Top Banner

of 94

Analysis of a 3D Frame

Jun 03, 2018

Download

Documents

jaffna
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 Analysis of a 3D Frame

    1/94

    3D Frame Analysis

    Analysis of a 3D frame subject to distributed loads, point loads and moments

    Principal Axes

    Beam principal axes are defined in the same way as in the FEA program Strand7:

    i.e. the Z axis is in effect defined as the vertical axis in the model, and the ! plane is hori"ontal.

    Units

    Any consistent #nits may $e #sed.

    Solvers

    %hree alternative solvers are availa$le from the dropdown $ox on the &'#tp#t& sheet:

    %he Algli$ Sparse Solver is $y far the fastest, $#t may not converge for some pro$lems.

    %he compiled solver is recommended for cases where the sparse solver does not perform

    %he (BA solver is provided for cases where the necessary dll files for the compiled and sp

    For instr#ctions on installing the dll file see:

    End Releases

    %r#ss mem$ers transmitting axial load only may $e defined $y setting )*, )+ and to "ero.

    utput

    -licing the &/ecalc#late& $#tton generates node res#lts 0deflections and reactions1 and forces an

    Beam res#lts relative to $eam principal axes are generated $y clicing the &/ecalc#late $eam res#

    )ntermediate res#lts may $e generated for any n#m$er of points.

    After generating $eam res#lts, res#lts for selected $eams may $e plotted on the 2lot Beam& sheet.

    i3 is the unit vector directed from Node 1 to Node 2.

    i2 is the unit vector arising from i2= Z i3where Zis the unit vector in the global Z diri1 completes the right-handed system such that i1 i2= i3

    %his proced#re in effect creates the i!Axis parallel to the ! plane, and the i"Axis in the plane pa

    )f the i3 axis is parallel to the Z axis then the i!axis is parallel to the ! axis in the positive direction.

    Beam principal axes may $e rotated a$o#t the i3axis $y an angle specified in the $eam connectio

    2ositive rotation is clocwise when looing in the positive i3direction.

    http:44newtonexcel$ach.wordpress.com4+5*+4**4*64frame8now8with8added8algli$4

    Beam end may $e released for translation or rotation. 9ote all end releases are relative to the #lo

    http://newtonexcelbach.wordpress.com/2012/11/16/frame4-now-with-added-alglib/http://newtonexcelbach.wordpress.com/2012/11/16/frame4-now-with-added-alglib/
  • 8/12/2019 Analysis of a 3D Frame

    2/94

    well.

    arse solvers are not installed

    deflections at $eam ends.

    lts& $#tton.

    ction

    rallel to the Z axis3

    s range.

    alaxes.

  • 8/12/2019 Analysis of a 3D Frame

    3/94

    3D Frame Analysis

    Analysis of a 3D frame subject to distributed loads, point loads and moments

    $eam Property %ypes

    2roperty 9#m$er Area )* )+

    * 5.; 5.5*5*667 5.5*66667 5.5+

  • 8/12/2019 Analysis of a 3D Frame

    4/94

    9ode -oordinates =

    Shear Area* Shear Area+ Shear ?od#l#s 9#m$er !

    5.55E@55 5.55E@55 =,555,555 * 5.55 5.55

    5.55E@55 5.55E@55 =,555,555 + ;.55 5.55

    =,555,555 5.55 5.55

    ;.55 5.55

    ; 5.55 ;.55

    6 ;.55 ;.55

    7 5.55 ;.55

    = ;.55 ;.55

  • 8/12/2019 Analysis of a 3D Frame

    5/94

    Enter &F& for fixed restraint, or displacement val#e for prescri$ed displacement 0rot

    9ode /estraints

    Z 9#m$er ! Z ?

    5.55 * F F F F5.55 + F F F F

    .55 ; F F F F

    .55 6 F F F F

    5.55

    5.55

    .55

    ;.55

  • 8/12/2019 Analysis of a 3D Frame

    6/94

    ation in radians1

    Beam -onnections **

    ?! ?Z Beam 9#m$er 2roperty %ype 9ode * 9ode +

    F F * * * F F + * +

    F F * ; 7

    F F * 6 =

    ; +

    6 + 7 =

    7 + =

    = 7

    < =

    *5 7

    ** + ;

  • 8/12/2019 Analysis of a 3D Frame

    7/94

  • 8/12/2019 Analysis of a 3D Frame

    8/94

    !+ Z+ ?+ ?!+ ?Z+

    *75

    *75

    *75;

    *756

    +;;=

    +;; /es#lts are o#tp#t for each listed point in '#t2oints MMMMMMM

    > '#t 8 '#tp#t index: * 0defa#lt1 8 Shear, ?oment, Slope and eflection at each '#tpoint3 + 8 Force MMMMMMM

    im SS/es01 As o#$le, SS/es+01 As o#$le, SS/es01 As o#$le, 9#msegments As ong, 9#

    im i As ong, G As ong, As ong, oaden As o#$le, %otoad As o#$le, %ot?om As o#$le MMMMMMM

    im N As o#$le, Ndash As o#$le, N9eg As o#$le, As o#$le, * As o#$le, + As MMMMMMM

    im StartSlope As o#$le, EndSlope As o#$le, Startef As o#$le, Slope-hange As o#$le, 9 MMMMMMMim S* As o#$le, S+ As o#$le, S*9ode As ong, S+9ode As ong, Span As o#$le, Segm MMMMMMM

    im S*ef As o#$le, S+ef As o#$le, S*/Force As o#$le, S+/Force As o#$le, ef-hange MMMMMMM

    im 9#m/ows As ong, 9#m-ols As ong, 9#mB-ols As ong, 9#mSeg-ols As ong, 2oads+0MMMMMMM

  • 8/12/2019 Analysis of a 3D Frame

    68/94

    im A As o#$le, EA As o#$le, BeamAng As o#$le, Beam-os As o#$le, BeamSin As o#$ MMMMMMM

    im 2%rans As o#$le, 2Ax As o#$le, NA As o#$le, NAdash As o#$le, NA9eg As o#$le, 2 MMMMMMM

    im End+% As o#$le, End+Ax As o#$le, End*efa0* %o *, * %o +1 As o#$le, End*efAng MMMMMMM

    -onst %ol As o#$le O 5.5555555555555*

    )f %ype9ame0Beam-oords1 O &/ange& %hen Beam-oords O Beam-oords.(al#e+ MMMMMMM

    )f %ype9ame0BeamSect1 O &/ange& %hen BeamSect O BeamSect.(al#e+ MMMMMMM

    )f )s?issing0'#t-ols1 O False %hen MMMMMMM )f %ype9ame0'#t-ols1 O &/ange& %hen '#t-ols O '#t-ols.(al#e+ MMMMMMM

    9#m'#t-ols O PBo#nd0'#t-ols, +1 MMMMMMM

    Else MMMMMMM

    9#m'#t-ols O = MMMMMMM

    End )f MMMMMMM

    9#mB-ols O PBo#nd0BeamSect, +1

    O Beam-oords0+, *1 8 Beam-oords0*, *1 MMMMMMM

    ! O Beam-oords0+, +1 8 Beam-oords0*, +1 MMMMMMM

    Beamength O 0 Q + @ ! Q +1 Q 5.; MMMMMMM

    Beam0*, *1 O Beamength MMMMMMM

    BeamAng O A%n+0, !1 MMMMMMM > )f BeamAng R 5 %hen MMMMMMM

    Beam-os O -os0BeamAng1 MMMMMMM

    BeamSin O Sin0BeamAng1 MMMMMMM

    > End )f MMMMMMM

    MMMMMMM

    )f )s?issing0EndefA1 O %r#e %hen MMMMMMM

    End-ols O * MMMMMMM

    Else MMMMMMM

    )f %ype9ame0EndefA1 O &/ange& %hen EndefA O EndefA.(al#e+ MMMMMMM

    End-ols O PBo#nd0EndefA, +1 MMMMMMM

    End )f MMMMMMM S* O 5 MMMMMMM

    S+ O Beamength MMMMMMM

    Span O S+ 8 S* MMMMMMM

    /eim '#t2oints0* %o 9#mSegs @ *, * %o *1

    '#t2oints0*, *1 O 5

    Segength O Span 4 9#mSegs MMMMMMM

    9#m'#t O 9#mSegs @ *

    For i O + %o 9#m'#t

    '#t2oints0i, *1 O '#t2oints0i 8 *, *1 @ Segength

    9ext i

    )f )s?issing0oads1 O False %hen

    oads O /ange+Array0oads, 9#m/ows, 9#m-ols, , , %r#e, +1

    )f )s?issing09#mloads1 O %r#e %hen 9#mloads O 9#m/ows

    /eim 2reserve oads0* %o 9#m/ows, * %o %rans start MMMMMMM

    oads0i, 71 O 8oads0i, 1 M BeamSin > %rans end MMMMMMM

    oads0i, =1 O oads0i, 1 M Beam-os > ong start MMMMMMM

    oads0i, ong end MMMMMMM Else MMMMMMM

  • 8/12/2019 Analysis of a 3D Frame

    69/94

    oads0i, 61 O oads0i, 1 M Beam-os > %rans start MMMMMMM

    oads0i, 71 O oads0i, 1 M Beam-os > %rans end MMMMMMM

    oads0i, =1 O 8oads0i, 1 M BeamSin > ong start MMMMMMM

    oads0i, ong end MMMMMMM

    End )f MMMMMMM

    9ext i MMMMMMM

    Else 9#mloads O 5

    End )f

    )f )s?issing02oads1 O False %hen

    2oads O /ange+Array02oads, 9#m/ows, 2oad-ols, , , False1

    )f )s?issing09#m2loads1 O %r#e %hen 9#m2loads O 9#m/ows

    For i O * %o 9#m/ows MMMMMMM

    )f BeamAng R 5 %hen MMMMMMM

    2Ax O 802oads0i, +1 M Beam-os @ 2oads0i, 1 M BeamSin1 MMMMMMM

    2%rans O 2oads0i, 1 M Beam-os 8 2oads0i, +1 M BeamSin MMMMMMM

    Else MMMMMMM

    2Ax O 82oads0i, +1 MMMMMMM 2%rans O 2oads0i, 1 MMMMMMM

    End )f MMMMMMM

    2oads0i, +1 O 2%rans >2%rans MMMMMMM

    2oads0i, 1 O 2Ax > 2Ax MMMMMMM

    9ext i MMMMMMM

    Else

    9#m2loads O 5

    End )f

    /eim 2oads+0* %o 9#m2loads, * %o ;1

    > MMM MMMMMMM

    > )nsert additional nodes if reD#ired at segment ends and s#pports.

    > )nsert segment ends

    Segments O -om$ineArray0Beam, '#t2oints, 9#m, , , %r#e1

    9#m9odes O 9#m

    9#msegments O 9#m 8 *

    )f 9#mB-ols R + %hen MMMMMMM

    /eim SS/es0* %o 9#m9odes, * %o =1 MMMMMMM /eim SS/es+0* %o 9#m9odes, * %o =1 MMMMMMM

    Else

    > )ncl#de shear slope and deflection and total slope and deflection

    /eim SS/es0* %o 9#m9odes, * %o **1 MMMMMMM

    /eim SS/es+0* %o 9#m9odes, * %o **1 MMMMMMM

    End )f MMMMMMM

    S*9ode O *

    S+9ode O 9#m9odes

    /eim Segments+0* %o 9#m9odes, * %o 9#mB-ols @ *1

    O *

    For i O * %o 9#m9odes

  • 8/12/2019 Analysis of a 3D Frame

    70/94

    Segments+0i, *1 O Segments0i, *1

    )f Segments+0i, *1 R 5 %hen

    )f 0Segments+0i, *1 8 Beam0, *11 4 Segments+0i, *1 %ol %hen O @ *

    End )f

    Segments+0i, +1 O BeamSect0, *1 MMMMMMM

    )f 9#mB-ols * %hen Segments+0i, 1 O BeamSect0, +1 MMMMMMM

    )f 9#mB-ols + %hen Segments+0i, 1 O BeamSect0, 1 MMMMMMM

    9ext i

    > MMM

    >Solve ass#ming "ero rotation at node *

    > SS/es col#mns: SS/es+ col#mns: MMMMMMM

    > *: *: Shear force MMMMMMM

    > +: Shear force +: Bending moment MMMMMMM

    > : Bending moment : Axial force MMMMMMM

    > : Slope : MMMMMMM

    > ;: eflection d#e to $ending ;: ! MMMMMMM

    > 6: Axial force 6: /Z MMMMMMM

    > 7: Axial deflection 7: %rans MMMMMMM

    > =: Shear slope =: Ax MMMMMMM >

  • 8/12/2019 Analysis of a 3D Frame

    71/94

    SS/es0i, +1 O SS/es0i, +1 @ N M * @ Ndash M * Q + 4 + @ N9eg M + 8 Ndash M + Q

    SS/es0i, 1 O SS/es0i, 1 @ N M * Q + 4 + @ Ndash M * Q 4 6 @ N9eg M + Q + 4 + 8 N

    SS/es0i, 1 O SS/es0i, 1 @ 0N M * Q 4 6 @ Ndash M * Q 4 + @ N9eg M + Q 4 6 8

    SS/es0i, ;1 O SS/es0i, ;1 @ 0N M * Q 4 + @ Ndash M * Q ; 4 *+5 @ N9eg M + Q 4

    SS/es0i, 61 O SS/es0i, 61 @ NA M * @ NAdash M * Q + 4 + @ NA9eg M + 8 NAdash M MMMMMMM

    SS/es0i, 71 O SS/es0i, 71 @ NA M * Q + 4 + @ NAdash M * Q 4 6 @ NA9eg M + Q + 4 MMMMMMM

    9ext G

    For G O * %o 9#m2loads

    * O 2oads0G, *1

    * O x 8 *

    K O 2oads0G, +1

    2A O 2oads0G, 1 MMMMMMM

    >)f * R 5 %hen * O 5

    )f * 5 %hen

    SS/es0i, +1 O SS/es0i, +1 @ K

    SS/es0i, 1 O SS/es0i, 1 @ K M *

    SS/es0i, 1 O SS/es0i, 1 @ 0K M * Q + 4 +1

    SS/es0i, ;1 O SS/es0i, ;1 @ 0K M * Q 4 61 SS/es0i, 61 O SS/es0i, 61 @ 2A MMMMMMM

    SS/es0i, 71 O SS/es0i, 71 @ 2A M * MMMMMMM

    End )f MMMMMMM

    9ext G

    )f 9#mB-ols * %hen MMMMMMM

    >AdG#st shear slope and deflection for A

    A O Segments+0i, 1

    )f A 5 %hen

    SS/es0i, =1 O SS/es0i, +1 4 A

    SS/es0i,

  • 8/12/2019 Analysis of a 3D Frame

    72/94

    SS/es0i, *1 O x

    9ext i

    > AdG#st slope and deflection for E)

    MMMMMMM

    For i O + %o 9#m9odes

    E) O Segments+0i, +1 MMMMMMM

    x O Segments+0i, *1 O x 8 Segments+0i 8 *, *1

    )f i O + %hen StartSlope O SS/es0i 8 *, 1 Else StartSlope O EndSlope

    )f i O + %hen Startef O SS/es0i 8 *, ;1 Else Startef O Endef

    EndSlope O StartSlope @ 0SS/es0i, 1 8 SS/es0i 8 *, 11 4 E)

    Endef O Startef @ StartSlope M @ 0SS/es0i, ;1 8 SS/es0i 8 *, ;1 8 0SS/es0i 8 *, 1 M 11

    SS/es0i 8 *, 1 O StartSlope

    SS/es0i 8 *, ;1 O Startef

    9ext i

    i O i 8 * SS/es0i, 1 O EndSlope

    SS/es0i, ;1 O Endef

    > inBeam+ O SS/es MMMMMMM

    >Exit F#nction MMMMMMM

    )f 9#mB-ols * %hen MMMMMMM

    For i O + %o 9#m9odes

    SS/es0i, ;1 O SS/es0i, ;1 @ SS/es0i, AdG#st deflection MMMMMMM

    End+% O 80EndefA0+, +1 8 EndefA0*, +11 M BeamSin @ 0EndefA0+, 1 8 EndefA0*, 11 M Bea MMMMMMM

    End+Ax O 0EndefA0+, +1 8 EndefA0*, +11 M Beam-os @ 0EndefA0+, 1 8 EndefA0*, 11 M Be MMMMMMM

    ef-hange O 0SS/es0S+9ode, ;1 8 End+%1 MMMMMMM

    )f ef-hange R 5 %hen MMMMMMM

    Slope-hange O ef-hange 4 Span MMMMMMM

    For i O + %o 9#m9odes MMMMMMM

    SS/es0i, 1 O SS/es0i, 1 8 Slope-hange MMMMMMM

    SS/es0i, ;1 O SS/es0i, ;1 8 Slope-hange M SS/es0i, *1 MMMMMMM

    9ext i MMMMMMM

    End )f MMMMMMM

    O * MMMMMMM

    /eim SS/es+0* %o 9#m9odes, * %o MMMMMMM

  • 8/12/2019 Analysis of a 3D Frame

    73/94

    SS/es+0i, 61 O 0SS/es0i, ;1 M Beam-os @ SS/es0i, 71 M BeamSin1 > ! MMMMMMM

    SS/es+0i, 71 O SS/es0, 1 MMMMMMM

    SS/es+0i, =1 O SS/es0, ;1 MMMMMMM

    SS/es+0i, Add initial deflection of start node MMMMMMM

    )f EndefA0*, +1 R 5 'r EndefA0*, 1 R 5 %hen MMMMMMM inc O 0EndefA0+, +1 M 5 @ EndefA0*, +11 4 Span MMMMMMM

    !)nc O 0EndefA0+, 1 M 5 @ EndefA0*, 11 4 Span MMMMMMM

    End*efa0*, *1 O EndefA0*, +1 MMMMMMM

    End*efa0*, +1 O EndefA0*, 1 MMMMMMM

    End*efAng O A%n+0EndefA0*, +1, EndefA0*, 11 @ 2i 4 + MMMMMMM

    End*/tn O 00EndefA0*, +1 Q + @ EndefA0*, 1 Q +1 Q 5.; M -os0BeamAng 8 End*efAng11 M MMMMMMM

    MMMMMMM

    For i O * %o 9#m9odes MMMMMMM

    SS/es+0i, =1 O SS/es+0i, =1 @ End*/tn MMMMMMM

    SS/es+0i,

  • 8/12/2019 Analysis of a 3D Frame

    74/94

    8a*

    8a+ a

    8a 8a;

    8a=

    a; a74+

    8a a64+

    a*

    a+ 8a

    a a;

    a=

    a; a7

    8a a6

    8a*

    -a3 a+

    -a! -a

    8a=a a.:!

    -a+ a0:!

    a*

    a3 -a+

    a! a

    a=

    a a.

    -a+ a0

    Frame8sheardef

    F#nction inBeam0ength As o#$le, BeamSect As (ariant, 9#mSegs As ong,'ptional By(al EndefA As (ariant, 'ptional By(al 9#mloads As (ari

    'ptional '#t-ols As (ariant, 'ptional '#t As ong O *1 As (ariant

    > Find deflected shape for $eam #nder specified transverse loads #sing local axis sy

    > /es#lts are o#tp#t for each listed point in '#t2oints

    > '#t 8 '#tp#t index: * 0defa#lt1 8 Shear, ?om, /otation, eflection

    > '#t O +: 8 Force and moment im$alance and deflection and rotation difference

    im SS/es01 As o#$le, SS/es+01 As o#$le, SS/es01 As o#$le, 9#msegment

    im i As ong, G As ong, As ong, ei As o#$le, Segments+ As (ariant, 9#m A

    im N As o#$le, Ndash As o#$le, N9eg As o#$le, As o#$le, * As o#

    im StartSlope As o#$le, EndSlope As o#$le, Startef As o#$le, 2oad-ols Aim S* As o#$le, S+ As o#$le, S*9ode As ong, S+9ode As ong, Segment

    im End-ols As ong

    im 9#m/ows As ong, n#mcols As ong, 9#mB-ols As ong, 2oads+01 As o#

  • 8/12/2019 Analysis of a 3D Frame

    75/94

    im A As o#$le, ea As o#$le, Beam0* %o *, * %o *1 As o#$le

    im 9#m'#t-ols As ong

    -onst %ol As o#$le O 5.5555555555555*

    )f %ype9ame0BeamSect1 O &/ange& %hen BeamSect O BeamSect.(al#e+

    )f )s?issing0'#t-ols1 O False %hen

    )f %ype9ame0'#t-ols1 O &/ange& %hen '#t-ols O '#t-ols.(al#e+ 9#m'#t-ols O PBo#nd0'#t-ols, +1

    Else

    9#m'#t-ols O =

    End )f

    9#mB-ols O PBo#nd0BeamSect, +1

    Beam0*, *1 O ength

    )f )s?issing0EndefA1 O %r#e %hen

    End-ols O *

    Else )f %ype9ame0EndefA1 O &/ange& %hen EndefA O EndefA.(al#e+

    End-ols O PBo#nd0EndefA, +1

    End )f

    S* O 5

    S+ O ength

    /eim '#t2oints0* %o 9#mSegs @ *, * %o *1

    '#t2oints0*, *1 O 5

    Segength O ength 4 9#mSegs

    9#m'#t O 9#mSegs @ *

    For i O + %o 9#m'#t

    '#t2oints0i, *1 O '#t2oints0i 8 *, *1 @ Segength

    9ext i

    )f )s?issing0oads1 O False %hen

    oads O /ange+Array0oads, 9#m/ows, n#mcols, , , %r#e, +1

    )f )s?issing09#mloads1 O %r#e %hen 9#mloads O 9#m/ows

  • 8/12/2019 Analysis of a 3D Frame

    76/94

    Else 9#mloads O 5

    End )f

    )f )s?issing02oads1 O False %hen

    2oads O /ange+Array02oads, 9#m/ows, 2oad-ols, , , False1

    )f )s?issing09#m2loads1 O %r#e %hen 9#m2loads O 9#m/ows

    Else

    9#m2loads O 5

    End )f

    /eim 2oads+0* %o 9#m2loads, * %o ;1

    > )nsert additional nodes if reD#ired at segment ends and s#pports.

    > )nsert segment ends

    Segments O -om$ineArray0Beam, '#t2oints, 9#m, , , %r#e1

    9#m9odes O 9#m

    9#msegments O 9#m 8 *

    )f 9#mB-ols R %hen

    /eim SS/es0* %o 9#m9odes, * %o *+1

    Else

    > )ncl#de shear slope and deflection and total slope and deflection

    /eim SS/es0* %o 9#m9odes, * %o *1

    End )f

    S*9ode O *

    S+9ode O 9#m9odes

    /eim Segments+0* %o 9#m9odes, * %o 9#mB-ols @ *1

    O *

    For i O * %o 9#m9odes

  • 8/12/2019 Analysis of a 3D Frame

    77/94

    Segments+0i, *1 O Segments0i, *1

    )f Segments+0i, *1 R 5 %hen

    )f 0Segments+0i, *1 8 Beam0, *11 4 Segments+0i, *1 %ol %hen O @ *

    End )f

    Segments+0i, +1 O BeamSect0, +1

    )f 9#mB-ols + %hen Segments+0i, 1 O BeamSect0, 1

    )f 9#mB-ols %hen Segments+0i, 1 O BeamSect0, 1

    9ext i

    > MMM

    >Solve ass#ming "ero rotation at node *

    > SS/es col#mns:

    > *:

    > +: Shear force

    > : Bending moment

    > : Slope

    > ;: eflection d#e to $ending

    > 6: Shear slope

    > 7: Shear deflection

    SS/es0*, 1 O 5

    SS/es0*, ;1 O 5

    SS/es0*, 71 O 5

    )f 2oads0*, *1 O 5 %hen SS/es0*, +1 O 2oads0*, +1

    )f 2oads0*, 1 O 5 %hen SS/es0*, 1 O 2oads0*, 1

    For i O + %o 9#m9odes

    5 O Segments+0i 8 *, *1

    O Segments+0i, *1

    O 8 5

    For G O * %o 9#mloads

    * O oads0G, *1

    + O oads0G, +1

    N O oads0G, 1 N9eg O 8oads0G, 1

    )f + R * %hen

    Ndash O 0oads0G, 1 8 oads0G, 11 4 0+ 8 *1

    Else

    Ndash O 5

    End )f

    * O 8 *

    )f * R 5 %hen * O 5 + O 8 +

    )f + R 5 %hen + O 5

  • 8/12/2019 Analysis of a 3D Frame

    78/94

    SS/es0i, +1 O SS/es0i, +1 @ N M * @ Ndash M * Q + 4 + @ N9eg M + 8

    SS/es0i, 1 O SS/es0i, 1 @ N M * Q + 4 + @ Ndash M * Q 4 6 @ N9eg M

    SS/es0i, 1 O SS/es0i, 1 @ 0N M * Q 4 6 @ Ndash M * Q 4 + @ N9eg

    SS/es0i, ;1 O SS/es0i, ;1 @ 0N M * Q 4 + @ Ndash M * Q ; 4 *+5 @ N9

    9ext G

    For G O * %o 9#m2loads

    * O 2oads0G, *1

    * O 8 *

    K O 2oads0G, +1

    >)f * R 5 %hen * O 5

    )f * 5 %hen

    SS/es0i, +1 O SS/es0i, +1 @ K

    SS/es0i, 1 O SS/es0i, 1 @ K M *

    SS/es0i, 1 O SS/es0i, 1 @ 0K M * Q + 4 +1

    SS/es0i, ;1 O SS/es0i, ;1 @ 0K M * Q 4 61 End )f

    9ext G

    )f 9#mB-ols + %hen

    >AdG#st shear slope and deflection for A

    A O Segments+0i, 1

    )f A 5 %hen

    SS/es0i, =1 O SS/es0i, +1 4 A

    SS/es0i,

  • 8/12/2019 Analysis of a 3D Frame

    79/94

    SS/es0i, *1 O

    9ext i

    > AdG#st slope and deflection for E)

    ei O BeamSect0*, +1

    For i O + %o 9#m9odes

    O Segments+0i, *1 O 8 Segments+0i 8 *, *1

    )f i O + %hen StartSlope O SS/es0i 8 *, 1 Else StartSlope O EndSlope

    )f i O + %hen Startef O SS/es0i 8 *, ;1 Else Startef O Endef

    EndSlope O StartSlope @ 0SS/es0i, 1 8 SS/es0i 8 *, 11 4 ei

    Endef O Startef @ StartSlope M @ 0SS/es0i, ;1 8 SS/es0i 8 *, ;1 8 0SS/es

    SS/es0i 8 *, 1 O StartSlope

    SS/es0i 8 *, ;1 O Startef

    9ext i

    i O i 8 * SS/es0i, 1 O EndSlope

    SS/es0i, ;1 O Endef

    )f 9#mB-ols + %hen

    For i O + %o 9#m9odes

    SS/es0i, ;1 O SS/es0i, ;1 @ SS/es0i,

  • 8/12/2019 Analysis of a 3D Frame

    80/94

    )f )s?issing0EndefA1 O False %hen

    SS/es0*, 1 O EndefA0*, 1 SS/es0*, ;1 O EndefA0*, +1

    )f SS/es0*, 1 R 5 'r SS/es0*, ;1 R 5 %hen

    For i O + %o 9#m9odes

    O Segments+0i, *1

    SS/es0i, 1 O SS/es0i, 1 @ EndefA0*, 1

    SS/es0i, ;1 O SS/es0i, ;1 @ EndefA0*, +1 @ EndefA0*, 1 M

    9ext i

    End )f

    End )f

    )f 9#m'#t-ols O = %hen

    inBeam O SS/es Else

    /eim SS/es0* %o 9#m9odes, * %o 9#m'#t-ols1

    For i O * %o 9#m9odes

    For G O * %o 9#m'#t-ols

    O '#t-ols0*, G1

    SS/es0i, G1 O SS/es+0i, 1

    9ext G

    9ext i

    inBeam O SS/es

    End )f

    End F#nction

  • 8/12/2019 Analysis of a 3D Frame

    81/94

    xl 4 ell yl 4 ell "l 4 ell

    08xl M yl M -g 8 ell M "l M Sg1 4 en en M -g 4 0ell M ell1 08yl M "l M -g @ ell M xl M Sg1 4 en

    0xl M yl M Sg 8 ell M "l M -g1 4 en 8en M Sg 4 0ell M ell1 0yl M "l M Sg @ ell M xl M -g1 4 en

    5 * 5

    8-g 5 Sg

    Sg 5 -g

    xl 4 ell yl 4 ell "l 4 ell

  • 8/12/2019 Analysis of a 3D Frame

    82/94

  • 8/12/2019 Analysis of a 3D Frame

    83/94

  • 8/12/2019 Analysis of a 3D Frame

    84/94

  • 8/12/2019 Analysis of a 3D Frame

    85/94

  • 8/12/2019 Analysis of a 3D Frame

    86/94

    i 8 *, 1 M 11 4 ei

  • 8/12/2019 Analysis of a 3D Frame

    87/94

  • 8/12/2019 Analysis of a 3D Frame

    88/94

    le

  • 8/12/2019 Analysis of a 3D Frame

    89/94

  • 8/12/2019 Analysis of a 3D Frame

    90/94

  • 8/12/2019 Analysis of a 3D Frame

    91/94

  • 8/12/2019 Analysis of a 3D Frame

    92/94

  • 8/12/2019 Analysis of a 3D Frame

    93/94

  • 8/12/2019 Analysis of a 3D Frame

    94/94