N2(1 +N)2

]+

[− 8P154

9N3(1 +N)3− 16(N − 1)(2 +N)S1

3N2(1 +N)2

]ζ2

180

Page 191: and 3-loop corrections to hard scattering processes in QCD

−80(N − 1)(2 +N)ζ39N2(1 +N)2

+ CFNFT

2F

2P178

81N5(1 +N)5+

64L3M(N − 1)(2 +N)

9N2(1 +N)2

+LM

[− 4P171

9N4(1 +N)4− 32(N − 1)(2 +N)

(4 + 6N +N2

)3N3(1 +N)3

S1

+16(N − 1)(2 +N)S2

1

N2(1 +N)2− 80(N − 1)(2 +N)S2

3N2(1 +N)2

]+

[32(N − 1)(2 +N)

(22 + 41N + 28N2

)27N2(1 +N)4

+16(N − 1)(2 +N)S2

3N2(1 +N)2

]S1

−16(N − 1)(2 +N)(2 + 5N)

9N2(1 +N)3S21 +

16(N − 1)(2 +N)S31

9N2(1 +N)2

−16(N − 1)(2 +N)(2 + 5N)

9N2(1 +N)3S2 +

32(N − 1)(2 +N)S3

9N2(1 +N)2+

[4P162

9N3(1 +N)3

+16(N − 1)(2 +N)S1

3N2(1 +N)2

]ζ2 −

64(N − 1)(2 +N)ζ39N2(1 +N)2

+ C2

ATF

− 4P174

243N4(1 +N)4

+L3M

[− 352

27N(1 +N)+

176

27S1

]+ L2

M

[− 2P149

9N3(1 +N)3+

[− 8P140

9N2(1 +N)2

+64

3S2

]S1 −

128S2

3N(1 +N)+

32

3S3 +

[− 128

3N(1 +N)+

64

3S1

]S−2 +

32

3S−3

−64

3S−2,1

]+ LM

[16S2P133

9N2(1 +N)2+

16S−3P139

9N2(1 +N)2− 32S−2,1P139

9N2(1 +N)2+

8S3P142

9N2(1 +N)2

+P183

81(N − 1)N5(1 +N)5(2 +N)+

[− 4P176

81(N − 1)N4(1 +N)4(2 +N)

+640

9S2 −

32

3S3

]S1 +

[− 16P163

9(N − 1)N3(1 +N)3(2 +N)

+32P157

9(N − 1)N2(1 +N)2(2 +N)S1

]S−2 +

32

3S2−2

+

[64(− 3 + 2N + 2N2

)N2(1 +N)2

− 64S1

]ζ3

]− 8

(2339 + 4876N + 2834N2

)243(1 +N)2

S1 −44S2

1

9(1 +N)

+44(1 + 2N)S2

9(1 +N)+

[4P160

27N3(1 +N)3+(16(36 + 72N +N2 + 2N3 +N4

)27N2(1 +N)2

− 32

3S2

)S1

+64S2

3N(1 +N)− 16

3S3 +

[64

3N(1 +N)− 32

3S1

]S−2 −

16

3S−3 +

32

3S−2,1

]ζ2

+

[352

27N(1 +N)− 176

27S1

]ζ3

+ CANFT

2F

16P172

243N4(1 +N)4+ LM

[− 16S1P145

81N2(1 +N)2

− 4P164

81N3(1 +N)3

]+ L3

M

[128

27N(1 +N)− 64

27S1

]+

32(283 + 584N + 328N2

)243(1 +N)2

S1

+16S2

1

9(1 +N)− 16(1 + 2N)S2

9(1 +N)+

[− 4P137

27N2(1 +N)2+

160

27S1

]ζ2

+

[− 128

27N(1 +N)+

64

27S1

]ζ3

+ CAT

2F

− 8P167

81N4(1 +N)4+ LM

[− 8S1P141

9N2(1 +N)2

− 2P159

27N3(1 +N)3

]+ L2

M

[8P143

27N2(1 +N)2− 640

27S1

]+ L3

M

[448

27N(1 +N)− 224

27S1

]

181

Page 192: and 3-loop corrections to hard scattering processes in QCD

+16(283 + 584N + 328N2

)81(1 +N)2

S1 +8S2

1

3(1 +N)− 8(1 + 2N)S2

3(1 +N)

+

[− 4P144

27N2(1 +N)2+

560

27S1

]ζ2 +

[− 448

27N(1 +N)+

224

27S1

]ζ3

+C2

FTF

8S3P136

3N3(1 +N)3+

4S2P151

N4(1 +N)4+

P180

N6(1 +N)6

+L3M

[−4(N − 1)(2 +N)

(2 + 3N + 3N2

)3N3(1 +N)3

+16(N − 1)(2 +N)S1

3N2(1 +N)2

]+L2

M

[−8(N − 1)(2 +N)

(− 2− 3N +N3 + 2N4

)N4(1 +N)4

+8(N − 1)2(2 +N)(2 + 3N)

N3(1 +N)3S1

−16(N − 1)(2 +N)S2

N2(1 +N)2

]+ LM

[− 4S2P138

N3(1 +N)3− 2P181

(N − 1)N5(1 +N)5(2 +N)

+

[− 8P152

N4(1 +N)4+

24(N − 1)(2 +N)S2

N2(1 +N)2

]S1 +

4(− 6− 13N + 3N3

)N2(1 +N)3

S21

−8(N − 1)(2 +N)S31

3N2(1 +N)2+

16(14 + 5N + 5N2

)3N2(1 +N)2

S3 +

[− 32

(10 +N +N2

)(N − 1)N(1 +N)(2 +N)

+256S1

N2(1 +N)2

]S−2 +

128S−3

N2(1 +N)2− 32(N − 1)(2 +N)S2,1

N2(1 +N)2− 256S−2,1

N2(1 +N)2

−96(2 +N +N2

)ζ3

N2(1 +N)2

]+

[− 8P132

N3(1 +N)3+

8(− 2 + 3N + 3N2

)N3(1 +N)2

S2

−16(N − 1)(2 +N)S3

3N2(1 +N)2− 32(N − 1)(2 +N)S2,1

N2(1 +N)2

]S1

+

[4(− 36− 22N − 6N2 +N3

)N3(1 +N)2

− 4(N − 1)(2 +N)S2

N2(1 +N)2

]S21

+8(− 2 + 3N + 3N2

)3N3(1 +N)2

S31 −

2(N − 1)(2 +N)S41

3N2(1 +N)2− 2(N − 1)(2 +N)S2

2

N2(1 +N)2

+12(N − 1)(2 +N)S4

N2(1 +N)2− 32(2 +N)S2,1

N3(1 +N)− 32(N − 1)(2 +N)S3,1

N2(1 +N)2

+64(N − 1)(2 +N)S2,1,1

N2(1 +N)2+

[128 ln(2)− 2P170

N4(1 +N)4

−4(N − 1)(2 +N)(− 4− 3N + 3N2

)N3(1 +N)3

S1 −4(N − 1)(2 +N)S2

1

N2(1 +N)2

+12(N − 1)(2 +N)S2

N2(1 +N)2

]ζ2 +

[− 4P158

3N3(1 +N)3− 16(N − 1)(2 +N)S1

3N2(1 +N)2

]ζ3

+CACFTF

− 4S2P148

N4(1 +N)4+

P179

18N6(1 +N)6

+L3M

[−8(N − 1)(2 +N)

(− 12 + 11N + 11N2

)9N3(1 +N)3

− 16(N − 1)(2 +N)S1

3N2(1 +N)2

]+L2

M

[− 8S1P150

3N3(1 +N)3− 2P169

9N4(1 +N)4− 16(N − 1)(2 +N)S2

N2(1 +N)2

−32(N − 1)(2 +N)S−2

N2(1 +N)2

]+ LM

[4S2P135

N3(1 +N)3+

8P182

27(N − 1)N5(1 +N)5(2 +N)

182

Page 193: and 3-loop corrections to hard scattering processes in QCD

+

[− 8P175

9(N − 1)N4(1 +N)4(2 +N)− 40(N − 1)(2 +N)S2

N2(1 +N)2

]S1

−4(− 12− 16N + 5N2 + 11N3

)3N3(1 +N)2

S21 +

8(N − 1)(2 +N)S31

3N2(1 +N)2− 16

(26 + 5N + 5N2

)3N2(1 +N)2

S3

+

[− 16P146

(N − 1)N2(1 +N)3(2 +N)+

32P130

(N − 1)N2(1 +N)2(2 +N)S1

]S−2 +

16(− 22 + 5N + 5N2

)N2(1 +N)2

S−3 +32(N − 1)(2 +N)S2,1

N2(1 +N)2− 32

(− 14 +N +N2

)S−2,1

N2(1 +N)2

+

[−32(−3 +N)(4 +N)

N2(1 +N)2+ 64S1

]ζ3

]+

[− 2P165

9N2(1 +N)5+

8(− 13 + 3N2

)N2(1 +N)3

S2

+160(N − 1)(2 +N)S3

3N2(1 +N)2− 64(N − 1)(2 +N)S−2,1

N2(1 +N)2

]S1 +

[− 4P131

N2(1 +N)4

+20(N − 1)(2 +N)S2

N2(1 +N)2

]S21 −

8(5 + 4N +N2

)3N2(1 +N)3

S31 +

2(N − 1)(2 +N)S41

3N2(1 +N)2

+2(N − 1)(2 +N)S2

2

N2(1 +N)2− 64

(− 6 + 8N + 7N2 +N3

)3N3(1 +N)3

S3 +36(N − 1)(2 +N)S4

N2(1 +N)2

+

[−32(2 +N)

(3 +N2

)N2(1 +N)4

+64(N − 1)(2 +N)S1

N2(1 +N)3+

32(N − 1)(2 +N)S21

N2(1 +N)2

+32(N − 1)(2 +N)S2

N2(1 +N)2

]S−2 +

[32(N − 1)(2 +N)

N2(1 +N)3+

32(N − 1)(2 +N)S1

N2(1 +N)2

]S−3

+16(N − 1)(2 +N)S−4

N2(1 +N)2− 16(N − 1)(2 +N)S3,1

N2(1 +N)2− 64(N − 1)(2 +N)S−2,1

N2(1 +N)3

−32(N − 1)(2 +N)S−2,2

N2(1 +N)2− 32(N − 1)(2 +N)S−3,1

N2(1 +N)2− 16(N − 1)(2 +N)S2,1,1

N2(1 +N)2

+64(N − 1)(2 +N)S−2,1,1

N2(1 +N)2+

[−64 ln(2)− 4S1P161

3N3(1 +N)3+

4P168

9N4(1 +N)4

+4(N − 1)(2 +N)S2

1

N2(1 +N)2+

12(N − 1)(2 +N)S2

N2(1 +N)2+

24(N − 1)(2 +N)S−2

N2(1 +N)2

]ζ2

+

[8P156

9N3(1 +N)3+

16(N − 1)(2 +N)S1

3N2(1 +N)2

]ζ3

− 64

27T 3F ζ3 + a

(3)gg,Q

, (C.120)

where the polynomials Pi read

P130 = N4 + 2N3 − 7N2 − 8N + 28, (C.121)

P131 = N4 + 2N3 − 5N2 − 12N + 2, (C.122)

P132 = 2N4 − 4N3 − 3N2 + 20N + 12, (C.123)

P133 = 3N4 + 6N3 − 89N2 − 92N + 12, (C.124)

P134 = 3N4 + 6N3 + 16N2 + 13N − 3, (C.125)

P135 = 3N4 + 32N3 + 65N2 − 16N − 60, (C.126)

P136 = 3N4 + 48N3 + 123N2 + 98N + 8, (C.127)

P137 = 9N4 + 18N3 + 113N2 + 104N − 24, (C.128)

P138 = 11N4 + 36N3 + 43N2 + 46N + 8, (C.129)

P139 = 20N4 + 40N3 + 11N2 − 9N + 54, (C.130)

P140 = 23N4 + 46N3 + 23N2 + 96N + 48, (C.131)

P141 = 40N4 + 74N3 + 25N2 − 9N + 16, (C.132)

183

Page 194: and 3-loop corrections to hard scattering processes in QCD

P142 = 40N4 + 80N3 + 73N2 + 33N + 54, (C.133)

P143 = 63N4 + 126N3 + 271N2 + 208N − 48, (C.134)

P144 = 99N4 + 198N3 + 463N2 + 364N − 84, (C.135)

P145 = 136N4 + 254N3 + 37N2 − 81N + 144, (C.136)

P146 = 3N5 + 7N4 − 29N3 − 51N2 − 2N − 8, (C.137)

P147 = N6 + 3N5 + 5N4 +N3 − 8N2 + 2N + 4, (C.138)

P148 = N6 + 18N5 + 63N4 + 84N3 + 30N2 − 64N − 16, (C.139)

P149 = 3N6 + 9N5 − 163N4 − 341N3 + 164N2 − 432N − 192, (C.140)

P150 = 3N6 + 9N5 + 20N4 + 25N3 − 11N2 − 46N − 12, (C.141)

P151 = 3N6 + 30N5 + 107N4 + 124N3 + 48N2 + 20N + 8, (C.142)

P152 = 6N6 + 23N5 − 14N4 − 121N3 − 114N2 − 20N + 8, (C.143)

P153 = 15N6 + 45N5 + 49N4 − 13N3 − 64N2 + 40N + 48, (C.144)

P154 = 15N6 + 45N5 + 56N4 +N3 − 68N2 + 29N + 42, (C.145)

P155 = 15N6 + 45N5 + 374N4 + 601N3 + 161N2 − 24N + 36, (C.146)

P156 = 18N6 + 54N5 + 65N4 + 40N3 − 23N2 − 34N + 24, (C.147)

P157 = 20N6 + 60N5 + 11N4 − 78N3 − 13N2 + 36N − 108, (C.148)

P158 = 24N6 + 72N5 + 69N4 + 18N3 +N2 + 4N + 4, (C.149)

P159 = 27N6 + 81N5 − 1247N4 − 2341N3 − 720N2 + 32N − 240, (C.150)

P160 = 27N6 + 81N5 + 148N4 + 161N3 + 253N2 − 390N − 144, (C.151)

P161 = 30N6 + 90N5 + 79N4 + 8N3 + 23N2 + 70N + 12, (C.152)

P162 = 63N6 + 189N5 + 157N4 + 35N3 + 80N2 + 4N − 24, (C.153)

P163 = 95N6 + 285N5 + 92N4 − 291N3 − 97N2 + 96N − 36, (C.154)

P164 = 297N6 + 891N5 − 461N4 − 2119N3 − 872N2 − 96N − 432, (C.155)

P165 = 233N7 + 1093N6 + 1970N5 + 1538N4 − 167N3

−2143N2 − 2412N − 288, (C.156)

P166 = −15N8 − 60N7 − 82N6 − 44N5 − 15N4 − 4N2 − 12N − 8, (C.157)

P167 = 3N8 + 12N7 + 2080N6 + 5568N5 + 4602N4 + 1138N3

−3N2 − 36N − 108, (C.158)

P168 = 15N8 + 60N7 + 242N6 + 417N5 + 344N4 + 285N3

+185N2 + 456N + 108, (C.159)

P169 = 33N8 + 132N7 − 82N6 − 840N5 − 571N4 + 564N3 + 308N2

+984N + 288, (C.160)

P170 = 40N8 + 160N7 + 205N6 + 61N5 + 18N4 + 113N3 + 75N2

−20N − 12, (C.161)

P171 = 67N8 + 268N7 + 194N6 − 508N5 − 533N4 + 480N3

+616N2 + 344N + 144, (C.162)

P172 = 126N8 + 504N7 − 1306N6 − 5052N5 − 4473N4 − 1138N3

+3N2 + 36N + 108, (C.163)

P173 = 219N8 + 876N7 + 1142N6 + 288N5 − 217N4 + 240N3

+410N2 + 366N + 180, (C.164)

P174 = 1386N8 + 5544N7 − 11270N6 − 46284N5 − 39915N4

−9422N3 + 33N2 + 396N + 1188, (C.165)

184

Page 195: and 3-loop corrections to hard scattering processes in QCD

P175 = 15N10 + 75N9 + 2N8 − 469N7 − 506N6 + 524N5

+781N4 + 26N3 − 1192N2 − 1128N − 432, (C.166)

P176 = 310N10 + 1748N9 + 4811N8 + 14192N7 + 24974N6 + 3194N5

−29393N4 − 16866N3 + 8694N2 + 7128N + 1944, (C.167)

P177 = 391N10 + 1955N9 + 3622N8 + 3046N7 + 1595N6 + 1327N5

+1152N4 + 216N3 − 288N2 − 360N − 144, (C.168)

P178 = 1593N10 + 7965N9 + 11578N8 + 1594N7 − 1379N6 + 12793N5

+17152N4 + 4432N3 − 1728N2 − 2160N − 864, (C.169)

P179 = −3135N12 − 18810N11 − 42713N10 − 44692N9 − 22145N8

−9290N7 − 8167N6 − 4136N5 − 960N4 + 11232N3

+6720N2 + 3360N + 576, (C.170)

P180 = −39N12 − 234N11 − 521N10 − 492N9 − 85N8 − 42N7 − 883N6

−1660N5 − 1324N4 − 492N3 − 52N2 + 48N + 16, (C.171)

P181 = N12 + 6N11 − 3N10 − 58N9 − 21N8 + 222N7 + 609N6

+1144N5 + 1122N4 + 142N3 − 180N2 + 40N + 48, (C.172)

P182 = 276N12 + 1656N11 + 3334N10 + 869N9 − 6591N8 − 7395N7

+7452N6 + 13479N5 + 3167N4 + 7303N3 + 1110N2 − 5004N

−2376, (C.173)

P183 = 2493N12 + 14958N11 + 42317N10 + 75910N9 + 45511N8 − 60782N7

−29777N6 + 17194N5 − 130384N4 − 115536N3 + 25776N2

+24192N + 5184. (C.174)

C.5 APS(3)qq,Q in z space

APSqq,Q(x) =

a3s

CFNFT

2F

L3M

[160

9(x− 1)− 64

9(1 + x)H0

]+L2

M

[−32

9(x− 1)

(− 1 + 15H1

)+ (1 + x)

(−32

3H2

0 +64

3H0,1 −

64

3ζ2

)−32

9(7 + x)H0

]+ LM

[(1 + x)

(−176

9H2

0 −32

9H3

0 +128

3H0,0,1 −

128

3H0,1,1

)−32

27(55 + 31x)H0 + (x− 1)

(531227

− 64

9H1 +

160

3H2

1

)+

64

9(7 + x)H0,1

+

[−64

9(7 + x)− 128

3(1 + x)H0

]ζ2

]+ (1 + x)

(−64

3H0,1,1,1 +

448

15ζ22

)+128

81(49 + 82x)H0 + (x− 1)

(−10880

81+

3712

27H1 −

64

9H2

1 +80

9H3

1

)− 128

27(11 + 14x)H0,1

+64

9(2 + 5x)H0,1,1 +

[16

27(103 + 97x) + (1 + x)

(1769

H0 +16

3H2

0 −64

3H0,1

)+160

3(x− 1)H1

]ζ2 +

[−32

9(−1 + 15x) +

64

9(1 + x)H0

]ζ3

+ a

PS(3)qq,Q

. (C.175)

185

Page 196: and 3-loop corrections to hard scattering processes in QCD

C.6 AS(3)qg,Q in z space

Aqg,Q =

a3s

CFNFT

2F

1

27(58501− 59018x) + L3

M

[8

3(−41 + 42x)

+(−1 + 2x)(163H2

0 −32

9H1

)− 32

9(13 + 19x)H0

]+ L2

M

[4

3(−285 + 296x)

+(−1 + 2x)(323H3

0 +16

3H2

1 +32

3H0,1 −

32

3ζ2

)− 8

9(425 + 2x)H0 − 16(7 + 6x)H2

0

−32

9(1 + 4x)H1

]+ LM

[212

9(−69 + 70x) + (−1 + 2x)

(203H4

0 −16

9H3

1 +32

3H0,0,1

−32

3H0,1,1 +

32

3ζ3

)+

[− 8

27(4103 + 1565x) +

64

3(x− 1)H1 −

32

3(−1 + 2x)H0,1

]H0

+

[4

3(−343 + 10x) +

16

3(−1 + 2x)H1

]H2

0 −16

9(50 + 23x)H3

0 −16

27(−28 + 131x)H1

+32

9(−2 + 7x)H2

1 +64

9(1 + 4x)H0,1 −

64

9(−2 + 7x)ζ2

]+ (−1 + 2x)

(− 4

15H5

0

+5248

81H1 −

896

27H0,1 +

160

9H0,0,1 −

32

3H0,0,0,1 +

16

3ζ22

)+

[16

81(7333 + 4195x)

+(−1 + 2x)(89627

H1 −160

9H0,1 +

32

3H0,0,1

)]H0 +

[8

27(1331 + 140x)

+(−1 + 2x)(809H1 −

16

3H0,1

)]H2

0 +

[−16

27(−101 + 28x) +

16

9(−1 + 2x)H1

]H3

0

+4

9(13 + 7x)H4

0 +

[−4

3(−299 + 305x) + (−1 + 2x)

(−8H3

0 −8

3H2

1 −32

3H0,1

)+

[4

9(757 + 178x) +

16

3(−1 + 2x)H1

]H0 +

8

3(34 + 25x)H2

0 +32

9(−2 + 7x)H1

]ζ2

+

[−8

3(−41 + 42x) + (−1 + 2x)

(−16

3H2

0 +32

9H1

)+

32

9(13 + 19x)H0

]ζ3

+CANFT

2F

− 8

27(−4028 + 4113x) + L3

M

[64

3(x− 1)− 64

9(1 + x)H0

+32

9(−1 + 2x)H1

]+ L2

M

[8

3(−65 + 68x) +

[−16

9(47 + 38x)− 32

3(1 + 2x)H−1

]H0

−32

3H2

0 +32

9(1 + 4x)H1 −

16

3(−1 + 2x)H2

1 +32

3(1 + 2x)H0,−1 −

32

3ζ2

]

+LM

[16

9(−514 + 547x) + (−1 + 2x)

(169H3

1 +32

3H0,0,1 + 32H0,1,1

)+

[−32

27(463 + 211x) + (−1 + 2x)

(163H2

1 −32

3H0,1

)− 64

9(2 + 7x)H−1

+64

3(1 + 2x)H0,−1

]H0 +

[−8

9(133 + 72x) +

16

3(−1 + 2x)H1 −

32

3(1 + 2x)H−1

]H2

0

186

Page 197: and 3-loop corrections to hard scattering processes in QCD

+16

9(−5 + 6x)H3

0 +

[16

27(−1 + 95x)− 64

3(−1 + 2x)H0,1

]H1 −

32

9(−2 + 7x)H2

1

+64

3xH0,1 +

64

9(2 + 7x)H0,−1 −

64

3(1 + 2x)H0,0,−1 +

[−64

9(2 + 3x)

+32

3(−1 + 2x)H1

]ζ2 + 32ζ3

]+

[8

81(5836 + 4771x)− 16

3(−1 + 2x)H1

]H0

− 4

27(−649 + 128x)H2

0 +16

27(17 + 2x)H3

0 −4

9(−1 + 2x)H4

0 −16

81(−283 + 611x)H1

−8

3(x− 1)H2

1 −16

9(3 + 10x)H0,1 +

32

3xH0,1,1 +

[−8

9(−231 + 205x)

+

[8

9(97 + 100x) +

16

3(1 + 2x)H−1

]H0 −

8

3(−3 + 2x)H2

0 −32

9(−2 + 7x)H1

+8

3(−1 + 2x)H2

1 −16

3(1 + 2x)H0,−1

]ζ2 +

16

3ζ22 +

[−32

3(−2 + 3x) +

64

9(1 + x)H0

−32

9(−1 + 2x)H1

]ζ3

+ a

(3)qg,Q

(C.176)

C.7 ASQg in z space

AQg =

−4asLM(−1 + 2x)TF + a2s

−16

3L2M(−1 + 2x)T 2

F + CFTF

2(−11 + 23x)

+L2M

[6 + (−1 + 2x)

(− 4H0 − 8H1

)]+ LM

[−4(2 + 3x) + (−1 + 2x)

(− 4H2

0

−8H21 + 16ζ2

)+[−4(−1 + 16x)− 16(−1 + 2x)H1

]H0 − 32(x− 1)H1

]+(−1 + 2x)

((5 + 2x+ 4H1

)H2

0 +2

3H3

0 −4

3H3

1 + 24H0,0,1 − 8H0,1,1 − 8ζ3)

+(− 2(8 + 25x) + 4

(− 11 + 8x+ 2x2

)H1 − 16(−1 + 2x)H0,1

)H0

−4(−16 + 15x)H1 − 4(x− 1)(3 + x)H21 − 4

(− 29 + 12x+ 4x2

)H0,1

+8(− 9 + 2x+ x2

)ζ2

+ CATF

4(−51 + 53x) + L2

M

[48(x− 1)− 16(1 + x)H0

+8(−1 + 2x)H1

]+ (1 + x)

(− 16H0,−1 − 64H0,0,1

)+ (−1 + 2x)

(43H3

1 + 8H0,1,1

)+(1 + 2x)

(−8H2

−1H0 −4

3H3

0 + 8H0,0,−1 − 16H0,−1,−1

)+LM

[8(−12 + 11x) + (1 + 2x)

(16H−1H0 + 8H2

0 − 16H0,−1

)−8(1 + 8x)H0 + 32(x− 1)H1 + 8(−1 + 2x)H2

1 + 16ζ2

]+[−4(14 + 37x)− 4(x− 1)(25 + x)H1 − 4(−1 + 2x)H2

1 + 32(1 + x)H0,1

−8(1 + 2x)H0,−1

]H0 − 2

(3 + x2

)H2

0 − 4H1 + 2(x− 1)(5 + x)H21

+[(1 + 2x)

(4H2

0 + 16H0,−1 − 8ζ2)+ 16(1 + x)H0

]H−1 + 4

(− 25 + 28x+ 2x2

)H0,1

187

Page 198: and 3-loop corrections to hard scattering processes in QCD

−4(− 4 + 4x+ x2

)ζ2 + 8(7 + 8x)ζ3

+ a3s

T 3F (−1 + 2x)

(−64L3

M

9+

64ζ39

)+CAT

2F

− 8

27(−7758 + 7613x) + L3

M

[448

3(x− 1)− 448

9(1 + x)H0 +

224

9(−1 + 2x)H1

]+(1 + x)

(−128

3H0,0,−1 +

256

3H0,−1,−1

)+ (−1 + 2x)

(−8

9H4

1 +64

3H2

0,1 +320

3H0,0,1,1

+64

3H0,1,1,1

)+ (1 + 2x)

(−128

9H3

−1H0 −64

3H0,0,0,−1 +

256

3H0,0,1,−1

+256

3H0,0,−1,1 −

128

3H0,0,−1,−1 +

128

3H0,−1,0,1 +

256

3H0,−1,−1,−1

)+L2

M

[8

3(−151 + 136x) + (1 + 2x)

(32H−1H0 − 32H0,−1

)− 16

9(59 + 134x)H0

+32

3(1 + 4x)H2

0 +32

9(−23 + 28x)H1 + 16(−1 + 2x)H2

1 + 32ζ2

]+LM

[16

9(−812 + 849x) + (−1 + 2x)

(163H3

1 +160

3H0,1,1

)+ (1 + 2x)

(−64

3H2

−1H0

−128

3H0,−1,−1

)+

[−32

27(589 + 544x)− 32

3(x− 1)(25 + x)H1 −

16

3(−1 + 2x)H2

1

+32(3 + 2x)H0,1

]H0 +

[−8

9

(151 + 72x+ 6x2

)+

16

3(−1 + 2x)H1

]H2

0

+16

9(−7 + 2x)H3

0 +

[304

27(−1 + 5x) + (−1 + 2x)

(−64H0,1

3+

32ζ23

)]H1

+16

9

(− 11− 2x+ 3x2

)H2

1 +

[(1 + 2x)

(128H0,−1

3− 64ζ2

3

)− 64

9(−4 + x)H0

]H−1

+32

3

(− 25 + 30x+ 2x2

)H0,1 +

64

9(−4 + x)H0,−1 −

32

3(17 + 14x)H0,0,1

−32

9

(− 8 + 18x+ 3x2

)ζ2 +

32

3(17 + 16x)ζ3

]+

[8

81(7672 + 14815x)

+(−1 + 2x)(649H3

1 −320

3H0,1,1

)+ (1 + 2x)

(643H0,0,−1 −

128

3H0,1,−1 −

128

3H0,−1,1

+128

3H0,−1,−1

)+

[−16

3

(63− 66x+ 4x2

)+ 64(−1 + 2x)H0,1

]H1

+64

3(x− 1)H2

1 +32

3

(− 27 + 8x+ x2

)H0,1 +

128

3(1 + x)H0,−1 −

128

3(3 + 2x)H0,0,1

+8

9(115 + 244x)ζ2 +

64

9(19 + 31x)ζ3

]H0 +

[− 4

27

(− 577 + 1244x+ 72x2

)−16

3(x− 1)(25 + x)H1 −

16

3(−1 + 2x)H2

1 +128

3(1 + x)H0,1 −

32

3(1 + 2x)H0,−1

−8

3(3 + 14x)ζ2

]H2

0 −16

27(−2 + x)(4 + 3x)H3

0 −4

9(1 + 6x)H4

0 +

[−16

81(−67 + 503x)

+(−1 + 2x)(−320

3H0,0,1 −

64

3H0,1,1 +

160

9ζ3

)− 160

9(−4 + 5x)ζ2

]H1

+

[8

3

(3− 5x+ 4x2

)− 40

3(−1 + 2x)ζ2

]H2

1 −16

9(x− 1)(5 + x)H3

1

188

Page 199: and 3-loop corrections to hard scattering processes in QCD

+

[(1 + x)

(−64

3H2

0 −256

3H0,−1 +

128

3ζ2

)+(1 + 2x)

(329H3

0 −256

3H0,0,1 +

128

3H0,0,−1 −

256

3H0,−1,−1 + 64ζ3

)+

[−128(1 + x) + (1 + 2x)

(1283

H0,1 −128

3H0,−1 −

80

3ζ2

)]H0

]H−1

+

[(1 + 2x)

(323H2

0 +128

3H0,−1 −

64

3ζ2

)+

128

3(1 + x)H0

]H2

−1

+16

9

(189− 238x+ 24x2

)H0,1 +

[128(1 + x) +

80

3(1 + 2x)ζ2

]H0,−1

−32

3

(− 29− 8x+ x2

)H0,0,1 −

32

3

(− 4 + 7x+ x2

)H0,1,1 + 128H0,0,0,1

−4

9

(− 561 + 620x+ 48x2

)ζ2 −

432

5ζ22 +

32

3

(14− 43x+ x2

)ζ3

+CANFT

2F

−32

3(−53 + 51x) + L3

M

[64

3(x− 1)− 64

9(1 + x)H0 +

32

9(−1 + 2x)H1

]+(1 + x)

(−64

3H0,0,−1 +

128

3H0,−1,−1

)+ (−1 + 2x)

(−4

9H4

1 +32

3H2

0,1 +160

3H0,0,1,1

+32

3H0,1,1,1

)+ (1 + 2x)

(−64

9H3

−1H0 −4

9H4

0 −32

3H0,0,0,−1 +

128

3H0,0,1,−1

+128

3H0,0,−1,1 −

64

3H0,0,−1,−1 +

64

3H0,−1,0,1 +

128

3H0,−1,−1,−1

)+L2

M

[−8

3(−65 + 68x) + (1 + 2x)

(323H−1H0 −

32

3H0,−1

)+

16

9(47 + 38x)H0 +

32

3H2

0

−32

9(1 + 4x)H1 +

16

3(−1 + 2x)H2

1 +32

3ζ2

]+ LM

[8

9(−778 + 845x) + (−1 + 2x)

(329H3

1

+128

3H0,1,1

)+ (1 + 2x)

(−32

3H2

−1H0 −32

3H0,0,−1 −

64

3H0,−1,−1

)+

[− 8

27(1319 + 866x)− 16

3(x− 1)(25 + x)H1 +

32

3(5 + 2x)H0,1 +

32

3(1 + 2x)H0,−1

]H0

+

[−8

9

(108 + 68x+ 3x2

)+

16

3(−1 + 2x)H1

]H2

0 +16

9(−5 + 2x)H3

0 +

[−16

27(−37 + 8x)

+(−1 + 2x)(−64H0,1

3+

32ζ23

)]H1 +

8

9

(− 7− 16x+ 3x2

)H2

1 +

[(1 + 2x)

(−16

3H2

0

+64

3H0,−1 −

32

3ζ2

)− 64

9(−1 + 4x)H0

]H−1 +

16

3

(− 25 + 30x+ 2x2

)H0,1

+64

9(−1 + 4x)H0,−1 − 32(3 + 2x)H0,0,1 −

16

9

(− 4 + 18x+ 3x2

)ζ2 +

64

3(5 + 4x)ζ3

]

+

[16

3(17 + 93x) + (−1 + 2x)

(329H3

1 −160

3H0,1,1

)+ (1 + 2x)

(323H0,0,−1 −

64

3H0,1,−1

−64

3H0,−1,1 +

64

3H0,−1,−1

)+

[−32

3(−16 + x)(x− 1) + 32(−1 + 2x)H0,1

]H1

+32

3(x− 1)H2

1 +16

3

(− 27 + 8x+ x2

)H0,1 +

64

3(1 + x)H0,−1 −

64

3(3 + 2x)H0,0,1

189

Page 200: and 3-loop corrections to hard scattering processes in QCD

−16

9(22 + 7x)ζ2 +

64

9(7 + 13x)ζ3

]H0 +

[−8

3

(2 + 31x+ 2x2

)− 8

3(x− 1)(25 + x)H1

−8

3(−1 + 2x)H2

1 +64

3(1 + x)H0,1 −

16

3(1 + 2x)H0,−1 −

8

3(3 + 2x)ζ2

]H2

0

−8

9

(3 + x2

)H3

0 +

[32

3(−2 + x) + (−1 + 2x)

(−160

3H0,0,1 −

32

3H0,1,1 +

160

9ζ3

)−16

9(−7 + 2x)ζ2

]H1 +

[8

3

(1− 2x+ 2x2

)− 16

3(−1 + 2x)ζ2

]H2

1 −8

9(x− 1)(5 + x)H3

1

+

[(1 + x)

(−32

3H2

0 −128

3H0,−1 +

64

3ζ2

)+ (1 + 2x)

(169H3

0 −128

3H0,0,1 +

64

3H0,0,−1

−128

3H0,−1,−1 + 32ζ3

)+

[−64(1 + x) + (1 + 2x)

(643H0,1 −

64

3H0,−1 −

32

3ζ2

)]H0

]H−1

+

[(1 + 2x)

(163H2

0 +64

3H0,−1 −

32

3ζ2

)+

64

3(1 + x)H0

]H2

−1 +32

3

(16− 19x+ 2x2

)H0,1

+

[64(1 + x) +

32

3(1 + 2x)ζ2

]H0,−1 −

16

3

(− 29− 8x+ x2

)H0,0,1 −

16

3

(− 4 + 8x+ x2

)H0,1,1

+64H0,0,0,1 −4

3

(89− 62x+ 8x2

)ζ2 −

608

15ζ22 +

16

3

(4− 32x+ x2

)ζ3

+CFT

2F

−22

3(−339 + 374x) + L3

M

[16

3(−19 + 21x) + (−1 + 2x)

(163H2

0 −128

9H1

)−16

9(23 + 44x)H0

]+ L2

M

[4

3(−287 + 244x) + (−1 + 2x)

(323H3

0 − 16H21 −

32

3H0,1 + 32ζ2

)+

[−8

9(433 + 94x)− 64

3(−1 + 2x)H1

]H0 −

320

3(1 + x)H2

0 −32

9(−13 + 8x)H1

]

+LM

[2

9(−7895 + 8486x) + (−1 + 2x)

(203H4

0 −16

3H3

1 +256

3H0,0,1 − 32H0,1,1 −

32

3ζ3

)+

[− 8

27(4285 + 1843x) +

64

9

(− 22 + 20x+ 3x2

)H1 − 64(−1 + 2x)H0,1

]H0

+

[4

9

(− 1069 + 128x+ 24x2

)+

64

3(−1 + 2x)H1

]H2

0 −8

9(103 + 40x)H3

0

−16

27(−260 + 289x)H1 −

32

9

(− 7− x+ 3x2

)H2

1 −64

9

(− 47 + 19x+ 6x2

)H0,1

+64

9

(− 25− x+ 3x2

)ζ2

]+ (−1 + 2x)

(− 4

15H5

0 +8

9H4

1 −128

3H2

0,1 −64

3H0,0,0,1

−320

3H0,1,1,1 −

976

15ζ22

)+

[16

3(261 + 155x) + (−1 + 2x)

(1283

H0,0,1 +256

3H0,1,1

)+

[32

3

(2− 5x+ 4x2

)+ (−1 + 2x)

(−128H0,1

3+

64ζ23

)]H1 −

64

3

(− 2 + 8x+ x2

)H0,1

+4

9(769 + 316x)ζ2 −

16

9(−47 + 4x)ζ3

]H0 +

[8

3

(142− 11x+ 8x2

)+(−1 + 2x)

(−64H0,1

3− 16ζ3

3

)+

16

3

(− 11 + 8x+ 2x2

)H1 +

4

3(65 + 56x)ζ2

]H2

0

190

Page 201: and 3-loop corrections to hard scattering processes in QCD

+

[8

9

(64− 19x+ 4x2

)+ (−1 + 2x)

(32H1

9− 8ζ2

)]H3

0 +2

9(25 + 16x)H4

0 +

[32

3(−5 + 7x)

+(−1 + 2x)(256

3H0,0,1 +

256

3H0,1,1 −

640

9ζ3

)+

80

9(−5 + 4x)ζ2

]H1

+

[−16

3

(16− 19x+ 4x2

)+ (−1 + 2x)

(−64H0,1

3+

104ζ23

)]H2

1 +32

9(x− 1)(3 + x)H3

1

+

[−32

3

(8− 31x+ 8x2

)+ 48(−1 + 2x)ζ2

]H0,1 +

32

3

(3 + 24x+ 2x2

)H0,0,1 +

64

3

(− 9 + 2x+ x2

)H0,1,1 +

2

3

(685− 924x+ 64x2

)ζ2 −

16

3

(− 27 + 61x+ 4x2

)ζ3

+CFNFT

2F

−4

3(−827 + 914x) + L3

M

[8

3(−41 + 42x) + (−1 + 2x)

(163H2

0 −32

9H1

)−32

9(13 + 19x)H0

]+ L2

M

[−4

3(−285 + 296x) + (−1 + 2x)

(−32

3H3

0 −16

3H2

1 −32

3H0,1

+32

3ζ2

)+

8

9(425 + 2x)H0 + 16(7 + 6x)H2

0 +32

9(1 + 4x)H1

]+ LM

[2

9(−8933 + 9110x)

+(−1 + 2x)(203H4

0 −32

9H3

1 −64

3H0,1,1 + 192H0,0,0,1 −

384

5ζ22

)+

[− 8

27(3349 + 3562x)

+(−1 + 2x)(−64H0,0,1 − 128ζ3

)+

16

9

(323− 322x+ 6x2

)H1 +

32

3(31 + 28x)H0,1

]H0

+

[8

9

(− 401 + 34x+ 6x2

)+ 16(−1 + 2x)H1

]H2

0 − 16(5 + 3x)H30 −

32

27(−58 + 77x)H1

−16

9

(− 5− 8x+ 3x2

)H2

1 −16

9

(277− 338x+ 12x2

)H0,1 −

32

3(59 + 62x)H0,0,1

+32

9

(− 23− 8x+ 3x2

)ζ2 + 192(3 + 4x)ζ3

]+ (−1 + 2x)

( 4

15H5

0 +4

9H4

1 −64

3H2

0,1

−160

3H0,1,1,1 − 128H0,0,0,0,1 + 128ζ5

)+

[8

3(−111 + 479x) + (−1 + 2x)

(1283

H0,1,1

+128H0,0,0,1

)+

[16

3

(− 10 + 7x+ 4x2

)+ (−1 + 2x)

(−64H0,1

3+

16ζ23

)]H1

−32

3

(46− 34x+ x2

)H0,1 −

32

3(41 + 44x)H0,0,1 +

8

9(−259 + 86x)ζ2 +

32

9(109 + 151x)ζ3

]H0

+

[4

3

(− 116− 437x+ 8x2

)+ (−1 + 2x)

(−32H0,0,1 −

208ζ33

)+

8

3

(115− 118x+ 2x2

)H1

+16

3(29 + 32x)H0,1 −

232

3(1 + x)ζ2

]H2

0 +

[4

9

(− 59 + 50x+ 4x2

)+(−1 + 2x)

(16H1

9+ 8ζ2

)]H3

0 −4

9(8 + 11x)H4

0 +

[16

3(−5 + 7x) + (−1 + 2x)

(1283

H0,0,1

+128

3H0,1,1 −

352

9ζ3

)+

16

9(−7 + 2x)ζ2

]H1 +

[−8

3

(16− 19x+ 4x2

)+(−1 + 2x)

(−32H0,1

3+ 16ζ2

)]H2

1 +16

9(x− 1)(3 + x)H3

1 +

[−16

3

(− 4− 19x+ 8x2

)+80

3(−1 + 2x)ζ2

]H0,1 +

16

3

(69− 18x+ 2x2

)H0,0,1 +

32

3

(− 9 + 2x+ x2

)H0,1,1

191

Page 202: and 3-loop corrections to hard scattering processes in QCD

+32

3(37 + 34x)H0,0,0,1 +

2

3

(− 77− 194x+ 32x2

)ζ2 −

64

15(29 + 50x)ζ22

−8

3

(− 169 + 250x+ 4x2

)ζ3

+ C2

FTF

451− 474x+ L3

M

[(−1 + 2x)

(−6− 4

3H2

0 −32

3H2

1

+32

3ζ2

)+

[−8

3(x− 1)− 32

3(−1 + 2x)H1

]H0 + 16H1

]+ (1 + 2x)

(16H2

−1H0ζ2

+16H0,0,−1ζ2 + 32H0,−1,−1ζ2)+ L2

M

[−439 + 472x+ (−1 + 2x)

(− 16H3

1 + 48H0,0,1

+16H0,1,1

)+ (1 + 2x)

(−32H2

−1H0 −8

3H3

0 − 32H0,0,−1 − 64H0,−1,−1

)+[−2(101 + 138x)

+(−1 + 2x)(− 48H2

1 − 32H0,1

)− 16(−7 + 4x)H1

+16(−1 + 6x)ζ2

]H0 +

[−4(11 + 10x)− 16(−1 + 2x)H1

]H2

0 +[−8(−4 + 9x)

+64(−1 + 2x)ζ2

]H1 − 4(−19 + 16x)H2

1 +[(1 + 2x)

(16H2

0 + 64H0,−1 − 32ζ2)

+96(1 + x)H0

]H−1 − 16(3 + 7x)H0,1 − 96(1 + x)H0,−1 + 16(2 + 11x)ζ2 + 16(1 + 6x)ζ3

]+LM

(12(3633− 3782x) + (−1 + 2x)

(− 8H4

1 − 32H20,1 + 32H2

0,−1 − 80H0,0,1,1

−32H0,1,1,1 − 64H0,−1,0,1

)+

[2(209 + 350x) + (1 + 2x)

(− 96H0,−1 − 96H0,0,−1

)+(−1 + 2x)

(−32

3H3

1 + 160H0,1,1 − 64H0,1,−1 − 64H0,−1,1

)+[−12(−15 + 26x) + (−1 + 2x)

(− 96H0,1 + 64H0,−1 + 192ζ2

)]H1 − 8(−5 + 6x)H2

1

−8(− 21 + 22x+ 4x2

)H0,1 − 16(1 + 14x)H0,0,1 − 256xH0,−1,−1 + 32(−7 + 12x)ζ2

+16(−11 + 10x)ζ3

]H0 +

[2(− 21− 220x+ 24x2

)+ (−1 + 2x)

(− 24H2

1 + 48ζ2)

+4(19− 28x+ 4x2

)H1 + 8(3 + 2x)H0,1 + 16(1 + 6x)H0,−1

]H2

0 +

[4

3

(− 17− 23x+ 4x2

)−32

3(−1 + 2x)H1

]H3

0 +1

3(−1− 6x)H4

0 +[−8(−83 + 81x) + (−1 + 2x)

(96H0,0,1

−128H0,0,−1 + 96H0,1,1 + 224ζ3)− 192(x− 1)H0,1 + 16(−21 + 22x)ζ2

]H1

+[−8(−39 + 44x) + (−1 + 2x)

(− 64H0,1 + 96ζ2

)]H2

1 − 16(x− 1)(5 + x)H31

+

[(1 + x)

(64H2

0 − 128H0,−1 + 64ζ2)+[−32

(2 + 3x+ 3x2

)+ 64(1 + 2x)H0,−1

]H0

+16

3(1 + 2x)H3

0

]H−1 +

[64(1 + x)H0 − 32(1 + 2x)H2

0

]H2

−1 +[−4(−23 + 38x)

−128xζ2

]H0,1 +

[32(2 + 3x+ 3x2

)+ 64(−1 + 2x)H0,1 − 128xζ2

]H0,−1

+8(− 29 + 24x+ 4x2

)H0,0,1 + 64(1 + 4x)H0,0,−1 − 16

(− 19 + 3x+ 6x2

)H0,1,1

+128(1 + x)H0,−1,−1 + 64(−1 + 8x)H0,0,0,1 − 32(−5 + 2x)H0,0,0,−1 − 16(21− 29x+ 6x2

)ζ2

−8

5(−47 + 126x)ζ22 + 16

(− 62 + 37x+ 6x2

)ζ3)+ (−1 + 2x)

( 1

15H5

0 +4

3H5

1 − 112H0,0,0,0,1

+160H0,0,0,1,1 + 96H0,0,1,0,1 − 432H0,0,1,1,1 − 224H0,1,0,1,1 − 144H0,1,1,1,1 + 64ζ5

)

192

Page 203: and 3-loop corrections to hard scattering processes in QCD

+

[−2(91 + 33x) + (−1 + 2x)

(43H4

1 − 32H20,1 + 48H0,0,0,1 − 160H0,1,1,1

)+

[4(− 214 + 215x+ 24x2

)+ (−1 + 2x)

(96H0,0,1 + 192H0,1,1 −

448

3ζ3

)−32

(− 7 + 4x+ x2

)H0,1 − 4

(− 19 + 16x+ 8x2

)ζ2

]H1 +

[112(x− 1)

+(−1 + 2x)(− 64H0,1 + 72ζ2

)]H2

1 +16

3(x− 1)(3 + x)H3

1 +[−8(3 + 2x)(−7 + 4x)

+152(−1 + 2x)ζ2

]H0,1 − 8

(− 19− 18x+ 4x2

)H0,0,1 + 32

(− 21 + 2x+ 2x2

)H0,1,1

−2(−143 + 12x)ζ2 −8

5(−37 + 94x)ζ22 −

8

3

(− 20 + 95x+ 24x2

)ζ3

]H0 +

[−128 + 263x

+48x2 + (−1 + 2x)(8H0,0,1 + 64H0,1,1 −

68

3ζ3

)+[2(− 27 + 42x+ 16x2

)−48(−1 + 2x)H0,1

]H1 + 4

(− 11 + 8x+ 2x2

)H2

1 − 4(1 + 22x)H0,1 − 2(− 21− 3x

+8x2)ζ2

]H2

0 +

[1

3

(− 39 + 50x+ 32x2

)+ (−1 + 2x)

(83H2

1 − 8H0,1

)+4

3

(− 25 + 16x+ 4x2

)H1 −

2

3(−5 + 2x)ζ2

]H3

0 +

[1

3

(− 2 + 5x+ 4x2

)+

4

3(−1 + 2x)H1

]H4

0

+

[−4(−159 + 169x) + (−1 + 2x)

(−64H2

0,1 −1056

5ζ22

)+[−32(x− 1) + 64(−1 + 2x)ζ2

]H0,1 + 64

(− 7 + 4x+ x2

)H0,0,1

−96H0,1,1 − 104(−3 + 4x)ζ2 − 32(− 11 + 6x+ 2x2

)ζ3

]H1

+

[−2(56− 131x+ 24x2

)+ (−1 + 2x)

(96H0,0,1 + 64H0,1,1 −

112

3ζ3

)+ 24H0,1

−4(13− 8x+ 4x2

)ζ2

]H2

1 +

[−8

3

(44− 47x+ 12x2

)+ (−1 + 2x)

(−64H0,1

3+ 32ζ2

)]H3

1

+1

3

(− 51 + 32x+ 16x2

)H4

1 +[(1 + 2x)

(− 8H2

0ζ2 − 32H0,−1ζ2 + 16ζ22)− 48(1 + x)H0ζ2

]H−1

+[−4(− 364 + 97x+ 48x2

)+ (−1 + 2x)

(− 32H0,0,1 + 96H0,1,1 + 160ζ3

)+4(73 + 74x)ζ2

]H0,1 − 8

(− 13 + 8x+ 2x2

)H2

0,1 +[4(− 85− 40x+ 16x2

)−200(−1 + 2x)ζ2

]H0,0,1 +

[−8(− 1− 85x+ 24x2

)− 128(−1 + 2x)ζ2

]H0,1,1

+16(− 17 + 2x+ 6x2

)H0,0,0,1 − 32

(− 30− x+ 2x2

)H0,0,1,1 + 8

(− 83 + 20x+ 12x2

)H0,1,1,1

+

[−384 ln(2)(−1 + 2x) +

1

2

(− 1005− 506x+ 192x2

)+

16

3(−7 + 2x)ζ3

]ζ2

+48(1 + x)H0,−1ζ2 −8

5

(− 46 + 251x+ 42x2

)ζ22 + 2

(141− 154x+ 96x2

)ζ3

+C2

ATF

8

3(−6427 + 6405x) + (1 + x)

(− 128H0,1,−1,−1 − 128H0,−1,1,−1 − 128H0,−1,−1,1

)+(−7 + 10x)

(− 32H0,0,0,0,−1 + 32H0,0,−1,0,1

)+ (−1 + 4x)

(− 64H0,0,−1,0,−1 − 512H0,0,−1,−1,−1

−256H0,−1,0,−1,−1

)+ (1 + 2x)

(− 16H4

−1H0 − 128H0,0,1,1,−1 − 128H0,0,1,−1,1 − 192H0,0,1,−1,−1

193

Page 204: and 3-loop corrections to hard scattering processes in QCD

−128H0,0,−1,1,1 − 192H0,0,−1,1,−1 − 192H0,0,−1,−1,1 − 128H0,1,−1,−1,−1 − 64H0,−1,0,1,1

−128H0,−1,0,1,−1 − 128H0,−1,0,−1,1 − 128H0,−1,1,−1,−1 − 128H0,−1,−1,0,1 − 128H0,−1,−1,1,−1

−128H0,−1,−1,−1,1 − 384H0,−1,−1,−1,−1

)+ L3

M

[−1328

3(x− 1) +

[16

9(107 + 59x)

−32

3(−1 + 2x)H1

]H0 −

32

3(−2 + x)H2

0 −8

9(−155 + 166x)H1 −

32

3(−1 + 2x)H2

1

+32(1 + 2x)H0,1 −128

3(1 + x)ζ2

]+ L2

M

[−16

3(−301 + 298x) + (1 + 2x)

(32H2

−1H0

+16H0,0,1 + 32H0,1,−1 + 32H0,−1,1 + 64H0,−1,−1

)+

[368

9(1 + 28x) + 128(x− 1)H1

−48(1 + 2x)H0,1 + 16(−5 + 14x)H0,−1 + 32(−1 + 4x)ζ2

]H0 +

[−16

3(25 + 33x)

+8(−1 + 2x)H1

]H2

0 +64

3(x− 1)H3

0 +

[−40

9(−115 + 98x) + 32(−1 + 2x)ζ2

]H1

−4

3(−131 + 142x)H2

1 − 16(−1 + 2x)H31 +

[(1 + 2x)

(− 24H2

0 − 32H0,1 − 64H0,−1

+64ζ2)− 8

3(155 + 166x)H0

]H−1 + 16(9 + 4x)H0,1 +

8

3(155 + 166x)H0,−1

−16(−13 + 22x)H0,0,−1 + 64(1 + x)H0,1,1 −8

3(161 + 72x)ζ2 + 16(−17 + 8x)ζ3

]

+LM

[−4

9(−33406 + 33719x) + (1 + x)

(− 64H0,1,−1 − 64H0,−1,1

)+ (−1 + 2x)

(− 8H4

1

+32H0,1,1,1

)+ (1 + 2x)

(−160

3H3

−1H0 + 368H0,0,0,−1 − 32H0,0,1,−1 − 32H0,0,−1,1

+160H0,0,−1,−1 + 64H0,1,1,−1 + 64H0,1,−1,1 + 64H0,−1,1,1 + 320H0,−1,−1,−1

)+

[8

27(13987 + 34141x) + (−1 + 2x)

(803H3

1 − 96H0,1,−1 − 96H0,−1,1

)+

[4

3(x− 1)(2363 + 11x) + (−1 + 2x)

(64H0,1 + 96H0,−1 + 160ζ2

)]H1 + 480(x− 1)H2

1

−8

3

(574 + 181x+ 6x2

)H0,1 +

8

3(−275 + 26x)H0,−1 − 64(5 + 7x)H0,0,1 − 64(4 + 3x)H0,0,−1

−64(2 + 11x)H0,1,1 − 128(−1 + 5x)H0,−1,−1 + 8(−29 + 15x)ζ2 − 96(11 + 6x)ζ3

]H0

+

[2

9

(2817− 3380x+ 141x2

)+

4

3

(62− 79x+ 6x2

)H1 + 16(−1 + 2x)H2

1 + 4(−1 + 46x)H0,1

−32(−2 + x)H0,−1 − 4(11 + 2x)ζ2

]H2

0 +

[4

9

(235 + 254x+ 6x2

)− 40

3(−1 + 2x)H1

]H3

0

−2

3(−19 + 20x)H4

0 +

[− 4

27(−2629 + 3221x) + (−1 + 2x)

(− 256H0,0,1 − 192H0,0,−1

+544ζ3)− 16

3(−61 + 50x)H0,1 −

8

3(−17 + 28x)ζ2

]H1 +

[−2

9

(− 1217 + 844x+ 33x2

)

194

Page 205: and 3-loop corrections to hard scattering processes in QCD

+(−1 + 2x)(− 32H0,1 + 32ζ2

)]H2

1 −8

9

(− 92 + 94x+ 9x2

)H3

1 +

[(1 + 2x)

(83H3

0

+32H0,0,1 − 160H0,0,−1 − 64H0,1,1 − 320H0,−1,−1 + 192ζ3

)+

[−16

9

(1097 + 1030x+ 27x2

)+(1 + 2x)

(64H0,−1 + 64ζ2

)]H0 +

4

3(101 + 112x)H2

0 + 64(1 + x)H0,1 −16

3(221 + 232x)H0,−1

+8

3(197 + 208x)ζ2

]H−1 +

((1 + 2x)

(8H2

0 + 160H0,−1 − 80ζ2)+

8

3(221 + 232x)H0

)H2

−1

+

[−4

3

(− 2009 + 2064x+ 22x2

)− 16(−13 + 18x)ζ2

]H0,1 + 32(−1 + 8x)H2

0,1

+

[16

9

(1097 + 1030x+ 27x2

)+ 96(−1 + 2x)H0,1 − 16(−1 + 26x)ζ2

]H0,−1

+32(−3 + 8x)H20,−1 + 8

(333 + 132x+ 2x2

)H0,0,1 −

8

3(−449 + 164x)H0,0,−1

−16

3

(− 46 + 44x+ 9x2

)H0,1,1 +

16

3(221 + 232x)H0,−1,−1 + 16(63 + 26x)H0,0,0,1

+64(1 + 9x)H0,0,1,1 − 128(x− 1)H0,−1,0,1 −4

9

(3326 + 864x+ 75x2

)ζ2 −

4

5(879 + 490x)ζ22

+16

3

(− 946 + 100x+ 9x2

)ζ3

]+

[−4

3(2971 + 8427x) + (1 + 2x)

(− 64H0,0,1,−1

−64H0,0,−1,1 − 96H0,0,−1,−1 + 64H0,1,1,−1 + 64H0,1,−1,1 + 64H0,1,−1,−1 + 64H0,−1,1,1

+64H0,−1,1,−1 + 64H0,−1,−1,1

)+

[8

3

(1388− 1387x+ 11x2

)+ (−1 + 2x)

(32H0,0,1

+224H0,1,1 −160

3ζ3

)− 8(− 141 + 150x+ 2x2

)H0,1 − 16(x− 1)(27 + x)ζ2

]H1

+

[−8

3(−200 + 203x) + (−1 + 2x)

(− 96H0,1 − 8ζ2

)]H2

1 +8

9

(92− 106x+ 3x2

)H3

1

−20

3(−1 + 2x)H4

1 +

[−4

3

(− 2301 + 412x+ 35x2

)+ 8(19 + 22x)ζ2

]H0,1

+48(3 + 4x)H20,1 +

[−16

3(71 + 131x)− 24(−1 + 10x)ζ2

]H0,−1 − 32(−1 + 4x)H2

0,−1

−16

3

(− 330− 118x+ 3x2

)H0,0,1 −

8

3(155 + 118x)H0,0,−1 +

8

3

(− 577 + 782x

+12x2)H0,1,1 +

16

3(83 + 94x)H0,1,−1 +

16

3(83 + 94x)H0,−1,1 −

16

3(119 + 106x)H0,−1,−1

−64(−7 + 4x)H0,0,0,1 + 32(−5 + 8x)H0,0,0,−1 − 32(7 + 18x)H0,0,1,1 − 32(−7 + 2x)H0,1,1,1

+128(x− 1)H0,−1,0,1 − 768xH0,−1,−1,−1 −2

9(−667 + 5468x)ζ2 −

32

5(−31 + 19x)ζ22

−16

9

(344 + 695x+ 18x2

)ζ3

]H0 +

[2

3

(− 218 + 1781x+ 22x2

)+ (1 + 2x)

(32H0,1,−1

+32H0,−1,1

)+

[2

3(x− 1)(1559 + 35x) + (−1 + 2x)

(− 32H0,1 − 4ζ2

)]H1

+2

3

(− 209 + 214x+ 6x2

)H2

1 −8

3(139 + 154x)H0,1 +

4

3(107 + 94x)H0,−1

+32(−1 + 4x)H0,0,1 − 48(−1 + 2x)H0,0,−1 − 144H0,1,1 + 16(−1 + 10x)H0,−1,−1

195

Page 206: and 3-loop corrections to hard scattering processes in QCD

−2

3

(− 87− 226x+ 12x2

)ζ2 +

16

3(−31 + 20x)ζ3

]H2

0 +

[2

9

(201 + 324x+ 35x2

)+8

3(x− 1)(25 + x)H1 +

8

3(−1 + 2x)H2

1 −64

3(1 + x)H0,1 +

16

3(−1 + 4x)H0,−1

−16

3(−2 + 5x)ζ2

]H3

0 +1

9

(71 + 94x+ 6x2

)H4

0 −8

15(x− 1)H5

0 +

[8

3(−752 + 739x)

+(−1 + 2x)(− 80H2

0,1 + 64H0,0,0,1 − 96H0,0,1,1 + 128H0,1ζ2 − 184ζ22)

+8

3

(− 763 + 806x+ 12x2

)H0,0,1 +

8

3(−83 + 94x)H0,1,1 +

4

9(−2189 + 2122x)ζ2

−8

9

(− 919 + 938x+ 36x2

)ζ3

]H1 +

[−2

3

(167− 226x+ 22x2

)+ (−1 + 2x)

(176H0,0,1

+16H0,1,1 −208

3ζ3)− 4

3

(101− 118x+ 6x2

)ζ2

]H2

1 +

[−2

9

(415− 440x+ 61x2

)+32

3(−1 + 2x)ζ2

]H3

1 +1

9

(− 203 + 190x+ 24x2

)H4

1 +4

3(−1 + 2x)H5

1

+

[(1 + x)

(128H0,1,−1 + 128H0,−1,1 −

2576

3ζ2)+ (1 + 2x)

(−4

3H4

0 − 32H0,0,0,1

−160H0,0,0,−1 + 128H0,0,1,1 + 192H0,0,1,−1 + 192H0,0,−1,1 + 128H0,1,−1,−1 + 128H0,−1,0,1

+128H0,−1,1,−1 + 128H0,−1,−1,1 + 384H0,−1,−1,−1 −376

5ζ22

)+

[1712(1 + x)

+(1 + 2x)(64H0,0,1 + 96H0,0,−1 − 64H0,1,1 − 64H0,1,−1 − 64H0,−1,1 + 128H0,−1,−1 − 64ζ3

)−16

3(83 + 94x)H0,1 +

16

3(95 + 106x)H0,−1 +

8

3(71 + 82x)ζ2

]H0 +

[1144(1 + x)

3

+(1 + 2x)(− 32H0,1 − 16H0,−1 + 36ζ2

)]H2

0 −4

9(59 + 70x)H3

0 +[192(1 + x)

+96(1 + 2x)ζ2

]H0,1 +

[4000(1 + x)

3− 16(1 + 2x)ζ2

]H0,−1 +

32

3(89 + 100x)H0,0,1

−16

3(71 + 82x)H0,0,−1 +

32

3(107 + 118x)H0,−1,−1 − 8(111 + 122x)ζ3

]H−1

+

[(1 + 2x)

(−8

3H3

0 − 96H0,0,1 − 64H0,1,−1 − 64H0,−1,1 − 192H0,−1,−1 + 160ζ3

)+

[−2000

3(1 + x) + (1 + 2x)

(32H0,1 − 64H0,−1 + 40ζ2

)]H0 −

4

3(119 + 130x)H2

0

−64(1 + x)H0,1 −16

3(107 + 118x)H0,−1 +

8

3(131 + 142x)ζ2

]H2

−1 +

[(1 + 2x)

(643H2

0

+64

3H0,1 + 64H0,−1 −

160

3ζ2

)+

16

9(107 + 118x)H0

]H3

−1 +

[−8

3

(1442− 779x+ 22x2

)−96(5 + 8x)H0,0,1 + 160(−1 + 2x)H0,1,1 − 32(17 + 2x)ζ2 + 160(1 + 2x)ζ3

]H0,1

−8

3

(− 170 + 178x+ 3x2

)H2

0,1 +

[−1712(1 + x) + (−1 + 4x)

(64H0,0,−1 + 128H0,−1,−1

)−32(−7 + 10x)H0,0,1 −

8

3(119 + 106x)ζ2 + 64(−2 + 5x)ζ3

]H0,−1 + 64H2

0,−1

196

Page 207: and 3-loop corrections to hard scattering processes in QCD

+

[4

3

(− 3019− 472x+ 35x2

)− 8(23 + 14x)ζ2

]H0,0,1 +

[16

3(−1 + 119x)

+24(−5 + 14x)ζ2

]H0,0,−1 +

[−4

3

(824− 1048x+ 61x2

)− 16(−11 + 34x)ζ2

]H0,1,1

+[−192(1 + x)− 96(1 + 2x)ζ2

]H0,1,−1 +

[−192(1 + x)− 96(1 + 2x)ζ2

]H0,−1,1

+

[−4000

3(1 + x)− 16(−5 + 14x)ζ2

]H0,−1,−1 + 16

(− 163 + 12x+ 3x2

)H0,0,0,1

+8

3(203 + 142x)H0,0,0,−1 −

8

3

(− 517 + 926x+ 12x2

)H0,0,1,1 −

32

3(89 + 100x)H0,0,1,−1

−32

3(89 + 100x)H0,0,−1,1 +

16

3(71 + 82x)H0,0,−1,−1 +

8

3

(5 + 2x+ 18x2

)H0,1,1,1

−16

3(95 + 106x)H0,−1,0,1 −

32

3(107 + 118x)H0,−1,−1,−1 + 32(−27 + 2x)H0,0,0,0,1

+32(83 + 128x)H0,0,0,1,1 + 128(−5 + 8x)H0,0,0,1,−1 + 128(−5 + 8x)H0,0,0,−1,1

−32(−11 + 14x)H0,0,0,−1,−1 + 32(29 + 44x)H0,0,1,0,1 + 32(−7 + 10x)H0,0,1,0,−1

−256(−2 + 7x)H0,0,1,1,1 − 32(−7 + 20x)H0,1,0,1,1 − 32(1 + 4x)H0,1,1,1,1

+

[2

3

(344 + 4849x+ 44x2

)+

8

3(139 + 166x)ζ3

]ζ2 −

8

15

(− 3215− 348x+ 63x2

)ζ22

+4

3

(1156 + 2164x+ 61x2

)ζ3 − 544(−2 + x)ζ5

+ CACFTF

1

3(−1555 + 3178x)

+(1 + x)(128H0,1,−1,−1 + 128H0,−1,1,−1 + 128H0,−1,−1,1

)+ (1 + 2x)

(16H4

−1H0

−32H0,0,0,0,−1 + 64H0,0,0,1,−1 + 64H0,0,0,−1,1 − 64H0,0,0,−1,−1 + 32H0,0,1,0,−1 + 128H0,0,1,1,−1

+128H0,0,1,−1,1 + 192H0,0,1,−1,−1 + 32H0,0,−1,0,1 + 32H0,0,−1,0,−1 + 128H0,0,−1,1,1

+192H0,0,−1,1,−1 + 192H0,0,−1,−1,1 + 256H0,0,−1,−1,−1 + 128H0,1,−1,−1,−1 + 64H0,−1,0,1,1

+128H0,−1,0,1,−1 + 128H0,−1,0,−1,1 + 128H0,−1,0,−1,−1 + 128H0,−1,1,−1,−1 + 128H0,−1,−1,0,1

+128H0,−1,−1,1,−1 + 128H0,−1,−1,−1,1 + 384H0,−1,−1,−1,−1

)+ L3

M

[2

3(−155 + 144x)

+

[4

9(−131 + 214x) +

64

3(−1 + 2x)H1

]H0 −

32

3(1 + x)H2

0 +8

9(−173 + 166x)H1

+64

3(−1 + 2x)H2

1 − 32(1 + 2x)H0,1 +32

3(5 + 2x)ζ2

]+ L2

M

[1

3(435− 272x)

+(−1 + 2x)(32H3

1 −128

3H0,1

)+ (1 + 2x)

[(− 24H0 + 8H2

0 + 32H0,1 − 32ζ2)H−1 + 24H0,−1

+16H0,0,−1 − 48H0,1,1 − 32H0,1,−1 − 32H0,−1,1

]+

[2

9(155 + 3026x) + 320(x− 1)H1

+48(−1 + 2x)H21 − 16(5 + 2x)H0,1 − 16(1 + 2x)H0,−1 − 16(−3 + 2x)ζ2

]H0 +

[−8(1 + 6x)

+8(−1 + 2x)H1

]H2

0 +

[8

9(−611 + 571x)− 96(−1 + 2x)ζ2

]H1 +

8

3(−94 + 95x)H2

1

+64(2 + x)H0,0,1 −8

3(−95 + 88x)ζ2 − 16(−1 + 8x)ζ3

]+ LM

[1

18(−57083 + 54650x)

+(1 + x)[−32(7 + 3x)H0,1,−1 − 32(7 + 3x)H0,−1,1

]+ (1 + 2x)

(1603

H3−1H0 − 96H0,0,1,−1

−96H0,0,−1,1 − 32H0,0,−1,−1 − 64H0,1,1,−1 − 64H0,1,−1,1 − 256H0,1,−1,−1 − 64H0,−1,1,1

197

Page 208: and 3-loop corrections to hard scattering processes in QCD

−256H0,−1,1,−1 − 256H0,−1,−1,1 − 320H0,−1,−1,−1

)+

[2

27(−15607 + 7346x)

+

[−4

9

(− 1979 + 2068x+ 66x2

)+ (−1 + 2x)

(32H0,1 − 96H0,−1 − 256ζ2

)]H1

−8(−43 + 39x)H21 − 16(−1 + 2x)H3

1 +8

3

(− 65 + 34x+ 18x2

)H0,1 + 8(−41 + 44x)H0,−1

+16(−7 + 30x)H0,0,1 − 16(−1 + 22x)H0,0,−1 + 48(5 + 6x)H0,1,1 + 32(−5 + 2x)H0,1,−1

+32(−5 + 2x)H0,−1,1 − 128(1 + x)H0,−1,−1 + 24(17 + 28x+ 8x2

)ζ2 + 16(45 + 32x)ζ3

]H0

+

[−2

9

(68 + 3197x+ 390x2

)− 4(− 59 + 56x+ 6x2

)H1 − 24(−1 + 2x)H2

1

−16(−5 + 4x)H0,1 − 16(3 + 4x)H0,−1 − 8(5 + 18x)ζ2

]H2

0 +

[−2

3

(− 39 + 46x+ 36x2

)+8

3(−1 + 2x)H1

]H3

0 +2

3(5 + 8x)H4

0 +

[8

27(−8663 + 8914x) + (−1 + 2x)

(160H0,0,1

+192H0,0,−1 − 96H0,1,1 − 672ζ3)+ 48(−11 + 10x)H0,1 + 8

(13− 18x+ 6x2

)ζ2

]H1

+

[4

9

(− 1435 + 1322x+ 33x2

)+ (−1 + 2x)

(96H0,1 − 128ζ2

)]H2

1 +8

9

(− 182 + 166x

+27x2)H3

1 + 16(−1 + 2x)H41 +

[(1 + 2x)

(1043

H30 + 96H0,0,1 + 32H0,0,−1 + 64H0,1,1

+256H0,1,−1 + 256H0,−1,1 + 320H0,−1,−1 − 384ζ3

)+[16(1 + x)(1 + 9x)

+(1 + 2x)(64H0,1 + 128H0,−1 − 352ζ2

)]H0 + 4

(41 + 44x+ 12x2

)H2

0

+32(1 + x)(7 + 3x)H0,1 + 48(11 + 12x+ 2x2

)H0,−1 − 8

(61 + 76x+ 18x2

)ζ2

]H−1

+[(1 + 2x)

(− 72H2

0 − 128H0,1 − 160H0,−1 + 208ζ2)− 24

(11 + 12x+ 2x2

)H0

]H2

−1

+

[4

9

(− 4939 + 1742x+ 132x2

)+ 64(−4 + 3x)ζ2

]H0,1 − 192xH2

0,1 +[−16(1 + x)(1 + 9x)

−96(−1 + 2x)H0,1 + 16(13 + 14x)ζ2

]H0,−1 − 64xH2

0,−1 −16

3

(100 + 76x+ 27x2

)H0,0,1

−8(− 41 + 132x+ 12x2

)H0,0,−1 +

8

3

(− 193 + 62x+ 54x2

)H0,1,1

−48(11 + 12x+ 2x2

)H0,−1,−1 − 16(1 + 50x)H0,0,0,1 + 32(1 + 32x)H0,0,0,−1

−32(3 + 10x)H0,0,1,1 + 64(−3 + 4x)H0,−1,0,1 +8

9

(1498 + 163x+ 129x2

)ζ2 +

24

5(25 + 38x)ζ22

+16(221− 94x+ 6x2

)ζ3

]+

[−2

3(−627 + 3853x) + (−1 + 2x)

(163H4

1 + 288H0,1,1,1

)+(1 + 2x)

(16H2

0,−1 + 16H0,0,0,−1 + 64H0,0,1,−1 + 64H0,0,−1,1 + 96H0,0,−1,−1 − 64H0,1,1,−1

−64H0,1,−1,1 − 64H0,1,−1,−1 + 32H0,−1,0,1 − 64H0,−1,1,1 − 64H0,−1,1,−1 − 64H0,−1,−1,1

+192H0,−1,−1,−1

)+

[−4

3

(− 872 + 851x+ 80x2

)+ (−1 + 2x)

(−128H0,0,1 − 416H0,1,1

+608

3ζ3

)+

8

3

(− 433 + 404x+ 18x2

)H0,1 +

4

3

(− 181 + 122x+ 36x2

)ζ2

]H1

198

Page 209: and 3-loop corrections to hard scattering processes in QCD

+[8(−16 + 11x) + (−1 + 2x)

(160H0,1 − 64ζ2

)]H2

1 − 8x2H31 +

[8

3

(− 43 + 406x+ 47x2

)−24(−3 + 14x)ζ2

]H0,1 − 8(19 + 10x)H2

0,1 +[−80(x− 1) + 48(1 + 2x)ζ2

]H0,−1

+16

3

(− 22− 118x+ 9x2

)H0,0,1 + 8(3 + 8x)H0,0,−1 −

8

3

(− 791 + 712x+ 36x2

)H0,1,1

−48H0,1,−1 − 48H0,−1,1 + 16(3 + 4x)H0,−1,−1 + 64(5 + 4x)H0,0,0,1 + 32(7 + 18x)H0,0,1,1

−2

9(2590 + 5197x)ζ2 −

8

5(131 + 28x)ζ22 +

4

9

(− 631− 58x+ 216x2

)ζ3

]H0

+

[1

3

(556 + 1519x− 160x2

)+ (1 + 2x)

(− 32H0,1,−1 − 32H0,−1,1 − 32H0,−1,−1

)+

[−2

3

(− 433 + 340x+ 94x2

)+ (−1 + 2x)

(80H0,1 + 4ζ2

)]H1 − 2

(− 67 + 56x+ 6x2

)H2

1

+4

3(−109 + 266x)H0,1 + 4H0,−1 − 64(2 + 3x)H0,0,1 − 8(−23 + 22x)H0,1,1

+1

3

(83 + 218x+ 72x2

)ζ2 +

8

3(−5 + 22x)ζ3

]H2

0 +

[1

9

(241− 2020x− 188x2

)−4

9

(− 299 + 286x+ 18x2

)H1 −

16

3(−1 + 2x)H2

1 +32

3(2 + 5x)H0,1 −

8

3(1 + 2x)H0,−1

+4(1 + 4x)ζ2

]H3

0 +

[1

18

(83− 70x− 36x2

)− 4

3(−1 + 2x)H1

]H4

0 +2

15H5

0

+

[−32

3(−215 + 208x) + (−1 + 2x)

(144H2

0,1 − 64H0,0,0,1 + 96H0,0,1,1 +1976

5ζ22

)+[128(x− 1)− 192(−1 + 2x)ζ2

]H0,1 −

8

3

(− 857 + 808x+ 36x2

)H0,0,1

−8

3(−341 + 376x)H0,1,1 −

4

9(−1649 + 1348x)ζ2 +

8

9

(− 1759 + 1718x+ 108x2

)ζ3

]H1

+

[4

3

(709− 844x+ 40x2

)+ (−1 + 2x)

(−272H0,0,1 − 80H0,1,1 +

320

3ζ3

)+8

3(−83 + 94x)H0,1 + 8

(48− 55x+ 3x2

)ζ2

]H2

1 +

[4

9

(477− 502x+ 97x2

)+(−1 + 2x)

(64H0,1

3− 128ζ2

3

)]H3

1 −2

9

(− 178 + 143x+ 36x2

)H4

1 −8

3(−1 + 2x)H5

1

+

[(1 + x)

(− 128H0,1,−1 − 128H0,−1,1

)+ (1 + 2x)

(43H4

0 + 32H0,0,0,1 + 160H0,0,0,−1

−128H0,0,1,1 − 192H0,0,1,−1 − 192H0,0,−1,1 − 128H0,1,−1,−1 − 128H0,−1,0,1 − 128H0,−1,1,−1

−128H0,−1,−1,1 − 384H0,−1,−1,−1 +296

5ζ22

)+[−16(11 + 19x) + (1 + 2x)

(− 64H0,0,1

−96H0,0,−1 + 64H0,1,1 + 64H0,1,−1 + 64H0,−1,1 − 128H0,−1,−1 + 64ζ3)+ 48H0,1

−16(7 + 4x)H0,−1 + 8(16 + 19x)ζ2

]H0 +

[−8(11 + 5x) + (1 + 2x)

(32H0,1 + 16H0,−1

−28ζ2)]H2

0 −4

3(5 + 8x)H3

0 +[−192(1 + x)− 96(1 + 2x)ζ2

]H0,1 +

[32(−5 + x)

+48(1 + 2x)ζ2

]H0,−1 − 32(5 + 2x)H0,0,1 − 16(1 + 4x)H0,0,−1

−32(11 + 8x)H0,−1,−1 + 16(17 + 11x)ζ2 + 8(37 + 28x)ζ3

]H−1 +

[(1 + 2x)

(83H3

0 + 96H0,0,1

199

Page 210: and 3-loop corrections to hard scattering processes in QCD

+64H0,1,−1 + 64H0,−1,1 + 192H0,−1,−1 − 160ζ3

)+[−16(−5 + x) + (1 + 2x)

(− 32H0,1

+64H0,−1 − 56ζ2)]H0 + 12(5 + 4x)H2

0 + 64(1 + x)H0,1 + 16(11 + 8x)H0,−1

−8(19 + 16x)ζ2

]H2

−1 +

[(1 + 2x)

(−64

3H2

0 −64

3H0,1 − 64H0,−1 +

160

3ζ2

)−16

3(11 + 8x)H0

]H3

−1 +

[4

3

(− 272 + 421x+ 160x2

)+ 16(25 + 46x)H0,0,1

−32(−5 + 22x)H0,1,1 −4

3(−253 + 482x)ζ2 − 32(3 + 26x)ζ3

]H0,1

+8

3

(− 247 + 296x+ 9x2

)H2

0,1 +(16(11 + 19x) + (1 + 2x)

(− 32H0,0,1 − 32H0,0,−1

−64H0,−1,−1 − 16ζ3)− 8(12 + 11x)ζ2

)H0,−1 + 32H2

0,−1 +

[−4

3

(93 + 1146x+ 94x2

)+8(1 + 70x)ζ2

]H0,0,1 +

[16(1 + 15x)− 40(1 + 2x)ζ2

]H0,0,−1 +

[8

3

(774− 577x+ 97x2

)+16(−13 + 62x)ζ2

]H0,1,1 +

[192(1 + x) + 96(1 + 2x)ζ2

]H0,1,−1 +

[192(1 + x)

+96(1 + 2x)ζ2

]H0,−1,1 +

[−32(−5 + x)− 16(1 + 2x)ζ2

]H0,−1,−1

−8

3

(− 157− 172x+ 54x2

)H0,0,0,1 − 8(7 + 16x)H0,0,0,−1 + 8

(− 187 + 142x+ 12x2

)H0,0,1,1

+32(5 + 2x)H0,0,1,−1 + 32(5 + 2x)H0,0,−1,1 + 16(1 + 4x)H0,0,−1,−1

−8

3

(79− 332x+ 54x2

)H0,1,1,1 + 16(7 + 4x)H0,−1,0,1 + 32(11 + 8x)H0,−1,−1,−1

−16(19 + 2x)H0,0,0,0,1 − 48(49 + 86x)H0,0,0,1,1 − 16(55 + 106x)H0,0,1,0,1

+64(−8 + 55x)H0,0,1,1,1 + 16(−13 + 98x)H0,1,0,1,1 + 16(−7 + 26x)H0,1,1,1,1

+

[192 ln(2)(−1 + 2x) +

1

6

(− 11243 + 8530x− 640x2

)− 4

3(151 + 178x)ζ3

]ζ2

+8

15

(− 1831 + 1325x+ 189x2

)ζ22 −

2

3

(1289− 2624x+ 388x2

)ζ3 + 8(7 + 22x)ζ5

+a

(3)Qg

. (C.177)

C.8 AS(3)gg,Q in z space

A(δ)gg,Q =

as4LM

3TF + a2s

[CFTF (−15 + 4LM) + CATF

2

9(5 + 24LM) +

16L2M

9T 2F

]+a3s

64L3

M

27T 3F + CANFT

2F

[224

27− 44LM

3− 4ζ2

3

]+ CFNFT

2F

[118

3

−268LM

9+ 28ζ2

]+ CAT

2F

[− 8

27− 2LM +

56L2M

3− 44

3ζ2

]+ CFT

2F

[782

9

−584LM

9+

40L2M

3− 40

3ζ2

]+ C2

ATF

[−616

27+ LM

(2779

+16

3ζ22 +

160

9ζ3

)+L2

M

(−2

3+

16ζ33

)+(4− 8ζ3

3

)ζ2

]+ C2

FTF

[−39− 2LM + 16

[−5 + 8 ln(2)

]ζ2

200

Page 211: and 3-loop corrections to hard scattering processes in QCD

−32ζ3

]+ CACFTF

[−1045

6+

736LM

9− 22L2

M

3− 4

3

[−5 + 48 ln(2)

]ζ2 + 16ζ3

]−64

27T 3F ζ3 + a

(3),δgg,Q

, (C.178)

A(+)gg,Q =

−a2s8(28 + 30LM + 9L2

M

)27(x− 1)

CATF + a3s

CANFT

2F

[1

x− 1

[− 2176LM

81− 64L3

M

27

− 4

243

(− 2624− 441ζ2 + 81xζ2 − 144ζ3

)+

32

9H0

]+

4

3ζ2

]+ CAT

2F

[1

x− 1

[− 320LM

9

−640L2M

27− 224L3

M

27− 4

81

(− 1312− 717ζ2 + 297xζ2 − 168ζ3

)+

16

3H0

]+

44

3ζ2

]

+C2ATF

1

x− 1

[176L3

M

27− 4

243

(5668 + 207ζ2 − 243xζ2 + 324ζ22 + 396ζ3 − 162ζ2ζ3

+162xζ2ζ3)+(−88

9+

32H1ζ23

)H0 +

8

3H2

0ζ2

]+ LM

[1

x− 1

[− 16

9H2

0

(10 + 3H1

)+

8

81

(− 155 + 360ζ2 − 54ζ22 + 54xζ22 − 1044ζ3 + 180xζ3

)+(−16

3− 640

9H1

+32

3H0,1 −

64

3H0,−1

)H0 −

64

3H0,0,1 +

128

3H0,0,−1

]− 16

3ζ22 −

160

9ζ3

]

+L2M

[1

x− 1

[8

9

(−23 + 12ζ2 − 6ζ3 + 6xζ3

)− 16

3H2

0 −64

3H0H1

]− 16

3ζ3

]

+(−4 +

8ζ33

)ζ2

+ CACFTF

1

x− 1

[−2

9

(233 + 210ζ2 − 288 ln(2)ζ2

−30xζ2 + 288 ln(2)xζ2 + 72ζ3 − 72xζ3)+

8

3LM

(− 5 + 24ζ3

)− 8L2

M

]

+4

3

[−5 + 48 ln(2)

]ζ2 − 16ζ3

+ C2

FTF

16[−5ζ2 + 8 ln(2)ζ2 − 2ζ3

]−16

[−5 + 8 ln(2)

]ζ2 + 32ζ3

+ a

(3),(+)gg,Q

, (C.179)

Areggg,Q =

a2s

CFTF

−56(x− 1) + L2

M

[− 20(x− 1) + 8(1 + x)H0

]+ LM

[−40(x− 1)

−8(−5 + x)H0 + 8(1 + x)H20

]+ 12(3 + x)H0 − 2(−5 + x)H2

0 +4

3(1 + x)H3

0

+CATF

−8

3L2M(−1 + 2x)− 2

27(−337 + 449x) + LM

[−16

9(−14 + 19x) +

16

3(1 + x)H0

]+4

9(22 + x)H0 +

4

3(1 + x)H2

0 +4

3xH1

+ a3s

CFT

2F

(x− 1)

(776ζ29

+80H1ζ2

3

)201

Page 212: and 3-loop corrections to hard scattering processes in QCD

+L3M

[−400

9(x− 1) +

160

9(1 + x)H0

]+ L2

M

[−32

9(x− 1)

(26 + 15H1

)+ (1 + x)

(643H2

0

+64

3H0,1 −

64

3ζ2

)− 64

9(−13 + 8x)H0

]+ LM

[−16

9(x− 1)H1

(52 + 15H1

)+ (1 + x)

(809H3

0

−128

3H0,0,1 +

64

3H0,1,1

)+

32

27

(335− 335x+ 18ζ3 + 18xζ3

)+

[16

27(373 + 55x)

+(1 + x)(128H0,1

3− 128ζ2

3

)− 320

3(x− 1)H1

]H0 −

8

9(−59 + 55x)H2

0 +64

9(−2 + 7x)H0,1 +

64

9(−13 + 8x)ζ2

]+ (1 + x)

(−4

3H4

0 −32

3H0,1ζ2 +

32

3ζ22

)+

16

9

(− 216 + 216x− 25ζ3

+25xζ3)+

[−32

9

(81 + 9x+ 5ζ3 + 5xζ3

)+

8

9(−97 + 41x)ζ2

]H0 +

[−24(3 + x)

−56

3(1 + x)ζ2

]H2

0 +8

3(−5 + x)H3

0

+ CFNFT

2F

L3M

[−320

9(x− 1) +

128

9(1 + x)H0

]+(x− 1)

[(−3712

27− 80ζ2

3

)H1 +

64

9H2

1 −80

9H3

1

]+ LM

[−16

3(x− 1)H1

(32 + 15H1

)+(1 + x)

(323H3

0 −256

3H0,0,1 + 64H0,1,1

)+

64

9

(89− 89x+ 3ζ3 + 3xζ3

)+

[32

9(85 + 19x)

+(1 + x)(256H0,1

3− 256ζ2

3

)− 640

3(x− 1)H1

]H0 −

16

9(−29 + 49x)H2

0 +64

3(−2 + 3x)H0,1

+64

3(−8 + 7x)ζ2

]+ (1 + x)

(−8

9H4

0 +64

3H0,1,1,1 −

96

5ζ22

)+

64

81

(− 494 + 494x− 27ζ3

+90xζ3)+

[−64

81

(341 + 191x+ 18ζ3 + 18xζ3

)− 16

9(19 + 7x)ζ2

]H0 +

[−16(3 + x)

−16

3(1 + x)ζ2

]H2

0 +16

9(−5 + x)H3

0 +

[128

27(11 + 14x) +

32

3(1 + x)ζ2

]H0,1

−64

9(2 + 5x)H0,1,1 −

80

27(29 + 11x)ζ2

+ CANFT

2F

−64

27L3M(−1 + 2x)

+LM

[−32

81(−329 + 397x) + (1 + x)

(323H2

0 +256

9H0,1 −

256

9ζ2

)− 80

27(−20 + 13x)H0

−16

9(−41 + 39x)H1

]+

32

243

(− 1147 + 1475x− 18ζ3 + 36xζ3

)+

[−16

81(295 + 31x)

−32

9(1 + x)ζ2

]H0 −

16

27(22 + x)H2

0 −32

27(1 + x)H3

0 −256

27xH1 +

16

9xH2

1

+32

27(−14 + 19x)ζ2

+ CAT

2F

−224

27L3M(−1 + 2x) + L2

M

[−128

27(−14 + 19x)

+128

9(1 + x)H0

]+ LM

[−32

9(−37 + 47x) + (1 + x)

(809H2

0 +128

9H0,1 −

128

9ζ2

)− 8

27(−188 + 61x)H0 −

8

9(−41 + 35x)H1

]+

16

81

(− 1147 + 1475x− 42ζ3 + 84xζ3

)+

[− 8

27(295 + 31x)− 112

9(1 + x)ζ2

]H0 −

8

9(22 + x)H2

0 −16

9(1 + x)H3

0 −128

9xH1 +

8

3xH2

1

202

Page 213: and 3-loop corrections to hard scattering processes in QCD

+112

27(−14 + 19x)ζ2

+ C2

ATF

176

27L3M(−1 + 2x) + LM

[(1 + x)

[16(2− 35x+ 2x2

)H2

−1H0

3x

+(−1832

9+ 96ζ2

)H0,1 +

32(2− 35x+ 2x2

)H0,−1,−1

3x− 192H0,0,0,1 + 192H0,0,0,−1

]− 4

81

(39029− 38719x− 10512ζ3 + 6696xζ3 + 1080x2ζ3

)+

[− 4

27

(2870 + 7703x− 1296ζ3

)−64

9(−19 + 29x)H1 −

8

3(−37 + 17x)H0,1 +

64(1 + 2x2

)H0,−1

3x+ 96(1 + x)H0,0,1

+32(−5 + x)H0,0,−1 + 192(x− 1)H0,−1,−1 −8(− 59− 2x+ 69x2 + 16x3

)3(1 + x)

ζ2

]H0

+

[4(84 + 169x+ 81x2 + 36x3

)9(1 + x)

+4

3(−29 + 25x)H1 − 24(1 + x)H0,1 − 48(x− 1)H0,−1

+8(5 + 3x)ζ2

]H2

0 +8

9

(1− 12x+ 4x2

)H3

0 −4

3H4

0 +

[4

9(−1087 + 1065x)

−16(x− 1)(2 + 35x+ 2x2

)3x

ζ2

]H1 +

[(1 + x)

[−8(4− 31x+ 4x2

)H2

0

3x

−32(2− 35x+ 2x2

)H0,−1

3x+

16(2− 9x+ 2x2

)ζ2

x

]− 16

9x(1 + x)

(18− 233x− 462x2

−233x3 + 18x4)H0 −

64(1 + x)3H0,1

3x

]H−1 +

[16

9x(1 + x)

(18− 233x− 462x2

−233x3 + 18x4)+ 96(x− 1)ζ2

]H0,−1 − 96(x− 1)H2

0,−1 +16

3

(− 23 + 31x+ 4x2

)H0,0,1

+16(1 + 4x)

(− 4− 11x+ x2

)3x

H0,0,−1 +64(1 + x)3H0,1,−1

3x+

64(1 + x)3H0,−1,1

3x

−8(− 539− 960x− 425x2 + 36x3

)9(1 + x)

ζ2 −24

5(13 + 23x)ζ22 −

160

9ζ3

]

+L2M

[8

9

(− 100 + 77x+ 6ζ3

)+

[−32

3(−3 + 13x)− 64

3(−1 + 2x)H1

]H0

+64(2 + 3x+ 2x2

)3(1 + x)

H−1H0 +16(3 + 4x)H2

0

3(1 + x)− 64

(2 + 3x+ 2x2

)3(1 + x)

H0,−1 +32(1 + 2x)2ζ2

3(1 + x)

−16

3ζ3

]− 8

243

(− 11843 + 14677x− 198ζ3 + 396xζ3

)+

[44

81(295 + 31x) +

8

9(−7 + 89x)ζ2

+32

3(−1 + 2x)H1ζ2

]H0 +

[44(22 + x)

27− 8(3 + 4x)ζ2

3(1 + x)

]H2

0 +88

27(1 + x)H3

0 +704

27xH1

−44

9xH2

1 +

[− 4

27

(− 563 + 559x+ 18ζ3

)+

8

3ζ3

]ζ2 −

32(2 + 3x+ 2x2

)3(1 + x)

H−1H0ζ2

+32(2 + 3x+ 2x2

)3(1 + x)

H0,−1ζ2 −16(1 + 2x)2ζ22

3(1 + x)

+ CACFTF

L3M

[8

9(x− 1)

(223 + 30H1

)+(1 + x)

(−32H0,1

3+

32ζ23

)− 16

9(53 + 38x)H0 +

16

3(−2 + x)H2

0

]+ (1 + x)

[−160

3H3

−1H0

+(224H0 + 40H2

0 + 160H0,−1 − 80ζ2)H2

−1 + 320H0,0,1,−1 + 320H0,0,−1,1 − 160H0,0,−1,−1

+160H0,−1,0,1 + 320H0,−1,−1,−1 − 864H0,0,0,1,1 − 288H0,0,1,0,1 + 128H0,0,1,1,1 + 32H0,1,0,1,1

203

Page 214: and 3-loop corrections to hard scattering processes in QCD

+32H0,1,1,1,1

]+ (x− 1)

[4

15H5

0 +(− 80− 20ζ2

)H2

1 −88

3H3

1 −10

3H4

1 + 80H20,1

+128H0,0,0,0,−1 − 384H0,0,0,1,−1 − 384H0,0,0,−1,1 + 192H0,0,0,−1,−1 − 128H0,0,1,0,−1

−128H0,0,−1,0,1 + 64H0,0,−1,0,−1 + 512H0,0,−1,−1,−1 + 256H0,−1,0,−1,−1

]+L2

M

[(1 + x)

(160H−1H0 − 160H0,−1 − 32H0,0,1

)+ (x− 1)

(−32

3H3

0 +440

3H1 + 128H0,0,−1

)−8

9

(862− 853x− 144ζ3 + 72xζ3

)+

[−8

9(187 + 571x) + (x− 1)

(− 80H1 − 64H0,−1 − 32ζ2

)+32(1 + x)H0,1

]H0 +

56

3(1 + 4x)H2

0 −32

3(10 + x)H0,1 +

16

3(35 + 17x)ζ2

]

+LM

[(x− 1)

[[−7720

9+ 160H0,1 +

32(2 + 47x+ 2x2

)ζ2

3x

]H1 +

4

3H2

1 −40

3H3

1 + 224H20,−1

]

+(1 + x)

[−16

(4− 79x+ 4x2

)H2

−1H0

3x− 32H2

0,1 −32(4− 79x+ 4x2

)H0,−1,−1

3x− 32H0,0,1,1

+32H0,1,1,1

]+

8

27

(3845− 3890x+ 990ζ3 + 2016xζ3 + 360x2ζ3

)+

[(x− 1)

(−2960

3H1

−120H21 − 448H0,−1,−1

)− 8

27

(− 4205 + 2956x+ 216ζ3 + 324xζ3

)+

16

3(38 + 107x)H0,1

−16(8 + 9x+ 93x2

)H0,−1

3x− 192(1 + 2x)H0,0,1 + 64(3 + x)H0,0,−1 + 96(1 + x)H0,1,1

+64

3

(− 11 + 13x+ 4x2

)ζ2

]H0 +

[−4

9

(− 1261 + 659x+ 108x2

)+(x− 1)

(− 232H1 + 48H0,−1

)+ (1 + x)

(112H0,1 − 96ζ2

)]H2

0 −16

9

(− 79− 31x+ 4x2

)H3

0

−4

3(−11 + 7x)H4

0 +

[(1 + x)

[16(18− 37x+ 18x2

)H0

3x+

8(8− 11x+ 8x2

)H2

0

3x

+32(4− 79x+ 4x2

)H0,−1

3x− 16

(4− 21x+ 4x2

)ζ2

x

]+

128(1 + x)3H0,1

3x

]H−1

+

[272

9(−19 + 44x)− 256(1 + x)ζ2

]H0,1 +

[−16(1 + x)

(18− 37x+ 18x2

)3x

−224(x− 1)ζ2

]H0,−1 −

16

3

(131 + 179x+ 8x2

)H0,0,1 −

16(− 8− 21x− 189x2 + 8x3

)3x

H0,0,−1

−16

3(−19 + 29x)H0,1,1 −

128(1 + x)3H0,1,−1

3x− 128(1 + x)3H0,−1,1

3x+ 96(1 + 7x)H0,0,0,1

−96(3 + 5x)H0,0,0,−1 +16

9

(− 289− 193x+ 54x2

)ζ2 +

16

5(89 + 73x)ζ22

]− 2

9

(− 34613

+34846x+ 3860ζ3 + 6472xζ3 + 2520ζ5 − 1080xζ5)+

[(1 + x)

(− 48H2

0,1 − 160H0,1,−1

−160H0,−1,1 + 128H0,0,1,1 − 64H0,1,1,1

)+ (x− 1)

[(1344 + 240H0,1 + 40ζ2

)H1 + 112H2

1

+80

3H3

1 + 32H20,−1 − 96H0,0,0,−1 − 64H0,−1,0,1 + 128H0,−1,−1,−1

]+

8

9

(2676 + 5541x

204

Page 215: and 3-loop corrections to hard scattering processes in QCD

+178ζ3 + 598xζ3)+[224(−6 + x)− 16(1 + x)ζ2

]H0,1 +

[32(1 + 8x) + 48(x− 1)ζ2

]H0,−1

−32(29 + 11x)H0,0,1 + 16(13 + 5x)H0,0,−1 − 16(−21 + 25x)H0,1,1 + 32(9 + 5x)H0,−1,−1

+64(−5 + 2x)H0,0,0,1 +4

9(127 + 745x)ζ2 +

16

5(−38 + 5x)ζ22

]H0 +

[(x− 1)

(− 424H1

−20H21 + 32H0,0,−1 − 32H0,−1,−1

)− 4

3

(− 192 + 441x− 56ζ3 + 52xζ3

)+ 8(29 + 19x)H0,1

−8(9 + 5x)H0,−1 − 32(−2 + x)H0,0,1 + 16(1 + x)H0,1,1 −8

3(−2 + 19x)ζ2

]H2

0

+

[−4

9(−28 + 5x) + (x− 1)

(−16

3H0,−1 + 8ζ2

)]H3

0 −2

9(1 + 4x)H4

0

+

[(x− 1)

(−400H0,0,1 − 80H0,1,1 −

460

3ζ2

)+

8

3

(81− 75x− 50ζ3 + 50xζ3

)]H1

+

[(1 + x)

[(− 672 + 160H0,1 − 160H0,−1 − 120ζ2

)H0 − 112H2

0 +40

3H3

0 − 448H0,−1

−320H0,0,1 + 160H0,0,−1 − 320H0,−1,−1 + 224ζ2

]+ 240

(ζ3 + xζ3

)]H−1 +

[−40

3

(− 96 + 93x

+4ζ3 + 4xζ3)+ 160(1 + x)H0,0,1 +

8

3(32 + 5x)ζ2

]H0,1 +

[−96

(− 7− 7x− ζ3 + xζ3

)+(x− 1)

(128H0,0,1 − 64H0,0,−1 − 128H0,−1,−1

)+ 8(23 + 15x)ζ2

]H0,−1 − 64H2

0,−1

+[16(115 + 29x) + 16(1 + x)ζ2

]H0,0,1 +

[−32(−5 + 9x)− 96(x− 1)ζ2

]H0,0,−1

+[−8(−30 + 31x) + 16(1 + x)ζ2

]H0,1,1 +

[448(1 + x) + 64(x− 1)ζ2

]H0,−1,−1

+48(29 + 3x)H0,0,0,1 − 16(17 + 5x)H0,0,0,−1 + 16(−17 + 28x)H0,0,1,1 + 96xH0,1,1,1

−128(−4 + x)H0,0,0,0,1 −4

9

(− 487 + 2179x+ 258ζ3 + 222xζ3

)ζ2 −

8

15(1402 + 229x)ζ22

−16ζ3

+ C2

FTF

L3M

[−4

3(x− 1)

(13 + 20H1

)+ (1 + x)

(83H2

0 +32

3H0,1 −

32

3ζ2

)−16

3(−2 + 3x)H0

]+ (x− 1)

[(280− 80H0,1 + 100ζ2

)H2

1 + 24H31 +

10

3H4

1

]+(1 + x)

(− 2

15H5

0 − 32H0,0,1,1 + 192H0,0,0,0,1 + 768H0,0,0,1,1 + 320H0,0,1,0,1 − 416H0,0,1,1,1

−192H0,1,0,1,1 − 32H0,1,1,1,1

)+ L2

M

[(1 + x)

(163H3

0 − 32H0,0,1

)+ 8(25− 25x+ 4ζ3 + 4xζ3

)+[−8(−19 + 7x) + (1 + x)

(32H0,1 − 32ζ2

)− 80(x− 1)H1

]H0 − 16(−3 + 2x)H2

0

−120(x− 1)H1 + 16(1 + 5x)H0,1 − 96ζ2

]+ LM

[(x− 1)

[(− 200− 160H0,1 − 256ζ2

)H1

−20H21 +

40

3H3

1 − 128H20,−1

]+ (1 + x)

[−256H2

−1H0 + 2H40 +

[−32

(2 + 3x+ 2x2

)H0

x

+128H20 + 512H0,−1 − 256ζ2

]H−1 + 32H2

0,1 − 512H0,−1,−1 − 416H0,0,0,1 + 384H0,0,0,−1

−32H0,1,1,1

]+ 8(− 31 + 31x− 70ζ3 + 54xζ3

)+

[(1 + x)

(288H0,0,1 − 64H0,1,1

)

205

Page 216: and 3-loop corrections to hard scattering processes in QCD

+(x− 1)(168H1 + 80H2

1 + 256H0,−1 + 256H0,−1,−1

)− 4(− 13 + 133x− 16ζ3 + 48xζ3

)−64(−3 + 4x)H0,1 − 256H0,0,−1 − 416ζ2

]H0 +

[2(69 + 73x+ 16x2

)+(x− 1)

(128H1 − 64H0,−1

)+ (1 + x)

(− 64H0,1 − 32ζ2

)]H2

0 −8

3(−11 + 5x)H3

0

+[−8(−67 + 41x) + 128(1 + x)ζ2

]H0,1 +

[32(1 + x)

(2 + 3x+ 2x2

)x

+ 128(x− 1)ζ2

]H0,−1

+32(9 + 8x)H0,0,1 − 256(−1 + 3x)H0,0,−1 + 16(−7 + 13x)H0,1,1 − 16(33− 10x+ 4x2

)ζ2

−32

5(13 + 23x)ζ22

]− 4

3

(− 660 + 660x− 323ζ3 + 17xζ3 + 120ζ5 + 120xζ5

)+

[(x− 1)

[(168− 160H0,1 + 80ζ2

)H1 + 320H0,1,1

]+ (1 + x)

(32H2

0,1 − 160H0,0,0,1

−128H0,0,1,1 +448

5ζ22

)− 8

3

(− 51− 282x− 32ζ3 + 6xζ3

)+[−16(−17 + 27x)

−32(1 + x)ζ2

]H0,1 + 16(9 + 19x)H0,0,1 + 2(83 + 255x)ζ2

]H0 +

[2

3

(− 51− 201x+ 44ζ3

+44xζ3)+ 140(x− 1)H1 − 8(5 + 13x)H0,1 + 48(1 + x)H0,0,1 + 4(−7 + 3x)ζ2

]H2

0

+

[2

3(1 + 83x) + (1 + x)

(−16H0,1

3− 4ζ2

)+

40

3(x− 1)H1

]H3

0 +2

3(−3 + x)H4

0

+

[(x− 1)

(− 32H0,1 + 320H0,0,1 + 320H0,1,1 + 148ζ2

)− 8

3

(27− 27x− 110ζ3 + 110xζ3

)]H1

+

[(1 + x)

(− 128H0,0,1 + 64H0,1,1

)+

8

3

(15 + 174x+ 44ζ3 + 44xζ3

)+ 8(−5 + 13x)ζ2

]H0,1

−32(−3 + 5x)H20,1 +

[8(−45 + 43x)− 32(1 + x)ζ2

]H0,0,1

+[8(−58 + 5x)− 80(1 + x)ζ2

]H0,1,1 − 16(7 + 23x)H0,0,0,1 − 16(−23 + 27x)H0,1,1,1

+2

3

(633− 1389x+ 40ζ3 + 40xζ3

)ζ2 −

8

5(−163 + 23x)ζ22 + 32ζ3

+ a

(3),reggg,Q

. (C.180)

206

Page 217: and 3-loop corrections to hard scattering processes in QCD

D Polarized massive Wilson coefficients

In this section we present the polarized heavy Wilson coefficients for the structure function g1in the asymptotic region Q2 ≫ m2.

D.1 LPSq in N space

LPSq =

1

2

[1− (−1)N

]×a3s

CFNFT

2F

−32(N − 1)2(2 +N)

(22 + 41N + 28N2

)27N3(1 +N)4

+LM

[−64(N − 1)2(2 +N)(2 + 5N)

9N3(1 +N)3+ (N − 1)

[−64(2 +N)

(3 + 2N + 2N2

)9N3(1 +N)3

S1

+64(2 +N)S2

1

3N2(1 +N)2

]]+ L2

M

[−32(N − 1)2(2 +N)

3N3(1 +N)2− 32(N − 1)(2 +N)S1

3N2(1 +N)2

]

+(N − 1)

[LQ

[32L2

M(2 +N)

3N2(1 +N)2+

32(2 +N)(22 + 41N + 28N2

)27N2(1 +N)4

+ LM

[64(2 +N)(2 + 5N)

9N2(1 +N)3

− 64(2 +N)S1

3N2(1 +N)2

]− 32(2 +N)(2 + 5N)

9N2(1 +N)3S1 +

16(2 +N)S21

3N2(1 +N)2+

16(2 +N)S2

3N2(1 +N)2

]

+

[−32(2 +N)

(6 + 37N + 35N2 + 13N3

)27N3(1 +N)4

− 16(2 +N)S2

3N2(1 +N)2

]S1

+16(2 +N)

(3 + 4N + 7N2

)9N3(1 +N)3

S21 −

16(2 +N)S31

3N2(1 +N)2

]− 16(N − 1)2(2 +N)

3N3(1 +N)2S2

+APS(3)qq,Q +NF

ˆCPS(3)q (LQ, NF )

. (D.1)

D.2 LSg in N space

LSg =

1

2

[1− (−1)N

]×a2sNFT

2F

16LMLQ(N − 1)

3N(1 +N)+ LM

[− 16(N − 1)2

3N2(1 +N)− 16(N − 1)S1

3N(1 +N)

]

+a3s

NFT

3F

64L2

MLQ(N − 1)

9N(1 +N)+ L2

M

[− 64(N − 1)2

9N2(1 +N)− 64(N − 1)S1

9N(1 +N)

]

+CANFT2F

− 8(N − 1)2Q9

27N5(1 +N)4+ LQ

[(N − 1)

[8Q9

27N4(1 +N)4+ L2

M

[64

3N2(1 +N)2

− 32S1

3N(1 +N)

]− 16(47 + 56N)S1

27N(1 +N)2

]+ LM

[32Q5

9N3(1 +N)3+ (N − 1)

[32S2

1

3N(1 +N)

− 32S2

3N(1 +N)− 64S−2

3N(1 +N)

]− 64

(− 9− 2N + 3N2 + 2N3

)9N2(1 +N)2

S1

]]+ L2

M

[− 64(N − 1)2

3N3(1 +N)2

207

Page 218: and 3-loop corrections to hard scattering processes in QCD

+(N − 1)

[32(− 3 +N2

)S1

3N2(1 +N)2+

32S21

3N(1 +N)

]]+ (N − 1)

[8S1Q10

27N4(1 +N)4

+LML2Q

[64

3N2(1 +N)2− 32S1

3N(1 +N)

]+

16(47 + 56N)S21

27N(1 +N)2

]

+LM

[− 16Q13

9(N − 1)N4(1 +N)4(2 +N)2+ (N − 1)

[− 16S3

1

9N(1 +N)− 64S2,1

3N(1 +N)

]+

[− 16Q8

9N3(1 +N)3(2 +N)+

80(N − 1)S2

3N(1 +N)

]S1 +

32(− 9− 10N + 3N2 + 7N3

)9N2(1 +N)2

S21

+32(3− 2N +N2 +N3

)3N2(1 +N)2

S2 +32(2 + 5N + 5N2

)9N(1 +N)(2 +N)

S3

+

[64Q3

3(N − 1)N(1 +N)2(2 +N)2+

64(2 +N +N2

)3N(1 +N)(2 +N)

S1

]S−2 −

64(− 4 +N +N2

)3N(1 +N)(2 +N)

S−3

− 256S−2,1

3N(1 +N)(2 +N)− 32

(2 +N +N2

)N(1 +N)(2 +N)

ζ3

]+ CFNFT

2F

4(N − 1)2Q12

N6(1 +N)5

+(N − 1)

[4S1Q12

N5(1 +N)5+ LML

2Q

[8Q2

3N3(1 +N)3− 32S1

3N(1 +N)

]]

+LQ

[16L2

M(N − 1)2(2 +N)

N3(1 +N)3+ (N − 1)

[− 4Q12

N5(1 +N)5+ LM

[16S1Q1

3N3(1 +N)3

− 16Q6

3N4(1 +N)4+

64S21

3N(1 +N)− 64S2

3N(1 +N)

]]]+ L2

M

[−16(N − 1)3(2 +N)

N4(1 +N)3

−16(N − 1)2(2 +N)

N3(1 +N)3S1

]+ LM

[8S2Q4

3N3(1 +N)3− 8Q14

3(N − 1)N5(1 +N)5(2 +N)2

+(N − 1)

[−8(− 4 + 2N + 3N2

)(3 + 2N + 3N2

)3N3(1 +N)3

S21 −

80S31

9N(1 +N)+

64S2,1

3N(1 +N)

]+

[− 32Q11

3N4(1 +N)4(2 +N)+

16(N − 1)S2

N(1 +N)

]S1 −

256(1 +N +N2

)9N(1 +N)(2 +N)

S3

+

[64Q7

3(N − 1)N2(1 +N)2(2 +N)2− 512S1

3N(1 +N)(2 +N)

]S−2 −

256S−3

3N(1 +N)(2 +N)

+512S−2,1

3N(1 +N)(2 +N)+

64(2 +N +N2

)N(1 +N)(2 +N)

ζ3

]+ A

(3)qg,Q +NF

ˆCS(3)g (LQ, NF )

, (D.2)

with

Q1 = 3N4 + 2N3 −N2 − 12, (D.3)

Q2 = 3N4 + 6N3 −N2 − 4N + 12, (D.4)

Q3 = N5 + 3N4 − 3N3 − 9N2 − 8N − 8, (D.5)

Q4 = 9N5 −N4 − 23N3 − 15N2 − 14N + 12, (D.6)

Q5 = 9N5 + 9N4 − 4N3 + 15N2 − 41N − 12, (D.7)

Q6 = N6 − 19N4 − 22N3 + 22N2 − 34N − 36, (D.8)

Q7 = N6 + 3N5 + 13N4 + 21N3 + 22N2 + 12N − 24, (D.9)

Q8 = 13N6 + 44N5 + 71N4 + 94N3 − 90N2 − 288N − 72, (D.10)

Q9 = 15N6 + 45N5 + 374N4 + 601N3 + 161N2 − 24N + 36, (D.11)

208

Page 219: and 3-loop corrections to hard scattering processes in QCD

Q10 = 97N6 + 161N5 − 392N4 − 807N3 − 255N2 + 24N − 36, (D.12)

Q11 = N8 + 3N7 + 11N6 + 20N5 − 15N4 − 17N3 + 49N2 − 20N − 36 (D.13)

Q12 = 15N8 + 60N7 + 82N6 + 44N5 + 15N4 + 4N2 + 12N + 8, (D.14)

Q13 = 24N10 + 102N9 + 58N8 − 210N7 − 209N6 + 23N5 + 529N4

+1109N3 + 234N2 − 388N − 120, (D.15)

Q14 = 8N12 + 50N11 + 122N10 + 98N9 − 457N8 − 1398N7 − 1232N6

−634N5 − 793N4 + 388N3 + 1128N2 − 16N − 336. (D.16)

D.3 HPSq in N space

HPSq =

1

2

[1− (−1)N

]×a2sCFTF

8Q16

(N − 1)N4(1 +N)4(2 +N)+ (2 +N)

[8LM

(1 + 2N +N3

)N3(1 +N)3

+LQ

[−8(2 +N −N2 + 2N3

)N3(1 +N)3

− 8(N − 1)S1

N2(1 +N)2

]+ (N − 1)

[− 4L2

M

N2(1 +N)2+

4L2Q

N2(1 +N)2

+4S2

1

N2(1 +N)2− 12S2

N2(1 +N)2

]+

8(2 +N −N2 + 2N3

)N3(1 +N)3

S1

]

− 64

(N − 1)N(1 +N)(2 +N)S−2

+ a3s

C2

FTF (2 +N)

8S2Q15

N4(1 +N)4

+4(− 1− 3N − 4N2 + 4N3

)(− 2 + 5N + 6N2 + 9N3

)N6(1 +N)5

+LQ

[−4(2 + 3N + 3N2

)(− 1− 3N − 4N2 + 4N3

)N5(1 +N)5

+LM

[8(2 + 3N + 3N2

)(1 + 2N +N3

)N4(1 +N)4

− 32(1 + 2N +N3

)N3(1 +N)3

S1

]+(N − 1)

[L2M

[−4(2 + 3N + 3N2

)N3(1 +N)3

+16S1

N2(1 +N)2

]− 8

(2 + 3N + 3N2

)N3(1 +N)3

S2

]

+

[16(− 1− 3N − 4N2 + 4N3

)N4(1 +N)4

+32(N − 1)S2

N2(1 +N)2

]S1

]

+LM

[−8(1 + 2N +N3

)(− 2 + 5N + 6N2 + 9N3

)N5(1 +N)4

+8(− 2 + 3N + 3N2

)(1 + 2N +N3

)N4(1 +N)4

S1 +16(1 + 2N +N3

)N3(1 +N)3

S21 −

16(1 + 2N +N3

)N3(1 +N)3

S2

]+(N − 1)

[L2M

[4(− 2 + 5N + 6N2 + 9N3

)N4(1 +N)3

− 4(− 2 + 3N + 3N2

)N3(1 +N)3

S1 −8S2

1

N2(1 +N)2

+8S2

N2(1 +N)2

]+

16S22

N2(1 +N)2

]+

[−4(− 2 + 3N + 3N2

)(− 1− 3N − 4N2 + 4N3

)N5(1 +N)5

−8(N − 1)(− 2 + 3N + 3N2

)N3(1 +N)3

S2

]S1 +

[−8(− 1− 3N − 4N2 + 4N3

)N4(1 +N)4

− 16(N − 1)S2

N2(1 +N)2

]S21

209

Page 220: and 3-loop corrections to hard scattering processes in QCD

+CFT2F (2 +N)

−32(N − 1)2

(22 + 41N + 28N2

)27N3(1 +N)4

+ LM

[−64(N − 1)2(2 + 5N)

9N3(1 +N)3

+(N − 1)

[−64

(3 + 2N + 2N2

)9N3(1 +N)3

S1 +64S2

1

3N2(1 +N)2

]]+ L2

M

[− 32(N − 1)2

3N3(1 +N)2

− 32(N − 1)S1

3N2(1 +N)2

]+ (N − 1)

[LQ

[32L2

M

3N2(1 +N)2+

32(22 + 41N + 28N2

)27N2(1 +N)4

+LM

[64(2 + 5N)

9N2(1 +N)3− 64S1

3N2(1 +N)2

]− 32(2 + 5N)S1

9N2(1 +N)3+

16S21

3N2(1 +N)2+

16S2

3N2(1 +N)2

]

+

[−32

(6 + 37N + 35N2 + 13N3

)27N3(1 +N)4

− 16S2

3N2(1 +N)2

]S1 +

16(3 + 4N + 7N2

)9N3(1 +N)3

S21

− 16S31

3N2(1 +N)2

]− 16(N − 1)2S2

3N3(1 +N)2

+ A

PS(3)Qq + CPS(3)

q (LQ, NF + 1)

, (D.17)

where

Q15 = 9N5 + 6N4 − 12N2 − 8N + 1, (D.18)

Q16 = 3N8 + 10N7 −N6 − 22N5 − 14N4 − 18N3 − 30N2 + 8. (D.19)

D.4 HSg in N space

HSg =

1

2

[1− (−1)N

]×asTF

− 4(N − 1)2

N2(1 +N)+ (N − 1)

[− 4LM

N(1 +N)+

4LQ

N(1 +N)− 4S1

N(1 +N)

]

+a2s

CATF

− 8Q78

(N − 1)N4(1 +N)4(2 +N)2+ LM

[− 8Q42

N3(1 +N)3

+(N − 1)

[8S2

1

N(1 +N)+

8S2

N(1 +N)+

16S−2

N(1 +N)

]− 32S1

N(1 +N)2

]

+LQ

[8(−2 +N)Q19

N3(1 +N)3+ (N − 1)

[8S2

1

N(1 +N)− 8S2

N(1 +N)− 16S−2

N(1 +N)

]

+16(3−N −N2 +N3

)N2(1 +N)2

S1

]+ (N − 1)

[L2Q

[16

N2(1 +N)2− 8S1

N(1 +N)

]

+L2M

[− 16

N2(1 +N)2+

8S1

N(1 +N)

]− 16S2,1

N(1 +N)

]+

[− 16Q55

N3(1 +N)3(2 +N)

+32(N − 1)S2

N(1 +N)

]S1 −

4(12−N +N2 + 2N3

)N2(1 +N)(2 +N)

S21 +

4Q21

N2(1 +N)2(2 +N)S2

+8(− 2 + 3N + 3N2

)N(1 +N)(2 +N)

S3 +

[16Q18

(N − 1)N(1 +N)(2 +N)2+

32S1

2 +N

]S−2

−8(−2 +N)(3 +N)

N(1 +N)(2 +N)S−3 −

16(2 +N +N2

)N(1 +N)(2 +N)

S−2,1 −24(2 +N +N2

)N(1 +N)(2 +N)

ζ3

+CFTF

4Q79

(N − 1)N4(1 +N)4(2 +N)2+ (N − 1)

[L2M

[2(2 + 3N + 3N2

)N2(1 +N)2

− 8S1

N(1 +N)

]210

Page 221: and 3-loop corrections to hard scattering processes in QCD

+L2Q

[2(2 + 3N + 3N2

)N2(1 +N)2

− 8S1

N(1 +N)

]+ LQ

[− 4Q27

N3(1 +N)3+ LM

[−4(2 + 3N + 3N2

)N2(1 +N)2

+16S1

N(1 +N)

]+

4(− 6−N + 3N2

)N2(1 +N)2

S1 +16S2

1

N(1 +N)− 16S2

N(1 +N)

]+ LM

[4Q27

N3(1 +N)3

−4(− 6−N + 3N2

)N2(1 +N)2

S1 −16S2

1

N(1 +N)+

16S2

N(1 +N)

]− 8S3

1

N(1 +N)+

16S2,1

N(1 +N)

]

+

[4Q54

N3(1 +N)3(2 +N)+

8(N − 1)S2

N(1 +N)

]S1 −

2Q30

N2(1 +N)2(2 +N)S21

+2Q34

N2(1 +N)2(2 +N)S2 −

16(2 +N +N2

)N(1 +N)(2 +N)

S3 +

[16(10 +N +N2

)(N − 1)(2 +N)2

− 128S1

N(1 +N)(2 +N)

]S−2 −

64S−3

N(1 +N)(2 +N)+

128S−2,1

N(1 +N)(2 +N)

+48(2 +N +N2

)N(1 +N)(2 +N)

ζ3

+ T 2

F

(N − 1)

[− 16L2

M

3N(1 +N)+

16LMLQ

3N(1 +N)

]+LM

[− 16(N − 1)2

3N2(1 +N)− 16(N − 1)S1

3N(1 +N)

]+ a3s

CFNFT

2F

(N − 1)

[LML

2Q

[− 8Q24

3N3(1 +N)3

+32S1

3N(1 +N)

]+ (LMLQ)

[− 16S1Q36

9N3(1 +N)3+

8Q62

9N4(1 +N)4− 32S2

1

3N(1 +N)+

32S2

N(1 +N)

]]

+LM

[− 2Q84

27N5(1 +N)5(2 +N)+ (N − 1)

[8S2

1Q36

9N3(1 +N)3− 8S2Q39

9N3(1 +N)3+

[8Q64

27N4(1 +N)4

− 32S2

3N(1 +N)

]S1 +

32S31

9N(1 +N)+

352S3

9N(1 +N)− 64S2,1

3N(1 +N)

]+

256S−2

N2(1 +N)2(2 +N)

]

+CAT2F

− 8(N − 1)2Q58

27N5(1 +N)4+ LQ

[(N − 1)

[8Q58

27N4(1 +N)4+ L2

M

[64

3N2(1 +N)2

− 32S1

3N(1 +N)

]− 16(47 + 56N)S1

27N(1 +N)2

]+ LM

[32Q48

9N3(1 +N)3+ (N − 1)

[32S2

1

3N(1 +N)

− 32S2

3N(1 +N)− 64S−2

3N(1 +N)

]− 64

(− 9− 2N + 3N2 + 2N3

)9N2(1 +N)2

S1

]]+ L2

M

[− 64(N − 1)2

3N3(1 +N)2

+(N − 1)

[32(− 3 +N2

)S1

3N2(1 +N)2+

32S21

3N(1 +N)

]]+ (N − 1)

[8S1Q63

27N4(1 +N)4

+LML2Q

[64

3N2(1 +N)2− 32S1

3N(1 +N)

]+

16(47 + 56N)S21

27N(1 +N)2

]

+LM

[− 16Q82

9(N − 1)N4(1 +N)4(2 +N)2+ (N − 1)

[− 16S3

1

9N(1 +N)− 64S2,1

3N(1 +N)

]+

[− 16Q57

9N3(1 +N)3(2 +N)+

80(N − 1)S2

3N(1 +N)

]S1 +

32(− 9− 10N + 3N2 + 7N3

)9N2(1 +N)2

S21

+32(3− 2N +N2 +N3

)3N2(1 +N)2

S2 +32(2 + 5N + 5N2

)9N(1 +N)(2 +N)

S3 +

[64Q43

3(N − 1)N(1 +N)2(2 +N)2

211

Page 222: and 3-loop corrections to hard scattering processes in QCD

+64(2 +N +N2

)3N(1 +N)(2 +N)

S1

]S−2 −

64(− 4 +N +N2

)3N(1 +N)(2 +N)

S−3 −256S−2,1

3N(1 +N)(2 +N)

− 32(2 +N +N2

)N(1 +N)(2 +N)

ζ3

]+ CFT

2F

4(N − 1)2Q76

N6(1 +N)5+ (N − 1)

[4S1Q76

N5(1 +N)5

+LML2Q

[8(2 + 3N + 3N2

)3N2(1 +N)2

− 32S1

3N(1 +N)

]+ LQ

[− 4Q76

N5(1 +N)5+ L2

M

[− 16Q22

3N3(1 +N)3

+64S1

3N(1 +N)

]+ LM

[− 16Q53

3N4(1 +N)4+

16(− 6−N + 3N2

)3N2(1 +N)2

S1 +64S2

1

3N(1 +N)

− 64S2

3N(1 +N)

]]+ L2

M

[− 16S1Q23

3N3(1 +N)3+

16Q49

3N4(1 +N)3− 32S2

1

3N(1 +N)+

32S2

3N(1 +N)

]]

+LM

[− 8Q86

3(N − 1)N5(1 +N)4(2 +N)2+ (N − 1)

[−8(− 8 + 3N + 9N2

)3N2(1 +N)2

S21

− 80S31

9N(1 +N)+

64S2,1

3N(1 +N)

]+

[− 32Q70

3N4(1 +N)4(2 +N)+

16(N − 1)S2

N(1 +N)

]S1

+8(4− 19N − 10N2 + 9N3

)3N2(1 +N)2

S2 −256(1 +N +N2

)9N(1 +N)(2 +N)

S3 +

[64(10 +N +N2

)3(N − 1)(2 +N)2

− 512S1

3N(1 +N)(2 +N)

]S−2 −

256S−3

3N(1 +N)(2 +N)+

512S−2,1

3N(1 +N)(2 +N)

+64(2 +N +N2

)N(1 +N)(2 +N)

ζ3

]+ CACFTF

−4(− 2 + 5N + 6N2 + 9N3

)Q72

N6(1 +N)5(2 +N)

+L2M

[(N − 1)

[16(− 2 + 5N + 6N2 + 9N3

)N4(1 +N)3

+

[− 8Q32

N3(1 +N)3− 16S2

N(1 +N)

]S1

+16S3

1

N(1 +N)+

32S2

N2(1 +N)2

]+

24(N − 1)2(2 +N)

N2(1 +N)2S21

]+ LQ

[4(2 + 3N + 3N2

)Q72

N5(1 +N)5(2 +N)

+LM

[− 2Q68

9N4(1 +N)4+ (N − 1)

[− 32S3

1

N(1 +N)− 16

(− 1 + 4N + 4N2

)N2(1 +N)2

S2 +32S3

N(1 +N)

+48S−2

N(1 +N)+

32S−3

N(1 +N)− 64S−2,1

N(1 +N)

]+

[4Q51

9N3(1 +N)3− 32(N − 1)S2

N(1 +N)

]S1

+16(− 3 + 17N + 10N3

)3N2(1 +N)2

S21

]+ (N − 1)

[L2M

[−16

(2 + 3N + 3N2

)N3(1 +N)3

+8(10 + 3N + 3N2

)N2(1 +N)2

S1 −32S2

1

N(1 +N)

]− 16S4

1

3N(1 +N)+

32(2 + 3N + 3N2

)3N2(1 +N)2

S3

+

[16(2 + 3N + 3N2

)N2(1 +N)3

+16(2−N + 3N2

)N2(1 +N)2

S1 −64S2

1

N(1 +N)

]S−2 +

[8(2 + 3N + 3N2

)N2(1 +N)2

− 32S1

N(1 +N)

]S−3 −

16(2 + 3N + 3N2

)N2(1 +N)2

S−2,1

]+

[− 4Q74

N4(1 +N)4(2 +N)

+(N − 1)

[− 128S3

3N(1 +N)+

64S−2,1

N(1 +N)

]+

4Q33

N2(1 +N)2(2 +N)S2

]S1

+

[4Q46

N2(1 +N)3(2 +N)− 48(N − 1)S2

N(1 +N)

]S21 +

4Q25

3N2(1 +N)2(2 +N)S31

212

Page 223: and 3-loop corrections to hard scattering processes in QCD

−4(2 + 3N + 3N2

)(− 16 + 15N + 24N2 + 7N3

)N3(1 +N)3(2 +N)

S2

]+ LM

[2S2Q52

9N3(1 +N)3

+Q85

54N5(1 +N)5(2 +N)+ (N − 1)

[[− 2Q41

9N3(1 +N)3− 16S2

N(1 +N)

]S21 +

16S41

N(1 +N)

−8(− 36 + 121N + 121N2

)9N2(1 +N)2

S3 +32S4

N(1 +N)+

48S2−2

N(1 +N)+

[− 32

N2(1 +N)2

+32S1

N(1 +N)

]S−3 +

80S−4

N(1 +N)+

16(− 6 + 11N + 11N2

)3N2(1 +N)2

S2,1 +96S3,1

N(1 +N)− 32S−2,2

N(1 +N)

− 64S−3,1

N(1 +N)− 96S2,1,1

N(1 +N)− 24(1 + 3N)(2 + 3N)

N2(1 +N)2ζ3

]+

[− 2Q69

27N4(1 +N)4

+(N − 1)

[− 96S3

N(1 +N)+

64S2,1

N(1 +N)+

64S−2,1

N(1 +N)+

192ζ3N(1 +N)

]+

32(1 + 5N2

)3N(1 +N)2

S2

]S1

+16(9− 53N + 8N3

)9N2(1 +N)2

S31 +

[− 16Q56

N3(1 +N)3(2 +N)+ (N − 1)

[48S1

N(1 +N)

− 32S21

N(1 +N)

]]S−2

]+ (N − 1)

[LML

2Q

[22(2 + 3N + 3N2

)3N2(1 +N)2

− 88S1

3N(1 +N)

]+

8S51

3N(1 +N)

−32(− 2 + 5N + 6N2 + 9N3

)3N3(1 +N)2

S3 +

[−16

(− 2 + 5N + 6N2 + 9N3

)N3(1 +N)3

+

[− 16Q31

N3(1 +N)3

− 32S2

N(1 +N)

]S1 +

16(2 +N)(−1 + 3N)

N2(1 +N)2S21 +

32S31

N(1 +N)− 32S2

N(1 +N)2

]S−2

+

[−8(− 2 + 5N + 6N2 + 9N3

)N3(1 +N)2

+8(− 2 + 3N + 3N2

)N2(1 +N)2

S1 +16S2

1

N(1 +N)− 16S2

N(1 +N)

]S−3

+16(− 2 + 5N + 6N2 + 9N3

)N3(1 +N)2

S−2,1

]+

[4Q80

N5(1 +N)5(2 +N)+ (N − 1)

[− 24S2

2

N(1 +N)

+32(− 2 + 3N + 3N2

)3N2(1 +N)2

S3 −16(− 2 + 3N + 3N2

)N2(1 +N)2

S−2,1

]− 4Q61

N3(1 +N)3(2 +N)S2

]S1

+

[4Q71

N4(1 +N)4(2 +N)+ (N − 1)

[64S3

3N(1 +N)− 32S−2,1

N(1 +N)

]+

4Q29

N2(1 +N)2(2 +N)S2

]S21

+

[− 4Q59

3N3(1 +N)3(2 +N)+

64(N − 1)S2

3N(1 +N)

]S31 +

4(4− 38N − 29N2 + 3N4

)3N2(1 +N)2(2 +N)

S41

+

[− 4Q73

N4(1 +N)4(2 +N)+ (N − 1)

[− 64S3

3N(1 +N)+

32S−2,1

N(1 +N)

]]S2

+8(− 16 + 15N + 24N2 + 7N3

)N2(1 +N)2(2 +N)

S22

+ C2

FTF

−2(− 2 + 5N + 6N2 + 9N3

)Q75

N6(1 +N)5(2 +N)

+L2M

[(N − 1)

[−2(2 + 3N + 3N2

)(− 2 + 5N + 6N2 + 9N3

)N4(1 +N)3

+

[2Q38

N3(1 +N)3

+16S2

N(1 +N)

]S1 −

16S31

N(1 +N)− 4

(2 + 3N + 3N2

)N2(1 +N)2

S2

]− 12(N − 1)2(2 +N)

N2(1 +N)2S21

]

213

Page 224: and 3-loop corrections to hard scattering processes in QCD

+LQ

[2(2 + 3N + 3N2

)Q75

N5(1 +N)5(2 +N)+ (N − 1)

[L2M

[2(2 + 3N + 3N2

)2N3(1 +N)3

− 16(2 + 3N + 3N2

)N2(1 +N)2

S1

+32S2

1

N(1 +N)

]+ LM

[2Q60

N4(1 +N)4+

[− 4Q35

N3(1 +N)3− 128S2

N(1 +N)

]S1 −

64(2 +N)S21

N2(1 +N)2

+64S3

1

N(1 +N)+

32(2 + 3N + 3N2

)N2(1 +N)2

S2 −64S3

N(1 +N)+

[64

N2(1 +N)2− 128S1

N(1 +N)

]S−2

− 64S−3

N(1 +N)+

128S−2,1

N(1 +N)

]+

16S41

3N(1 +N)+

16(2 + 3N + 3N2

)3N2(1 +N)2

S3

]

+

[− 4Q77

N4(1 +N)4(2 +N)− 4Q28

N2(1 +N)2(2 +N)S2 −

64(N − 1)S3

3N(1 +N)

]S1

+

[− 4Q45

N3(1 +N)2(2 +N)+

16(N − 1)S2

N(1 +N)

]S21 −

4Q26

3N2(1 +N)2(2 +N)S31

+4(2 + 3N + 3N2

)Q20

N3(1 +N)3(2 +N)S2

]+ (N − 1)

[LML

2Q

[−2(2 + 3N + 3N2

)2N3(1 +N)3

+16(2 + 3N + 3N2

)N2(1 +N)2

S1 −32S2

1

N(1 +N)

]− 8S5

1

3N(1 +N)− 16

(− 2 + 5N + 6N2 + 9N3

)3N3(1 +N)2

S3

]

+LM

[Q83

2N5(1 +N)5(2 +N)+ (N − 1)

[− 2S2Q40

N3(1 +N)3+

[2Q37

N3(1 +N)3+

112S2

N(1 +N)

]S21

− 24S41

N(1 +N)− 40S2

2

N(1 +N)+

8(− 2 + 9N + 9N2

)N2(1 +N)2

S3 −48S4

N(1 +N)− 96S2

−2

N(1 +N)

+

[64

N2(1 +N)2− 64S1

N(1 +N)

]S−3 −

160S−4

N(1 +N)− 16

(− 2 + 3N + 3N2

)N2(1 +N)2

S2,1 −160S3,1

N(1 +N)

+64S−2,2

N(1 +N)+

128S−3,1

N(1 +N)+

96S2,1,1

N(1 +N)+

288ζ3N(1 +N)

]+

[2Q66

N4(1 +N)4

+(N − 1)

[32(− 4 + 2N + 3N2

)N2(1 +N)2

S2 +96S3

N(1 +N)− 64S2,1

N(1 +N)− 128S−2,1

N(1 +N)

− 192ζ3N(1 +N)

]]S1 −

16(N − 1)2(4 + 3N)

N2(1 +N)2S31 +

[32Q44

N2(1 +N)3(2 +N)

+(N − 1)

[− 64S1

N2(1 +N)2+

128S21

N(1 +N)− 64S2

N(1 +N)

]]S−2

]+

[2Q81

N5(1 +N)5(2 +N)

+(N − 1)

[8S2

2

N(1 +N)+

16(− 2 + 3N + 3N2

)3N2(1 +N)2

S3

]+

8Q47

N2(1 +N)3(2 +N)S2

]S1

+

[4Q65

N3(1 +N)4(2 +N)− 4Q17

N2(1 +N)2(2 +N)S2 +

32(N − 1)S3

3N(1 +N)

]S21

+

[4Q50

3N3(1 +N)2(2 +N)− 16(N − 1)S2

3N(1 +N)

]S31 −

4(− 8− 5N +N2

)(− 2 + 3N + 3N2

)3N2(1 +N)2(2 +N)

S41

+

[− 4Q67

N3(1 +N)4(2 +N)− 32(N − 1)S3

3N(1 +N)

]S2 −

8Q20

N2(1 +N)2(2 +N)S22

+T 3

F

64L2

MLQ(N − 1)

9N(1 +N)+ L2

M

[− 64(N − 1)2

9N2(1 +N)− 64(N − 1)S1

9N(1 +N)

]

214

Page 225: and 3-loop corrections to hard scattering processes in QCD

+A(3)Qg + CS(3)

g (LQ, NF + 1)

, (D.20)

with

Q17 = N4 − 22N3 − 79N2 − 72N − 4, (D.21)

Q18 = N4 + 3N3 − 4N2 − 8N − 4, (D.22)

Q19 = N4 + 3N3 − 2N2 + 3N + 3, (D.23)

Q20 = N4 + 17N3 + 43N2 + 33N + 2, (D.24)

Q21 = 2N4 −N3 − 24N2 − 17N + 28, (D.25)

Q22 = 3N4 + 6N3 + 2N2 −N + 6, (D.26)

Q23 = 3N4 + 6N3 + 4N2 +N − 6, (D.27)

Q24 = 3N4 + 6N3 + 11N2 + 8N − 12, (D.28)

Q25 = 3N4 + 18N3 + 47N2 + 56N − 4, (D.29)

Q26 = 3N4 + 42N3 + 71N2 + 8N − 28, (D.30)

Q27 = 4N4 + 5N3 + 3N2 − 4N − 4, (D.31)

Q28 = 7N4 + 74N3 + 171N2 + 128N + 4, (D.32)

Q29 = 9N4 + 6N3 − 55N2 − 44N + 44, (D.33)

Q30 = 9N4 + 6N3 − 35N2 − 16N + 20, (D.34)

Q31 = 9N4 + 12N3 + 8N2 + 5N − 2, (D.35)

Q32 = 9N4 + 15N3 + 17N2 + 9N − 6, (D.36)

Q33 = 9N4 + 46N3 + 93N2 + 48N − 76, (D.37)

Q34 = 11N4 + 42N3 + 47N2 + 32N + 12, (D.38)

Q35 = 25N4 + 26N3 − 3N2 − 52N − 36, (D.39)

Q36 = 29N4 + 58N3 + 5N2 − 24N + 36, (D.40)

Q37 = 43N4 + 86N3 + 107N2 − 8N − 56, (D.41)

Q38 = 45N4 + 78N3 + 53N2 + 12N − 12, (D.42)

Q39 = 85N4 + 170N3 + 61N2 − 24N + 36, (D.43)

Q40 = 111N4 + 198N3 + 135N2 + 24N − 32, (D.44)

Q41 = 763N4 + 1418N3 + 985N2 + 978N + 72, (D.45)

Q42 = N5 +N4 − 4N3 + 3N2 − 7N − 2, (D.46)

Q43 = N5 + 3N4 − 3N3 − 9N2 − 8N − 8, (D.47)

Q44 = 2N5 + 6N4 +N3 − 6N2 + 11N + 10, (D.48)

Q45 = 4N5 − 13N4 − 114N3 − 241N2 − 144N + 4, (D.49)

Q46 = 4N5 + 13N4 − 19N3 − 69N2 − 15N − 10, (D.50)

Q47 = 5N5 + 39N4 + 118N3 + 171N2 + 93N + 2, (D.51)

Q48 = 9N5 + 9N4 − 4N3 + 15N2 − 41N − 12, (D.52)

Q49 = 9N5 + 15N4 + 8N3 + 3N2 + 7N − 6, (D.53)

Q50 = 15N5 + 36N4 − 97N3 − 366N2 − 264N + 16, (D.54)

Q51 = 439N5 + 439N4 − 937N3 − 367N2 − 582N − 144, (D.55)

Q52 = 815N5 + 923N4 − 1349N3 − 491N2 − 258N − 216, (D.56)

Q53 = N6 − 7N4 − 4N3 + 16N2 − 10N − 12, (D.57)

Q54 = 2N6 + 5N5 − 22N4 − 95N3 − 114N2 − 24N + 16, (D.58)

Q55 = 2N6 + 5N5 − 3N4 − 7N3 + 2N2 − 11N − 8, (D.59)

215

Page 226: and 3-loop corrections to hard scattering processes in QCD

Q56 = 11N6 + 30N5 + 9N4 − 22N3 − 10N2 + 2N + 4, (D.60)

Q57 = 13N6 + 44N5 + 71N4 + 94N3 − 90N2 − 288N − 72, (D.61)

Q58 = 15N6 + 45N5 + 374N4 + 601N3 + 161N2 − 24N + 36, (D.62)

Q59 = 15N6 + 57N5 + 47N4 −N3 + 12N2 − 38N + 4, (D.63)

Q60 = 21N6 + 45N5 + 55N4 − 13N3 − 12N2 − 8N + 8, (D.64)

Q61 = 25N6 + 85N5 + 119N4 + 75N3 − 118N2 − 102N + 44, (D.65)

Q62 = 57N6 + 153N5 + 233N4 + 163N3 − 70N2 + 120N + 144, (D.66)

Q63 = 97N6 + 161N5 − 392N4 − 807N3 − 255N2 + 24N − 36, (D.67)

Q64 = 247N6 + 795N5 + 555N4 − 71N3 + 210N2 − 360N − 432, (D.68)

Q65 = 15N7 + 28N6 − 116N5 − 453N4 − 575N3 − 221N2 + 114N + 88, (D.69)

Q66 = 21N7 − 52N6 − 86N5 − 60N4 + 17N3 + 176N2 + 24N − 40, (D.70)

Q67 = 21N7 + 220N6 + 713N5 + 1132N4 + 1010N3 + 486N2 + 38N − 52, (D.71)

Q68 = 753N7 + 1308N6 − 44N5 − 1118N4 − 1549N3 − 766N2 − 600N − 288, (D.72)

Q69 = 3479N7 + 7444N6 − 5160N5 − 13414N4 − 8111N3 − 5478N2

+1368N + 864, (D.73)

Q70 = N8 + 3N7 + 5N6 + 5N5 − 9N4 − 8N3 + 19N2 − 8N − 12, (D.74)

Q71 = N8 + 14N7 + 88N6 + 229N5 + 202N4 + 47N3 + 77N2 + 14N + 8, (D.75)

Q72 = 2N8 + 10N7 + 22N6 + 36N5 + 29N4 + 4N3 + 33N2 + 12N + 4, (D.76)

Q73 = 4N8 − 43N7 − 277N6 − 500N5 − 308N4 + 25N3 + 245N2 + 102N − 24, (D.77)

Q74 = 11N8 + 55N7 + 99N6 + 119N5 + 90N4 + 2N3 + 136N2 + 48N + 16, (D.78)

Q75 = 12N8 + 52N7 + 60N6 − 25N4 − 2N3 + 3N2 + 8N + 4, (D.79)

Q76 = 15N8 + 60N7 + 82N6 + 44N5 + 15N4 + 4N2 + 12N + 8, (D.80)

Q77 = 21N8 + 101N7 + 193N6 + 321N5 + 528N4 + 550N3 + 302N2 + 88N + 8, (D.81)

Q78 = N10 + 3N9 − 15N8 − 56N7 − 8N6 + 90N5 + 60N4 + 67N3 + 86N2

−12N − 24, (D.82)

Q79 = 5N10 + 23N9 + 31N8 −N7 + 54N6 + 268N5 + 342N4 + 98N3 − 60N2

−8N + 16, (D.83)

Q80 = 15N10 + 87N9 + 154N8 + 96N7 + 18N6 − 64N5 + 47N4 + 153N3 − 22N2

−12N − 8, (D.84)

Q81 = 18N10 + 162N9 + 740N8 + 2296N7 + 4511N6 + 5341N5 + 3593N4

+1065N3 − 130N2 − 148N − 8, (D.85)

Q82 = 24N10 + 102N9 + 58N8 − 210N7 − 209N6 + 23N5 + 529N4 + 1109N3

+234N2 − 388N − 120, (D.86)

Q83 = 29N10 + 229N9 + 620N8 + 1434N7 + 2173N6 + 505N5 − 86N4 + 712N3

+704N2 − 16N − 160, (D.87)

Q84 = 1371N10 + 6171N9 + 10220N8 + 5678N7 − 9493N6 − 17113N5 − 9154N4

−10864N3 − 10656N2 + 1872N + 4320, (D.88)

Q85 = 20283N10 + 92379N9 + 127804N8 + 11278N7 − 154181N6 − 222809N5

−170666N4 − 111392N3 − 62568N2 + 5040N + 8640, (D.89)

Q86 = 8N11 + 42N10 + 44N9 − 102N8 − 415N7 − 539N6 − 195N5 − 241N4

−414N3 + 268N2 + 104N − 96. (D.90)

216

Page 227: and 3-loop corrections to hard scattering processes in QCD

D.5 LPSq in z space

LPSq (z) =

a3sCFNFT2F

L2M

[32

3(z − 1)

(12 + 5H1

)+ (1 + z)

(−32

3H2

0 −64

3H0,1 +

64

3ζ2

)+32

3(−7 + z)H0

]+ (z − 1)

[3296

9− 32

27H1

(− 125 + 12H0

)+

16

9H2

1

(28 + 15H0

)+

80

3H3

1

]+LQ

[(1 + z)

(643H0,1,1 −

64ζ33

)+ L2

M

[−160

3(z − 1) +

64

3(1 + z)H0

]+LM

[64

9(z − 1)

(− 4 + 15H1

)+ (1 + z)

(−128H0,1

3+

128ζ23

)+

128

9(2 + 5z)H0

]+128

27(11 + 14z)H0 + (z − 1)

(−3712

27+

128

9H1 −

80

3H2

1

)− 64

9(2 + 5z)H0,1

+64

9(2 + 5z)ζ2

]+ LM

[(z − 1)

[−64

3− 64

9H1

(32 + 15H0

)− 320

3H2

1

]+(1 + z)

[128

9H0,1

(1 + 3H0

)− 128

3H0,0,1 +

256

3H0,1,1 −

128

3ζ3

]− 512

9(1 + 2z)H0

−64

9(2 + 5z)H2

0 +

[64

9(−17 + 13z)− 128

3(1 + z)H0

]ζ2

]+ (1 + z)

(643H0,0,1,1 − 64H0,1,1,1

+32

15ζ22

)+

128

27(−40 + z)H0 −

64

27(11 + 14z)H2

0 +(12827

(−8 + z) +64

9(2 + 5z)H0

)H0,1

−64

9(2 + 5z)H0,0,1 +

[64

9(1 + 4z)− 64

3(1 + z)H0

]H0,1,1 +

[128

27(5 + 2z)− 64

9(2 + 5z)H0

−160

3(z − 1)H1 +

64

3(1 + z)H0,1

]ζ2 +

[−32

9(−17 + 13z) +

64

3(1 + z)H0

]ζ3

+APS(3)qq,Q (z) +NF

ˆCPS(3)q (LQ, NF , z)

. (D.91)

D.6 LSg in z space

LSg (z) =

a2sNFT2F

16

3LMLQ(2z − 1) + LM

[−16

3(−3 + 4z) + (2z − 1)

(−16

3H0 −

16

3H1

)]

+a3s

NFT

3F

64

9L2MLQ(2z − 1) + L2

M

[−64

9(−3 + 4z) + (2z − 1)

(−64

9H0 −

64

9H1

)]+CANFT

2F

8

27(−3943 + 3928z) + LML

2Q

[−64(z − 1) +

64

3(1 + z)H0 −

32

3(2z − 1)H1

]+L2

M

[512

3(z − 1) + (1 + z)

(−32

3H2

0 −64

3H0,1

)+

[64

3(−4 + z) +

32

3(2z − 1)H1

]H0

+32

3(−9 + 10z)H1 +

32

3(2z − 1)H2

1 + 32ζ2

]+ LQ

[−40

9(−108 + 107z)

217

Page 228: and 3-loop corrections to hard scattering processes in QCD

+L2M

[−64(z − 1) +

64

3(1 + z)H0 −

32

3(2z − 1)H1

]+ LM

[−32

3(−22 + 19z)

+

[32

9(5 + 98z) +

64

3(2z − 1)H1

]H0 −

64

3(1 + 2z)H−1H0 −

64

3(1 + 3z)H2

0

+128

9(−8 + 7z)H1 +

32

3(2z − 1)H2

1 −128

3(1 + z)H0,1 +

64

3(1 + 2z)H0,−1 +

128

3ζ2

]+

8

27(785 + 644z)H0 +

16

9(17 + 2z)H2

0 −16

9(2z − 1)H3

0 −16

27(−47 + 103z)H1 −

32

3zH0,1

+32

3zζ2

]+ (2z − 1)

(49H4

0 +32

3H0,0,0,1 −

64

15ζ22

)+ LM

[16

9(−325 + 301z)

+

[32

9

(− 58− 42z + 3z2

)− 128

9(−8 + 7z)H1 − 16(2z − 1)H2

1 −32

3

(− 3− 6z + 2z2

)H0,1

+64

3

(− 1− 2z + z2

)H0,−1

]H0 +

32

3

(1 + 2z + 2z2

)H2

−1H0 +

[8

9

(23− 124z + 44z2

)+16

3

(3− 6z + 2z2

)H1

]H2

0 +16

9(5 + 14z)H3

0 +

[16

9

(− 180 + 161z + 6z2

)+64

3(2z − 1)H0,1

]H1 −

32

9(−8 + z)H2

1 −16

9(2z − 1)H3

1

+

[−64

(2 + 6z + 12z2 + 11z3

)9z

H0 −32

3

(− 1− 2z + z2

)H2

0 +64

3(1 + 2z)H0,1

−64

3

(1 + 2z + 2z2

)H0,−1

]H−1 −

32

9(41 + 62z)H0,1 +

64(2 + 6z + 12z2 + 11z3

)9z

H0,−1

+32

3

(− 3 + 2z + 2z2

)H0,0,1 −

64

3

(− 1− 2z + z2

)H0,0,−1 −

32

3(−7 + 2z)H0,1,1

−64

3(1 + 2z)H0,1,−1 −

64

3(1 + 2z)H0,−1,1 +

64

3

(1 + 2z + 2z2

)H0,−1,−1

+

[−32

9

(3− 90z + 22z2

)− 64

3(3 + 4z)H0 −

64

3(z − 1)2H1 +

32

3

(− 1− 2z + 2z2

)H−1

]ζ2

−64

3

(2 + z + 2z2

)ζ3

]+

[8

27(−2405 + 413z) +

16

27(−47 + 103z)H1 +

32

3zH0,1

]H0

− 4

27(989 + 764z)H2

0 +160

27(−2 + z)H3

0 +8

27(−1884 + 1981z)H1 +

16

27(−47 + 103z)H2

1

− 8

27(785 + 572z)H0,1 −

32

9(17 + 5z)H0,0,1 +

64

3zH0,1,1 +

[8

9(293 + 122z)− 32

9(−17 + z)H0

−16

3(2z − 1)H2

0

]ζ2 +

[−32

9(−17 + z)− 32

3(2z − 1)H0

]ζ3

+ CFNFT

2F

4(−889 + 904z)

+LML2Q

[8(−41 + 42z) + (2z − 1)

(16H2

0 −32

3H1

)− 32

3(13 + 19z)H0

]+LQ

[−20(−67 + 70z) + L2

M

[−336(z − 1) + 48(3 + 4z)H0 − 16(2z − 1)H2

0

]+LM

[−16

3(−472 + 473z) + (2z − 1)

(−32H3

0 +64

3H2

1 − 64H0,0,1 + 64ζ3

)+

[32

3(156 + 25z) +

128

3(2z − 1)H1

]H0 +

16

3(73 + 52z)H2

0 −16

3(−109 + 106z)H1

218

Page 229: and 3-loop corrections to hard scattering processes in QCD

+64

3(14 + 17z)H0,1 +

[−64(4 + 7z) + 64(2z − 1)H0

]ζ2

]+ 32(23 + 17z)H0

−8(−23 + 9z)H20 +

8

3(9 + 4z)H3

0 −4

3(2z − 1)H4

0

]+ L2

M

[928(z − 1)

+(2z − 1)(163H3

0 + 32H0,0,1 − 32ζ3

)− 16(30 + 7z)H0 − 8(11 + 4z)H2

0

+336(z − 1)H1 − 48(3 + 4z)H0,1 +[48(3 + 4z)− 32(2z − 1)H0

]ζ2

]+LM

[8

9(−8533 + 8509z) + (1 + z)2

(−128

3H2

−1H0 −256

3H0,−1,−1

)+ (2z − 1)

(283H4

0

−80

9H3

1 + 64H0,0,1,1 −32

5ζ22

)+

[−8

9

(5606 + 209z + 24z2

)+ (2z − 1)

(−64

3H2

1

+64H0,0,1

)+ 48(−11 + 10z)H1 +

32

3

(− 25− 40z + 4z2

)H0,1

−128

3

(− 2 + 4z + z2

)H0,−1

]H0 +

[−4

9

(3063 + 462z + 32z2

)− 16

3

(− 1 + 2z + 4z2

)H1

]H2

0

−16

9(104 + 17z)H3

0 +

[−32

3

(229− 230z + 2z2

)− 64

3(2z − 1)H0,1

]H1 + 24(−11 + 10z)H2

1

+

[(1 + z)2

(643H2

0 +256

3H0,−1

)+

64(4 + 45z + 48z2 + 4z3

)9z

H0

]H−1 −

16

3(203 + 156z)H0,1

−64(4 + 45z + 48z2 + 4z3

)9z

H0,−1 −64

3(z − 1)(−11 + 2z)H0,0,1

+128

3

(− 5 + 6z + z2

)H0,0,−1 −

32

3(31 + 28z)H0,1,1 +

[32

9

(543 + 99z + 8z2

)+32

3(83 + 56z)H0 − 96(2z − 1)H2

0 +64

3

(− 1 + 2z + 2z2

)H1 −

128

3(1 + z)2H−1

]ζ2

+

[64

3

(33− 4z + 4z2

)− 128(2z − 1)H0

]ζ3

]+ (2z − 1)

( 4

15H5

0 + 32H0,0,0,0,1 − 32ζ5

)+4(−519 + 10z)H0 − 8(69 + 8z)H2

0 −8

3(32 + 3z)H3

0 +2

3(−11 + 4z)H4

0 + 20(−67 + 70z)H1

−32(23 + 17z)H0,1 + 16(−23 + 9z)H0,0,1 − 16(9 + 4z)H0,0,0,1 +

[32(23 + 17z)

−16(−23 + 9z)H0 + 8(9 + 4z)H20 −

16

3(2z − 1)H3

0

]ζ2 +

[32

5(9 + 4z)− 64

5(2z − 1)H0

]ζ22

+[−16(−23 + 9z) + 16(9 + 4z)H0 − 16(2z − 1)H2

0

]ζ3

+A

(3)qg,Q +NF

ˆCS(3)g (LQ, NF , z)

. (D.92)

D.7 HPSq in z space

HPSq =

a2sCFTF

−4

3(z − 1)

(148 + 66H1 + 15H2

1

)+ LQ

[8(z − 1)

(11 + 5H1

)219

Page 230: and 3-loop corrections to hard scattering processes in QCD

+(1 + z)(− 16H2

0 − 16H0,1 + 16ζ2)+ 32(−2 + z)H0

]+ L2

M

[20(z − 1)− 8(1 + z)H0

]+L2

Q

[−20(z − 1) + 8(1 + z)H0

]+ LM

[8(z − 1)− 8(−1 + 3z)H0 + 8(1 + z)H2

0

]+(1 + z)

(163H3

0 − 32H0,0,1 + 16H0,1,1 + 16ζ3

)+

[−256

3(−2 + z)− 80(z − 1)H1

−32(1 + z)3H−1

3z+ 32(1 + z)H0,1

]H0 +

8

3

(21 + 2z2

)H2

0 + 16(−1 + 3z)H0,1

+32(1 + z)3H0,−1

3z+

[−32

3

(9− 3z + z2

)− 32(1 + z)H0

]ζ2

+a3s

CFT

2F

L2M

[32

3(z − 1)

(12 + 5H1

)+ (1 + z)

(−32

3H2

0 −64

3H0,1 +

64

3ζ2

)+32

3(−7 + z)H0

]+ LQ

[(1 + z)

(643H0,1,1 −

64ζ33

)+ L2

M

[−160

3(z − 1) +

64

3(1 + z)H0

]+LM

[64

9(z − 1)

(− 4 + 15H1

)+ (1 + z)

(−128H0,1

3+

128ζ23

)+

128

9(2 + 5z)H0

]+128

27(11 + 14z)H0 + (z − 1)

(−3712

27+

128

9H1 −

80

3H2

1

)− 64

9(2 + 5z)H0,1

+64

9(2 + 5z)ζ2

]+ LM

[(1 + z)

(1289

H0,1 −128

3H0,0,1 +

256

3H0,1,1 −

128

3ζ3

)+

[−512

9(1 + 2z)− 320

3(z − 1)H1 +

128

3(1 + z)H0,1

]H0 −

64

9(2 + 5z)H2

0

+(z − 1)(−64

3− 2048

9H1 −

320

3H2

1

)+

[64

9(−17 + 13z)− 128

3(1 + z)H0

]ζ2

]

+(1 + z)(643H0,0,1,1 − 64H0,1,1,1 +

32

15ζ22

)+

[128

27(−40 + z) +

16

9(z − 1)H1

(− 8 + 15H1

)+64

9(2 + 5z)H0,1 −

64

3(1 + z)H0,1,1

]H0 −

64

27(11 + 14z)H2

0 + (z − 1)(3296

9+

4000

27H1

+448

9H2

1 +80

3H3

1

)+

128

27(−8 + z)H0,1 −

64

9(2 + 5z)H0,0,1 +

64

9(1 + 4z)H0,1,1

+

[128

27(5 + 2z)− 64

9(2 + 5z)H0 −

160

3(z − 1)H1 +

64

3(1 + z)H0,1

]ζ2

+

[−32

9(−17 + 13z) +

64

3(1 + z)H0

]ζ3

+ C2

FTF

(z − 1)

[2656 + 8H1

(103 + 40H0,0,1

)+8

3H4

0 + 144H21 − 80H2

0,1 + 160H0,1,1,1

]+ L2

M

[4(z − 1)

(92 + 43H1 + 10H2

1

)+(1 + z)

(−8

3H3

0 + 48H0,0,1 − 32H0,1,1 − 16ζ3

)+[−4(51 + 7z) + 80(z − 1)H1

−32(1 + z)H0,1

]H0 + 8(−6 + 5z)H2

0 − 80zH0,1 +[80 + 16(1 + z)H0

]ζ2

]+LQ

[L2M

[−4(z − 1)

(13 + 20H1

)+ (1 + z)

(8H2

0 + 32H0,1 − 32ζ2)− 16(−2 + 3z)H0

]+(z − 1)

(− 392− 288H1 − 160H0,1,1

)+ LM

[−8(z − 1)

(5 + 4H1

)

220

Page 231: and 3-loop corrections to hard scattering processes in QCD

+(1 + z)(−8H0 −

16

3H3

0 − 64H0,0,1 + 64ζ3

)+ 32zH2

0 + 32(−1 + 3z)H0,1

+[−32(−1 + 3z) + 64(1 + z)H0

]ζ2

]+ (1 + z)

(23H4

0 − 64H0,0,0,1 + 128H0,0,1,1 −256

5ζ22

)+[−52(−3 + z) + 8(z − 1)H1

(13 + 10H1

)+ (1 + z)

(96H0,0,1 − 64H0,1,1

)−32(−3 + 2z)H0,1

]H0 +

[6(3 + 19z) + 80(z − 1)H1 − 32(1 + z)H0,1

]H2

0 −16

3zH3

0

+8(19 + 17z)H0,1 − 16(1 + 5z)H0,0,1 +[−48(1 + 5z) + (1 + z)

(− 16H2

0 + 64H0,1

)+16(−1 + 3z)H0 − 160(z − 1)H1

]ζ2 +

[48(−3 + 5z)− 96(1 + z)H0

]ζ3

]

+LM

[(z − 1)

(312− 64

3H3

0 + 88H1 + 16H21

)+ (1 + z)

(43H4

0 − 160H0,0,0,1 + 64H0,0,1,1

+288

5ζ22

)+[−8(−2 + 21z) + 32(z − 1)H1 − 32(−1 + 3z)H0,1 + 64(1 + z)H0,0,1

]H0

+4(7 + 13z)H20 − 8(−11 + 21z)H0,1 + 32(1 + 7z)H0,0,1 − 32(−1 + 3z)H0,1,1

+[8(−7 + 17z)− 32(3 + z)H0 − 16(1 + z)H2

0

]ζ2 +

[−64(1 + 2z) + 32(1 + z)H0

]ζ3

]+(1 + z)

(− 2

15H5

0 − 80H0,0,0,0,1 + 832H0,0,0,1,1 + 256H0,0,1,0,1 − 128H0,0,1,1,1 + 80ζ5

)+

[−4(263 + 195z) + (z − 1)

[−32H1

(14 + 5H0,1

)− 172H2

1 −80

3H3

1

]+(1 + z)

(32H2

0,1 + 96H0,0,0,1 − 224H0,0,1,1 + 64H0,1,1,1

)+ 16(1 + 10z)H0,1

−16(−1 + 17z)H0,0,1 + 160(−2 + 3z)H0,1,1

]H0 +

[−6(26 + 15z)− 4(z − 1)H1

(43 + 10H1

)+(1 + z)

(− 48H0,0,1 + 32H0,1,1

)+ 80zH0,1

]H2

0 +

[−2(5 + 23z)− 80

3(z − 1)H1

+32

3(1 + z)H0,1

]H3

0 +[4(−169 + 35z)− 128(1 + z)H0,0,1

]H0,1 − 4(109 + 33z)H0,0,1

+8(−49 + 13z)H0,1,1 + 32(−8 + 15z)H0,0,0,1 − 144(−1 + 3z)H0,0,1,1 +

[4(57 + 77z)

+8(z − 1)H1

(43 + 10H1

)+ (1 + z)

(83H3

0 + 96H0,0,1 − 64H0,1,1 − 96ζ3

)+[12(5 + 13z)

+160(z − 1)H1 − 64(1 + z)H0,1

]H0 + 8(3 + z)H2

0 − 160zH0,1

]ζ2 +

[−8

5(−145 + 83z)

+48

5(1 + z)H0

]ζ22 +

[4(207 + 7z) + (1 + z)

(24H2

0 + 128H0,1

)− 32(−13 + 8z)H0

−320(z − 1)H1

]ζ3

+ A

PS(3)Qq + CPS(3)(LQ, NF + 1)

. (D.93)

D.8 HSg in z space

HSg =

asTF

−4(−3 + 4z) + (2z − 1)

(− 4LM + 4LQ − 4H0 − 4H1

)

221

Page 232: and 3-loop corrections to hard scattering processes in QCD

+a2s

CATF

−8

3(−101 + 104z) + L2

Q

[−48(z − 1)

+16(1 + z)H0 − 8(2z − 1)H1

]+ L2

M

[48(z − 1)− 16(1 + z)H0 + 8(2z − 1)H1

]+(1 + 2z)

(− 16H0,1,−1 − 16H0,−1,1

)+ LM

[8(−12 + 11z) + (1 + 2z)

(16H−1H0 + 8H2

0

−16H0,−1

)− 8(1 + 8z)H0 + 32(z − 1)H1 + 8(2z − 1)H2

1 + 16ζ2

]+ LQ

[8(−20 + 21z)

+(1 + 2z)(− 16H−1H0 + 16H0,−1

)+[24(−5 + 4z) + 16(2z − 1)H1

]H0 − 8(3 + 4z)H2

0

+16(−7 + 8z)H1 + 8(2z − 1)H21 − 32(1 + z)H0,1 + 32ζ2

]+

[4

3

(194− 163z + 6z2

)−4(− 53 + 56z + z2

)H1 − 16(2z − 1)H2

1 − 8(− 7− 10z + 2z2

)H0,1

+8(− 3− 6z + 2z2

)H0,−1

]H0 + 16z2H2

−1H0 +

[2

3

(126− 48z + 41z2

)+4(3− 6z + 2z2

)H1

]H2

0 +8

3(3 + 4z)H3

0 +[4(43− 53z + 2z2

)+ 16(2z − 1)H0,1

]H1

+2(19− 24z + z2

)H2

1 +

[−16

(2 + 3z + 9z2 + 11z3

)3z

H0 − 4(− 3− 6z + 2z2

)H2

0

+16(1 + 2z)H0,1 − 32z2H0,−1

]H−1 + 4

(− 19 + 28z + 2z2

)H0,1

+16(2 + 3z + 9z2 + 11z3

)3z

H0,−1 + 8(− 9− 10z + 2z2

)H0,0,1 − 8

(− 3− 6z + 2z2

)H0,0,−1

+48H0,1,1 + 32z2H0,−1,−1 +

[−4

3

(114− 84z + 47z2

)− 32(2 + z)H0

−16(z − 1)2H1 + 16(− 1− 2z + z2

)H−1

]ζ2 − 8

(− 1− 10z + 4z2

)ζ3

+CFTF

−20

3(−20 + 17z) + L2

M

(6 + (2z − 1)

(− 4H0 − 8H1

))+L2

Q

[6 + (2z − 1)

(− 4H0 − 8H1

)]+ LM

(− 4(−17 + 13z) + (2z − 1)

(− 8H2

0 − 16H21

+8H0,1 + 24ζ2)+[−16(−3 + 2z)− 32(2z − 1)H1

]H0 − 4(−17 + 20z)H1

)+LQ

[4(−17 + 13z) + LM

[−12 + (2z − 1)

(8H0 + 16H1

)]+ (2z − 1)

(8H2

0 + 16H21

−8H0,1 − 24ζ2)+[16(−3 + 2z) + 32(2z − 1)H1

]H0 + 4(−17 + 20z)H1

]+(2z − 1)

(−8

3H3

0 − 8H31 + 24H0,1,1

)+ (1 + z)2

(− 32H2

−1H0 − 64H0,−1,−1

)+

[−8

3

(− 46 + 53z + 6z2

)+ 8(8− 14z + z2

)H1 − 16(2z − 1)H2

1 + 32(z − 1)2H0,1

−32(z − 1)2H0,−1

]H0 +

[−4

3

(− 27 + 6z + 23z2

)− 16z2H1

]H2

0 +[−4(− 47 + 41z + 4z2

)−16(2z − 1)H0,1

]H1 − 2

(− 33 + 40z + 2z2

)H2

1 +

[(1 + z)2

(16H2

0 + 64H0,−1

)+16(4 + 12z2 + 13z3

)3z

H0

]H−1 − 16

(− 6 + z2

)H0,1 −

16(4 + 12z2 + 13z3

)3z

H0,−1

222

Page 233: and 3-loop corrections to hard scattering processes in QCD

−32(z − 1)2H0,0,1 + 32(1− 6z + z2

)H0,0,−1 +

[8

3

(− 60 + 42z + 29z2

)+ 32(2z − 1)H0

+16(− 1 + 2z + 2z2

)H1 − 32(1 + z)2H−1

]ζ2 + 8

(1 + 14z + 8z2

)ζ3

+T 2

F

(2z − 1)

(−16L2

M

3+

16LMLQ

3

)+ LM

[−16

3(−3 + 4z)

+(2z − 1)(−16

3H0 −

16

3H1

)]

+a3s

CFNFT

2F

LML

2Q

[8(−43 + 42z) + (2z − 1)

(16H2

0 +32

3H1

)− 32

3(14 + 17z)H0

]

+(LMLQ)

[−8

3(−709 + 690z) + (2z − 1)

(−64

3H3

0 −32

3H2

1 − 64H0,0,1 + 64ζ3

)+

[−16

9(−673 + 26z)− 128

3(2z − 1)H1

]H0 +

32

3(25 + 16z)H2

0 −16

9(−425 + 454z)H1

+64(4 + 7z)H0,1 +

[−64

3(14 + 17z) + 64(2z − 1)H0

]ζ2

]+ LM

[2

9(−29415 + 28958z)

+(1 + z)[−64(−5 + z)H−1H0 + 64(−5 + z)H0,−1

]+ (2z − 1)

(203H4

0 +32

9H3

1

+256H0,0,−1 − 64H0,0,0,1 + 64H0,0,1,1 +96

5ζ22

)+

[− 8

27(13571 + 1958z)

+(2z − 1)(323H2

1 − 128H0,−1 + 64H0,0,1

)+

16

3(−151 + 170z)H1 −

32

3(23 + 44z)H0,1

]H0

+

[8(− 129 + 18z + 4z2

)+

80

3(2z − 1)H1

]H2

0 −304

9(4 + z)H3

0 +

[104

27(−523 + 542z)

+64

3(2z − 1)H0,1

]H1 +

8

9(−425 + 454z)H2

1 −704

9(5 + 11z)H0,1 +

32

3(1 + 46z)H0,0,1

−64

3(11 + 23z)H0,1,1 +

[−16

9

(− 853 + 26z + 36z2

)+ (2z − 1)

(−64H2

0 −128

3H1

)+64

3(31 + 16z)H0

]ζ2 +

[−64

3(−20 + 19z)− 64(2z − 1)H0

]ζ3

]+ CAT

2F

8

27(−3943

+3928z) + LML2Q

[−64(z − 1) +

64

3(1 + z)H0 −

32

3(2z − 1)H1

]+ L2

M

[512

3(z − 1)

+(1 + z)(−32

3H2

0 −64

3H0,1

)+

[64

3(−4 + z) +

32

3(2z − 1)H1

]H0 +

32

3(−9 + 10z)H1

+32

3(2z − 1)H2

1 + 32ζ2

]+ LQ

[−40

9(−108 + 107z) + L2

M

[−64(z − 1) +

64

3(1 + z)H0

−32

3(2z − 1)H1

]+ LM

[−32

3(−22 + 19z) + (1 + 2z)

(−64

3H−1H0 +

64

3H0,−1

)+

[32

9(5 + 98z) +

64

3(2z − 1)H1

]H0 −

64

3(1 + 3z)H2

0 +128

9(−8 + 7z)H1 +

32

3(2z − 1)H2

1

−128

3(1 + z)H0,1 +

128

3ζ2

]+

8

27(785 + 644z)H0 +

16

9(17 + 2z)H2

0 −16

9(2z − 1)H3

0

223

Page 234: and 3-loop corrections to hard scattering processes in QCD

−16

27(−47 + 103z)H1 −

32

3zH0,1 +

32

3zζ2

]+ (2z − 1)

(49H4

0 +32

3H0,0,0,1 −

64

15ζ22

)+LM

[16

9(−325 + 301z) + (1 + 2z)

(−64

3H0,1,−1 −

64

3H0,−1,1

)+

[32

9

(− 58− 42z + 3z2

)−128

9(−8 + 7z)H1 − 16(2z − 1)H2

1 −32

3

(− 3− 6z + 2z2

)H0,1

+64

3

(− 1− 2z + z2

)H0,−1

]H0 +

32

3

(1 + 2z + 2z2

)H2

−1H0 +

[8

9

(23− 124z + 44z2

)+16

3

(3− 6z + 2z2

)H1

]H2

0 +16

9(5 + 14z)H3

0 +

[16

9

(− 180 + 161z + 6z2

)+64

3(2z − 1)H0,1

]H1 −

32

9(−8 + z)H2

1 −16

9(2z − 1)H3

1 +

[−64

(2 + 6z + 12z2 + 11z3

)9z

H0

−32

3

(− 1− 2z + z2

)H2

0 +64

3(1 + 2z)H0,1 −

64

3

(1 + 2z + 2z2

)H0,−1

]H−1

−32

9(41 + 62z)H0,1 +

64(2 + 6z + 12z2 + 11z3

)9z

H0,−1 +32

3

(− 3 + 2z + 2z2

)H0,0,1

−64

3

(− 1− 2z + z2

)H0,0,−1 −

32

3(−7 + 2z)H0,1,1 +

64

3

(1 + 2z + 2z2

)H0,−1,−1

+

[−32

9

(3− 90z + 22z2

)− 64

3(3 + 4z)H0 −

64

3(z − 1)2H1 +

32

3

(− 1− 2z + 2z2

)H−1

]ζ2

−64

3

(2 + z + 2z2

)ζ3

]+

[8

27(−2405 + 413z) +

16

27(−47 + 103z)H1 +

32

3zH0,1

]H0

− 4

27(989 + 764z)H2

0 +160

27(−2 + z)H3

0 +8

27(−1884 + 1981z)H1 +

16

27(−47 + 103z)H2

1

− 8

27(785 + 572z)H0,1 −

32

9(17 + 5z)H0,0,1 +

64

3zH0,1,1 +

[8

9(293 + 122z)− 32

9(−17 + z)H0

−16

3(2z − 1)H2

0

]ζ2 +

[−32

9(−17 + z)− 32

3(2z − 1)H0

]ζ3

+ CFT

2F

4(−889 + 904z)

+LML2Q

[8 + (2z − 1)

(−16

3H0 −

32

3H1

)]+ LQ

[−20(−67 + 70z) + L2

M

[−16(−20 + 21z)

+(2z − 1)(−16H2

0 +64

3H1

)+

80

3(5 + 8z)H0

]+ LM

[−16

3(−136 + 137z)

+(2z − 1)(−32

3H3

0 +64

3H2

1 −32

3H0,1 − 32ζ2

)+

[32

3(51 + 25z) +

128

3(2z − 1)H1

]H0

+16

3(25 + 16z)H2

0 +16

3(−17 + 20z)H1

]+ 32(23 + 17z)H0 − 8(−23 + 9z)H2

0

+8

3(9 + 4z)H3

0 −4

3(2z − 1)H4

0

]+ L2

M

[16

3(−155 + 164z) + (2z − 1)

(163H3

0 −32

3H2

1

+32H0,0,1 − 32ζ3

)+

[−16

3(79 + 13z)− 64

3(2z − 1)H1

]H0 −

8

3(31 + 16z)H2

0

+16(−18 + 17z)H1 −16

3(29 + 32z)H0,1 +

(803(5 + 8z)− 32(2z − 1)H0

)ζ2

]

224

Page 235: and 3-loop corrections to hard scattering processes in QCD

+LM

[8

9(−1549 + 1525z) + (1 + z)2

(−128

3H2

−1H0 −256

3H0,−1,−1

)+ (2z − 1)

(83H4

0

−80

9H3

1 +128

3H0,1,1 + 64H0,0,0,1 −

128

5ζ22

)+

[−8

9

(1394− 547z + 24z2

)− 48(−3 + 4z)H1

−64

3(2z − 1)H2

1 +64

3

(1− 2z + 2z2

)H0,1 −

128

3(z − 1)2H0,−1

]H0

+

[−4

9

(885 + 732z + 104z2

)− 16

3

(− 1 + 2z + 4z2

)H1

]H2

0 +8

9(−61 + 14z)H3

0

+

[−32

3

(61− 62z + 2z2

)− 64

3(2z − 1)H0,1

]H1 − 24(−3 + 4z)H2

1

+

[(1 + z)2

(643H2

0 +256

3H0,−1

)+

64(4 + 12z2 + 13z3

)9z

H0

]H−1 −

16

3(119 + 30z)H0,1

−64(4 + 12z2 + 13z3

)9z

H0,−1 −64

3

(14 + 5z + 2z2

)H0,0,1 +

128

3

(1− 6z + z2

)H0,0,−1

+

[32

9

(138 + 99z + 26z2

)+

32

3(23 + 20z)H0 − 32(2z − 1)H2

0 +64

3

(− 1 + 2z + 2z2

)H1

−128

3(1 + z)2H−1

]ζ2 +

[32

3

(27 + 28z + 8z2

)− 64(2z − 1)H0

]ζ3

]+(2z − 1)

( 4

15H5

0 + 32H0,0,0,0,1 − 32ζ5

)+ 4(−519 + 10z)H0 − 8(69 + 8z)H2

0

−8

3(32 + 3z)H3

0 +2

3(−11 + 4z)H4

0 + 20(−67 + 70z)H1 − 32(23 + 17z)H0,1

+16(−23 + 9z)H0,0,1 − 16(9 + 4z)H0,0,0,1 +

[32(23 + 17z)− 16(−23 + 9z)H0

+8(9 + 4z)H20 −

16

3(2z − 1)H3

0

]ζ2 +

[32

5(9 + 4z)− 64

5(2z − 1)H0

]ζ22

+[−16(−23 + 9z) + 16(9 + 4z)H0 − 16(2z − 1)H2

0

]ζ3

+ C2

FTF

−2(101 + 7z)

+LML2Q

[(2z − 1)

(− 18− 4H2

0 − 32H21 + 32ζ2

)+[−8(z − 1)− 32(2z − 1)H1

]H0 + 48H1

]+L2

M

[−2(−67 + 94z) + (2z − 1)

(−4

3H3

0 − 16H31 + 8H0,0,1 + 16H0,1,1 + 8ζ3

)+[−2(−31 + 58z)− 96(z − 1)H1 − 32(2z − 1)H2

1

]H0 +

[4(5 + 3z)− 16(2z − 1)H1

]H2

0

−2(−103 + 58z)H1 − 12(−7 + 8z)H21 + 8(3 + 13z)H0,1 +

[−8(15 + z)

+(2z − 1)(24H0 + 64H1

)]ζ2

]+ LQ

[2(23 + 13z) + L2

M

[(2z − 1)

(18 + 4H2

0 + 32H21 − 32ζ2

)+[8(z − 1) + 32(2z − 1)H1

]H0 − 48H1

]+ (2z − 1)

(163H4

1 + 16H20,1 + 16H0,0,0,1 − 80H0,0,1,1

+80H0,1,1,1 +184

5ζ22

)+ LM

[−2(−305 + 284z) + (2z − 1)

(64H3

1 − 112H0,0,1 − 64H0,1,1

)+(1 + 2z)

(64H2

−1H0 + 64H0,0,−1 + 128H0,−1,−1

)+[56(5 + 14z) + (2z − 1)

(160H2

1 + 64H0,1

)+32(−13 + 10z)H1

]H0 +

[8(6 + 7z) + 64(2z − 1)H1

]H2

0 +8

3(1 + 6z)H3

0

225

Page 236: and 3-loop corrections to hard scattering processes in QCD

+4(−119 + 94z)H1 + 320(z − 1)H21 +

[(1 + 2z)

(− 32H2

0 − 128H0,−1

)− 192(1 + z)H0

]H−1

+16(3 + z)H0,1 + 192(1 + z)H0,−1 +[−16(−11 + 21z)− 16(−5 + 18z)H0 − 256(2z − 1)H1

+64(1 + 2z)H−1

]ζ2 − 16(1 + 14z)ζ3

]+

[2(28 + 37z) + (2z − 1)

(163H3

1 − 48H0,0,1

+32H0,1,1

)+[4(−53 + 46z) + 32(2z − 1)H0,1

]H1 − 8(−5 + 4z)H2

1 + 8[−49 + 14z

+4z2]H0,1

]H0 +

[15 + 14z + (2z − 1)

(− 8H2

1 + 24H0,1

)− 4(− 25 + 16z + 4z2

)H1

]H2

0

+

[−4

3

(− 2 + 5z + 4z2

)− 16

3(2z − 1)H1

]H3

0 +1

3(1− 2z)H4

0 +[12(−10 + 3z)

−64(2z − 1)H0,0,1

]H1 + 16(−17 + 16z)H2

1 + 4(− 13 + 8z + 4z2

)H3

1 + 4(55 + 46z)H0,1

−32(− 15 + 4z + z2

)H0,0,1 + 8

(− 87 + 28z + 12z2

)H0,1,1 +

[−8(1 + 46z)

+(2z − 1)(8H2

0 − 16H21 − 96H0,1

)+(8(13 + 4z) + 32(2z − 1)H1

)H0 + 16(−5 + 4z)H1

]ζ2

+[−16

(− 21 + 10z + 6z2

)+ 32(2z − 1)H0

]ζ3

]+ LM

[1

2(−2757 + 2786z)

+(1 + z)(− 192H0,1,−1 − 192H0,−1,1 − 192H0,−1,−1

)+ (2z − 1)

(− 24H4

1 − 16H20,1

−288H0,0,0,−1 − 192H0,0,1,1 + 224H0,1,1,1 − 192H0,−1,0,1

)+ (1 + 2z)

(1283

H3−1H0 + 80H0,1,1

−64H0,0,1,−1 − 64H0,0,−1,1 − 64H0,0,−1,−1 − 128H0,1,−1,−1 − 128H0,−1,1,−1 − 128H0,−1,−1,1

−256H0,−1,−1,−1

)+

[−6(149 + 196z) + (2z − 1)

(−256

3H3

1 + 224H0,1,1 − 192H0,1,−1

−192H0,−1,1

)+[−4(−307 + 230z) + (2z − 1)

(− 160H0,1 + 192H0,−1

)]H1

−8(−67 + 82z)H21 + 8(25 + 18z)H0,1 − 224(1 + 2z)H0,−1 − 16(3 + 10z)H0,0,1

−32(5 + 2z)H0,0,−1 − 256zH0,−1,−1

]H0 +

(4(− 64− 125z + 12z2

)− 4(−67 + 76z)H1

−56(2z − 1)H21 + 8(3 + 2z)H0,1 + 16(1 + 6z)H0,−1

)H2

0 +

[4

3(−27 + z)− 64

3(2z − 1)H1

]H3

0

+1

3(−5− 14z)H4

0 +[−2(−353 + 332z) + (2z − 1)

(224H0,0,1 − 384H0,0,−1 − 96H0,1,1

)+48(−3 + 4z)H0,1

]H1 +

[−2(−365 + 322z) + 32(2z − 1)H0,1

]H2

1 − 16(−13 + 16z)H31

+

[(1 + z)

(192H2

0 + 192H0,1 + 192H0,−1

)+ (1 + 2z)

(16H3

0 + 64H0,0,1 + 64H0,0,−1

+128H0,1,−1 + 128H0,−1,1 + 256H0,−1,−1

)+[−32

(− 12− 11z + 3z2

)+128(1 + 2z)H0,−1

]H0

]H−1 +

[(1 + 2z)

(− 80H2

0 − 64H0,1 − 128H0,−1

)− 96(1 + z)H0

]H2

−1

−12(49 + 6z)H0,1 +[32(− 12− 11z + 3z2

)+ 192(2z − 1)H0,1

]H0,−1 − 64H2

0,−1

+8(−71 + 18z)H0,0,1 + 64(1 + 8z)H0,0,−1 + 16(−3 + 22z)H0,0,0,1 +

[−32

(8− 31z + 3z2

)+[16(−13 + 11z) + 320(2z − 1)H1

]H0 + 8(−5 + 18z)H2

0 + 64(−13 + 16z)H1

+160(2z − 1)H21 +

[−288(1 + z)− 64(1 + 2z)H0

]H−1 + 128(1 + 2z)H2

−1

226

Page 237: and 3-loop corrections to hard scattering processes in QCD

−64(−1 + 4z)H0,1 − 32(1 + 6z)H0,−1

]ζ2 +

48

5(13 + 2z)ζ22 +

[16(−6 + 31z)

+16(−3 + 26z)H0 + 256(2z − 1)H1 − 224(1 + 2z)H−1

]ζ3

]+ (2z − 1)

( 1

15H5

0 −8

3H5

1

+104H0,0,0,0,1 − 656H0,0,0,1,1 − 192H0,0,1,0,1 + 32H0,0,1,1,1 − 64H0,1,0,1,1 − 128H0,1,1,1,1 − 72ζ5

)+

[−2(159 + 625z) + (2z − 1)

(−16

3H4

1 − 24H20,1 − 80H0,0,0,1 + 192H0,0,1,1 − 144H0,1,1,1

)+(− 4(− 11− 43z + 18z2

)+ 8(− 13 + 4z + 4z2

)H0,1 + 32(2z − 1)H0,1,1

)H1

+[−10(−19 + 18z)− 16(2z − 1)H0,1

]H2

1 −4

3

(− 23 + 20z + 8z2

)H3

1

−16(− 14 + 39z + 3z2

)H0,1 + 16

(− 30 + 43z + 4z2

)H0,0,1

−16(− 61 + 31z + 8z2

)H0,1,1

]H0 +

[−103 + 287z − 36z2 + (2z − 1)

(32H0,0,1 − 40H0,1,1

)+2(− 51 + 22z + 12z2

)H1 + 2(−19 + 20z)H2

1 − 8(z − 1)(25 + 2z)H0,1

]H2

0

+

[1

3

(− 53− 6z + 24z2

)+ (2z − 1)

(83H2

1 − 8H0,1

)+

4

3

(− 31 + 28z + 4z2

)H1

]H3

0

+

[1

3

(− 6 + z + 4z2

)+

4

3(2z − 1)H1

]H4

0 +[−2(−593 + 575z)− 16(2z − 1)H2

0,1

−16(− 13 + 4z + 4z2

)H0,0,1

]H1 +

[4(172− 166z + 9z2

)+ 32(2z − 1)H0,0,1

]H2

1

−4

3

(− 181 + 148z + 18z2

)H3

1 − 4(− 9 + 8z + 2z2

)H4

1 +[2(226− 423z + 72z2

)+(2z − 1)

(96H0,0,1 + 32H0,1,1

)]H0,1 + 4

(− 13 + 4z + 4z2

)H2

0,1 + 2(149 + 562z + 24z2

)H0,0,1

−4(− 187 + 104z + 36z2

)H0,1,1 − 8

(− 74 + 141z + 16z2

)H0,0,0,1

+8(− 155 + 100z + 16z2

)H0,0,1,1 − 8

(− 129 + 44z + 16z2

)H0,1,1,1

+

[−2(248− 337z + 36z2

)+ (2z − 1)

(−4

3H3

0 +64

3H3

1 − 96H0,0,1 + 80H0,1,1

)+[2(−271 + 18z)− 8(−19 + 20z)H1 + 80(2z − 1)H0,1

]H0 +

[−4(13 + 7z)

−16(2z − 1)H1

]H2

0 +[20(−19 + 18z) + 32(2z − 1)H0,1

]H1 + 4

(− 23 + 20z + 8z2

)H2

1

+16(− 48 + 27z + 4z2

)H0,1

]ζ2 +

[16

5

(25 + 74z + 14z2

)− 16(2z − 1)H0

]ζ22

+

[2(− 815− 130z + 72z2

)+ (2z − 1)

(− 4H2

0 + 32H21 − 32H0,1

)+[8(− 39 + 33z + 16z2

)+ 32(2z − 1)H1

]H0 + 32

(− 17 + 12z + 4z2

)H1

]ζ3

+CACFTF

4(−1921 + 1903z) + LML

2Q

[22 + (2z − 1)

(−44

3H0 −

88

3H1

)]+(1 + z)

(− 176H0,1,−1 − 176H0,−1,1 − 64H0,1,1,−1 − 64H0,1,−1,1 − 64H0,−1,1,1 + 512H0,0,1,0,1

)+(2z − 1)

(83H5

1 − 128H0,1,0,1,1 + 32H0,1,1,1,1

)+ (1 + 2z)

(−8H4

−1H0 −2

15H5

0 + 64H0,0,0,0,−1

−80H0,0,0,1,−1 − 80H0,0,0,−1,1 + 144H0,0,0,−1,−1 − 48H0,0,1,0,−1 − 32H0,0,1,1,−1 − 32H0,0,1,−1,1

+32H0,0,1,−1,−1 − 32H0,0,−1,0,1 + 48H0,0,−1,0,−1 − 32H0,0,−1,1,1 + 32H0,0,−1,1,−1 + 32H0,0,−1,−1,1

−352H0,0,−1,−1,−1 − 64H0,1,1,−1,−1 − 64H0,1,−1,1,−1 − 64H0,1,−1,−1,1 − 128H0,1,−1,−1,−1

227

Page 238: and 3-loop corrections to hard scattering processes in QCD

−32H0,−1,0,1,1 + 32H0,−1,0,1,−1 + 32H0,−1,0,−1,1 − 128H0,−1,0,−1,−1 − 64H0,−1,1,1,−1

−64H0,−1,1,−1,1 − 128H0,−1,1,−1,−1 + 64H0,−1,−1,0,1 − 64H0,−1,−1,1,1 − 128H0,−1,−1,1,−1

−128H0,−1,−1,−1,1 − 192H0,−1,−1,−1,−1

)+ L2

M

[992(z − 1) +

[32(−16 + z)

+24(−11 + 12z)H1 + 32(2z − 1)H21 − 48(1 + 2z)H0,1

]H0 +

[8(−13 + 12z)

+16(2z − 1)H1

]H2

0 −16

3(1 + z)H3

0 + 8(−73 + 64z)H1 + 24(−7 + 8z)H21 + 16(2z − 1)H3

1

−320zH0,1 + 16(5 + 8z)H0,0,1 − 32(1 + 4z)H0,1,1 +[8(33 + 4z) + 48H0 − 64(2z − 1)H1

]ζ2

−16(1 + 4z)ζ3

]+ LM

[1

18(−15897 + 22658z) + (2z − 1)

(16H4

1 − 16H20,−1 − 224H0,1,1,1

)+(1 + 2z)

[−32

3H3

−1H0 +(− 24H0 + 24H2

0 + 32H0,−1

)H2

−1 − 48H0,1,−1

−48H0,−1,1 − 48H0,−1,−1 + 96H0,0,1,−1 + 96H0,0,−1,1 − 32H0,0,−1,−1 − 64H0,1,1,−1

−64H0,1,−1,1 − 64H0,−1,1,1 + 64H0,−1,−1,−1

]+

[− 2

27(−7111 + 4982z)

+(2z − 1)(112

3H3

1 − 80H0,1,1

)+

[−4

3(211 + 52z) + (2z − 1)

(64H0,1 − 96H0,−1

)]H1

+8

3(−73 + 71z)H2

1 +80

3(−5 + z)H0,1 − 48(−3 + 2z)H0,−1 + 16(5 + 14z)H0,0,1

+16(7 + 6z)H0,0,−1 + 32(−5 + 2z)H0,1,−1 + 32(−5 + 2z)H0,−1,1 + 32(1 + 6z)H0,−1,−1

]H0

+

[−2(− 146− 91z + 12z2

)− 20

3(−5 + 16z)H1 − 16H0,1 − 8(3 + 10z)H0,−1

]H2

0

+

[−10

9(−59 + 70z)− 8(2z − 1)H1

]H3

0 +2

3(5 + 4z)H4

0 +

[2

27(−10201 + 6722z)

+(2z − 1)(− 96H0,0,1 + 192H0,0,−1 + 96H0,1,1

)− 16

3(−29 + 40z)H0,1

]H1

+

[2

9(−2279 + 1516z)− 32(2z − 1)H0,1

]H2

1 +16

9(−71 + 79z)H3

1 +

[(1 + 2z)

(83H3

0 + 48H0,1

+48H0,−1 − 96H0,0,1 + 32H0,0,−1 + 64H0,1,1 − 64H0,−1,−1

)+[16(7− z + 3z2

)+(1 + 2z)

(64H0,1 − 64H0,−1

)]H0 − 24H2

0

]H−1 −

8

9(−124 + 71z)H0,1 +

[−16

(7− z + 3z2

)−96(2z − 1)H0,1

]H0,−1 +

8

3(133 + 40z)H0,0,1 + 48(−5 + 4z)H0,0,−1 −

8

3(85 + 76z)H0,1,1

−128(1 + 4z)H0,0,0,1 + 16(−13 + 10z)H0,0,0,−1 + 64(−1 + 6z)H0,0,1,1 + 64(−1 + 4z)H0,−1,0,1

+

[4

9

(637 + 298z + 108z2

)+ (1 + 2z)

(− 8H−1

(9 + 8H0

)− 16H2

0 − 16H2−1

)+

[16

3(−11 + 10z)− 64(2z − 1)H1

]H0 −

8

3(−97 + 80z)H1 − 64(2z − 1)H2

1

+16(−3 + 10z)H0,1 + 64(1 + 3z)H0,−1

]ζ2 +

16

5(15 + 22z)ζ22 +

[−16

3(−71 + 94z) + 80H0

228

Page 239: and 3-loop corrections to hard scattering processes in QCD

−112(2z − 1)H1 + 16(1 + 2z)H−1

]ζ3

]+ LQ

[−4(−281 + 275z) + (1 + z)

(80H0,−1

+64H0,1,−1 + 64H0,−1,1

)+ (2z − 1)

(−16

3H4

1 + 16H20,1 − 48H0,1,1,1

)+ (1 + 2z)

(−64

3H3

−1H0

+2

3H4

0 + 16H20,−1 − 16H0,0,0,−1 + 192H0,0,1,1 + 32H0,0,1,−1 + 32H0,0,−1,1 + 32H0,0,−1,−1

+64H0,1,−1,−1 + 32H0,−1,0,1 + 64H0,−1,1,−1 + 64H0,−1,−1,1 + 128H0,−1,−1,−1

)+L2

M

[−144(z − 1) +

[−16(−5 + 8z)− 32(2z − 1)H1

]H0 + 16(1 + z)H2

0

−24(−9 + 8z)H1 − 32(2z − 1)H21 + 48(1 + 2z)H0,1 − 16(5 + 2z)ζ2

]+LM

[2

3(−425 + 174z) + (2z − 1)

(− 32H3

1 + 32H0,1,1

)+ (1 + 2z)

[(48H0 − 16H2

0

−64H0,1

)H−1 + 56H0,1 − 48H0,−1 − 32H0,0,−1 + 64H0,1,−1 + 64H0,−1,1

]+

[−4

9(623 + 566z) + (2z − 1)

(− 32H2

1 − 32H0,1

)+

32

3(1 + 10z)H1 + 32(1 + 2z)H0,−1

]H0

+

[8

3(−23 + 58z) + 16(2z − 1)H1

]H2

0 −32

3(1 + z)H3

0 −4

9(−515 + 76z)H1

−16

3(−23 + 13z)H2

1 − 32(3 + 2z)H0,0,1 +

[−8

3(7 + 82z) + (1 + 2z)

(64H0 + 64H−1

)+64(2z − 1)H1

]ζ2 + 192zζ3

]+

[−8(−49 + 24z) +

[16(−15 + 16z) + 32(2z − 1)H0,1

]H1

+4(−43 + 40z)H21 +

16

3(2z − 1)H3

1 − 8(− 29 + 26z + 2z2

)H0,1 + 56H0,−1 + 192(1 + z)H0,0,1

−48(1 + 6z)H0,1,1

]H0 +

[2(29 + 148z) + 8(z − 1)(25 + z)H1 + 8(2z − 1)H2

1 − 64(1 + z)H0,1

+8(1 + 2z)H0,−1

]H2

0 +8

3

(1 + z2

)H3

0 +[−44(−20 + 21z)− 64(2z − 1)H0,0,1

]H1

−8(−5 + 3z)H21 − 4

(− 11 + 8z + 2z2

)H3

1 +

[(1 + 2z)

(−16

3H3

0 − 32H0,0,1 − 32H0,0,−1

−64H0,1,−1 − 64H0,−1,1 − 128H0,−1,−1

)+[−80(1 + z)− 32(1 + 2z)H0,−1

]H0

−4(11 + 8z)H20 − 64(1 + z)H0,1 − 16(7 + 4z)H0,−1

]H−1 +

[(1 + 2z)

(24H2

0 + 32H0,1

+64H0,−1

)+ 8(7 + 4z)H0

]H2

−1 + 8(59 + 43z)H0,1 + 16(− 1 + z + z2

)H0,0,1

+8(−3 + 8z)H0,0,−1 − 16(− 24 + 31z + 3z2

)H0,1,1 + 16(7 + 4z)H0,−1,−1

−32(5 + 4z)H0,0,0,1 +

[−24(13 + 25z) + (1 + 2z)

(− 16H2

0 − 64H2−1 − 48H0,−1

)+16(−5 + z)H0 − 288(z − 1)H1 + 16(2z − 1)H2

1 +[24(5 + 4z) + 64(1 + 2z)H0

]H−1

+128(1 + z)H0,1

]ζ2 −

144

5(3 + 2z)ζ22 +

[16(− 28 + 28z + 3z2

)− 48(3 + 4z)H0

+48(2z − 1)H1 + 112(1 + 2z)H−1

]ζ3

]+

[−20(143 + 100z) + (1 + z)

(− 64H0,1,−1

229

Page 240: and 3-loop corrections to hard scattering processes in QCD

−64H0,−1,1

)+ (1 + 2z)

(− 8H2

0,−1 − 32H0,0,0,−1 − 32H0,0,1,−1 − 32H0,0,−1,1 − 64H0,0,−1,−1

−64H0,1,−1,−1 − 32H0,−1,0,1 − 64H0,−1,1,−1 − 64H0,−1,−1,1 − 96H0,−1,−1,−1

)+[4(231− 235z + 9z2

)+ (2z − 1)

(32H0,0,1 + 64H0,1,1

)− 8(− 59 + 60z + 2z2

)H0,1

]H1

+[−4(−101 + 96z)− 32(2z − 1)H0,1

]H2

1 +4

3

(29− 36z + 4z2

)H3

1 +4

3(2z − 1)H4

1

+8(− 6 + 47z + 3z2

)H0,1 + 24(3 + 2z)H2

0,1 − 40(3 + 2z)H0,−1 − 8(− 7 + 96z + 4z2

)H0,0,1

+8(−9 + 28z)H0,0,−1 + 32(− 29 + 49z + 2z2

)H0,1,1 + 8(−9 + 28z)H0,−1,−1

+32(7 + 6z)H0,0,0,1 − 16(25 + 34z)H0,0,1,1 + 16(7 + 10z)H0,1,1,1

]H0

+

[2(− 223− 174z + 9z2

)+ (1 + 2z)

(8H0,0,−1 + 24H0,−1,−1

)+[−4(− 105 + 104z + 3z2

)−16(2z − 1)H0,1

]H1 − 2(−49 + 52z)H2

1 −8

3(2z − 1)H3

1 + 4(− 5 + 50z + 2z2

)H0,1

−8(1 + 10z)H0,−1 − 96(1 + z)H0,0,1 + 24(1 + 6z)H0,1,1

]H2

0 +[−2(17 + 56z + 2z2

)−8

3(z − 1)(25 + z)H1 −

8

3(2z − 1)H2

1 +64

3(1 + z)H0,1 −

8

3(1 + 2z)H0,−1

]H3

0

−2

3

(5− 4z + z2

)H4

0 +[4(−697 + 712z)− 32(2z − 1)H2

0,1 + 16(− 59 + 60z + 2z2

)H0,0,1

]H1

+[−2(337− 348z + 9z2

)+ 64(2z − 1)H0,0,1

]H2

1 +4

3

(− 88 + 64z + 9z2

)H3

1

+4(− 8 + 8z + z2

)H4

1 +

[(1 + z)

(176H0,1 + 64H0,1,1

)+ (1 + 2z)

(43H4

0 − 64H0,0,0,1

+32H0,0,1,1 − 32H0,0,1,−1 − 32H0,0,−1,1 + 96H0,0,−1,−1 + 64H0,1,1,−1 + 64H0,1,−1,1

+128H0,1,−1,−1 − 32H0,−1,0,1 + 64H0,−1,1,1 + 128H0,−1,1,−1 + 128H0,−1,−1,1 + 192H0,−1,−1,−1

)+[64(1 + z)

(8 + H0,1

)+ (1 + 2z)

(32H0,0,1 + 32H0,0,−1 + 64H0,1,−1 + 64H0,−1,1

+32H0,−1,−1

)+ 24(3 + 4z)H0,−1

]H0 + 4(41 + 32z)H2

0 +4

3(17 + 20z)H3

0

+48(10 + 7z)H0,−1 + 8(1 + 4z)H0,0,1 + 8(17 + 20z)H0,0,−1 + 16(13 + 16z)H0,1,−1

+16(13 + 16z)H0,−1,1 + 32(11 + 14z)H0,−1,−1

]H−1 +

[(1 + 2z)

(− 8H3

0 + 16H0,0,1

−48H0,0,−1 − 32H0,1,1 − 64H0,1,−1 − 64H0,−1,1 − 96H0,−1,−1

)+[−24(10 + 7z)

+(1 + 2z)(− 32H0,1 − 16H0,−1

)]H0 − 2(35 + 44z)H2

0 − 8(13 + 16z)H0,1

−16(11 + 14z)H0,−1

]H2

−1 +

[(1 + 2z)

(403H2

0 +64

3H0,1 + 32H0,−1

)+

16

3(11 + 14z)H0

]H3

−1

+[−4(437− 86z + 18z2

)− 256(1 + z)H0,0,1 + 64(2z − 1)H0,1,1

]H0,1

−4(− 59 + 60z + 2z2

)H2

0,1 +[−512(1 + z) + (1 + 2z)

(48H0,0,1 − 16H0,0,−1

+64H0,−1,−1

)]H0,−1 − 160zH2

0,−1 − 4(235 + 166z + 6z2

)H0,0,1 − 8(11 + 12z)H0,0,−1

+8(− 157 + 52z + 9z2

)H0,1,1 − 48(10 + 7z)H0,−1,−1 + 64

(− 8 + 22z + z2

)H0,0,0,1

−32(−4 + 11z)H0,0,0,−1 − 16(− 27 + 105z + 4z2

)H0,0,1,1 − 8(1 + 4z)H0,0,1,−1

−8(1 + 4z)H0,0,−1,1 − 8(17 + 20z)H0,0,−1,−1 + 8(− 55 + 70z + 8z2

)H0,1,1,1

−16(13 + 16z)H0,1,−1,−1 − 8(5 + 4z)H0,−1,0,1 − 16(13 + 16z)H0,−1,1,−1

230

Page 241: and 3-loop corrections to hard scattering processes in QCD

−16(13 + 16z)H0,−1,−1,1 − 32(11 + 14z)H0,−1,−1,−1 − 16(17 + 10z)H0,0,0,0,1

+64(26 + 27z)H0,0,0,1,1 − 16(−7 + 62z)H0,0,1,1,1 +

[4(334 + 149z + 9z2

)+(1 + 2z)

(83H3

0 −112

3H3

−1 − 16H0,0,−1 − 32H0,−1,−1

)+[4(101 + 186z) + 288(z − 1)H1

−16(2z − 1)H21 − 128(1 + z)H0,1 + 32(1 + 2z)H0,−1

]H0 + 8(6 + 5z)H2

0 +[8(−71 + 75z)

+64(2z − 1)H0,1

]H1 − 4

(7− 8z + 4z2

)H2

1 −64

3(2z − 1)H3

1 +[−8(52 + 43z)

+(1 + 2z)(− 32H2

0 − 32H0,−1

)− 48(5 + 6z)H0

]H−1 +

[48(4 + 5z) + 80(1 + 2z)H0

]H2

−1

−16(1 + 28z + 2z2

)H0,1 + 8(13 + 32z)H0,−1 + 192(1 + z)H0,0,1 − 16(1 + 22z)H0,1,1

−32(7 + 3z)ζ3

]ζ2 +

[−4

5

(− 587 + 302z + 28z2

)− 32

5(−7 + 4z)H0 − 48(2z − 1)H1

+64

5(1 + 2z)H−1

]ζ22 +

[−4(− 597− 112z + 18z2

)+ (1 + 2z)

(104H2

−1 + 24H0,−1

)+[−32

(− 27 + 19z + 2z2

)− 48(2z − 1)H1

]H0 + 48(1 + z)H2

0

−4(− 267 + 260z + 16z2

)H1 − 88(2z − 1)H2

1 +[−12(29 + 36z)− 80(1 + 2z)H0

]H−1

+8(29 + 38z)H0,1

]ζ3 − 4(−73 + 46z)ζ5

+ T 3

F

64

9L2MLQ(2z − 1) + L2

M

[−64

9(−3 + 4z)

+(2z − 1)(−64

9H0 −

64

9H1

)]+ A

(3)Qg + C(3)

g (NF + 1)

. (D.94)

231

Page 242: and 3-loop corrections to hard scattering processes in QCD

E Definition of certain iterated integrals

We collect in the following the definitions of the functions Gi appearing in Chapter 6.5.2.

G1(z) = G( √

τ

1− τ; z)= −2

√z +H1

(√z)+H−1

(√z), (E.1)

G2(x) = G(√

1 + τ ;x)= −2

3+

2√1 + x

3+

2

3x√1 + x, (E.2)

G3(x) = G(√1 + τ

τ;x)= −2 + 2 ln(2)− iπ + 2

√1 + x− H1

(√1 + x

)−H−1

(√1 + x

), (E.3)

G4(x) = G(√

τ√1 + τ ;x

)=

1

4

√x(1 + x) +

1

2x√x(1 + x)− 1

4ln(√

x+√1 + x

), (E.4)

G5(x) = G(1−√

1 + τ

τ;x)= 2− 2 ln(2)− 2

√1 + x+ 2H−1

(√1 + x

), (E.5)

G6(z) = G( √

τ

1− τ,

1

1− τ; z)= −4

√z − 2

√zH1(z) + H1

(√z)H1(z) + H−1

(√z)H1(z)

+2H1

(√z)− H−1

(√z)H1

(√z)− 1

2H2

1

(√z)+ 2H−1

(√z)+

1

2H2

−1

(√z)

+2H−1,1

(√z), (E.6)

G7(z) = G( √

τ

1− τ,1

τ; z)= 4

√z − 2

√zH0(z) + H−1

(√z)H0(z) + H0(z)H1

(√z)

−2H0,1

(√z)− 2H0,−1

(√z), (E.7)

G8(x) = G(√1 + τ

τ,1

τ;x)= 4 + 2iπ − 2π2

3− 4

√1 + x− 4 ln(2)− 2iπ ln(2)

+2 ln2(2) + 2√1 + xH0(x)− H−1

(√1 + x

)H0(x) + 2H1

(√1 + x

)−H0(x)H1

(√1 + x

)− H−1

(√1 + x

)H1

(√1 + x

)− 1

2H2

1

(√1 + x

)+2H−1

(√1 + x

)+

1

2H2

−1

(√1 + x

)+ 2H−1,1

(√1 + x

), (E.8)

G9(x) = G(√1 + τ

τ,

1

1 + τ;x)= 4− π2

2− 4

√1 + x− H−1(x)H1

(√1 + x

)+

2H−1(x)√1 + x

+2xH−1(x)√

1 + x− H−1(x)H−1

(√1 + x

)− 2H0,1

(−

√1 + x

)+ 2H0,1

(√1 + x

), (E.9)

G10(x) = G(√

τ√1 + τ ,

1

1 + τ;x)=

1

48

6√x√1 + x− 12x3/2

√1 + x

−6H0

(√x+

√1 + x

)− 12H−1(x)H0

(√x+

√1 + x

)+24H−1

((√x+

√1 + x

)2)H0

(√x+

√1 + x

)− 12H2

0

(√x+

√1 + x

)+12

√x√1 + xH−1(x) + 24x3/2

√1 + xH−1(x)− 12H0,−1

((√x+

√1 + x

)2)+6ζ2

, (E.10)

G11(x) = G(1−√

1 + τ

τ,1

τ;x)= −4− 2iπ +

π2

6+ 4

√1 + x+ 4 ln(2) + 2iπ ln(2)

−2 ln2(2)− 2√1 + xH0(x) + H0(−x)H0(x) + H−1

(√1 + x

)H0(x)−

1

2H2

0(−x)−2H1

(√1 + x

)+H0(x)H1

(√1 + x

)+H−1

(√1 + x

)H1

(√1 + x

)

232

Page 243: and 3-loop corrections to hard scattering processes in QCD

+1

2H2

1

(√1 + x

)− 2H−1

(√1 + x

)− 1

2H2

−1

(√1 + x

)− 2H−1,1

(√1 + x

), (E.11)

G12(x) = G(1−√

1 + τ

τ,

1

1 + τ;x)= −4 +

π2

3+ 4

√1 + x+H−1(x)H0(1)

+H−1(x)H0(−x) + H0(−x)H1(−x) + H−1(x)H1

(√1 + x

)− 2

√1 + xH−1(x)

+H−1(x)H−1

(√1 + x

)+ ζ2 − H0,1(−x)− 2H0,1

(√1 + x

)−2H0,−1

(√1 + x

), (E.12)

G13(x) = G(1−√

1 + τ

τ,√τ√1 + τ ;x

)=

1

40

[− 40

√x− 20x3/2 − 8x5/2 + 15

√x(1 + x)

+10x√x(1 + x)

]+

[1

8

(1 + 4

√1 + x

)− 1

2H1

(√x+

√1 + x

)+1

2H1

((√x+

√1 + x

)2)− 1

2H−1

(√x+

√1 + x

)]H0

(√x+

√1 + x

)+1

4H2

0

(√x+

√1 + x

)− 1

2ζ2 +H0,−1

(√x+

√1 + x

), (E.13)

G14(x) = G(√1 + τ

τ,1

τ,1

τ;x)= −8 +

4 ln3(2)

3− 4iπ +

4π2

3+

5iπ3

6− 2 ln2(2)(2 + iπ)

+1

3ln(2)

(24 + 12iπ − π2

)+ 8

√1 + x+

[− i ln(2)π +

3π2

2− 4

√1 + x

−2(−1 + iπ)H1

(√1 + x

)− 1

2H2

1

(√1 + x

)+ 2H−1,1

(√1 + x

)]H0(x)

+[− iπ +

√1 + x− 1

2H1

(√1 + x

)]H2

0(x) +[− 4− i ln(2)π +

3π2

2

+2H−1,1

(√1 + x

)]H1

(√1 + x

)+ (1− iπ)H2

1

(√1 + x

)− 1

6H3

1

(√1 + x

)+

[− 4 + i ln(2)π − 3π2

2+[2 + 2iπ − H1

(√1 + x

)]H0(x)−

1

2H2

0(x)

+2(1 + iπ)H1

(√1 + x

)− 1

2H2

1

(√1 + x

)]H−1

(√1 + x

)+[− 1− iπ +

1

2H0(x)

+1

2H1

(√1 + x

)]H2

−1

(√1 + x

)− 1

6H3

−1

(√1 + x

)− 4H−1,1

(√1 + x

)−2H−1,1,1

(√1 + x

)− 2H−1,−1,1

(√1 + x

)+ 2ζ3, (E.14)

G15(x) = G(√1 + τ

τ,1

τ,

1

1 + τ;x)= 8(− 1 +

√1 + x

)− H2

−1

(√1 + x

)H0

(√1 + x

)−8

√1 + xH−1

(− 1 +

√1 + x

)+[4(1 +

√1 + x

)H0

(√1 + x

)+ 2H0,−1

(√1 + x

)−ζ2

]H−1

(√1 + x

)+ 4(− 1 +

√1 + x

)H0,−1

(− 1 +

√1 + x

)−4(1 +

√1 + x

)H0,−1

(√1 + x

)+ 2H0,0,−1

(− 1 +

√1 + x

)− 2H0,−1,−1

(√1 + x

)+2H0,−2,−1

(− 1 +

√1 + x

)− 2H−2,0,−1

(− 1 +

√1 + x

)+ 2(1 +

√1 + x

)ζ2

+1

4ζ3, (E.15)

G16(x) = G(√1 + τ

τ,

1

1 + τ,1

τ;x)= 8(− 1 +

√1 + x

)− 4 ln(2)

(− 1 +

√1 + x

)+[− 4(− 1 +

√1 + x

)+ 2H0,−1

(− 1 +

√1 + x

)]H0

(− 1 +

√1 + x

)+[4 ln(2)

√1 + x+ 4

√1 + xH0

(− 1 +

√1 + x

)]H−1

(− 1 +

√1 + x

)

233

Page 244: and 3-loop corrections to hard scattering processes in QCD

−4(1 +

√1 + x

)H−2

(− 1 +

√1 + x

)+[2 ln(2)− 4

√1 + x

]H0,−1

(− 1 +

√1 + x

)+4

√1 + xH−1,−2

(− 1 +

√1 + x

)− 2 ln(2)H−2,−1

(− 1 +

√1 + x

)−4H0,0,−1

(− 1 +

√1 + x

)+ 2H0,−1,−2

(− 1 +

√1 + x

)−2H−2,−1,0

(− 1 +

√1 + x

)− 2H−2,−1,−2

(− 1 +

√1 + x

), (E.16)

G17(x) = G(√1 + τ

τ,

1

1 + τ,

1

1 + τ;x)= 8(− 1 +

√1 + x

)− 8

√1 + xH−1

(− 1 +

√1 + x

)+4

√1 + xH2

−1

(− 1 +

√1 + x

)+ 4H0,−1,−1

(− 1 +

√1 + x

)−4H−2,−1,−1

(− 1 +

√1 + x

), (E.17)

G18(x) = G(1−√

1 + τ

τ,1

τ,1

τ;x)= 8− 4 ln3(2)

3+ 2 ln2(2)(2 + iπ) + 4iπ − 5iπ3

6

+ ln(2)(− 8− 4iπ + 2ζ2

)− 8

√1 + x+

[i ln(2)π + 4

√1 + x+ 2(−1 + iπ)H1

(√1 + x

)+1

2H2

1

(√1 + x

)− 2H−1,1

(√1 + x

)− 9ζ2

]H0(x) +

[iπ2

−√1 + x+

1

2H0(−x)

+1

2H1

(√1 + x

)]H2

0(x)−1

3H3

0(x) +[4 + i ln(2)π − 2H−1,1

(√1 + x

)−9ζ2

]H1

(√1 + x

)+ (−1 + iπ)H2

1

(√1 + x

)+

1

6H3

1

(√1 + x

)+

[4− i ln(2)π

+1

2H2

0(x)− 2(1 + iπ)H1

(√1 + x

)+

1

2H2

1

(√1 + x

)+ 9ζ2 +H0(x)

[− 2− 2iπ

+H1

(√1 + x

)]]H−1

(√1 + x

)+[1 + iπ − 1

2H0(x)

−1

2H1

(√1 + x

)]H2

−1

(√1 + x

)+

1

6H3

−1

(√1 + x

)+ 4H−1,1

(√1 + x

)+2H−1,1,1

(√1 + x

)+ 2H−1,−1,1

(√1 + x

)− 8ζ2 − 2ζ3, (E.18)

G19(x) = G(1−√

1 + τ

τ,1

τ,

1

1 + τ;x)= −8

(− 1 +

√1 + x

)+ 8

√1 + xH−1

(− 1 +

√1 + x

)−4(− 1 +

√1 + x

)H0,−1

(− 1 +

√1 + x

)− 4(1 +

√1 + x

)H−2,−1

(− 1 +

√1 + x

)−2H0,0,−1

(− 1 +

√1 + x

)− 2H0,−2,−1

(− 1 +

√1 + x

)+ 2H−2,0,−1

(− 1 +

√1 + x

)+2H−2,−2,−1

(− 1 +

√1 + x

)+H0,0,−1(x), (E.19)

G20(x) = G(1−√

1 + τ

τ,

1

1 + τ,1

τ;x)= 4(−2 + ln(2))

(− 1 +

√1 + x

)+[4(− 1 +

√1 + x

)− 2H0,−1

(− 1 +

√1 + x

)]H0

(− 1 +

√1 + x

)+[− 4 ln(2)

√1 + x− 4

√1 + xH0

(− 1 +

√1 + x

)]H−1

(− 1 +

√1 + x

)+4(1 +

√1 + x

)H−2

(− 1 +

√1 + x

)+H0(x)H0,−1(x)

+[− 2 ln(2) + 4

√1 + x

]H0,−1

(− 1 +

√1 + x

)− 4

√1 + xH−1,−2

(− 1 +

√1 + x

)+2 ln(2)H−2,−1

(− 1 +

√1 + x

)− 2H0,0,−1(x) + 4H0,0,−1

(− 1 +

√1 + x

)−2H0,−1,−2

(− 1 +

√1 + x

)+ 2H−2,−1,0

(− 1 +

√1 + x

)+2H−2,−1,−2

(− 1 +

√1 + x

), (E.20)

G21(x) = G(1−√

1 + τ

τ,

1

1 + τ,

1

1 + τ;x)= −8

(− 1 +

√1 + x

)+[4√1 + x

−2H0,1

(√1 + x

)− 2H0,−1

(√1 + x

)]H−1(x) +

[−√1 + x

234

Page 245: and 3-loop corrections to hard scattering processes in QCD

+1

2H1

(√1 + x

)+

1

2H−1

(√1 + x

)]H−1(x)

2 + 4H0,0,1

(√1 + x

)+4H0,0,−1

(√1 + x

)− 7ζ3 +H0,−1,−1(x), (E.21)

G22(x) = G(1−√

1 + τ

τ,1−

√1 + τ

τ,1

τ;x)= −16 +

8 ln3(2)

3− 7iπ − 6x+ 4 ln(2)

[4 + 2iπ

−2√1 + x− iπ

√1 + x+ 7ζ2

]+ 16

√1 + x+ 4iπ

√1 + x+ ln2(2)

[− 8 + 3iπ

+4√1 + x

]+

[− 3 + 5 ln2(2) + ln(2)(4− 5iπ) + 2x+

[4− 15iπ

−2√1 + x

]H1

(√1 + x

)− 11

2H2

1

(√1 + x

)+ 42ζ2

]H0(x) +

[12

(4− 15iπ − 2

√1 + x

)−11

2H1

(√1 + x

)]H2

0(x)−11

6H3

0(x) +[− 7 + 5 ln2(2) + ln(2)(4− 5iπ)

+4√1 + x+ 42ζ2

]H1

(√1 + x

)+

1

2

(4− 15iπ − 2

√1 + x

)H2

1

(√1 + x

)−11

6H3

1

(√1 + x

)+

[− 9− 9 ln2(2) + ln(2)(4 + 9iπ)− 4iπ + 4

√1 + x+

[− 4

+15iπ − 2√1 + x+ 13H1

(√1 + x

)]H0(x) +

13

2H2

0(x) +(− 4 + 15iπ

−2√1 + x

)H1

(√1 + x

)+

13

2H2

1

(√1 + x

)− 34ζ2

]H−1

(√1 + x

)+[12

(− 15iπ + 2

√1 + x

)− 11

2H0(x)−

11

2H1

(√1 + x

)]H2

−1

(√1 + x

)+3

2H3

−1

(√1 + x

)+ 4(− 1 +

√1 + x

)H−1,1

(√1 + x

)− 4H−1,−1,1

(√1 + x

)+14ζ2 + 8iπζ2 − 8

√1 + xζ2 +

1

2ζ3, (E.22)

G23(x) = G(1−√

1 + τ

τ,1−

√1 + τ

τ,

1

1 + τ;x)= −16 + 16 ln(2)− 4iπ − 6x+ 16

√1 + x

+2(− 2 + ζ2

)H0(x)− 4H2

−1

(√1 + x

)H0

(−√1 + x

)+2(− 2 + ζ2

)H1

(√1 + x

)+[2(1 + x)− 4

√1 + xH−1

(√1 + x

)+2H2

−1

(√1 + x

)]H−1(x) +

[2(− 6 + 5ζ2

)+8

√1 + xH0

(−

√1 + x

)]H−1

(√1 + x

)+ 8

√1 + xH0,1

(1 +

√1 + x

)−8H0,0,1

(1 +

√1 + x

)+ 2iπζ2 − 12

√1 + xζ2 + 7ζ3 (E.23)

G24(y) = G((3 + τ)1/3

τ; y)=

1

6

3

[− 6 + 3 ln(3)− 2(−1)1/3

[− ln(3)

+ ln(3− (−3)2/3(3 + y)1/3

)]+ 2(−1)2/3 ln

[1 + 3−1/3(−1)1/3(3 + y)1/3

]+2 ln

(− 3 + 32/3(3 + y)1/3

)]31/3 + π35/6 + 18(3 + y)1/3

, (E.24)

G25(y) = G(τ 2/3(3 + τ)1/3; y

)=

1

2

(1 + y)(3 + y)1/3 − 31/3 2F1

[23,2

3;5

3;−y

3

]y2/3, (E.25)

G26(y) = G(τ 1/3(3 + τ)2/3; y

)=

1

2

(2 + y)(3 + y)2/3 − 2× 32/3 2F1

[13,1

3;4

3;−y

3

]y1/3, (E.26)

G27(y) = G((3 + τ)1/3

τ, τ 1/3(3 + τ)2/3; y

), (E.27)

235

Page 246: and 3-loop corrections to hard scattering processes in QCD

G28(y) = G(τ 2/3(3 + τ)1/3,

1

τ; y), (E.28)

G29(y) = G(τ 2/3(3 + τ)1/3,

1

3 + τ; y), (E.29)

G30(y) = G(τ 2/3(3 + τ)1/3, τ 1/3(3 + τ)2/3; y

), (E.30)

G31(y) = G(τ 1/3(3 + τ)2/3,

1

τ; y), (E.31)

G32(y) = G(τ 1/3(3 + τ)2/3,

1

3 + τ; y), (E.32)

G33(y) = G(τ 1/3(3 + τ)2/3,

(3 + τ)1/3

τ; y), (E.33)

G34(y) = G(τ 1/3(3 + τ)2/3, τ 2/3(3 + τ)1/3; y

), (E.34)

G35(y) = G(τ 1/3(3 + τ)2/3,

1

τ, τ 2/3(3 + τ)1/3; y

), (E.35)

G36(y) = G(τ 1/3(3 + τ)2/3,

1

3 + τ, τ 2/3(3 + τ)1/3; y

). (E.36)

236

Page 247: and 3-loop corrections to hard scattering processes in QCD

Acknowledgements

I would like to thank Prof. Johannes Blumlein for accepting to patiently train me in this projectand for his constant involvement as well as for building an international research environmentin field theory. I also thank Kay Schonwald for much help and support. I thank Prof. CarstenSchneider and Jakob Ablinger for their help and hospitality at RISC, and all the scholars atDESY whom I have met, particularly Abilio De Freitas. I also thank Prof. Gabriele Travagliniand all the organizers and lecturers in the SAGEX network, for the many training events whichhave been offered.

This project has received funding from the European Union’s Horizon 2020 research andinnovation programme under the Marie Sklodowska-Curie grant agreement No. 764850, SAGEX.

237

Page 248: and 3-loop corrections to hard scattering processes in QCD

Marco Saragnese – Curriculum vitae

PhD candidate in Physics, DESY, Zeuthen (September 2018 – 2022 expected)EDUCATION

European training network ‘SAGEX’Advisor: Prof. Johannes Blumlein

Laurea magistrale in Physics, 110/110 e lode, University of Torino, Italy (December 2017).Thesis title: Modern methods for the computation of gauge theory amplitudesAdvisor: Prof. Lorenzo Magnea

Laurea in Physics, 110/110 e lode, University of Torino (December 2011).

Liceo scientifico high school degree, final grade 100/100 (July 2008).

PhD work: Higher-order, multiscale analytic calculations in QCD, in particular calcula-RESEARCH

EXPERIENCE tion of operator matrix elements for deep inelastic scattering. Implementation of algo-rithms for solving partial linear difference equations in Mathematica.

Master work: Study of the literature on recursive methods and on unitarity-based meth-ods in the context of tree-level and one-loop amplitudes.

Package development in Mathematica. Integration techniques and shuffle algebras.RELEVANT

SKILLS Special functions and hypergeometric functions.Experience using Mathematica and Form.Coursework in Monte Carlo simulation in Root (C++).Experience using the Mathematica packages Sigma and HarmonicSums relating to sym-bolic summation and Mellin transforms.

PUBLICATIONS

J. Blumlein, M. Saragnese and C. Schneider, Hypergeometric Structures in Feynman Inte-grals, [arXiv:2111.15501 [math-ph]].

J. Ablinger, J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald,New 2- and 3-loop heavy flavor corrections to unpolarized and polarized deep-inelastic scatter-ing, [arXiv:2107.09350 [hep-ph]].

J. Blumlein and M. Saragnese, The N3LO scheme-invariant QCD evolution of the non-singlet structure functions FNS

2 (x,Q2) and gNS1 (x,Q2), Phys. Lett. B 820 (2021), 136589

[arXiv:2107.01293 [hep-ph].

J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald, Logarith-mic contributions to the polarized O(α3

s) asymptotic massive Wilson coefficients and opera-tor matrix elements in deeply inelastic scattering, Phys. Rev. D 104 (2021) no.3, 034030[arXiv:2105.09572 [hep-ph]].

J. Ablinger, J. Blumlein, A. De Freitas, A. Goedicke, M. Saragnese, C. Schneider andK. Schonwald, The two-mass contribution to the three-loop polarized gluonic operator matrixelement A(3)

gg,Q, Nucl. Phys. B 955 (2020), 115059 [arXiv:2004.08916 [hep-ph]].

Page 249: and 3-loop corrections to hard scattering processes in QCD

J. Ablinger, J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald,The three-loop polarized pure singlet operator matrix element with two different masses, Nucl.Phys. B 952 (2020), 114916 [arXiv:1911.11630 [hep-ph]].

Scheme-invariant evolution of Deep-inelastic Structure Functions at NNLO and N3LO,PRESENTATIONS

SAGEX workshop, Durham, April 1-2 2019.

Two-mass contributions to polarized three-loop operator matrix elements, presented at RISC,Hagenberg, November 11, 2020 and at the SAGEX workshops in Berlin, February 252020 and in Hamburg, August 1, 2019.

Topics in the computation of gauge theory amplitudes, DESY, Zeuthen, February 28, 2019.

Italian (native), French (basic), German (elementary).LANGUAGE

SKILLS

English (very good).TOEFL: 110/120 on the internet-based exam (March 2007).

Internship, Research Institute for Symbolic Computation (RISC), Hagenberg, AustriaOTHER

(October – December 2020).Supervisor: Prof. Carsten Schneider

Teaching work: preparation of problem set in quantum field theory for the EU networkiTHEPHY (Bologna – DESY – Dortmund – Lyon – Clermont-Ferrand)

Diploma in Composition, Conservatory of Torino (September 2015).

Teaching assistant, introductory physics for biology students, University of Torino (2013).

Exchange student, University of Uppsala, Sweden (Spring 2012).

‘Marco Polo’ scholarship (2011).AWARDS AND

SCHOLARSHIPS Regional award directed at university students in scientific disciplines

‘Progetto lauree scientifiche’ scholarship of the Societa Italiana di Fisica (2008).One of 42 awarded nation-wide during that year

Born in Padova, Italy on January 4, 1990. Italian citizen.PERSONAL

Prof. Johannes Blumlein, DESY, Zeuthen. Email: [email protected]

Prof. Carsten Schneider, RISC, Hagenberg. Email: [email protected]

Email: [email protected]

INFORMATION Address:Waldpromenade 4415738 Zeuthen, Germany

Page 250: and 3-loop corrections to hard scattering processes in QCD

References

[1] J. Thomson, Phil. Mag. Ser. 5 44 (1897) 293–316.

[2] A. Pais, Inward bound: of matter and force in the physical world, (Clarendon Press, Oxford,1986).

[3] E. Rutherford, Phil. Mag. Series 6, 21 (1911) 669–688.

[4] H. Geiger and E. Marsden, Proc. Roy. Soc., 82 (1909) 495–500.

[5] H. Geiger, Proc. Roy. Soc., 83 (1910) 492–504.

[6] J. Chadwick, Nature 129 (1932) 312–312.

[7] J. Chadwick, Proc. Roy. Soc. Lond. A A136 (1932) no.830, 692–708.

[8] A. H. Compton, Phys. Rev. 21 (1923) 483–502.

[9] H. Yukawa, Proc. Phys. Math. Soc. Jap. 17 (1935) 48–57.

[10] M. Gell-Mann, Phys. Rev. 125 (1962) 1067–1084.

[11] V. Barnes et al., Phys. Rev. Lett. 12 (1964) 204–206.

[12] M. Gell-Mann, Phys. Lett. 8 (1964) 214–215.

[13] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking, I., CERN-TH-401.

[14] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking, II., CERN-TH-412.

[15] O. Greenberg, Phys. Rev. Lett. 13 (1964) 598–602.

[16] M. Han and Y. Nambu, Phys. Rev. 139 (1965) B1006–B1010.

[17] R. Frisch and O. Stern, Z. Phys. 85 (1933) 4–16.

[18] R. Bacher, Phys. Rev. 43 (1933) 1001–1002.

[19] L. Alvarez and F. Bloch, Phys. Rev. 57 (1940) 111–122.

[20] R. Hofstadter, Electron scattering and nuclear and nucleon structure. A collection of reprintswith an introduction, (Benjamin, New York, 1963), 690 p. and references therein.

[21] W. K. H. Panofsky, Proc. 14th International Conference on High-Energy Physics, Vienna,1968, J. Prentki and J. Steinberger, eds., (CERN, Geneva, 1968), pp. 23.

[22] R. E. Taylor, Proc. 4th International Symposium on Electron and Photon Interactionsat High Energies, Liverpool, 1969, (Daresbury Laboratory, 1969), eds. D.W. Braben andR.E. Rand, pp. 251.

[23] E. D. Bloom et al., Phys. Rev. Lett. 23 (1969) 930–934.

[24] M. Breidenbach et al., Phys. Rev. Lett. 23 (1969) 935–939.

[25] R. E. Taylor, Rev. Mod. Phys. 63 (1991) 573–595.

240

Page 251: and 3-loop corrections to hard scattering processes in QCD

[26] H. W. Kendall, Rev. Mod. Phys. 63 (1991) 597–614.

[27] J. I. Friedman, Rev. Mod. Phys. 63 (1991) 615–629.

[28] J. Bjorken, Phys. Rev. 179 (1969) 1547–1553.

[29] C. G. Callan, Jr. and D. J. Gross, Phys. Rev. Lett. 22 (1969) 156–159.

[30] R. P. Feynman, Phys. Rev. Lett. 23 (1969) 1415–1417.

[31] R. P. Feynman, Photon-hadron interactions, (Benjamin, Reading, MA, 1972), 282 p.

[32] G. ’t Hooft, Nucl. Phys. B 33 (1971) 173–199.

[33] H. Fritzsch and M. Gell-Mann, Proceedings of 16th International Conference on High-EnergyPhysics, Batavia, Illinois, 6-13 Sep Vol. 2, J.D. Jackson, A. Roberts, R. Donaldson, eds.,pp. 135 (1972) [hep-ph/0208010].

[34] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47 (1973) 365–368.

[35] H. Politzer, Phys. Rev. Lett. 30 (1973) 1346–1349.

[36] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343–1346.

[37] D. Gross and F. Wilczek, Phys. Rev. D 8 (1973) 3633–3652.

[38] D. Gross and F. Wilczek, Phys. Rev. D 9 (1974) 980–993.

[39] H. Georgi and H. Politzer, Phys. Rev. D 9 (1974) 416–420.

[40] W. A. Bardeen, A. Buras, D. Duke and T. Muta, Phys. Rev. D 18 (1978) 3998–4017.

[41] W. Furmanski and R. Petronzio, Z. Phys. C 11 (1982) 293–314.

[42] G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298–318.

[43] Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641–653.

[44] V. Gribov and L. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438–450.

[45] S. D. Drell, D. J. Levy and T. M. Yan, Phys. Rev. 187 (1969) 2159–2171.

[46] S. D. Drell, D. J. Levy and T. M. Yan, Phys. Rev. D 1 (1970) 1035–1068.

[47] S. D. Drell, D. J. Levy and T. M. Yan, Phys. Rev. D 1 (1970) 1617–1639.

[48] S. D. Drell, D. J. Levy and T. M. Yan, Phys. Rev. Lett. 22 (1969) 744–748.

[49] H. Politzer, Nucl. Phys. B 129 (1977) 301–318.

[50] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B 140 (1978) 54–72.

[51] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B 146 (1978) 29–49.

[52] S. B. Libby and G. F. Sterman, Phys. Rev. D 18 (1978) 3252–3268.

[53] S. B. Libby and G. F. Sterman, Phys. Rev. D 18 (1978), 4737–4745.

[54] A. H. Mueller, Phys. Rev. D 18 (1978), 3705–3727.

241

Page 252: and 3-loop corrections to hard scattering processes in QCD

[55] R. Ellis, H. Georgi, M. Machacek, H. Politzer and G. G. Ross, Nucl. Phys. B 152 (1979)285–329.

[56] J. C. Collins and G. F. Sterman, Nucl. Phys. B 185 (1981) 172–188.

[57] J. C. Collins, D. E. Soper and G. F. Sterman, Nucl. Phys. B 261 (1985) 104–142.

[58] G. T. Bodwin, Phys. Rev. D 31 (1985) 2616–2642, Erratum: Phys. Rev. D 34 (1986) 3932–3932.

[59] J. C. Collins, D. E. Soper and G. F. Sterman, Adv. Ser. Direct. High Energy Phys. 5 (1989)1-91. [arXiv:hep-ph/0409313 [hep-ph]].

[60] G. F. Sterman, Partons, factorization and resummation, TASI 95 [arXiv:hep-ph/9606312[hep-ph]].

[61] J. Collins, Foundations of perturbative QCD, (Cambridge University Press, Cambridge, 2011).

[62] W. L. van Neerven and E. B. Zijlstra, Phys. Lett. B 272 (1991) 127–133.

[63] E. B. Zijlstra and W. L. van Neerven, Phys. Lett. B 273 (1991) 476–482.

[64] E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B 383 (1992) 525–574.

[65] S. A. Larin, T. van Ritbergen and J. A. M. Vermaseren, Nucl. Phys. B 427 (1994) 41–52.

[66] S. Larin, P. Nogueira, T. van Ritbergen and J. Vermaseren, Nucl. Phys. B 492 (1997)338–378 [arXiv:hep-ph/9605317 [hep-ph]].

[67] A. Retey and J. Vermaseren, Nucl. Phys. B 604 (2001) 281–311 [arXiv:hep-ph/0007294[hep-ph]].

[68] J. Blumlein and J. Vermaseren, Phys. Lett. B 606 (2005) 130–138 [arXiv:hep-ph/0411111[hep-ph]].

[69] S. Moch, J. Vermaseren and A. Vogt, Nucl. Phys. B 688 (2004) 101–134 [arXiv:hep-ph/0403192 [hep-ph]].

[70] A. Vogt, S. Moch and J. Vermaseren, Nucl. Phys. B 691 (2004) 129–181 [arXiv:hep-ph/0404111 [hep-ph]].

[71] J. Vermaseren, A. Vogt and S. Moch, Nucl. Phys. B 724 (2005) 3–182 [arXiv:hep-ph/0504242[hep-ph]].

[72] J. Blumlein, M. Kauers, S. Klein and C. Schneider, Comput. Phys. Commun. 180 (2009)2143–2165 [arXiv:0902.4091 [hep-ph]].

[73] J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, A. Hasselhuhn, A. von Man-teuffel, M. Round, C. Schneider and F. Wißbrock, Nucl. Phys. B 886 (2014) 733–823[arXiv:1406.4654 [hep-ph]].

[74] J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, A. von Manteuffel and C. Schneider,Nucl. Phys. B 922 (2017) 1–40 [arXiv:1705.01508 [hep-ph]].

[75] J. Blumlein, P. Marquard, C. Schneider and K. Schonwald, Nucl. Phys. B 971 (2021), 115542[arXiv:2107.06267 [hep-ph]].

242

Page 253: and 3-loop corrections to hard scattering processes in QCD

[76] S. Moch, J. A. M. Vermaseren and A. Vogt, Phys. Lett. B 606 (2005) 123–129 [arXiv:hep-ph/0411112 [hep-ph]].

[77] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98 (2018) no.3, 030001.

[78] S. Alekhin, J. Blumlein, S. Moch and R. Placakyte, Phys. Rev. D 96 (2017) no.1, 014011[arXiv:1701.05838 [hep-ph]].

[79] K. Sasaki, Prog. Theor. Phys. 54 (1975) 1816–1827.

[80] M. Ahmed and G. G. Ross, Nucl. Phys. B 111 (1976) 441–460.

[81] R. Mertig and W. van Neerven, Z. Phys. C 70 (1996) 637–654 [arXiv:hep-ph/9506451 [hep-ph]].

[82] W. Vogelsang, Phys. Rev. D 54 (1996) 2023–2029 [arXiv:hep-ph/9512218 [hep-ph]].

[83] S. Moch, J. Vermaseren and A. Vogt, Nucl. Phys. B 889 (2014) 351–400 [arXiv:1409.5131[hep-ph]].

[84] S. Moch, J. Vermaseren and A. Vogt, Phys. Lett. B 748 (2015) 432–438 [arXiv:1506.04517[hep-ph]].

[85] A. Behring, J. Blumlein, A. De Freitas, A. Goedicke, S. Klein, A. von Manteuffel, C. Schnei-der and K. Schonwald, Nucl. Phys. B 948 (2019), 114753 [arXiv:1908.03779 [hep-ph]].

[86] Y. Matiounine, J. Smith and W. van Neerven, Phys. Rev. D 58 (1998) 076002 [arXiv:hep-ph/9803439 [hep-ph]].

[87] G. T. Bodwin and J. W. Qiu, Phys. Rev. D 41 (1990) 2755–2766.

[88] W. Vogelsang, Z. Phys. C 50 (1991) 275–284.

[89] S. Wandzura and F. Wilczek, Phys. Lett. B 72 (1977) 195–198.

[90] J. Blumlein and N. Kochelev, Phys. Lett. B 381 (1996) 296–304 [arXiv:hep-ph/9603397[hep-ph]].

[91] J. Blumlein and N. Kochelev, Nucl. Phys. B 498 (1997) 285–309 [arXiv:hep-ph/9612318[hep-ph]].

[92] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 813 (2009) 220–258[arXiv:0812.4168 [hep-ph]].

[93] W. E. Caswell, Phys. Rev. Lett. 33 (1974) 244–246.

[94] D. R. T. Jones, Nucl. Phys. B 75 (1974) 531–538.

[95] O. Tarasov, A. Vladimirov and A. Zharkov, Phys. Lett. B 93 (1980) 429–432.

[96] S. Larin and J. Vermaseren, Phys. Lett. B 303 (1993) 334–336 [arXiv:hep-ph/9302208 [hep-ph]].

[97] T. van Ritbergen, J. Vermaseren and S. Larin, Phys. Lett. B 400 (1997) 379–384 [arXiv:hep-ph/9701390 [hep-ph]].

[98] M. Czakon, Nucl. Phys. B 710 (2005) 485–498 [arXiv:hep-ph/0411261 [hep-ph]].

243

Page 254: and 3-loop corrections to hard scattering processes in QCD

[99] P. Baikov, K. Chetyrkin and J. Kuhn, Phys. Rev. Lett. 118 (2017) no.8, 082002[arXiv:1606.08659 [hep-ph]].

[100] F. Herzog, B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt, JHEP 02 (2017), 090[arXiv:1701.01404 [hep-ph]].

[101] T. Luthe, A. Maier, P. Marquard and Y. Schroder, JHEP 10 (2017), 166 [arXiv:1709.07718[hep-ph]].

[102] K. G. Chetyrkin, G. Falcioni, F. Herzog and J. A. M. Vermaseren, JHEP 10 (2017), 179[arXiv:1709.08541 [hep-ph]].

[103] J. Aubert et al. [E598], Phys. Rev. Lett. 33 (1974) 1404–1406.

[104] J. Augustin et al. [SLAC-SP-017], Phys. Rev. Lett. 33 (1974) 1406–1408.

[105] J. Bjorken and S. Glashow, Phys. Lett. 11 (1964) 255–257.

[106] S. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2 (1970) 1285–1292.

[107] S. Herb, D. Hom, L. Lederman, J. Sens, H. Snyder, J. Yoh, J. Appel, B. Brown, C. Brown,W. R. Innes, K. Ueno, T. Yamanouchi, A. Ito, H. Jostlein, D. Kaplan and R. D. Kephart,Phys. Rev. Lett. 39 (1977) 252–255.

[108] F. Abe et al. [CDF], Phys. Rev. Lett. 74 (1995) 2626–2631 [arXiv:hep-ex/9503002 [hep-ex]].

[109] S. Abachi et al. [D0], Phys. Rev. Lett. 74 (1995) 2632–2637 [arXiv:hep-ex/9503003 [hep-ex]].

[110] J. C. Collins, F. Wilczek and A. Zee, Phys. Rev. D 18 (1978) 242–247.

[111] M. Aivazis, J. C. Collins, F. I. Olness and W. Tung, Phys. Rev. D 50 (1994) 3102–3118[arXiv:hep-ph/9312319 [hep-ph]].

[112] M. Buza, Y. Matiounine, J. Smith and W. van Neerven, Eur. Phys. J. C 1 (1998) 301–320[arXiv:hep-ph/9612398 [hep-ph]].

[113] R. Thorne and R. Roberts, Phys. Rev. D 57 (1998) 6871–6898 [arXiv:hep-ph/9709442[hep-ph]].

[114] J. C. Collins, Phys. Rev. D 58 (1998) 094002 [arXiv:hep-ph/9806259 [hep-ph]].

[115] M. Cacciari, M. Greco and P. Nason, JHEP 05 (1998) 007 [arXiv:hep-ph/9803400 [hep-ph]].

[116] M. Kramer, F. I. Olness and D. E. Soper, Phys. Rev. D 62 (2000) 096007 [arXiv:hep-ph/0003035 [hep-ph]].

[117] R. Thorne, Phys. Rev. D 73 (2006) 054019 [arXiv:hep-ph/0601245 [hep-ph]].

[118] S. Alekhin, J. Blumlein, S. Klein and S. Moch, Phys. Rev. D 81 (2010) 014032[arXiv:0908.2766 [hep-ph]].

[119] S. Forte, E. Laenen, P. Nason and J. Rojo, Nucl. Phys. B 834 (2010) 116–162[arXiv:1001.2312 [hep-ph]].

[120] M. Bonvini, A. S. Papanastasiou and F. J. Tackmann, JHEP 11 (2015), 196[arXiv:1508.03288 [hep-ph]].

244

Page 255: and 3-loop corrections to hard scattering processes in QCD

[121] J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, C. Schneider and F. Wißbrock,Nucl. Phys. B 921 (2017) 585–688 [arXiv:1705.07030 [hep-ph]].

[122] J. Blumlein, A. De Freitas, C. Schneider and K. Schonwald, Phys. Lett. B 782 (2018)362–366 [arXiv:1804.03129 [hep-ph]].

[123] I. Abt et al. [H1 Collaboration], Nucl. Instrum. Meth. A 386 (1997) 310–347.

[124] K. Ackerstaff et al. [HERMES Collaboration], Nucl. Instrum. Meth. A 417 (1998) 230–265[hep-ex/9806008].

[125] M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 303 (1993) 183–197.

[126] H. Abramowicz et al. [H1 and ZEUS Collaborations], Eur. Phys. J. C 75 (2015) no.12, 580[arXiv:1506.06042 [hep-ex]].

[127] A. J. Buras, Rev. Mod. Phys. 52 (1980) 199–276.

[128] E. Reya, Phys. Rept. 69 (1981) 195–333.

[129] G. Altarelli, Phys. Rept. 81 (1982) 1–129.

[130] R. D. Field, Applications of Perturbative QCD, (Addison Wesley, Redwood City, 1989).

[131] R. Brock et al. [CTEQ], Rev. Mod. Phys. 67 (1995) 157–248.

[132] F. Yndurain, The Theory of Quark and Gluon Interactions, 4th ed. (Springer, Berlin, 2006).

[133] T. Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methodsin Gauge Theories (World Scientific, Singapore, 2010).

[134] J. Blumlein, Prog. Part. Nucl. Phys. 69 (2013) 28–84 [arXiv:1208.6087 [hep-ph]].

[135] M. Alguard, W. Ash, G. Baum, J. Clendenin, P. Cooper, D. Coward, R. Ehrlich, A. Etkin,V. Hughes, H. Kobayakawa, K. Kondo, M. Lubell, R. H. Miller, D. Palmer, W. Raith,N. Sasao, K. Schuler, D. Sherden, C. K. Sinclair and P. Souder, Phys. Rev. Lett. 37 (1976)1261–1265.

[136] G. Baum, M. Bergstrom, J. Clendenin, R. Ehrlich, V. Hughes, K. Kondo, M. Lubell,S. Miyashita, R. H. Miller, D. Palmer, W. Raith, N. Sasao, K. Schuler and P. Souder, Phys.Rev. Lett. 45 (1980) 2000–2003.

[137] J. Ashman et al. [European Muon], Phys. Lett. B 206 (1988) 364–370.

[138] J. Ashman et al. [European Muon], Nucl. Phys. B 328 (1989) 1–35.

[139] G. Baum et al., Phys. Rev. Lett. 51 (1983) 1135–1138.

[140] P. Anthony et al. [E142], Phys. Rev. Lett. 71 (1993) 959–962.

[141] P. Anthony et al. [E142], Phys. Rev. D 54 (1996) 6620–6650 [arXiv:hep-ex/9610007 [hep-ex]].

[142] K. Abe et al. [E154], Phys. Rev. Lett. 79 (1997) 26–30 [arXiv:hep-ex/9705012 [hep-ex]].

[143] K. Abe et al. [E143], Phys. Rev. D 58 (1998) 112003 [arXiv:hep-ph/9802357 [hep-ph]].

[144] P. Anthony et al. [E155], Phys. Lett. B 463 (1999) 339–345 [arXiv:hep-ex/9904002 [hep-ex]].

245

Page 256: and 3-loop corrections to hard scattering processes in QCD

[145] P. Anthony et al. [E155], Phys. Lett. B 493 (2000) 19–28 [arXiv:hep-ph/0007248 [hep-ph]].

[146] B. Adeva et al., [Spin Muon Collaboration], Phys. Rev. D 58 (1998) 112001.

[147] B. Adeva et al., [Spin Muon Collaboration], Phys. Rev. D 60 (1999) 072004 [Erratum-ibid.D 62 (2000) 079902].

[148] V. Alexakhin et al. [COMPASS], Phys. Lett. B 647 (2007) 8–17 [arXiv:hep-ex/0609038[hep-ex]].

[149] M. Alekseev et al. [COMPASS], Phys. Lett. B 690 (2010) 466–472 [arXiv:1001.4654 [hep-ex]].

[150] E. Ageev et al. [COMPASS], Phys. Lett. B 612 (2005) 154–164 [arXiv:hep-ex/0501073[hep-ex]].

[151] D. Adams et al. [Spin Muon (SMC)], Phys. Rev. D 56 (1997) 5330–5358 [arXiv:hep-ex/9702005 [hep-ex]].

[152] X. Zheng et al. [Jefferson Lab Hall A], Phys. Rev. C 70 (2004), 065207 [arXiv:nucl-ex/0405006 [nucl-ex]].

[153] K. Dharmawardane et al. [CLAS], Phys. Lett. B 641 (2006) 11–17 [arXiv:nucl-ex/0605028[nucl-ex]].

[154] K. Ackerstaff et al. [HERMES], Phys. Lett. B 404 (1997) 383–389 [arXiv:hep-ex/9703005[hep-ex]].

[155] A. Airapetian et al., [HERMES Collaboration], Phys. Rev. D 75 (2007) 012007 [arXiv:hep-ex/0609039].

[156] J. Blumlein and A. Tkabladze, Nucl. Phys. B 553 (1999) 427–464 [arXiv:hep-ph/9812478[hep-ph]].

[157] B. Lampe and E. Reya, Phys. Rept. 332 (2000) 1–163 [arXiv:hep-ph/9810270 [hep-ph]].

[158] I. Bierenbaum, J. Blumlein and S. Klein, Nucl. Phys. B 820 (2009) 417–482[arXiv:0904.3563 [hep-ph]].

[159] M. Buza, Y. Matiounine, J. Smith, R. Migneron and W. van Neerven, Nucl. Phys. B 472(1996) 611–658 [arXiv:hep-ph/9601302 [hep-ph]].

[160] I. Bierenbaum, J. Blumlein and S. Klein, Nucl. Phys. B 780 (2007) 40–75 [arXiv:hep-ph/0703285 [hep-ph]].

[161] I. Bierenbaum, J. Blumlein, S. Klein and C. Schneider, Nucl. Phys. B 803 (2008) 1–41[arXiv:0803.0273 [hep-ph]].

[162] I. Bierenbaum, J. Blumlein and S. Klein, Phys. Lett. B 672 (2009) 401–406 [arXiv:0901.0669[hep-ph]].

[163] I. Bierenbaum, J. Blumlein and S. Klein, Phys. Lett. B 648 (2007) 195–200 [arXiv:hep-ph/0702265 [hep-ph]].

[164] J. Blumlein, A. De Freitas, W. van Neerven and S. Klein, Nucl. Phys. B 755 (2006) 272–285[arXiv:hep-ph/0608024 [hep-ph]].

246

Page 257: and 3-loop corrections to hard scattering processes in QCD

[165] A. Behring, I. Bierenbaum, J. Blumlein, A. De Freitas, S. Klein and F. Wißbrock, Eur.Phys. J. C 74 (2014) no.9, 3033 [arXiv:1403.6356 [hep-ph]].

[166] J. Ablinger, J. Blumlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B 844 (2011)26–54 [arXiv:1008.3347 [hep-ph]].

[167] J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round,C. Schneider and F. Wißbrock, Nucl. Phys. B 882 (2014) 263–288 [arXiv:1402.0359 [hep-ph]].

[168] J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round andC. Schneider, Nucl. Phys. B 885 (2014) 280–317 [arXiv:1405.4259 [hep-ph]].

[169] J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, A. von Manteuffel and C. Schneider,Nucl. Phys. B 890 (2014) 48–151 [arXiv:1409.1135 [hep-ph]].

[170] J. Blumlein, J. Ablinger, A. Behring, A. De Freitas, A. von Manteuffel, C. Schneider andC. Schneider, PoS QCDEV2017 (2017) 031 [arXiv:1711.07957 [hep-ph]].

[171] J. Ablinger, J. Blumlein, A. De Freitas, C. Schneider and K. Schonwald, Nucl. Phys. B927 (2018) 339–367 [arXiv:1711.06717 [hep-ph]].

[172] J. Ablinger, J. Blumlein, A. De Freitas, A. Goedicke, C. Schneider and K. Schonwald,Nucl. Phys. B 932 (2018) 129–240 [arXiv:1804.02226 [hep-ph]].

[173] J. Ablinger, J. Blumlein, S. Klein, C. Schneider and F. Wißbrock, [arXiv:1106.5937 [hep-ph]].

[174] J. Ablinger, J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider and F. Wißbrock, PoSRADCOR2011 (2011) 031 [arXiv:1202.2700 [hep-ph]].

[175] S. W. G. Klein, Mellin Moments of Heavy Flavor Contributions to F2(x,Q2) at NNLO,

PhD thesis (Technische Universitat Dortmund, 2009) [arXiv:0910.3101 [hep-ph]].

[176] M. Buza, Y. Matiounine, J. Smith and W. van Neerven, Nucl. Phys. B 485 (1997) 420–456[arXiv:hep-ph/9608342 [hep-ph]].

[177] I. Bierenbaum, J. Blumlein and S. Klein, PoS ACAT (2007) 070.

[178] K. Schonwald, Massive two- and three-loop calculations in QED and QCD, PhD. thesis(Technische Universitat Dortmund, 2019), DESY-THESIS-2019-031

[179] J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, A. von Manteuffel, C. Schneider andK. Schonwald, Nucl. Phys. B 953 (2020) 114945 [arXiv:1912.02536 [hep-ph]].

[180] A. Behring, J. Blumlein, A. De Freitas, A. von Manteuffel, K. Schonwald and C. Schneider,Nucl. Phys. B 964 (2021), 115331 [arXiv:2101.05733 [hep-ph]].

[181] J. Blumlein, G. Falcioni and A. De Freitas, Nucl. Phys. B 910 (2016) 568–617[arXiv:1605.05541 [hep-ph]].

[182] S. Catani, M. Ciafaloni and F. Hautmann, Nucl. Phys. B 366 (1991) 135–188

[183] H. Kawamura, N. A. Lo Presti, S. Moch and A. Vogt, Nucl. Phys. B 864 (2012) 399–468[arXiv:1205.5727 [hep-ph]].

[184] A. Behring, J. Blumlein, A. De Freitas, A. von Manteuffel and C. Schneider, Nucl. Phys.B 897 (2015) 612–644 [arXiv:1504.08217 [hep-ph]].

247

Page 258: and 3-loop corrections to hard scattering processes in QCD

[185] M. Gluck, S. Kretzer and E. Reya, Phys. Lett. B 398 (1997) 381–386 [Erratum: Phys.Lett. B 405 (1997) 392] [arXiv:hep-ph/9701364 [hep-ph]].

[186] J. Blumlein, A. Hasselhuhn, P. Kovacikova and S. Moch, Phys. Lett. B 700 (2011) 294–304[arXiv:1104.3449 [hep-ph]].

[187] J. Blumlein, A. Hasselhuhn and T. Pfoh, Nucl. Phys. B 881 (2014) 1–41 [arXiv:1401.4352[hep-ph]].

[188] M. Buza and W. L. van Neerven, Nucl. Phys. B 500 (1997) 301–324 [arXiv:hep-ph/9702242[hep-ph]].

[189] J. Blumlein, A. De Freitas and W. van Neerven, Nucl. Phys. B 855 (2012) 508–569[arXiv:1107.4638 [hep-ph]].

[190] F. A. Berends, W. L. van Neerven and G. J. H. Burgers, Nucl. Phys. B 297 (1988) 429–478[Erratum: Nucl. Phys. B 304 (1988) 921–922].

[191] J. Blumlein, A. De Freitas, C. G. Raab and K. Schonwald, Phys. Lett. B 801 (2020) 135196[arXiv:1910.05759 [hep-ph]].

[192] J. Blumlein, A. De Freitas, C. Raab and K. Schonwald, Nucl. Phys. B 956 (2020) 115055[arXiv:2003.14289 [hep-ph]].

[193] J. Blumlein, A. De Freitas, C. G. Raab and K. Schonwald, Phys. Lett. B 791 (2019)206–209 [arXiv:1901.08018 [hep-ph]].

[194] J. Ablinger, J. Blumlein, A. De Freitas and K. Schonwald, Nucl. Phys. B 955 (2020) 115045[arXiv:2004.04287 [hep-ph]].

[195] J. Blumlein, A. De Freitas and K. Schonwald, Phys. Lett. B 816 (2021) 136250[arXiv:2102.12237 [hep-ph]].

[196] J. Ablinger, J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald,Nucl. Phys. B 952 (2020) 114916 [arXiv:1911.11630 [hep-ph]].

[197] S. Larin, Phys. Lett. B 303 (1993) 113–118 [arXiv:hep-ph/9302240 [hep-ph]].

[198] J. Ablinger, J. Blumlein, A. De Freitas, A. Goedicke, M. Saragnese, C. Schneider andK. Schonwald, Nucl. Phys. B 955 (2020) 115059 [arXiv:2004.08916 [hep-ph]].

[199] J. Blumlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schonwald, Phys. Rev. D104 (2021) no.3, 034030 [arXiv:2105.09572 [hep-ph]].

[200] J. Blumlein and M. Saragnese, Phys. Lett. B 820 (2021) 136589 [arXiv:2107.01293 [hep-ph]].

[201] J. Blumlein, M. Saragnese and C. Schneider, [arXiv:2111.15501 [math-ph]].

[202] C. Schneider, Symbolic Summation in Difference Fields, PhD thesis (RISC, J. Kepler Uni-versity Linz, 2001).

[203] C. Schneider, Sem. Lothar. Combin. 56 (2007) 1–36 article B56b.

[204] C. Schneider, Computer Algebra in Quantum Field Theory: Integration, Summation and SpecialFunctions Texts and Monographs in Symbolic Computation eds. C. Schneider and J. Blum-lein (Springer, Wien, 2013) 325–360 arXiv:1304.4134 [cs.SC].

248

Page 259: and 3-loop corrections to hard scattering processes in QCD

[205] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, CRC Press (1996).

[206] J. A. M. Vermaseren and S. Moch, Nucl. Phys. B Proc. Suppl. 89 (2000) 131–136[arXiv:hep-ph/0004235 [hep-ph]].

[207] S. Moch and P. Uwer, Comput. Phys. Commun. 174 (2006) 759–770 [arXiv:math-ph/0508008 [math-ph]].

[208] S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363–3386 [arXiv:hep-ph/0110083 [hep-ph]].

[209] O. Nachtmann, Nucl. Phys. B 63 (1973) 237–247.

[210] H. Georgi and H. D. Politzer, Phys. Rev. D 14 (1976) 1829–1848.

[211] J. Blumlein, H. Bottcher and A. Guffanti, Nucl. Phys. B 774 (2007) 182–207 [arXiv:hep-ph/0607200 [hep-ph]].

[212] J. Blumlein and H. Bottcher, Nucl. Phys. B 841 (2010) 205–230 [arXiv:1005.3113 [hep-ph]].

[213] K. G. Wilson, Phys. Rev. 179 (1969) 1499–1512.

[214] K. Symanzik, Commun. Math. Phys. 23 (1971) 49–86.

[215] N. H. Christ, B. Hasslacher and A. H. Mueller, Phys. Rev. D 6 (1972) 3543–3562.

[216] C. G. Callan, Jr., Phys. Rev. D 5 (1972) 3202–3210.

[217] S. Moch and J. A. M. Vermaseren, Nucl. Phys. B 573 (2000) 853–907 [arXiv:hep-ph/9912355 [hep-ph]].

[218] H. Politzer, Phys. Rept. 14 (1974) 129–180.

[219] F. Carlson, Sur une classe de series de Taylor, PhD thesis (Uppsala University, Uppsala,1914).

[220] E. C. Titchmarsh, The theory of functions, (Oxford Univ. Press, Oxford, 1932).

[221] J. Ablinger, J. Blumlein and C. Schneider, J. Math. Phys. 54 (2013), 082301[arXiv:1302.0378 [math-ph]].

[222] S. Coleman, Aspects of Symmetry, (Cambridge Univ. Press, Cambridge, 1985).

[223] J. Blumlein, V. Ravindran and W. L. van Neerven, Nucl. Phys. B 586 (2000) 349–381[arXiv:hep-ph/0004172 [hep-ph]].

[224] T. Appelquist and J. Carazzone, Phys. Rev. D 11 (1975) 2856–2861.

[225] S. Qian, A new renormalization prescription (CWZ subtraction scheme) for QCD and itsapplication to DIS, ANL-HEP-PR-84-72 (1984).

[226] J. Blumlein, P. Marquard, C. Schneider and K. Schonwald, [arXiv:2202.03216 [hep-ph]].

[227] J. Blumlein, P. Marquard, C. Schneider and K. Schonwald, JHEP 01 (2022) 193[arXiv:2111.12401 [hep-ph]].

[228] R. Hamberg and W. L. van Neerven, Nucl. Phys. B 379 (1992) 143–171.

249

Page 260: and 3-loop corrections to hard scattering processes in QCD

[229] R. Hamberg, Second order gluonic contributions to physical quantities, PhD Thesis (Leiden,1991).

[230] Y. Matiounine, J. Smith and W. L. van Neerven, Phys. Rev. D 57 (1998) 6701–6722[arXiv:hep-ph/9801224 [hep-ph]].

[231] J. C. Collins and R. J. Scalise, Phys. Rev. D 50 (1994) 4117–4136 [arXiv:hep-ph/9403231[hep-ph]].

[232] R. Tarrach, Nucl. Phys. B 183 (1981) 384–396.

[233] O. Nachtmann and W. Wetzel, Nucl. Phys. B 187 (1981) 333–342.

[234] N. Gray, D. J. Broadhurst, W. Grafe and K. Schilcher, Z. Phys. C 48 (1990) 673–680.

[235] D. J. Broadhurst, N. Gray and K. Schilcher, Z. Phys. C 52 (1991) 111–122.

[236] J. Fleischer, F. Jegerlehner, O. V. Tarasov and O. L. Veretin, Nucl. Phys. B 539 (1999),671–690 [Erratum: Nucl. Phys. B 571 (2000), 511–512] [arXiv:hep-ph/9803493 [hep-ph]].

[237] I. B. Khriplovich, Sov. J. Nucl. Phys. 10 (1969) 235–242.

[238] L. F. Abbott, Nucl. Phys. B 185 (1981) 189–203.

[239] A. Rebhan, Z. Phys. C 30 (1986) 309–315.

[240] F. Jegerlehner and O. V. Tarasov, Nucl. Phys. B 549 (1999) 481–498 [arXiv:hep-ph/9809485 [hep-ph]].

[241] M. Gluck, E. Reya and M. Stratmann, Nucl. Phys. B 422 (1994) 37–56.

[242] S. Alekhin, J. Blumlein and S. Moch, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281[hep-ph]].

[243] H. Mellin, Acta Soc. Sci. Fennica, 21 (1896) 1–115.

[244] H. Mellin, Acta Math. 25 (1902) 139–164.

[245] R. B. Paris, D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge UniversityPress (2001).

[246] J. Vermaseren, Int. J. Mod. Phys. A 14 (1999) 2037–2076 [arXiv:hep-ph/9806280 [hep-ph]].

[247] J. Blumlein and S. Kurth, Phys. Rev. D 60 (1999) 014018 [arXiv:hep-ph/9810241 [hep-ph]].

[248] J. Ablinger and J. Blumlein, [arXiv:1304.7071 [math-ph]].

[249] J. Ablinger, J. Blumlein and C. Schneider, J. Math. Phys. 52 (2011) 102301[arXiv:1105.6063 [math-ph]].

[250] J. Fleischer, A. V. Kotikov and O. L. Veretin, Nucl. Phys. B 547 (1999) 343–374 [arXiv:hep-ph/9808242 [hep-ph]].

[251] S. Weinzierl, J. Math. Phys. 45 (2004) 2656–2673 [arXiv:hep-ph/0402131 [hep-ph]].

[252] J. Ablinger, J. Blumlein, C. Raab and C. Schneider, J. Math. Phys. 55 (2014) 112301[arXiv:1407.1822 [hep-th]].

250

Page 261: and 3-loop corrections to hard scattering processes in QCD

[253] A. I. Davydychev and M. Y. Kalmykov, Nucl. Phys. B 699 (2004) 3–64 [arXiv:hep-th/0303162 [hep-th]].

[254] J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, A. von Manteuffel, and C. Schneider,Comput. Phys. Commun. 202 (2016) 33–112 [arXiv:1509.08324 [hep-ph]].

[255] J. Blumlein, Comput. Phys. Commun. 159 (2004) 19–54 [arXiv:hep-ph/0311046 [hep-ph]].

[256] J. Blumlein, Clay Math. Proc. 12 (2010) 167–188 [arXiv:0901.0837 [math-ph]].

[257] J. Blumlein, Comput. Phys. Commun. 180 (2009) 2218–2249 [arXiv:0901.3106 [hep-ph]].

[258] J. Blumlein and S. O. Moch, Phys. Lett. B 614 (2005) 53–61 [arXiv:hep-ph/0503188 [hep-ph]].

[259] M. Hoffman, J. Algebraic Combin. 11 (2000) 49–68.

[260] J. Ablinger, PoS (LL2014) 019; Computer Algebra Algorithms for Special Functions in ParticlePhysics, Ph.D. Thesis, J. Kepler University Linz, 2012, arXiv:1305.0687 [math-ph];A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, Diploma Thesis,J. Kepler University Linz, 2009, arXiv:1011.1176 [math-ph].

[261] J.M. Henn, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806[hep-th]].

[262] J. Blumlein and C. Schneider, Int. J. Mod. Phys. A 33 (2018) no.17, 1830015[arXiv:1809.02889 [hep-ph]].

[263] E. Remiddi and J. Vermaseren, Int. J. Mod. Phys. A 15 (2000) 725–754 [arXiv:hep-ph/9905237 [hep-ph]].

[264] H. Poincare, Acta Math. 4 (1884) 201–312.

[265] J. A. Lappo-Danilevsky, Memoires sur la theorie des systemes des equations differentielleslineaires, (Chelsea Pub. Co., New York, 1953).

[266] K.-T. Chen, Ann. Math. 73 (1961) 110–133.

[267] T. Gehrmann and E. Remiddi, Comput. Phys. Commun. 141 (2001) 296–312 [arXiv:hep-ph/0107173 [hep-ph]].

[268] J. Ablinger, J. Blumlein, M. Round and C. Schneider, Comput. Phys. Commun. 240 (2019)189–201 [arXiv:1809.07084 [hep-ph]].

[269] E. W. Barnes, Proc. Lond. Math. Soc. (2) 6 (1908) 141–177.

[270] E. W. Barnes, Quarterly Journal of Mathematics 41 (1910) 136–140.

[271] H. Mellin, Math. Ann. 68, no. 3 (1910) 305–337.

[272] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, (Cambridge UniversityPress, Cambridge, 1927; reprinted 1996).

[273] M. C. Bergere and Y. M. P. Lam, Commun. Math. Phys. 39 (1974) 1–32.

[274] N. I. Ussyukina, Teor. Mat. Fiz. 22 (1975) 300–306.

[275] V. A. Smirnov, Feynman integral calculus (Springer, Berlin, 2006).

251

Page 262: and 3-loop corrections to hard scattering processes in QCD

[276] M. Czakon, Comput. Phys. Commun. 175 (2006) 559–571 [arXiv:hep-ph/0511200 [hep-ph]].

[277] A. Smirnov and V. Smirnov, Eur. Phys. J. C 62 (2009) 445–449 [arXiv:0901.0386 [hep-ph]].

[278] J. Vermaseren, New features of FORM, [arXiv:math-ph/0010025 [math-ph]].

[279] J. Ablinger, J. Blumlein, S. Klein and C. Schneider, Nucl. Phys. Proc. Suppl. 205-206(2010) 110–115 [arXiv:1006.4797 [math-ph]];J. Blumlein, A. Hasselhuhn and C. Schneider, PoS (RADCOR 2011) 032 [arXiv:1202.4303[math-ph]];C. Schneider, J. Phys. Conf. Ser. 523 (2014) 012037 [arXiv:1310.0160 [cs.SC]].

[280] S. Alekhin, J. Blumlein, K. Daum, K. Lipka and S. Moch, Phys. Lett. B 720 (2013) 172–176[arXiv:1212.2355 [hep-ph]].

[281] K. Olive et al. [Particle Data Group], Chin. Phys. C 38 (2014) 090001.

[282] R. Harlander, T. Seidensticker and M. Steinhauser, Phys. Lett. B 426 (1998) 125–132[arXiv:hep-ph/9712228 [hep-ph]].

[283] T. Seidensticker, [arXiv:hep-ph/9905298 [hep-ph]].

[284] A. Behring, J. Blumlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel and C. Schneider,Phys. Rev. D 92 (2015) no.11, 114005 [arXiv:1508.01449 [hep-ph]].

[285] W. L. van Neerven and A. Vogt, Nucl. Phys. B 588 (2000) 345-373 [arXiv:hep-ph/0006154[hep-ph]].

[286] J. Blumlein and A. Guffanti, AIP Conf. Proc. 792 (2005) no.1, 261–264.

[287] A. Vogt, Comput. Phys. Commun. 170 (2005) 65–92 [arXiv:hep-ph/0408244 [hep-ph]].

[288] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79 (1997), 2184–2187[arXiv:hep-ph/9706430 [hep-ph]].

[289] I. Bierenbaum, J. Blumlein, A. De Freitas, S. Klein, and K. Schonwald, The O(α2s) Polar-

ized Heavy Flavor Corrections to Deep-Inelastic Scattering at Q2 ≫ m2, DESY 15–004.

[290] P. A. Baikov and K. G. Chetyrkin, Nucl. Phys. B Proc. Suppl. 160 (2006) 76–79

[291] P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Nucl. Part. Phys. Proc. 261-262 (2015)3–18 [arXiv:1501.06739 [hep-ph]].

[292] V. N. Velizhanin, Int. J. Mod. Phys. A 35 (2020) no.32, 2050199 [arXiv:1411.1331 [hep-ph]].

[293] B. Ruijl, T. Ueda, J. A. M. Vermaseren, J. Davies and A. Vogt, PoS LL2016 (2016), 071[arXiv:1605.08408 [hep-ph]].

[294] J. Davies, A. Vogt, B. Ruijl, T. Ueda and J. A. M. Vermaseren, Nucl. Phys. B 915 (2017)335–362 [arXiv:1610.07477 [hep-ph]].

[295] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, JHEP 10 (2017) 041[arXiv:1707.08315 [hep-ph]].

[296] R. Kirschner and L. N. Lipatov, Nucl. Phys. B 213 (1983) 122–148.

[297] J. Blumlein and A. Vogt, Phys. Lett. B 370 (1996) 149–155. [arXiv:hep-ph/9510410 [hep-ph]].

252

Page 263: and 3-loop corrections to hard scattering processes in QCD

[298] J. Bartels, B. I. Ermolaev and M. G. Ryskin, Z. Phys. C 70 (1996) 273–280. [arXiv:hep-ph/9507271 [hep-ph]].

[299] J. A. Gracey, Phys. Lett. B 322 (1994) 141–146 [arXiv:hep-ph/9401214 [hep-ph]].

[300] P.A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01.

[301] M. Kalmykov, V. Bytev, B.A. Kniehl, S.O. Moch, B.F.L. Ward and S.A. Yost,[arXiv:2012.14492 [hep-th]], in: Antidifferentiation and the Calculation of Feynman Ampli-tudes, (Springer, Heidelberg, 2021), J. Blumlein and C. Schneider, eds.

[302] M. J. Schlosser, in: Computer Algebra in Quantum Field Theory: Integration, Summationand Special Functions, C. Schneider, J. Blumlein, Eds., p. 305–324, (Springer, Wien, 2013)[arXiv:1305.1966 [math.CA]].

[303] F. Klein, Vorlesungen uber die hypergeometrische Funktion, Wintersemester 1893/94, DieGrundlehren der Mathematischen Wissenschaften 39, (Springer, Berlin, 1933).

[304] W.N. Bailey, Generalized Hypergeometric Series, (Cambridge University Press, Cambridge,1935).

[305] L.J. Slater, Generalized hypergeometric functions, (Cambridge University Press, Cambridge,1966).

[306] P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques, Poly-nomes D’ Hermite, (Gauthier-Villars, Paris, 1926).

[307] P. Appell, Les Fonctions Hypergeometriques de Plusieur Variables, (Gauthier-Villars, Paris,1925).

[308] J. Kampe de Feriet, La fonction hypergeometrique, (Gauthier-Villars, Paris, 1937).

[309] J. Kampe de Feriet, C. R. Acad. Sci. Paris 173 (1921) 489–491.

[310] L. Borngasser, Uber hypergeometrischen Funktionen zweier Veranderlichen, PhD Thesis,(TU Darmstadt, 1933).

[311] J. Horn, Math. Ann. 105 (1931) 381–407; 111 (1933) 638–677.

[312] H. Exton, Bull. Soc. Math. Grece N.S. 13 (1972) 104–113.

[313] H. Exton, Multiple Hypergeometric Functions and Applications, (Ellis Horwood, Chichester,1976).

[314] H. Exton, Handbook of Hypergeometric Integrals, (Ellis Horwood, Chichester, 1978).

[315] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, (Ellis Hor-wood, Chicester, 1985).

[316] G. Lauricella, Rediconti del Circolo Matematico di Palermo, 7 (1893) 111–158.

[317] S. Saran, Ganita 5 (1954) 77–91.

[318] S. Saran, Acta Math. 93 (1955) 293–312.

[319] A. Erdelyi (Ed.) Higher Transcendental Functions, Vol. 1, The Bateman Manuscript Project,(McGraw-Hill, New York, 1953).

253

Page 264: and 3-loop corrections to hard scattering processes in QCD

[320] J. Lagrange, Nouvelles recherches sur la nature et la propagation du son, Miscellanea Tauri-nensis, t. II, 1760-61; Oeuvres t. I, p. 263.

[321] C.F. Gauß, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorummethodo novo tractate, Commentationes societas scientiarum Gottingensis recentiores, VolIII, 1813, Werke Bd. V pp. 5–7.

[322] G. Green, Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham, 1828[Green Papers, pp. 1–115].

[323] M. Ostrogradski, Mem. Ac. Sci. St. Peters., 6, (1831) 39–53.

[324] K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B 192 (1981) 159–204.

[325] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087–5159 [hep-ph/0102033].

[326] P. Marquard and D. Seidel, The Crusher algorithm, unpublished.

[327] C. Studerus, Comput. Phys. Commun. 181 (2010) 1293–1300 [arXiv:0912.2546[physics.comp-ph]].

[328] A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction,arXiv:1201.4330 [hep-ph].

[329] A. V. Kotikov, Phys. Lett. B254 (1991) 158–164.

[330] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys. Lett. B302 (1993) 299–308, [Erratum:Phys. Lett. B318, (1993) 649] [hep-ph/9212308].

[331] E. Remiddi, Nuovo Cim. A110 (1997) 1435–1452 [hep-th/9711188].

[332] T. Gehrmann and E. Remiddi, Nucl. Phys. B580 (2000) 485–518 [hep-ph/9912329].

[333] A.V. Kotikov, The Property of maximal transcendentality in the N=4 Supersymmet-ric Yang-Mills, In Subtleties in quantum field theory, ed. D. Diakonov, p. 150–174,[arXiv:1005.5029 [hep-th]].

[334] J. Ablinger, J. Blumlein, P. Marquard, N. Rana and C. Schneider, Nucl. Phys. B 939(2019) 253–291 [arXiv:1810.12261 [hep-ph]].

[335] A. Bostan, F. Chyzak, E. de Panafieu, Complexity Estimates for Two Uncoupling Algo-rithms, Proceedings of ISSAC’13, Boston, June 2013 [arXiv:1301.5414 [cs.SC]].

[336] B. Zurcher, Rationale Normalformen von pseudo-linearen Abbildungen, Master’s thesis,Mathematik, ETH Zurich (1994).

[337] S. Gerhold, Uncoupling systems of linear Ore operator equations, Master’s thesis, RISC,J. Kepler University, Linz, 2002.

[338] M. Janet, Journal de mathematiques pures et appliquees 8 ser., 3 (1920) 65–123;F. Schwarz, Janet Bases for Symmetry Groups, in: Grobner Bases and Applications, LectureNotes Series 251, (London Mathematical Society, London 1998), 221–234, eds. B. Buch-berger and F. Winkler.

[339] E. E. Boos and A.I. Davydychev, Theor. Math. Phys. 89 (1991) 1052–1063.

[340] J. Fleischer, F. Jegerlehner and O.V. Tarasov, Nucl. Phys. B 672 (2003) 303–328[arXiv:hep-ph/0307113 [hep-ph]].

254

Page 265: and 3-loop corrections to hard scattering processes in QCD

[341] N. Watanabe and T. Kaneko, J. Phys. Conf. Ser. 523 (2014) 012063 [arXiv:1309.3118[hep-ph]].

[342] J. Blumlein, K.H. Phan and T. Riemann, Acta Phys. Polon. B 48 (2017) 2313–2320[arXiv:1711.05510 [hep-ph]].

[343] K. H. Phan and T. Riemann, Phys. Lett. B 791 (2019) 257–264 [arXiv:1812.10975 [hep-ph]].

[344] C. Anastasiou, E.W.N. Glover, and C. Oleari, Nucl. Phys. B572 (2000) 307–360 [hep-ph/9907494].

[345] C. Anastasiou, E.W.N. Glover, and C. Oleari, Nucl. Phys. B565 (2000) 445–467 [hep-ph/9907523].

[346] S. Bauberger, M. Bohm, G. Weiglein, F.A. Berends and M. Buza, Nucl. Phys. B Proc.Suppl. 37 (1994) no.2, 95–114 [arXiv:hep-ph/9406404 [hep-ph]].

[347] J. Ablinger, J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider and F. Wißbrock, Nucl.Phys. B 864 (2012) 52–84 [arXiv:1206.2252 [hep-ph]].

[348] R. P. Klausen, JHEP 04 (2020) 121 [arXiv:1910.08651 [hep-th]].

[349] L. de la Cruz, JHEP 12 (2019) 123 [arXiv:1907.00507 [math-ph]].

[350] I. M. Gel’fand, A. V. Zelevinskii, M. M. Kapranov, Functional Analysis and its applications23, no. 2 (1989) 94–106.

[351] I. M. Gel’fand, M. M. Kapranov, A. V. Zelevinsky, Advances in Mathematics 84, no. 2(1990) 255–271.

[352] I. M. Gel’fand, M. I. Graev, and V. S. Retakh, Russian Math. Surveys 47, no. 4 (1992)1–88.

[353] M. Saito, B. Sturmfels, N. Takayama, Grobner deformations of hypergeometric differentialequations, Springer, 2000.

[354] M. Karr, J. ACM 28 (1981) 305–350.

[355] C. Schneider, Symbolic Summation in Difference Fields, Ph.D. Thesis RISC, Johannes KeplerUniversity, Linz technical report 01-17 (2001).

[356] C. Schneider, J. Algebra Appl. 6 (2007) 415–441.

[357] C. Schneider, Motives, Quantum Field Theory, and Pseudodifferential Operators (Clay Math-ematics Proceedings Vol. 12 ed. A. Carey, D. Ellwood, S. Paycha and S. Rosenberg,(Amer.Math. Soc) (2010), 285–308 [arXiv:0904.2323].

[358] C. Schneider, Ann. Comb. 14 (2010) 533–552 [arXiv:0808.2596].

[359] C. Schneider, in: Computer Algebra and Polynomials, Applications of Algebra and NumberTheory, J. Gutierrez, J. Schicho, M. Weimann (ed.), Lecture Notes in Computer Science(LNCS) 8942 (2015), 157–191 [arXiv:13077887 [cs.SC]].

[360] C. Schneider, J. Symbolic Comput. 43 (2008) 611–644 [arXiv:0808.2543v1]; J. Symb. Com-put. 72 (2016) 82–127 [arXiv:1408.2776 [cs.SC]]; J. Symb. Comput. 80 (2017) 616–664[arXiv:1603.04285 [cs.SC]].

255

Page 266: and 3-loop corrections to hard scattering processes in QCD

[361] C. Schneider, An. Univ. Timisoara Ser. Mat.-Inform. 42 (2004) 163; J. Differ. EquationsAppl. 11 (2005) 799–821; Appl. Algebra Engrg. Comm. Comput. 16(2005) 1–32;S. A. Abramov, M. Bronstein, M. Petkovsek, C. Schneider, J. Symbolic Comput. 107 (2021)23–66 [arXiv:2005.04944].

[362] C. Schneider, Term Algebras, Canonical Representations and Difference Ring Theory forSymbolic Summation, arXiv:2102.01471 [cs.SC], in: Antidifferentiation and the Calculation ofFeynman Amplitudes, (Springer, Heidelberg, 2021), J. Blumlein and C. Schneider, eds.

[363] C.F. Gauss, Disquisitiones generales circa seriem infinitam 1 + αβ/1 γ, pars prior, Com-mentationes societatis regiae scientarum Gottingensis recentiores 2 (1813) reprinted inWerke 3 (1876) 123–162.

[364] P. Paule, Contiguous Relations and Creative Telescoping, in: Antidifferentiation and the Cal-culation of Feynman Amplitudes, (Springer, Heidelberg, 2021), J. Blumlein and C. Schneider,eds.

[365] S. A. Abramov and M. Petkovsek, Adv. in Appl. Math. 29 (2002) 386–411.

[366] O. Ore, Comptes Rendus, Acad. Sci. Paris 189 (1929) 1238–1240; J. Math. Pures Appl.(9) 9 (1930) 311–326.

[367] M. Sato, T. Shintani, M. Muro, Nagoya Math. J. 120 (1990) 1–34.

[368] S. Chen, R. Feng, G. Fu and Z. Li, On the structure of compatible rational functions in:Proc. ISSAC’11 (2011) 91–98.

[369] F. Viete, Opera mathematica (1579), (reprinted: Bonaventurae & Abrahami Elzeviriorum,Leiden, 1646).

[370] S. A. Abramov, Zh. vychisl. mat. Fiz. 11 4 (1971) 1071–1075.

[371] S. A. Abramov, U.S.S.R. Comput. Math. Math. Phys. bf 29 6 (1989) 7–12.

[372] C. Schneider, An. Univ. Timisoara Ser. Mat.-Inform. 42(2), (2004) 163–179.

[373] C. Schneider, J. Differ. Equations Appl. 11 (2005) 799–821.

[374] C. Schneider, Appl. Algebra Engrg. Comm. Comput. 16 (2005) 1–32.

[375] S. A. Abramov, M. Bronstein, M. Petkovsek, C. Schneider, J. Symbolic Comput. 107 (2021)23–66 [arXiv:2005.04944].

[376] M. Kauers and C. Schneider, Partial denominator bounds for partial linear difference equa-tions, in: Proc. ISSAC’10 (2010) 211–218.

[377] M. Kauers and C. Schneider, A refined denominator bounding algorithm for multivariatelinear difference equations, in: Proc. ISSAC’11 (2011) 201–208.

[378] S. A. Abramov and M. Petkovsek, On Polynomial Solutions of Linear Partial Differentialand (q-)Difference Equations, in Proc. CASC (2012) 1–11.

[379] Y. V. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge (1993).

[380] J. Ablinger and C. Schneider, [arXiv:1510.03692 [cs.SC]].

[381] J. Blumlein, S. Klein, C. Schneider and F. Stan, J. Symb. Comput. 47 (2012) 1267–1289[arXiv:1011.2656 [cs.SC]].

256

Page 267: and 3-loop corrections to hard scattering processes in QCD

[382] W. Decker, G.-M. Greuel, G. Pfister, and H. Schonemann, Singular 4-2-0 — A computeralgebra system for polynomial computations, http://www.singular.uni-kl.de (2019).

[383] M. Kauers and V. Levandovskyy, An Interface between Mathematica and Singular, Tech-nical Report 2006-29, SFB F013, Johannes Kepler University Linz, Austria.

[384] J. Blumlein and M. Saragnese, to appear.

[385] E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B 417 (1994) 61–100 [Erratum: Nucl.Phys. B 426 (1994) 245; Erratum: Nucl. Phys. B 773 (2007) 105–106; Erratum: Nucl. Phys.B 501 (1997) 599–599]

[386] J. Blumlein and A. Vogt, Phys. Rev. D 58 (1998) 014020. [arXiv:hep-ph/9712546 [hep-ph]].

[387] J. Blumlein, Comput. Phys. Commun. 133 (2000) 76–104 [arXiv:hep-ph/0003100 [hep-ph]].

[388] A. Behring, J. Blumlein, G. Falcioni, A. De Freitas, A. von Manteuffel and C. Schneider,Phys. Rev. D 94 (2016) no.11, 114006 [arXiv:1609.06255 [hep-ph]].

[389] P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01.

[390] J. C. Collins, D. E. Soper and G. F. Sterman, Nucl. Phys. B 308 (1988) 833–856.

[391] R. Hamberg, W. L. van Neerven and T. Matsuura, Nucl. Phys. B 359 (1991) 343–405[Erratum: Nucl. Phys. B 644 (2002), 403-404]

[392] G. Altarelli, R. K. Ellis and G. Martinelli, Nucl. Phys. B 143 (1978) 521–545 [Erratum:Nucl. Phys. B 146 (1978) 544].

[393] B. Humpert and W. L. Van Neerven, Phys. Lett. B 84 (1979) 327–330 [Erratum: Phys.Lett. B 85 (1979) 471].

[394] B. Humpert and W. L. van Neerven, Phys. Lett. B 89 (1979) 69–75.

[395] B. Humpert and W. L. van Neerven, Nucl. Phys. B 184 (1981) 225–268.

[396] V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 682 (2004) 421–456[arXiv:hep-ph/0311304 [hep-ph]].

[397] J. Blumlein and V. Ravindran, Nucl. Phys. B 716 (2005) 128–172 [arXiv:hep-ph/0501178[hep-ph]].

[398] C. Duhr and B. Mistlberger, JHEP 03 (2022) 116 [arXiv:2111.10379 [hep-ph]].

[399] C. Duhr, F. Dulat and B. Mistlberger, Phys. Rev. Lett. 125 (2020) no.17, 172001[arXiv:2001.07717 [hep-ph]].

[400] C. Duhr, F. Dulat and B. Mistlberger, JHEP 11 (2020) 143 [arXiv:2007.13313 [hep-ph]].

[401] V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 647 (2002) 275-318[arXiv:hep-ph/0207076 [hep-ph]].

[402] V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665 (2003) 325–366[arXiv:hep-ph/0302135 [hep-ph]].

[403] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog and B. Mistlberger,Phys. Lett. B 737 (2014) 325–328 [arXiv:1403.4616 [hep-ph]].

257

Page 268: and 3-loop corrections to hard scattering processes in QCD

[404] Y. Li, A. von Manteuffel, R. M. Schabinger and H. X. Zhu, Phys. Rev. D 91 (2015), 036008[arXiv:1412.2771 [hep-ph]].

[405] B. Mistlberger, JHEP 05 (2018), 028 [arXiv:1802.00833 [hep-ph]].

[406] F. Dulat, A. Lazopoulos and B. Mistlberger, Comput. Phys. Commun. 233 (2018) 243–260[arXiv:1802.00827 [hep-ph]].

258