Top Banner
Selected Scientific Papers Vol. 5, Issue 3, 2010 Analyze of the residual stresses induced by welding process of the civil engineering structures with complex geometrical configurations Ioan Sorin Leoveanu*, Daniel Taus*, Valentin-Vasile Ungureanu* Transilvania University of Braşov * Faculty of Civil Engineering, [email protected], [email protected], [email protected] Abstract. The Finite Elements Method and the Finite Volume Method numerical control of the welded structures designs, subjected to different loads is more frequently nowadays. The present work proposes the estimation of the welded equivalent loading system based on the residuals deflections caused by the welded processes. For the welded structures modeled by beams, the work develops some exact algorithms based on displacements method and simplex linear transformation algorithms method. For the more complex welded structures, processed using shells and bricks type finite elements, are generated other chain of algorithms based on Greedy methods, for estimation of the optimum welding equivalent loads and implicitly the welding processes parameters. Key words: heat flow, welding processes, residual stresses, plasticity model, HAZ (Heat Affected Zone) properties estimation. 1. Introduction. The numerical estimation of residual stresses and strains, in the welded joint and structures is one of the most complex processes [2- 9]. In this paper there we consider the heat flow analysis of welded joint, the metallurgical modeling of microstructure produced, including phase transformation (solid/liquid/solid transformation) that generate the weld pool, the grain growth and solid-state transformation in the joining area. The mechanical property of HAZ and weld layers are establish with more accuracy based on those estimations. The heat flow is estimate using the volume finite method. The mechanical proprieties of finite elements of welded area are estimate based on the microstructure included in them. 2. Physical model of residual stresses and strains numerical prediction. 2.1 The heat flow analysis. It is making using the general equation: L L z y x Rad Cv Arc L t f z T z y T y x T x Q Q Q t T C + + + + + + = ρ λ λ λ ρ ) ( ) ( ) ( (1) where: Q Cv =h cv(T) (T-T 0 ) heat loose by convection Q Rad =σε (T) (T 4 -T 4 0 ) heat loose by radiation Q Arc heat of welding source f fluid fraction L L latent heat of liquid state
15

Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Nov 10, 2014

Download

Documents

The Finite Elements Method and the Finite Volume Method numerical control of the welded structures designs, subjected to different loads is more frequently nowadays. The present work proposes the estimation of the welded equivalent loading system based on the residuals deflections caused by the welded processes. For the welded structures modeled by beams, the work develops some exact algorithms based on displacements method and simplex linear transformation algorithms method. For the more complex welded structures, processed using shells and bricks type finite elements, are generated other chain of algorithms based on Greedy methods, for estimation of the optimum welding equivalent loads and implicitly the welding processes parameters
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Selected Scientific Papers Vol. 5, Issue 3, 2010

Analyze of the residual stresses induced by welding process of the civil engineering structures with complex geometrical configurations

Ioan Sorin Leoveanu*, Daniel Taus*, Valentin-Vasile Ungureanu*

Transilvania University of Braşov * Faculty of Civil Engineering,

[email protected], [email protected], [email protected] Abstract. The Finite Elements Method and the Finite Volume Method numerical control of the welded structures designs, subjected to different loads is more frequently nowadays. The present work proposes the estimation of the welded equivalent loading system based on the residuals deflections caused by the welded processes. For the welded structures modeled by beams, the work develops some exact algorithms based on displacements method and simplex linear transformation algorithms method. For the more complex welded structures, processed using shells and bricks type finite elements, are generated other chain of algorithms based on Greedy methods, for estimation of the optimum welding equivalent loads and implicitly the welding processes parameters. Key words: heat flow, welding processes, residual stresses, plasticity model, HAZ (Heat Affected Zone) properties estimation. 1. Introduction. The numerical estimation of residual stresses and strains, in the welded joint and structures is one of the most complex processes [2- 9]. In this paper there we consider the heat flow analysis of welded joint, the metallurgical modeling of microstructure produced, including phase transformation (solid/liquid/solid transformation) that generate the weld pool, the grain growth and solid-state transformation in the joining area. The mechanical property of HAZ and weld layers are establish with more accuracy based on those estimations. The heat flow is estimate using the volume finite method. The mechanical proprieties of finite elements of welded area are estimate based on the microstructure included in them. 2. Physical model of residual stresses and strains numerical prediction. 2.1 The heat flow analysis. It is making using the general equation:

LLzyxRadCvArc Ltf

zT

zyT

yxT

xQQQ

tTC

∂∂

+∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

+++=∂∂

⋅ ρλλλρ )()()( (1)

where: QCv=hcv(T)(T-T0) heat loose by convection QRad =σε(T)(T4-T4

0) heat loose by radiation QArc heat of welding source f fluid fraction LL latent heat of liquid state

Page 2: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu, Daniel Taus and Vasile Valentin Ungureanu

2.2 Heat source model. Using the Myhr–Grong method [1], [2] transformed by Leoveanu [7] we made the heat sources simulation. Based on this model, the heat source is divided into many horizontal and vertical sources points that are included in the welded area. This method makes possible the modeling of different welded geometry (like keyhole) without using the heat flux distribution. The establish of the points heat sources, in agreement with the welded pool geometry coordinates; consist in solving the optimization problem.

Minimum (2) )(1

Sa

nP

ss IUq ⋅+−∑

=

with conditions: 0 (3a) ≥iq

imposedis

sis TT ≤∑ (3b)

Sas

s IUq η≤∑ (3c)

where: [ imposed

PNPiPimposed

P TTTT ......1= ]

]]

- The value of temperature imposed on the weld boundary (4)

[ ]Tiii zyxPi = -The coordonates of check points of the weld boundary.

[ TSSSs zyxS = -The coordonates vector of source points:

[ nPSS qqqQ ......1= -The unknown vector of sources point intensity:

CisqTnP

s

simposedis ∑

==

1 2πλ -The expresion of the temperature in the check points (5)

∑∑∞

−∞=

⋅−

=

⋅−

⋅=i

aRV

i

nP

s

axV iSext S

eR

eCis 2

1

2 1 - For sources points on the sourface, qH (6)

⎥⎥⎦

⎢⎢⎣

⎡+⋅= ∑ ∑∑

−∞=

−∞=

⋅−

⋅−

=

⋅−

j k

aRV

k

aRV

j

nP

s

kSjSaxSV

eR

eR

eCis 22

1

11int2 - For point sources inner, qV (7)

222 )2( idzyxRi −++= ; 222 )2( Δ−−++= jdzyxRj ; 222 )2( Δ+−++= kdzyxRk (8) The Is represent the electrical current intensity and Ua the welded arc tension. In the figure 1 and 2 are presented the heat source model from submerged weld and the results of heat flow analyse.

Figure 1. The heat source model. Shape of key-hole welded pool and reduced points.

Page 3: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Selected Scientific Papers Vol. 5, Issue 3, 2010

Figure 2. The temperature distribution in the welded pool and in the HAZ geometry. 3. The estimation of HAZ properties. The cooling process of HAZ make possible the analysis of microstructure properties for every control volume based on the temperature history and CCT (Continuous Cooling Transformation) diagram. The use of numerical particular analyse of metallurgical phase field transformation, become more difficult even when the size grain orientation and composition of the austenite grain and there boundary is known. One aspect of this difficulty consists in the inclusions and in the lake of dislocation analyse or vacancy clusters position inside the grain lattice. This unknown makes difficult the estimation of the position of germination nuclei and their number. The establish of microstructure in solid state transformation, for a given steel, control volume position and its time history is made based on the CCT diagram estimation. The martensite transformation can be modelled by the following equation:

))(exp(1)( TMbTp S −⋅−−= (9)

where: T < MS, Ms is the martensite transformation temperature, b is a proportion coefficient, p(T) is the proportion of phase field.

The ferrite-pearlite transformation is calculated using the Leblond general law:

)()(

)( TfT

pTpdtdp ec &⋅

−=

τ (10)

and the cases of transformation can be included in the general mechanisms: phase 1 phase 2 phase 1 phase 2

The proportion of phases is:

Page 4: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu, Daniel Taus and Vasile Valentin Ungureanu

(11) 2121 1 pppp && −=→=+

Transformation 1 2

12212

122

112

122

12221

122

122

122

21

)()(1

)()(

)()()(

)()(

pppT

Tpp

TTp

TpppTp

TpTp

pp

ecec

ecec

&&

&&

=−=⋅−

+⋅−

−+⋅−=

−−

−=

ττ

ττ (12)

where:

)()(1

)(

)()(

)(

12

122

12

12

122

12

TTp

TKP

TTp

TK

ec

ec

τ

τ−

=

= (13)

and the variation of phases have the expressions:

2121122

2121121

)()()()(pTKPpTKppTKPpTKp

⋅−⋅=⋅+⋅−=

&

& (14)

Transformation 2 1

(15) 1212212

1212211

)()()()(

pTKPpTKppTKPpTKp⋅+⋅−=

⋅−⋅=&

&

where

)()(1

)(

)()(

)(

21

211

21

21

211

21

TTp

TKP

TTp

TK

ec

ec

τ

τ−

=

= (16)

The transformations restrictions are: For the transformation 1 2: if (17) 02121122 >⋅−⋅= pKPpKp& then: (18) )(12

22 Tppec

< For the transformation 2 1: if 01212211 >⋅−⋅= pKPpKp& (19) then:

Page 5: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Selected Scientific Papers Vol. 5, Issue 3, 2010

(20) )(2111 Tpp

ec<

The estimation of the mechanical properties for the material inside the volume control

can be done using the table 1. Table 1. Yield strength for the phase field [9].

Phase Yield strength [MPa ] Austenite (20°C) 200 - 300

Ferrite - Pearlite (20°C) 200 - 400 Bainite (20°C) 600 - 700

Martensite (20°C) > 1000

4. Plasticity model. In the plasticity model we analyze the effect of:

The volume changes imposed by the metallurgical transformation εtp The plasticity imposed by the temperature and the yield strength modification in every

finite element of the HAZ, εcp. In the most used cases, the consideration of two phases that are in the heating and cooling zone of the layer can give a good approximation of the transient stresses and strains [2], [3]:

♦ One phase with low yield stress in the heating area of the welded joint (austenite); ♦ A mixture of phases (ferrite, pearlite, martensite) in the cooling area, with yield

stress depending on temperature. The yield stress is given by the mixture non-linear law [9]:

(21) CCC pfpf 2212 )())(1( σσσ ⋅+⋅−= where: σC

1 - yield stress of austenite; σC

2 - yield stress of phase’s mixtures. Using Von Mises stresses:

2/1

23

⎟⎠⎞

⎜⎝⎛ ⋅= jiijVM SSσ (22)

if σVM < σC then tpcpp εεε &&& += where:

221

21

221

212

1

2

)log(3

)log()(3)()1(23

pphS

TSppSEpgp

CVM

C

thtp

CVMCcp

&&

&&&

⋅⋅⎟⎠⎞

⎜⎝⎛⋅⋅

Δ⋅=

⋅⋅⋅⋅−

+⋅⋅−

=

σσ

σεε

σαασ

σε

(23)

Page 6: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu, Daniel Taus and Vasile Valentin Ungureanu

E - Young module of phases (E1 = E2) αi - coefficient of expansion for phase i;

( )V

Vth

⋅Δ

=Δ →→ 3

2121ε - Volume modification during phase transformation

S - Stress tensor

And for ⎟⎟⎠

⎞⎜⎜⎝

⎛C

VMhσσ

it was used:

if σVM / σC ≤ 0,5 then h(σVM / σC) = 1

if σVM / σC > 0,5 then ⎟⎠⎞

⎜⎝⎛ −⋅+=⎟

⎠⎞

⎜⎝⎛ 5,05,31 C

VMC

VMhσσ

σσ

If σVM = σC then: (24) Stpcpp ⋅=+= λεεε &&&&

and is calculate with the classical theory of plasticity. λ& 5. Analytical Model Results. The model was used to verify the stresses induced by SMA (Shielded Metal Arc) welding technology of a thick butt joint. The butt joint is in Y geometry, as in figure 3 and the stresses maps for the longitudinal and transversal direction are shown in figures 4 and 5. The experimental check of the stress and the calculate stresses are shown in figures 6 and 7.

Figure 3. Geometry of butt joint and the order of welded layers deposit.

Figure 4. The transversal stresses distribution of butt welded

Figure 5. The longitudinal stresses distribution

Page 7: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Selected Scientific Papers Vol. 5, Issue 3, 2010

Figure 8a. The transversal stresses computed and measured map on the bottom face of the joint.

Figure 8b. The transversal stresses computed and measured map on the up face of the joint.

Figure 9a. The longitudinal stresses computed and measured map on the bottom face of the joint.

Figure 9b. The longitudinal stresses computed and measured map on the up face of the joint.

6. Conclusions on the analytical model. The proposed model for numerical estimation of residual stresses confirms the great complexity of that phenomenon. The used model have a great accuracy for the analyse of heat flow, and for the analyse of metallurgical phenomenon, such as heating and cooling metallurgical transformations, grain growth of phases in the processes of heating, cooling and constant temperature.

The temperature distribution given by heat flow, make possible the estimation of time cooling between 5000C and 8000C or more exact the time within the materials is in the transformations domain TAC3-TMS. The obtaining with biggest accuracy of the shape of the HAZ area was established.

The estimation of the metallurgical phases is better even in quantitative, qualitative and position in the HAZ and weld pool area.

The hardness distribution for the HAZ can be predicted with more accuracy. The shape and the value of residual stresses in the transversal direction are in good

agreement with the experiments. The shape of residual stresses in the longitudinal direction is good and in agreement

with experiments.

Page 8: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu, Daniel Taus and Vasile Valentin Ungureanu

The value of residual stresses in the longitudinal direction gives errors from experiment.

The proposed plasticity model give good results and it will be used for futures development.

The used analysis need a biggest CPU resources and in the future the

metallurgical simulations algorithms and methods may be significant modifies. It is necessary to analyze with more accuracy the grains boundary chemical

composition and the effect of precipitate dissolution and germination for good predict of mechanical properties.

Must know and predict the ferrite type and make difference in the bainite lower and upper field.

The study of germination in the solid-state transformation based on the grain boundary geometry and their chemical composition become necessary. Analyze of the precipitate stability and their distributions are necessary.

All the needed options can be make with lower computer resource by using the most economic calculus method.

Based on these observations we can conclude that the approach numerical method, in this stage, can not be used, with good results, for the welding optimization technology of structures in the civil engineering area. References [1] Myhr, O.R, and Grong, O. Acta Metall. Mater. 1990, 38, 449-460 [2] Grong, O. Metallurgical Modelling of Welding. The Institute of Materials, Cambridge

Univerity Press, 1992. [3] Leoveanu, I.S.,Zgură Gh. - Model de calcul cu elemente finite al matricii elasto-plastice în

cazul ZITM al cordoanelor de sudură. N.T.U.P.C., nr. VII. p. 301-307. [4] Leoveanu, I.S. - Determinarea forţelor exercitate de cordoanele de sudură asupra secţiunilor

formate din bare sudate. Buletinul AGIR, Vol.2. 1998 [5] Leoveanu, I.S., s.a,. - Establishes of the Equivalent Longitudinal Forces products of the

welded joints and use them to the determination of the residual strains of the welded girders. Welding & Joining Conference, Tel Aviv. 2000, p. 170-179

[6] Leoveanu, I.S., s.a,. - The optimization model from the design and technology of the welded beam structures, in condition of maximum energy absorbed. Welding & Joining Conference, Tel Aviv, 2000,p.180-191

[7] Leoveanu I.S, Zgura Gh. Modelling the heat and fluid flow in the welding pool of high power sources. Materials Science Forum, Nr. 530, 2008,p. 443-446.

[8] Leoveanu I.S,. Numerical Modelling of transport phenomenon involved in the fusion-weld pool. Revista Sudura, Nr. 1, 2010, p. 10-16.

[9] *** Sysweld user book, 2001.

Page 9: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

Tabelul 7.4. Date elementare şi nodale calculate cu programul SysWeld.

Locul de determinare Mărimea determinată Noduri Deplasări Noduri Forţele din legături Elemente Tensiuni Punctele de integrare Tensiuni Punctele de integrare Deformaţii Punctele de integrare Temperatura Punctele de integrare Deformaţia termică Punctele de integrare Proporţia fazelor Punctele de integrare Energia de deformare Punctele de integrare Deformaţia totală plastică Punctele de integrare Gradul de ecruisare datorat vitezei de deformaţie Punctele de integrare Gradul de durificare datorat transformărilor structurale Punctele de integrare Deformaţiile plastice cumulate pentru cazul I de analiză

(alfa) Punctele de integrare Deformaţiile plastice cumulate datorate cazului II de

analiză (beta) Punctele de integrare Deformaţiile plastice cumulate datorate cazului III de

analiză (gama) Punctele de integrare Lucrul mecanic de deformare elastică Punctele de integrare Lucrul mecanic de deformare plastică

7.5. Determinarea tensiunilor şi deformaţiilor remanente pentru cazul unei îmbinări în Y.

În scopul verificării modelului propus, s-a căutat simularea unei tehnologii de sudare pentru o îmbinare cap la cap cu rost Y. Geometria îmbinării ca şi ordinea de depunere a trecerilor fiind reprezentată în figura 7.27.

Figura 7.27a. Geometria îmbinării şi ordinea de depunere a straturilor de sudură.

Figura 7.27b. Macrostructura îmbinării sudate analizate.

Figura 7.27c. Zonele cu durităţi diferite din cadrul îmbinării sudate.

223

Page 10: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

Compoziţia chimică a materialului de bază ca şi a trecerilor este dată în tabelul 7.5. Indice material

C [%]

Mn [%]

Si [%]

Al [%]

S [%]

P [%]

OL52.5kf 0,18 1,39 0.37 0.052 0.011 0.022 Trecerea 1 0,073 1,57 0,39 0,062 0,009 0,015 Trecerea 2 0,060 1,59 0,41 0,063 0,007 0,012 Trecerea 3 0,048 1,62 0,42 0,064 0,006 0,01 Trecerea 4 0,037 1,64 0,43 0,065 0,0067 0,01 Trecerea 5 0,032 1,7 0,43 0,066 0,0068 0,0087 Trecerea 6 0,026 1,7 0,44 0,0,66 0,0064 0,009 Trecerea 7 0,026 1,73 0,44 0,067 0,0065 0,01 Trecerea 8 0,024 1,73 0,44 0,068 0,0062 0,0086 Trecerea 9 0,024 1,78 0,44 0,068 0,0065 0,008 Trecerea 10 0,022 1,78 0,44 0,068 0,0059 0,0085 Trecerea 11 0,022 1,8 0,45 0,069 0,0057 0,0086 Trecerea 12 0,019 1,79 0,45 0,069 0,0053 0,0085 Trecerea 13 0,019 1,81 0,45 0,07 0,0049 0,0087 Trecerea 14 0,017 1,8 0,46 0,071 0,0047 0,0084 Trecerea 15 0,017 1,82 0,46 0,073 0,0046 0,0083 Trecerea 16 0,012 1,86 0,47 0,073 0,0046 0,0085

Modelarea cîmpului termic. În scopul determinării cît mai exacte a formei ZIT-ului ca şi a proprietăţilor acestuia, s-a utilizat metoda volumelor finite în varianta explicită pentru a putea monitoriza cît mai exact bilanţul termic ca şi influenţa pe care căldura latentă de topire şi solidificare o au asupra distribuţiei acestuia. Calibrarea sursei termice s-a pentru cazul depunerii unui cordon de sudură pe o placă groasă, modul de definire a volumelor finite este redat în figura 7.28.

Figura 7.28. Analiza depunerii unui cordon de sudur pe o placă.

Figura 7.29. Diferenţa dintre valoarea măsurată şi cea calculată pentru geometria ZIT-ului şi a cusăturii.

Rezultatele analizei termice sunt prezentate în figura 7.24. Considerînd că procesul de definire a surselor punctiforme conduce la o aproximare suficientă a geometriei ZIT-ului şi cusăturii, s-a trecut la calculul tensiunilor şi deformaţiilor remanente introduse de fiecare strat de sudară în parte. Modul de discretizare al îmbinării în scopul abordării cu elemente finite pentru calculul deformaţiilor şi tensiunilor remanente cu

224

Page 11: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

metoda elementelor finite şi a cîmpului termic cu metoda volumelor finite este prezentat în figura 7.30. S-a adoptat o discretizare cu parametrii variabili ai structurii, care să conducă la o cît mai bună aproximare a deformaţiilor şi tensiunilor remanente. De asemenea a fost utilizat modelul I de determinare a acestora.

Figura 7.30 Aspectul discretizării şi poziţia trecerii curente. Tensiunile remanente transversale obţinute în urma depunerii fiecarei treceri în urma atingerii temperaturii de 20 °C, ca şi cele rezultate în urma terminării procesului de sudare sunt prezentate în tabelul 7.5. Tabelul 7.6. Rezultatele analizei.

Trecerea 1.

Trecerea 2.

Repartitia tensiunilor remanente transversale şi

discretizarea geometriei trecerii.

Trecerea 3.

Repartitia tensiunilor remanente transversale şi

discretizarea geometriei trecerii.

Trecerea 4. Repartitia tensiunilor remanente transversale şi

discretizarea geometriei trecerii.

225

Page 12: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

Trecerea 5.

Repartitia tensiunilor remanente transversale şi

discretizarea geometriei trecerii.

Trecerea 6.

Repartitia tensiunilor remanente transversale şi

discretizarea geometriei trecerii.

Trecerea 7.

Repartitia tensiunilor remanente transversale şi

discretizarea geometriei trecerii.

Trecerea 8.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 9.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 10.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 11.

Detaliul tensiunilor remanente din zona trecerii.

226

Page 13: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

Trecerea 12.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 13.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 14.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 15.

Detaliul tensiunilor remanente din zona trecerii.

Trecerea 16.

Detaliul tensiunilor remanente din zona trecerii.

227

Page 14: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

Tensiunile transversale remanente obţinute în urma simularii procesului de sudare a îmbinării cap la cap cu rost Y în conformitate cu schita tehnologica de sudare din figura 7.27. Datele de material sunt prezentate în tabelul 7.5.

Tensiunile remanente longitudinale obţinute în urma simularii procesului de sudare.

Comparaţie între tensiunile remanente teansversale calculate şi cele determinate cu RX pe fetele exterioare ale epruvetei, în urma depunerii a 16 treceri.

228

Page 15: Analyze of the Residual Stresses and Strains in Civil Engineering Welded Structures

Ioan Sorin Leoveanu - Teza de doctorat Model matematic extins. Modelarea tensiunilor şi deformaţiilor produse de cordoanele de sudură.

Comparaţie între tensiunile longitudinale remanente calculate şi măsurate cu RX pe feţele exterioare ale epruvetei, în urma sudării complete. Concluzii.

Calculul tensiunilor ş i deformaţ i i lor remanente cu metode numerice este un proces complex, modelul utilizat implicînd un proces complicat de modelare a sursei termice ş i de analiză a cîmpului termic produs aceasta. Efectuarea unei cît mai exacte analize termice face posibilă determinarea unor mărimi importatnte ale procesului de sudură ca timpul de răcire între 800 ş i 500 °C sau exprimarea mai riguroasă a timpului în care materialul din ZIT se gaseş te între TA C 3 ş i TM S.

Se determină de asemenea cu suficientă precizie ş i vitezele de răcire ca ş i componenţ i i metalografici existenţ i în fiecare element finit în parte.

Corelînd aceste date cu compoziţia chimică ş i cu viteza de răcire la 700 °C se estimează cu acurateţe duritatea ob ţ inută în fiecare element din ZIT ş i din cusă tură .

Se determină deformaţ ia ş i tensiunea din fiecare element în parte funcţ ie de istoria termică ş i metalurgică a fiecărui element în parte.

Tensiunile remanente transversale obţinute în urma modelării procesului de sudare, sunt apropiate de cele obţ inute prin măsurare cu RX pe feţele exterioare ale îmbinării .

Tensiunile remanente longitudinale obţ inute prin calcul, pentru suprafeţele exterioare ale îmbinării sudate, au distribuţ ia apropiată de cele măsurate dar ca valoare există diferen ţe mari între acestea.

Modelul de calcul al deformaţ i i lor ş i tensiunilor remanente adoptat conduce la o aproximaţ ie bună a tensiunilor transversale, dar trebuie îmbună tăţi t pentru a estima cu mai multă acurateţe ş i tensiunile longitudinale.

Se impune ş i verificarea tensiunilor remanente din zonele interioare îmbinării sudate pentru o decizie finală asupra metodei.

Metoda de calcul a tensiunilor ş i deformaţ i i lor remanente dă rezultate care estimează cu suficientă precizie tensiunile remanente transversale dar în cazul celor longitudinale, există încă diferen ţe care nu se încadrează în restricţ iile impuse de procesul de optimizare a unei tehnologii de sudare.

Analiza efectuată , deş i a fost efectuată pe calculatoare de ultimă generaţ ie, necesită o discretizare mult mai fină , discretizare ce nu a putut fi asigurată .

Avînd în vedere diferen ţele valorice apărute între tensiunile remanente longitudinale măsurate ş i calculate, s-ar putea impune ca modelul de calcul să fie dezvoltat în direcţ ia adaptării proprietăţ ilor termo-mecanice din interiorul elementului finit în func ţ ie de orientarea grăun ţ ilor din acst element.

229