Top Banner
© Freescale Semiconductor, Inc., 2004. All rights reserved. Freescale Semiconductor Application Note This product incorporates SuperFlash technology licensed from SST. AN2759 Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems Engineering Austin, Texas Introduction This application note provides recommendations for implementing an Ethernet interface with the MC9S12NE64 microcontroller unit (MCU). The discussion covers many topics including: Overview of the MC9S12NE64 including available packages Components required to add Ethernet functionality to the MC9S12NE64 MC9S12NE64 schematics showing the minimum system design Circuit connections between the MC9S12NE64 and a high-speed LAN magnetics isolation module and RJ45 connector General printed circuit board (PCB) layout recommendations for 10 and 100 Mbps Ethernet design High-speed LAN magnetics isolation module requirements Crystal placement and circuitry recommendations MC9S12NE64 Ethernet design examples in both 112-pin and 80-pin packages
24

AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Mar 24, 2019

Download

Documents

lamlien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Freescale SemiconductorApplication Note

AN2759Rev. 0.2, 9/2004

®

Implementing an Ethernet Interface with the MC9S12NE64By: Bill Lucas and Steven Torres

Systems Engineering Austin, Texas

Introduction

This application note provides recommendations for implementing an Ethernet interface with the MC9S12NE64 microcontroller unit (MCU). The discussion covers many topics including:

• Overview of the MC9S12NE64 including available packages

• Components required to add Ethernet functionality to the MC9S12NE64

• MC9S12NE64 schematics showing the minimum system design

• Circuit connections between the MC9S12NE64 and a high-speed LAN magnetics isolation module and RJ45 connector

• General printed circuit board (PCB) layout recommendations for 10 and 100 Mbps Ethernet design

• High-speed LAN magnetics isolation module requirements

• Crystal placement and circuitry recommendations

• MC9S12NE64 Ethernet design examples in both 112-pin and 80-pin packages

© Freescale Semiconductor, Inc., 2004. All rights reserved.

This product incorporates SuperFlash technology licensed from SST.

Page 2: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Figure 1 shows a preview of the design examples:

Figure 1. Design Examples

MC9S12NE64 Single-Chip Ethernet Solution

This section introduces the MC9S12NE64 and provides an overview of the MC9S12NE64 integrated Ethernet controller and MC9S12NE64 system design.

MC9S12NE64 Overview

The MC9S12NE64 is a 16-bit MCU based on Freescale Semiconductor’s HCS12 CPU platform. It includes 8K bytes of RAM and 64K bytes of FLASH memory. In the 80-pin package, the MC9S12NE64 has other standard on-chip peripherals including two asynchronous serial communications interface modules (SCIs), one synchronous serial peripheral interface (SPI), an inter-integrated circuit bus (IIC), a 4-channel/16-bit timer module (TIM), an 8-channel/10-bit analog-to-digital converter (ADC), and up to 18 pins available as keypad wake-up inputs (KWUs) or general-purpose I/O pins. In addition, an expanded bus that can be operated at 16 MHz1 is available on the 112-pin package.

The MC9S12NE64 introduces a new peripheral for the HCS12 CPU platform, an integrated Ethernet controller. The MC9S12NE64 integrates an Ethernet controller that includes a media access controller (MAC) and a physical transceiver (PHY) in one die with the CPU, memory, and other HCS12 standard on-chip peripherals. The MC9S12NE64 integrated Ethernet controller is compatible with IEEE 802.3 and 802.3u specifications for 10-Mbps or 100-Mbps operation, respectively.

1. At a 16-MHz internal bus speed, the MC9S12NE64 integrated Ethernet controller is limited to 10-Mbps operation. A 25-MHz internal bus speed is required for 100-Mbps operation.

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

2 Freescale Semiconductor

Page 3: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

The MC9S12NE64 can be targeted at low-throughput connectivity applications that require operation from a nominal 3.3-V power supply. With an on-chip bandgap-based voltage regulator (VREG), the internal digital supply voltage of 2.5 V (VDD) will be generated internally. Figure 2 shows a block diagram of the MC9S12NE64. More information on the MC9S12NE64 is available from the Freescale Semiconductor website: http://freescale.com.

Figure 2. Block Diagram of the MC9S12NE64

MC9S12NE64 Packages

The MC9S12NE64 is available in two packages. Table 1 provides device numbers for each package Figure 3 shows the 112-pin LQFP package pin-out. Figure 4 shows the 80-pin TQFP-EP package pin out.

• 112-pin LQFP package — 70 I/O port pins and 10 input-only pins

• 80-pin TQFP-EP package — 38 I/O port pins and 10 input-only pins

The 80-pin TQFP-EP package does not have access to the multiplex address and data bus. It is designed for single-chip applications that use the internal FLASH and RAM memory. The 80-pin TQFP-EP package has an exposed flag for heat dissipation and requires special PCB layout to accommodate the flag. See the Exposed Flag section.

Table 1. MC68HCS908NE64 Package Options

Device Number Mask Set Temp Package

MC9S12NE64CFU 0L19S –40° C, 85° C 80TQFP-EP

MC9S12NE64CPV 0L19S –40° C, 85° C 112LQFP

HCS12 CPU WITH DEBUG MODULE

2 X SCI

SPI IIC

V REG 3.3 VTO 2.5 V CONVERTER

18 KEY WAKEUPIRQ PORTS

EPHY

EMAC

64K FLASH

8K RAM

ATD10-BIT, 8 CH

INTE

RN

AL B

US

TIMER 16-BIT, 4 CH

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 3

Page 4: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Figure 3. Pinout of MC9S12NE64 in 112-Pin LQFP Package

PL0/ACTLEDPL1/LNKLEDVDDRPL2/SPDLEDPA7/ADDR15/DATA15PA6/ADDR14/DATA14PA5/ADDR13/DATA13PA4/ADDR12/DATA12PHY_VSSRXPHY_VDDRXPHY_RXN PHY_RXPPHY_VSSTXPHY_TXNPHY_TXPPHY_VDDTXPHY_VDDAPHY_VSSAPHY_RBIASVDD2VSS2PA3/ADDR11/DATA11PA2/ADDR10/DATA10PA1/ADDR9/DATA9PA0/ADDR8/DATA8PL3/DUPLEDPL4/COLLEDBKGD/MODC

PJ6

/KW

J6/I

IC_S

DA

PJ7

/KW

J7/I

IC_S

CL

PT

4/T

IM_I

OC

4P

T5/

TIM

_IO

C5

PT

6/T

IM_I

OC

6P

T7/

TIM

_IO

C7

PK

7/E

CS

/RO

MC

TL

PK

6/X

CS

PK

5/X

AD

DR

19P

K4/

XA

DD

R18

VD

D1

VS

S1

PK

3/X

AD

DR

17P

K2/

XA

DD

R16

PK

1/X

AD

DR

15P

K0/

XA

DD

R14

VS

SA

VR

LV

RH

VD

DA

PAD

7/A

N7

PAD

6/A

N6

PAD

5/A

N5

PAD

4/A

N4

PAD

3/A

N3

PAD

2/A

N2

PAD

1/A

N1

PAD

0/A

N0

MII_TXER/KWH6/PH6MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4MII_TXD3/KWH3/PH3MII_TXD2/KWH2/PH2MII_TXD1/KWH1/PH1MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0MII_MDIO/KWJ1/PJ1ADDR0/DATA0/PB0ADDR1/DATA1/PB1ADDR2/DATA2/PB2ADDR3/DATA3/PB3

VDDX1VSSX1

ADDR4/DATA4/PB4ADDR5/DATA5/PB5ADDR6/DATA6/PB6ADDR7/DATA7/PB7MII_CRS/KWJ2/PJ2MII_COL/KWJ3/PJ3

MII_RXD0/KWG0/PG0MII_RXD1/KWG1/PG1MII_RXD2/KWG2/PG2MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4MII_RXDV/KWG5/PG5MII_RXER/KWG6/PG6

KW

G7/

PG

7S

CI0

_RX

D/P

S0

SC

I0_T

XD

/PS

1S

CI1

_RX

D/P

S2

SC

I1_T

XD

/PS

3S

PI_

MIS

O/P

S4

SP

I_M

OS

I/P

S5

SP

I_S

CK

/PS

6S

PI_

SS

/PS

7N

OA

CC

/PE

7M

OD

B/IP

IPE

1/P

E6

MO

DA

/IPIP

E0/

PE

5E

CLK

/PE

4V

SS

X2

VD

DX

2R

ES

ET

VD

DP

LLX

FC

VS

SP

LLE

XTA

LX

TAL

TE

ST

PL

6P

L5

LS

TR

B/T

AG

LO

/PE

3R

/W/P

E2

IRQ

/ PE

1X

IRQ

/PE

0

Signals shown in Bold are not available on the 80-pin package.

MC9S12NE64-Family112LQFP

112

111

110

109

108

107

106

105

104

103

102

101

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 851

2345678910111213141516171819202122232425262728

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

84838281807978777675747372717069686766656463626160595857

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

4 Freescale Semiconductor

Page 5: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Figure 4. Pinout of MC9S12NE64 in 80-Pin TQFP-EP Package

Designing with the MC9S12NE64 and Adding an Ethernet Interface

The MC9S12NE64 is a single-chip Ethernet solution. Having built-in CPU, FLASH, RAM, MAC, and PHY reduces the cost of implementing an embedded device with Ethernet connectivity, because no active external components are required. The components required to enable the MC9S12NE64 Ethernet interface include the following:

• MC9S12NE64 MCU

• 25-MHz crystal

• 3.3-V power supply

• External resistor for PHY_RBIAS pin (see data sheet for value of RBias)

• High-speed LAN magnetics isolation module

• RJ45 connector

• Miscellaneous capacitors and resistors

• Optional: PHY status LEDs (available in some integrated RJ45 connectors)

• Optional: Background debug (BDM) connector

1234567891011121314151617181920

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

MC9S12NE64-Family80 TQFP-EP

PL0/ACTLEDPL1/LNKLEDVDDRPL2/SPDLEDPHY_VSSRXPHY_VDDRXPHY_RXN PHY_RXPPHY_VSSTXPHY_TXNPHY_TXPPHY_VDDTXPHY_VDDAPHY_VSSAPHY_RBIASVDD2VSS2PL3/DUPLEDPL4/COLLEDBKGD/MODC

PJ6

/KW

J6/II

C_S

DA

PJ7

/KW

J7/II

C_S

CL

PT

4/T

IM_I

OC

4/P

T5/

TIM

_IO

C5

PT

6/T

IM_I

OC

6P

T7/

TIM

_IO

C7

VD

D1

VS

S1

VS

SA

VR

LV

RH

VD

DA

PAD

7/A

N7

PAD

6/A

N6

PAD

5/A

N5

PAD

4/A

N4

PAD

3/A

N3

PAD

2/A

N2

PAD

1/A

N1

PAD

0/A

N0

MII_TXER/KWH6/PH6MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4MII_TXD3/KWH3/PH3MII_TXD2/KWH2/PH2MII_TXD1/KWH1/PH1MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0MII_MDIO/KWJ1/PJ1

VDDX1VSSX1

MII_CRS/KWJ2/PJ2MII_COL/KWJ3/PJ3

MII_RXD0/KWG0/PG0MII_RXD1/KWG1/PG1MII_RXD2/KWG2/PG2MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4MII_RXDV/KWG5/PG5MII_RXER/KWG6/PG6

SC

I0_R

XD

/PS

0S

CI0

_TX

D/P

S1

SC

I1_R

XD

/PS

2S

CI1

_TX

D/P

S3

SP

I_M

ISO

/PS

4S

PI_

MO

SI/P

S5

SP

I_S

CK

/PS

6S

PI_

SS

/PS

7E

CLK

/PE

4V

SS

X2

VD

DX

2R

ES

ET

VD

DP

LLX

FC

VS

SP

LLE

XTA

LX

TAL

TE

ST

IRQ

/ PE

1X

IRQ

/PE

0

6059585756555453525150494847464544434241

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 5

Page 6: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Figure 5 is a schematic of a MC9S12NE64 minimum system circuit implementation using the MC9S12NE64 in an 80-pin package and the components described in this section. This circuit implementation shows an optional background debug connector (J1), and status LEDs (LED1 through LED5). The circuit also shows the required bias resistor (R5), high-speed LAN magnetics isolation module, and RJ45 Ethernet connector.

Figure 5. MC9S12NE64 Minimum System Circuit Implementation in the 80-Pin Package

In Figure 5, the MC9S12NE64 in the 80-pin package will operate in normal single-chip mode. Figure 5 shows that the design operates with the internal voltage regulator enabled. Using the internal voltage regulator is the recommended configuration for the MC9S12NE64. Figure 5 also illustrates the basic MC9S12NE64 power and clock input requirements, which are described in following sections.

To configure the MC9S12NE64 (in a 112-pin package) in normal single-chip mode, the MODC, MODB, and MODA pins may need to be pulled up or down. The operating mode of the MC9S12NE64, as well as other HCS12 MCUs, out of reset is determined by the states of MODC, MODB, and MODA during reset. MODC, MODB, and MODA can alternatively be configured by software. Table 2 describes the available modes on the 112-pin package.

75 OHMS

75 OHMS

1000 pF2kV

CABLE SIDEMCU SIDET1

TRANSFORMER / RJ-45 CONNECTOR

T+1

CT2

T-3

R+4

CT5

R-6

J77

J33

J22

J55J44

J11

.8

J88

J66

R11

2.2kC10

470Pf C11

4700Pf

R3

49.9

R1

49.9

R2

49.9

R4

49.9

3.3V

C2

0.01

MC9S12NE64

EARTH/CHASSIS

3.3V

J1

BACKGROUND DEBUG

11

33

55

22

44

66 *RESET

RJ-45

R5

12.4k 1%

PL1/LNKLED

PL3/DUPLED

PL2/SPDLED

3.3V

3.3V

3.3V

3.3V

*RE

SE

T3.3V

C3 0.22

C4 0.22

C5 0.22

PL0/ACTLED

PL4/COLLED

LED3

DUP_LED

R7

220

LED1

LNK_LED

R6

220

R8

220

LED2

SPD_LED

Y125 MHz

C8

15pF

C9

15pF

C7

0.22

R10

10M

PL3/DUPLED

PL1/LNKLED

PL2/SPDLED

C6 0.22

C1

0.22

U1

MII_TXER/KWH6/PH61

MII_TXEN/KWH5/PH52

MII_TXCLK/KWH4/PH43

MII_TXD3/KWH3/PH34

MII_TXD2/KWH2/PH25

MII_TXD1/KWH1/PH16

MII_TXD0/KWH0/PH07

MII_MDC/KWJ0/PJ08

MII_MDIO/KWJ1/PJ19

VDDX110

VSSX111

MII_CRS/KWJ2/PJ212

MII_COL/KWJ3/PJ313

MII_RXD0/KWG0/PG014

MII_RXD1/KWG1/PG115

MII_RXD2/KWG2/PG216

MII_RXD3/KWG3/PG317

MII_RXCLK/KWG4/PG418

MII_RXDV/KWG5/PG519

MII_RXER/KWG6/PG620

SC

I0_

RX

D/

PS

02

1

SC

I0_

TX

D/

PS

12

2

SC

I1_

RX

D/ P

S2

23

SC

I1_

TX

D/ P

S3

24

SP

I_ M

ISO

/ PS

42

5

SP

I_ M

OS

I/ P

S5

26

SP

I_ S

CK

/ P

S6

27

SP

I_S

S/ P

S7

28

VS

SX

23

0

VD

DX

23

1

RE

SE

T3

2

VD

DP

LL

33

XF

C3

4

VS

SP

LL3

5

EX

TA

L3

6

XT

AL

37

TE

ST

38

IRQ

/ P

E1

39

XIR

Q/

PE

04

0

BKGD/MODC41

PL4/COLLED42

PL3/DUPLED43

VSS244

VDD245

PHY_RBIAS46

PHY_VSSA47

PHY_VDDA48

PHY_VDDTX49

PHY_TXP50

PHY_TXN51

PHY_VSSTX52

PHY_RXP53

PHY_RXN54

PHY_VDDRX55

PHY_VSSRX56

PL2/SPDLED57

VDDR58

PL1/LNKLED59

PL0/ACTLED60

PA

D0/

AN

061

PA

D1/

AN

162

PA

D2

/ A

N2

63

PA

D3

/ A

N3

64

PA

D4

/ A

N4

65

PA

D5

/ A

N5

66

PA

D6/

AN

667

PA

D7/

AN

768

VD

DA

69

VR

H70

VR

L71

VS

SA

72

VS

S1

73

VD

D1

74

PT

7/ T

IM_

IOC

775

PT

6/ T

IM_

IOC

676

PT

5/ T

IM_

IOC

577

PT

4/ T

IM_

IOC

478

PJ7

/ K

WJ7

/ IIC

_ S

CL

79

PJ6

/ KW

J6/ I

IC_

SD

A80

EC

LK

/PE

42

9

LED5

COL_LED

R9

220

R12

220

LED4

ACT_LED

PL4/COLLED

PL0/ACTLED

OPTIONAL STATUS LED's

75 OHMS

75 OHMS

1000 pF2kV

CABLE SIDEMCU SIDET1

TRANSFORMER / RJ-45 CONNECTOR

T+1

CT2

T-3

R+4

CT5

R-6

J77

J33

J22

J55J44

J11

.8

J88

J66

75 OHMS

75 OHMS

1000 pF2kV

CABLE SIDEMCU SIDET1

TRANSFORMER / RJ-45 CONNECTOR

T+1

CT2

T-3

R+4

CT5

R-6

J77

J33

J22

J55J44

J11

.8

J88

J66

R11

2.2kC10

470Pf C11

4700Pf

R3

49.9

R1

49.9

R2

49.9

R4

49.9

3.3V

C2

0.01

MC9S12NE64

EARTH/CHASSIS

3.3V

J1

BACKGROUND DEBUG

11

33

55

22

44

66 *RESET

RJ-45

R5

12.4k 1%

PL1/LNKLED

PL3/DUPLED

PL2/SPDLED

3.3V

3.3V

3.3V

3.3V

*RE

SE

T3.3V

C3 0.22

C4 0.22

C5 0.22

PL0/ACTLED

PL4/COLLED

LED3

DUP_LED

R7

220

LED1

LNK_LED

R6

220

R8

220

LED2

SPD_LED

Y125 MHz

C8

15pF

C9

15pF

C7

0.22

R10

10M

PL3/DUPLED

PL1/LNKLED

PL2/SPDLED

C6 0.22

C1

0.22

U1

MII_TXER/KWH6/PH61

MII_TXEN/KWH5/PH52

MII_TXCLK/KWH4/PH43

MII_TXD3/KWH3/PH34

MII_TXD2/KWH2/PH25

MII_TXD1/KWH1/PH16

MII_TXD0/KWH0/PH07

MII_MDC/KWJ0/PJ08

MII_MDIO/KWJ1/PJ19

VDDX110

VSSX111

MII_CRS/KWJ2/PJ212

R6

220

R8

220

LED2

SPD_LED

Y125 MHz

C8

15pF

C9

15pF

C7

0.22

R10

10M

PL3/DUPLED

PL1/LNKLED

PL2/SPDLED

C6 0.22

C1

0.22

U1

MII_TXER/KWH6/PH61

MII_TXEN/KWH5/PH52

MII_TXCLK/KWH4/PH43

MII_TXD3/KWH3/PH34

MII_TXD2/KWH2/PH25

MII_TXD1/KWH1/PH16

MII_TXD0/KWH0/PH07

MII_MDC/KWJ0/PJ08

MII_MDIO/KWJ1/PJ19

VDDX110

VSSX111

MII_CRS/KWJ2/PJ212

MII_COL/KWJ3/PJ313

MII_RXD0/KWG0/PG014

MII_RXD1/KWG1/PG115

MII_RXD2/KWG2/PG216

MII_RXD3/KWG3/PG317

MII_RXCLK/KWG4/PG418

MII_RXDV/KWG5/PG519

MII_RXER/KWG6/PG620

SC

I0_

RX

D/

PS

02

1

SC

I0_

TX

D/

PS

12

2

SC

I1_

RX

D/ P

S2

23

SC

I1_

TX

D/ P

S3

24

SP

I_ M

ISO

/ PS

42

5

SP

I_ M

OS

I/ P

S5

26

SP

I_ S

CK

/ P

S6

27

SP

I_S

S/ P

S7

28

VS

SX

23

0

VD

DX

23

1

RE

SE

T3

2

VD

DP

LL

33

XF

C3

4

VS

SP

LL3

5

EX

TA

L3

6

XT

AL

37

TE

ST

38

IRQ

/ P

E1

39

XIR

Q/

PE

04

0

BKGD/MODC41

PL4/COLLED42

PL3/DUPLED43

VSS244

VDD245

PHY_RBIAS46

PHY_VSSA47

PHY_VDDA48

PHY_VDDTX49

PHY_TXP50

PHY_TXN51

PHY_VSSTX52

PHY_RXP53

PHY_RXN54

PHY_VDDRX55

PHY_VSSRX56

PL2/SPDLED57

VDDR58

PL1/LNKLED59

PL0/ACTLED60

PA

D0/

AN

061

PA

D1/

AN

162

PA

D2

/ A

N2

63

PA

D3

/ A

N3

64

MII_COL/KWJ3/PJ313

MII_RXD0/KWG0/PG014

MII_RXD1/KWG1/PG115

MII_RXD2/KWG2/PG216

MII_RXD3/KWG3/PG317

MII_RXCLK/KWG4/PG418

MII_RXDV/KWG5/PG519

MII_RXER/KWG6/PG620

SC

I0_

RX

D/

PS

02

1

SC

I0_

TX

D/

PS

12

2

SC

I1_

RX

D/ P

S2

23

SC

I1_

TX

D/ P

S3

24

SP

I_ M

ISO

/ PS

42

5

SP

I_ M

OS

I/ P

S5

26

SP

I_ S

CK

/ P

S6

27

SP

I_S

S/ P

S7

28

VS

SX

23

0

VD

DX

23

1

RE

SE

T3

2

VD

DP

LL

33

XF

C3

4

VS

SP

LL3

5

EX

TA

L3

6

XT

AL

37

TE

ST

38

IRQ

/ P

E1

39

XIR

Q/

PE

04

0

BKGD/MODC41

PL4/COLLED42

PL3/DUPLED43

VSS244

VDD245

PHY_RBIAS46

PHY_VSSA47

PHY_VDDA48

PHY_VDDTX49

PHY_TXP50

PHY_TXN51

PHY_VSSTX52

PHY_RXP53

PHY_RXN54

PHY_VDDRX55

PHY_VSSRX56

PL2/SPDLED57

VDDR58

PL1/LNKLED59

PL0/ACTLED60

PA

D0/

AN

061

PA

D1/

AN

162

PA

D2

/ A

N2

63

PA

D3

/ A

N3

64

PA

D4

/ A

N4

65

PA

D5

/ A

N5

66

PA

D6/

AN

667

PA

D7/

AN

768

VD

DA

69

VR

H70

VR

L71

VS

SA

72

VS

S1

73

VD

D1

74

PT

7/ T

IM_

IOC

775

PT

6/ T

IM_

IOC

676

PT

5/ T

IM_

IOC

577

PT

4/ T

IM_

IOC

478

PJ7

/ K

WJ7

/ IIC

_ S

CL

79

PJ6

/ KW

J6/ I

IC_

SD

A80

EC

LK

/PE

42

9

LED5

COL_LED

R9

220

R12

220

LED4

ACT_LED

PL4/COLLED

PL0/ACTLED

OPTIONAL STATUS LED's

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

6 Freescale Semiconductor

Page 7: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

For details about modes, refer to the MC9S12NE64 device user guide.

Connecting a Power Supply to the MC9S12NE64

Using the internal voltage regulator can simplify power supply requirements for the design because (with the internal voltage regulator enabled) only a 3.3-V power supply that can handle the current load of the MC9S12NE64 is required. The power supply must be connected to VDDX1, VDDX2, and VDDR.

The internal voltage regulator is a five-stage regulator that provides 2.5 V to the MC9S12NE64, including:

• CPU

• PLL

• PHY analog

• PHY transmitter

• PHY receiver

Alternatively, depending on the embedded design requirements, the MC9S12NE64 can be set up with the internal voltage regulator disabled, which would require a 2.5-V external power supply for the logic plus a 3.3-V supply for the PHY I/O. This application note describes MC9S12NE64 configuration with the internal 2.5-V voltage regulator enabled. For configurations with the internal voltage regulator is disabled, see the MC9S12NE64 data sheet for special circuitry requirements. Disabling the voltage regulator is not recommended.

Table 2. Mode Selection

BKGD =MODC

PE6 =MODB

PE5 =MODA

PP6 =ROMCTL

ROMONBit Mode Description

0 0 0 X 1Special single chip, BDM allowed and active. BDM

is allowed in all other modes, but a serial command is required to make BDM active.

0 0 10 1

Emulation expanded narrow, BDM allowed1 0

0 1 0 X 0 Special test (expanded wide), BDM allowed

0 1 10 1

Emulation expanded wide, BDM allowed1 0

1 0 0 X 1 Normal single chip, BDM allowed

1 0 10 0

Normal expanded narrow, BDM allowed1 1

1 1 0 X 1Peripheral; BDM allowed but bus operations would

cause bus conflicts (must not be used)

1 1 10 0

Normal expanded wide, BDM allowed1 1

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 7

Page 8: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Connecting a Crystal to the MC9S12NE64

For basic operation of the MC9S12NE64 Ethernet controller, a 25-MHz crystal input with a tolerance of 25 ppm is required per IEEE 802.3 specification. The 25-MHz crystal input is required to provide the clock input to the integrated PHY for basic operation at 10 Mbps and/or 100 Mbps. The crystal must connect to the MC9S12NE64 in a Pierce configuration by the XTAL and EXTAL pins as shown on Table 5 with related cap and resistors.

In addition to providing a 25-MHz crystal input, to operate at 100 Mbps, the internal bus clock must be configured to 25 MHz. With the 25-MHz crystal, the CRG must be configured so the PLL is enabled and multiplies the crystal oscillator clock to achieve the internal bus clock 25 MHz operational setting.

For 10 Mbps, an internal bus clock setting of 2.5 MHz minimum is acceptable, but a 25-MHz crystal input is still required.

For details about the CRG and configuring the PLL, see Freescale Semiconductor document AN2692/D: MC9S12NE64 Integrated Ethernet Controller.

MC9S12NE64 PHY External Pins

Table 3 describes the pins related to the MC9S12NE64 PHY, their operation, and their circuitry design. The PHY pins in Table 3 serve several possible functions including power, signaling, component, and indicators for the EPHY.

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

8 Freescale Semiconductor

Page 9: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Pi

r

(

NO1.

.

LED Indicator Pins

The power, signaling, and EPHY bias pins are required for basic operation of the EPHY; indicator pins (PL0:5) are optional. The EPHY can be configuring by software to drive indicator pins (PL0:5) automatically by setting the LEDEN bit of the EPHY EPHYCTL0 register. When LEDEN = 1, PL0:5 pins are dedicated to the EPHY. Alternatively, the system can be designed such that user software drives LEDs on any port pin to show EPHY status. For instance, the user may desire to show only link status. In this case, the user can manually drive an LED with software to show link status (with LEDEN bit = 0), which would allow the other four pins to be used for other purposes.

MC9S12NE64 low-level Ethernet drivers are available to handle software-driven LEDs.

Table 3. MC9S12NE64 PHY External Pins

n Function Pin Label(s) Pin Overview Description

Power

PHY_VDDA, PHY_VSSA

Power supply pins for EPHY analog power

This 2.5-V supply is derived from the internal voltage regulator. Nostatic load is allowed on these pins. The internal voltage regulatois turned off if VDDR is tied to ground.

PHY_VDDRX, PHY_VSSRX

Power supply pins for EPHY receiver power

PHY_VDDTX, PHY_VSSTX

Power supply pins for EPHY transmitter

Signaling

PHY_TXPEPHY twisted

pair output +

Ethernet twisted pair output pin. These pins are Hi-Z out of reset.PHY_TXN

EPHY twisted pair output –

PHY_RXPEPHY twisted

pair input +

PHY_RXNEPHY twisted

pair input –

CircuitEPHY bias

pin)PHY_RBIAS

EPHY bias control resistor

Connect an external bias resistor(1), (R5), between the PHY_RBIASpin and analog ground. This resistor should be placed as near a possible to the MCU pin. Stray capacitance must be less than 10pF (greater than 50 pF may cause instability). No high-speed signals should go in the region of the bias resistor.

TES: See the MC9S12NE64 data sheet for the value of the bias resistor

Indicator

COLLED Collision LEDFlashes in half-duplex mode when a collision occurs on the

network.

DUPLED Duplex LEDIndicates the duplex of the link, which can be full-duplex or half-

duplex.

SPDLED Speed LED Indicates the speed of a link, which can be 10 Mbps or 100 Mbps.

LNKLED Link LED Indicates whether a link is established with another network device

ACTLED Activity LED Flashes when data is received by the device.

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 9

Page 10: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

MC9S12NE64 Single-Chip Ethernet Solution

Adding an RJ45 Connector to the MC9S12NE64

Because the MC9S12NE64 has an integrated MAC and PHY, connecting an RJ45 Ethernet connector and transformer is easy. A high-speed LAN magnetics isolation module must be used between the MC9S12NE64 and the RJ45 Ethernet connector. This high-speed LAN magnetics isolation module can be discrete or integrated within a RJ45 Ethernet connector. Figure 6 shows the required circuitry configuration.

Figure 6. Ethernet Interface Circuitry

Table 4 describes the signal wiring for the MCU side.

Table 4. High-Speed LAN Magnetics Isolation Module Circuit Connections

High-Speed LAN Magnetics Isolation Module MC9S12NE64 pins

TX CT 3.3 V

T+ PHY_TXP

T- PHY_TXN

RX CT 3.3 V

R+ PHY_RXP

R- PHY_RXN

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

10 Freescale Semiconductor

Page 11: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

PCB Design Recommendation

PCB Design Recommendation

The section provides recommendations for PCB design and high-speed LAN magnetics isolation module selection.

General PCB Design Recommendations

The PCB layout must be designed to ensure proper operation of the voltage regulator and the MCU. The following recommendations are provided to ensure a robust PCB design:

• Every supply pair must be decoupled by a low-ESR (equivalent series resistance) ceramic capacitor connected as near as possible to the corresponding pins.

• Central point of the ground star should be the VSSX1 and VSSX2 pins.

• Use low-ohmic, low-inductance connections with VSS1, VSS2, VSSX1, and VSSX2 pins.

• VSSPLL must be directly connected to VSSX.

• Keep traces of VSSPLL, EXTAL, and XTAL as short as possible and their occupied board area as small as possible.

Ethernet PCB Design Recommendations

When designing a PCB that uses the MC9S12NE64 Ethernet module, several design considerations must be made to ensure that Ethernet operation conforms to the IEEE 802.3 physical interface specification. Use the following recommendations for PCB design between the high-speed LAN magnetics isolation module and:

• MC9S12NE64 EPHY external pins (most critical)

• RJ45 connector

Ethernet PCB design recommendations:

• The distance between the magnetic module and the RJ-45 jack is the most critical and must always be as short as possible (must be less than one inch).

• Never use 90° traces. Use 45° angles or radius curves in traces.

• Trace widths of 0.010” are recommended. Wider is better. Trace widths should not vary.

• Route differential Tx and Rx pairs near together (max 0.010” separation with 0.010” traces).

• Trace lengths must always be as short as possible (must be less than one inch).

• Make trace lengths as equal as possible.

• Keep TX and RX differential pairs routes separated (at least 0.020” separation). Better to separate with a ground plane.

• Avoid routing Tx and Rx traces over or under a plane. Areas under the Tx and Rx traces should be open, See Figures 9, 10, 11, 17 and 18.

• Use precision components in the line termination circuitry with 1% tolerance.

• Ensure that the power supply is rated for a load of 300 mA minimum.

• Avoid vias and layer changes.

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 11

Page 12: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

PCB Design Recommendation

In addition, all termination resistors should be near to the driving source. The MCU is the driving source for PHY_TXP and PHY_TXN pins. The high-speed LAN magnetics isolation module is the driving source for PHY_RXP and PHY_RXN pins.

High-Speed LAN Magnetics Isolation Module Requirements

The MC9S12NE64 requires a 1:1 ratio transformer for the high-speed LAN magnetics isolation module for both the receive and the transmit signals. The basic high-speed LAN magnetics isolation module specification requirements are provided in Table 5. High-speed LAN magnetics isolation modules that meet these requirements are available from a variety of manufacturers.

The MC9S12NE64 can be used with high-speed LAN magnetics isolation modules that are either discrete or integrated into a RJ45 connector. Some of these integrated connectors have built-in LEDs as well. For the MC9S12NE64, an RJ45 connector with an integrated high-speed LAN magnetics isolation module is recommended because it reduces component count and simplifies PCB layout.

Because the MC9S12NE64 does not implement Auto-MDIX, an Auto-MDIX capable high-speed LAN magnetics isolation module is not required. A high-speed LAN magnetics isolation module with improved return loss characteristics is recommended to avoid Ethernet return loss issues.

Table 6 provides discrete and integrated high-speed LAN magnetics isolation modules that have been found in testing to satisfy the requirements necessary to establish an IEEE-compliant Ethernet interface with the MC9S12NE64. Other models can be used as long as the high-speed LAN magnetics isolation module specifications satisfy the requirements.

Although specific hardware is discussed in this section, Freescale Semiconductor does not recommend or endorse any particular product or vendor. This data is provided only to describe the specification requirements.

Table 5. High-Speed LAN Magnetics Isolation Module Specification Requirements

Parameter Value Units Test Condition

Tx/Rx turns ratio 1:1 CT / 1:1 — —

Inductance 350 mH (min) —

Insertion loss 1.1 dB (max) 1 to 100 MHz

Return loss

–18 dB (min) 1 to 30 MHz

–14 dB (min) 30 to 60 MHz

–12 dB (min) 60 to 80 MHz

Differential to common mode rejection

–40 dB (min) 1 to 60 MHz

–30 dB (min) 60 to 100 MHz

Transformer 1500 V —

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

12 Freescale Semiconductor

Page 13: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

Design Examples

This section shows two MC9S12NE64 design examples of Ethernet interface implementations with the MC9S12NE64 in a minimum system. These minimum system examples are provided only to demonstrate recommended MC9S12NE64 PCB design. These MC9S12NE64 design examples are test boards, and they are not available for purchase.

The first design shows a minimum system using the MC9S12NE64 in a 112-pin package. The second design is an example of a system using the 80-pin MC9S12NE64 with a very compact PCB footprint.

Schematics and all artwork layer views for both designs will be shown in this section. Both designs are implemented on 4-layer PCBs to provide better heat dissipation. Both boards are minimum system designs that use the internal voltage regulator.

MC9S12NE64 112-Pin Package Design Example

A photo of the MC9S12NE64 112-pin package design example is provided in Figure 7. The PCB, which is approximately 6.3 cm x 6.3 cm, was designed using the recommendations discussed in the PCB Design Recommendation section. This design and PCB layout are discussed in detail in following sections.

Table 6. Discrete High-Speed LAN Magnetics Isolation Module

Type Manufacturer Model

DiscretePulse H1102

Midcom 000-6241-37R

Integrated

Pulse J10-0026

Midcom JFM25xxx-0510, JFM24xxx-1010

Bel Fuse 0810-1X1T-06

Halo HFJ11-2450E

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 13

Page 14: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

Figure 7. 112-Pin Package Design Example

A schematic of this design example is provided in Figure 8.

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

14 Freescale Semiconductor

Page 15: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

R5

220

R850

EARTH/CHASSIS

PL4/COLLED

LED/LEDS

3.3V

3.3V

R15

330

R1450

R7

220

PL0/ACTLED

R1150

R3

220

LED1

COL_LED

R1250

C4

0.01

OPTIONAL STATUS LED's

TX+

TX_CT

TX-

RX+

RX_CT

RX-

CASE

ERTH

MIDCOM JFM2411-0101W

LED1ALED1C

LED2ALED2C

YELLOW

GREEN

J2

1

3

2

8

5

4

6

9 10

1413

1211

1

3

2

8

5

4

6

9 10

1413

1211

PL3/DUPLED

R13

330

LED2

DUP_LED

LED/LEDL

LED3

ACT_LED

R5

220

R850

EARTH/CHASSIS

R5

220

R850

EARTH/CHASSIS

PL4/COLLED

LED/LEDS

3.3V

3.3V

R15

330

R1450

R7

220PL4/COLLED

LED/LEDS

3.3V

3.3V

R15

330

R1450

R7

220

PL0/ACTLED

R1150

PL0/ACTLED

R1150

R3

220

LED1

COL_LED

R1250

C4

0.01

R3

220

LED1

COL_LED

R1250

C4

0.01

OPTIONAL STATUS LED's

TX+

TX_CT

TX-

RX+

RX_CT

RX-

CASE

ERTH

MIDCOM JFM2411-0101W

LED1ALED1C

LED2ALED2C

YELLOW

GREEN

J2

1

3

2

8

5

4

6

9 10

1413

1211

1

3

2

8

5

4

6

9 10

1413

1211

PL3/DUPLED

R13

330

LED2

DUP_LED

LED/LEDL

LED3

ACT_LED

OPTIONAL STATUS LED's

TX+

TX_CT

TX-

RX+

RX_CT

RX-

CASE

ERTH

MIDCOM JFM2411-0101W

LED1ALED1C

LED2ALED2C

YELLOW

GREEN

J2

1

3

2

8

5

4

6

9 10

1413

1211

1

3

2

8

5

4

6

9 10

1413

1211

PL3/DUPLED

R13

330

LED2

DUP_LED

LED/LEDL

LED3

ACT_LED

Figure 8. Minimum 112-Pin Package System Schematic

C3

0.22

3.3V

PL3/DUPLED

3.3V

3.3V

C9.22

C5

0.1*RESET

R1

10M

3.3V

R427k

TP1

GND TESTPOINT

11

+

C16 100 uF

PL2/SPD

J1

BACKGROUND DEBUG

135

246

135

246

C13

.1

EARTH

R6

330

C6.22

*RESET

PL0/ACTLED

R2

47

U1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

858687888990919293949596979899100

101

102

103

104

105

106

107

108

109

110

111

112

MII_TXER/KWH6/PH6

MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4

MII_TXD3/KWH3/PH3

MII_TXD2/KWH2/PH2

MII_TXD1/KWH1/PH1

MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0

MII_MDIO/KWJ1/PJ1

ADDR0/DATA0/PB0

ADDR1/DATA1/PB1

ADDR2/DATA2/PB2

ADDR3/DATA3/PB3

VDDX1

VSSX1

ADDR4/DATA4/PB4

ADDR5/DATA5/PB5

ADDR6/DATA6/PB6

ADDR7/DATA7/PB7

MII_CRS/KWJ6/PJ2

MII_COL/KWJ7/PJ3

MII_RXD0/KWG0/PG0

MII_RXD1/KWG1/PG1

MII_RXD2/KWG2/PG2

MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4

MII_RXDV/KWG5/PG5

MII_RXER/KWG6/PG6

KW

G7/

PG

7

PH

Y4/

SC

I0_

RX

D/ P

S0

DIS

AB

LE10

0/ S

CI0

_ T

XD

/ PS

1

SC

AN

_ E

NA

BLE

/ S

CI1

_ R

XD

/ PS

2

RX

D4/

SC

I1_

TX

D/

PS

3

TX

D4/

SP

I_ M

ISO

/ PS

4

SC

AN

_ S

ET

/ SP

I_ M

OS

I/ P

S5

SC

AN

_ R

ES

ET

/ SP

I_ S

CK

/ PS

6

MD

INT

/ SP

I_ S

S/ P

S7

NO

AC

C/ P

E7

MO

DB

/ IP

IPE

1/ P

E6

MO

DA

/ IP

IPE

0/ P

E5

SC

AN

CLK

1/ E

CLK

/ PE

4

VS

SX

2

VD

DX

2

RE

SE

T

VD

DP

LL

XFC

VS

SP

LL

EX

TA

L

XT

AL

TE

ST

/ VP

P

PL6

PL5

LST

RB

/TA

GLO

/PE

3

AN

LG_T

ST

/R/W

/PE

2

SID

DQ

/ IR

Q/ P

E1

SC

AN

_ M

OD

E/ X

IRQ

/ P

E0

BKGD/MODC/SCANCLK2

PL4/COLLED/LEDC

PL3/DUPLED/LEDD

PA0/ADDR8/DATA8

PA1/ADDR9/DATA9

PA2/ADDR10/DATA10

PA3/ADDR11/DATA11

VSS2

VDD2

PHY_RBIAS

PHY_VSSA

PHY_VDDA

PHY_VDDTX

PHY_TXP

PHY_TXN

PHY_VSSTX

PHY_RXP

PHY_RXN

PHY_VDDRX

PHY_VSSRX

PA4/ADDR12/DATA12

PA5/ADDR13/DATA13

PA6/ADDR14/DATA14

PA7/ADDR15/DATA15

PL2/SPDLED/LEDS

VDDR

PL1/LNKLED/LEDL

PL0/ACTLED/LEDT

PA

D0/

AN

0/ B

GT

RIM

0

PA

D1/

AN

1/ B

GT

RIM

1

PA

D2/

AN

2/ B

GT

RIM

2

PA

D3/

AN

3/ B

GT

RIM

3

PA

D4/

AN

4/ T

MO

D0

PA

D5/

AN

5/ T

MO

D1

PA

D6/

AN

6/ T

MO

D2

PA

D7/

AN

7/ S

CA

NC

LK3

VD

DA

VR

H

VR

L

VS

SA

PK

0/ X

AD

DR

14/ T

X_

AM

P_

TR

IM0

PK

1/ X

AD

DR

15/ T

X_

AM

P_

TR

IM1

PK

2/ X

AD

DR

16/ T

X_

SLP

_ T

RIM

0

PK

3/ X

AD

DR

17/ T

X_

SLP

_ T

RIM

1

VS

S1

VD

D1

PK

4/ X

AD

DR

18/ B

10_

DIS

PK

5/ X

AD

DR

19/ B

100_

DIS

PK

6/ X

CS

/ SY

MB

OL_

MO

DE

PK

7/ E

CS

/ TR

IST

AT

E

PT

7/ T

IM_

IOC

7/ P

HY

3

PT

6/ T

IM_

IOC

6/ P

HY

2

PT

5/ T

IM_

IOC

5/ P

HY

1

PT

4/ T

IM_

IOC

4/ P

HY

0

PJ7

/ KW

J7/ I

IC_

SC

L/ D

ISA

BLE

10

PJ6

/ KW

J6/ I

IC_

SD

A/ A

ND

IS

C10.22

C7

470 pF

Y1 25 MHz

3.3V

JP12-PIN JUMPER

12

12

R16

10k

PL2/SPDLED/LEDS

SW1

RESET

GND LED4

POWERC1

15 pF

J3

POWER_IN

123

123

C11.22

R92.2k

3.3V

C15

0.01

C12

.22

C2

15 pFC8

4700 pF

3.3V

R10

PL4/COLLED

3.3V

C14

0.22

PL1/LNKLED/LEDL

PL1/LNK

3.3V

C3

0.22

3.3V

PL3/DUPLED

3.3V

3.3V

C9.22

C5

0.1*RESET

R1

10M

3.3V

R427k

TP1

GND TESTPOINT

11

+

C16 100 uF

C3

0.22

3.3V

PL3/DUPLED

3.3V

3.3V

C9.22

C5

0.1*RESET

R1

10M

3.3V

R427k

TP1

GND TESTPOINT

11

+

C16 100 uF

PL2/SPD

J1

BACKGROUND DEBUG

135

246

135

246

C13

.1

EARTH

R6

330

C6.22

*RESET

PL0/ACTLED

R2

47

PL2/SPD

J1

BACKGROUND DEBUG

135

246

135

246

C13

.1

EARTH

R6

330

C6.22

*RESET

PL0/ACTLED

R2

47

U1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

8586878889909192939495

U1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

858687888990919293949596979899100

101

102

103

104

105

106

107

108

109

110

111

112

MII_TXER/KWH6/PH6

MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4

MII_TXD3/KWH3/PH3

MII_TXD2/KWH2/PH2

MII_TXD1/KWH1/PH1

MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0

MII_MDIO/KWJ1/PJ1

ADDR0/DATA0/PB0

ADDR1/DATA1/PB1

ADDR2/DATA2/PB2

ADDR3/DATA3/PB3

VDDX1

VSSX1

ADDR4/DATA4/PB4

ADDR5/DATA5/PB5

ADDR6/DATA6/PB6

ADDR7/DATA7/PB7

MII_CRS/KWJ6/PJ2

MII_COL/KWJ7/PJ3

MII_RXD0/KWG0/PG0

MII_RXD1/KWG1/PG1

MII_RXD2/KWG2/PG2

MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4

MII_RXDV/KWG5/PG5

MII_RXER/KWG6/PG6

KW

G7/

PG

7

PH

Y4/

SC

I0_

RX

D/ P

S0

DIS

AB

LE10

0/ S

CI0

_ T

XD

/ PS

1

SC

AN

_ E

NA

BLE

/ S

CI1

_ R

XD

/ PS

2

RX

D4/

SC

I1_

TX

D/

PS

3

TX

D4/

SP

I_ M

ISO

/ PS

4

SC

AN

_ S

ET

/ SP

I_ M

OS

I/ P

S5

SC

AN

_ R

ES

ET

/ SP

I_ S

CK

/ PS

6

MD

INT

/ SP

I_ S

S/ P

S7

NO

AC

C/ P

E7

MO

DB

/ IP

IPE

1/ P

E6

MO

DA

/ IP

IPE

0/ P

E5

SC

AN

CLK

1/ E

CLK

/ PE

4

VS

SX

2

VD

DX

2

RE

SE

T

VD

DP

LL

XFC

VS

SP

LL

EX

TA

L

XT

AL

TE

ST

/ VP

P

PL6

PL5

LST

RB

/TA

GLO

/PE

3

AN

LG_T

ST

/R/W

/PE

2

SID

DQ

/ IR

Q/ P

E1

SC

AN

_ M

OD

E/ X

IRQ

/ P

E0

BKGD/MODC/SCANCLK2

PL4/COLLED/LEDC

PL3/DUPLED/LEDD

PA0/ADDR8/DATA8

PA1/ADDR9/DATA9

PA2/ADDR10/DATA10

PA3/ADDR11/DATA11

VSS2

VDD2

PHY_RBIAS

PHY_VSSA

PHY_VDDA

PHY_VDDTX

PHY_TXP

PHY_TXN

PHY_VSSTX

PHY_RXP

PHY_RXN

PHY_VDDRX

PHY_VSSRX

PA4/ADDR12/DATA12

PA5/ADDR13/DATA13

PA6/ADDR14/DATA14

PA7/ADDR15/DATA15

PL2/SPDLED/LEDS

VDDR

PL1/LNKLED/LEDL

PL0/ACTLED/LEDT

PA

D0/

AN

0/ B

GT

RIM

0

PA

D1/

AN

1/ B

GT

RIM

1

PA

D2/

AN

2/ B

GT

RIM

2

PA

D3/

AN

3/ B

GT

RIM

3

PA

D4/

AN

4/ T

MO

D0

PA

D5/

AN

5/ T

MO

D1

PA

D6/

AN

6/ T

MO

D2

PA

D7/

AN

7/ S

CA

NC

LK3

VD

DA

VR

H

VR

L

VS

SA

PK

0/ X

AD

DR

14/ T

X_

AM

P_

TR

IM0

PK

1/ X

AD

DR

15/ T

X_

AM

P_

TR

IM1

PK

2/ X

AD

DR

16/ T

X_

SLP

_ T

RIM

0

PK

3/ X

AD

DR

17/ T

X_

SLP

_ T

RIM

1

VS

S1

VD

D1

PK

4/ X

AD

DR

18/ B

10_

DIS

PK

5/ X

AD

DR

19/ B

100_

DIS

PK

6/ X

CS

/ SY

MB

OL_

MO

DE

PK

7/ E

CS

/ TR

IST

AT

E

PT

7/ T

IM_

IOC

7/ P

HY

3

PT

6/ T

IM_

IOC

6/ P

HY

2

PT

5/ T

IM_

IOC

5/ P

HY

1

PT

4/ T

IM_

IOC

4/ P

HY

0

PJ7

/ KW

J7/ I

IC_

SC

L/ D

ISA

BLE

10

PJ6

/ KW

J6/ I

IC_

SD

A/ A

ND

IS

96979899100

101

102

103

104

105

106

107

108

109

110

111

112

MII_TXER/KWH6/PH6

MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4

MII_TXD3/KWH3/PH3

MII_TXD2/KWH2/PH2

MII_TXD1/KWH1/PH1

MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0

MII_MDIO/KWJ1/PJ1

ADDR0/DATA0/PB0

ADDR1/DATA1/PB1

ADDR2/DATA2/PB2

ADDR3/DATA3/PB3

VDDX1

VSSX1

ADDR4/DATA4/PB4

ADDR5/DATA5/PB5

ADDR6/DATA6/PB6

ADDR7/DATA7/PB7

MII_CRS/KWJ6/PJ2

MII_COL/KWJ7/PJ3

MII_RXD0/KWG0/PG0

MII_RXD1/KWG1/PG1

MII_RXD2/KWG2/PG2

MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4

MII_RXDV/KWG5/PG5

MII_RXER/KWG6/PG6

KW

G7/

PG

7

PH

Y4/

SC

I0_

RX

D/ P

S0

DIS

AB

LE10

0/ S

CI0

_ T

XD

/ PS

1

SC

AN

_ E

NA

BLE

/ S

CI1

_ R

XD

/ PS

2

RX

D4/

SC

I1_

TX

D/

PS

3

TX

D4/

SP

I_ M

ISO

/ PS

4

SC

AN

_ S

ET

/ SP

I_ M

OS

I/ P

S5

SC

AN

_ R

ES

ET

/ SP

I_ S

CK

/ PS

6

MD

INT

/ SP

I_ S

S/ P

S7

NO

AC

C/ P

E7

MO

DB

/ IP

IPE

1/ P

E6

MO

DA

/ IP

IPE

0/ P

E5

SC

AN

CLK

1/ E

CLK

/ PE

4

VS

SX

2

VD

DX

2

RE

SE

T

VD

DP

LL

XFC

VS

SP

LL

EX

TA

L

XT

AL

TE

ST

/ VP

P

PL6

PL5

LST

RB

/TA

GLO

/PE

3

AN

LG_T

ST

/R/W

/PE

2

SID

DQ

/ IR

Q/ P

E1

SC

AN

_ M

OD

E/ X

IRQ

/ P

E0

BKGD/MODC/SCANCLK2

PL4/COLLED/LEDC

PL3/DUPLED/LEDD

PA0/ADDR8/DATA8

PA1/ADDR9/DATA9

PA2/ADDR10/DATA10

PA3/ADDR11/DATA11

VSS2

VDD2

PHY_RBIAS

PHY_VSSA

PHY_VDDA

PHY_VDDTX

PHY_TXP

PHY_TXN

PHY_VSSTX

PHY_RXP

PHY_RXN

PHY_VDDRX

PHY_VSSRX

PA4/ADDR12/DATA12

PA5/ADDR13/DATA13

PA6/ADDR14/DATA14

PA7/ADDR15/DATA15

PL2/SPDLED/LEDS

VDDR

PL1/LNKLED/LEDL

PL0/ACTLED/LEDT

PA

D0/

AN

0/ B

GT

RIM

0

PA

D1/

AN

1/ B

GT

RIM

1

PA

D2/

AN

2/ B

GT

RIM

2

PA

D3/

AN

3/ B

GT

RIM

3

PA

D4/

AN

4/ T

MO

D0

PA

D5/

AN

5/ T

MO

D1

PA

D6/

AN

6/ T

MO

D2

PA

D7/

AN

7/ S

CA

NC

LK3

VD

DA

VR

H

VR

L

VS

SA

PK

0/ X

AD

DR

14/ T

X_

AM

P_

TR

IM0

PK

1/ X

AD

DR

15/ T

X_

AM

P_

TR

IM1

PK

2/ X

AD

DR

16/ T

X_

SLP

_ T

RIM

0

PK

3/ X

AD

DR

17/ T

X_

SLP

_ T

RIM

1

VS

S1

VD

D1

PK

4/ X

AD

DR

18/ B

10_

DIS

PK

5/ X

AD

DR

19/ B

100_

DIS

PK

6/ X

CS

/ SY

MB

OL_

MO

DE

PK

7/ E

CS

/ TR

IST

AT

E

PT

7/ T

IM_

IOC

7/ P

HY

3

PT

6/ T

IM_

IOC

6/ P

HY

2

PT

5/ T

IM_

IOC

5/ P

HY

1

PT

4/ T

IM_

IOC

4/ P

HY

0

PJ7

/ KW

J7/ I

IC_

SC

L/ D

ISA

BLE

10

PJ6

/ KW

J6/ I

IC_

SD

A/ A

ND

IS

C10.22

C7

470 pF

Y1 25 MHz

3.3V

JP12-PIN JUMPER

12

12

R16

10k

C10.22

C7

470 pF

Y1 25 MHz

3.3V

JP12-PIN JUMPER

12

12

R16

10k

PL2/SPDLED/LEDS

SW1

RESET

GND LED4

POWERC1

15 pF

J3

POWER_IN

123

123

C11.22

R92.2k

3.3V

C15

0.01

C12

.22

C2

15 pFC8

4700 pF

3.3V

R10

PL2/SPDLED/LEDS

SW1

RESET

GND LED4

POWERC1

15 pF

J3

POWER_IN

123

123

C11.22

R92.2k

3.3V

C15

0.01

C12

.22

C2

15 pFC8

4700 pF

3.3V

R10

PL4/COLLED

3.3V

C14

0.22

PL1/LNKLED/LEDL

PL1/LNK

3.3V

PL4/COLLED

3.3V

C14

0.22

PL1/LNKLED/LEDL

PL1/LNK

3.3V

Page 16: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

Figure 9. Minimum 112-pin Package Artwork All Layers

Ground planes and how grounds are tied together affect noise immunity. To maximize noise immunity, it is important to get a good ground plane under the MCU. It is also a good practice to have the ground plane under the crystal components. Note, on the layout, Figure 10, there is a white area to the left of the MCU. That area is directly under the Ethernet transmit and receive traces from the MCU to the high-speed LAN magnetics isolation module. That area under those traces must be devoid of any ground plane to reduce capacitance.

As shown in Figure 9 and Figure 10, there is a split in the ground plane. It starts just to the right of the top center of the PC board and continues down to just above the center of connector J3. The center pin of J3 is the system ground connection. This split in the ground plane forces the system’s ground currents to flow to a common point, the ground connection for the PC board. This technique helps increase noise immunity in the system.

As shown in Figure 11, attention was given to the length of the Ethernet transmit and receive pairs that go between the MCU and the Ethernet integrated magnetics/RJ45 connector. They were made as short as possible for this mechanical layout. The PC board tracks in the Ethernet portion of this design are 0.010” and the maximum conductor length is just under 0.5”. The PC board traces bend on 45° angles, with no 90° angles. Figure 11 demonstrates these design practices.

SPLIT

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

16 Freescale Semiconductor

Page 17: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

Figure 10. Minimum 112-Pin Package Artwork

Ground Layer

SPLIT

WHITEAREA

WHITEAREA

Power Layer

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 17

Page 18: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

Figure 11. Minimum 112-pin Package Artwork

Top Layer

Bottom Layer

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

18 Freescale Semiconductor

Page 19: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

As with all designs, place the crystal and its associated components as near to their MCU pins as possible and use minimum trace lengths. This is also true with the XFC connections (PLL components).

There are a number of power supply decoupling capacitors necessary to decouple the MCU and its various internal power supplies. These pins are VDD1, VDD2, VDDA, VDDPLL, PHY_VDDRX, and PHY_VDDTX. These capacitors should be good quality, low ESR type ceramic components.

MC9S12NE64 80-Pin Package Design Example

The second design example uses the 80-pin MC9S12NE64 and uses the PCB design recommendations discussed for the 112-pin design example. A photo is provided in Figure 12.

This example demonstrates that the MC9S12NE64 can implement Ethernet capability in a very small package footprint. This 80-pin design example resides on a very small 1” x 1.5” PCB and shows a complete Ethernet PCB system implementation. The design example uses the PCB recommendations described in this application note. A schematic of this design example is provided in Figure 13.

Figure 12. 80-Pin Package Design Example

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 19

Page 20: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

TX+

TX_CT

TX-

RX+

RX_CT

RX-

CASE

ERTH

MIDCOM JFM2411-0101W

LED1ALED1C

LED2ALED2C

YELLOW

GREEN

J1

1

3

2

8

5

4

6

9 10

1413

1211

1

3

2

8

5

4

6

9 10

1413

1211

3.3V

3.3V

R11330

LED2

POWER

C7

0.01

C5

0.01

.3V

+C4

10 uF

lnk greenspd green

duplex = third LED green

TX+

TX_CT

TX-

RX+

RX_CT

RX-

CASE

ERTH

MIDCOM JFM2411-0101W

LED1ALED1C

LED2ALED2C

YELLOW

GREEN

J1

1

3

2

8

5

4

6

9 10

1413

1211

1

3

2

8

5

4

6

9 10

1413

1211

TX+

TX_CT

TX-

RX+

RX_CT

RX-

CASE

ERTH

MIDCOM JFM2411-0101W

LED1ALED1C

LED2ALED2C

YELLOW

GREEN

J1

1

3

2

8

5

4

6

9 10

1413

1211

1

3

2

8

5

4

6

9 10

1413

1211

3.3V

3.3V

R11330

3.3V

3.3V

R11330

LED2

POWER

C7

0.01

LED2

POWER

C7

0.01

C5

0.01

.3V

+C4

10 uF

C5

0.01

.3V

+C4

10 uF

lnk greenspd green

duplex = third LED green

Figure 13. 80-Pin Package System Schematic

3.3V

R7

49.9

R3

330

P22-PAD JUMPER

1 23 41 2

3 4

R1

2.2k

*RE

SE

T

C30.22

C12 0.22

Citizen page 627,top left300-8105-1-ND

3.3V

C11 0.22

C13

15pF

3.3V

Y125 MHz

U1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

6162636465666768697071727374757677787980

29

81

MII_TXER/KWH6/PH6

MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4

MII_TXD3/KWH3/PH3

MII_TXD2/KWH2/PH2

MII_TXD1/KWH1/PH1

MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0

MII_MDIO/KWJ1/PJ1

VDDX1

VSSX1

MII_CRS/KWJ6/PJ2

MII_COL/KWJ7/PJ3

MII_RXD0/KWG0/PG0

MII_RXD1/KWG1/PG1

MII_RXD2/KWG2/PG2

MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4

MII_RXDV/KWG5/PG5

MII_RXER/KWG6/PG6

SC

I0_

RXD

/ PS

0

SC

I0_

TX

D/ P

S1

SC

I1_

RXD

/ PS

2

SC

I1_

TXD

/ PS

3

SP

I_ M

ISO

/ PS

4

SP

I_ M

OS

I/ P

S5

SP

I_ S

CK

/ P

S6

SP

I_S

S/ P

S7

VS

SX2

VD

DX2

RE

SE

T

VD

DP

LL

XFC

VS

SP

LL

EX

TA

L

XTA

L

TE

ST

IRQ

/ PE

1

XIR

Q/ P

E0

BKGD/MODC

PL4/COLLED

PL3/DUPLED

VSS2

VDD2

PHY_RBIAS

PHY_VSSA

PHY_VDDA

PHY_VDDTX

PHY_TXP

PHY_TXN

PHY_VSSTX

PHY_RXP

PHY_RXN

PHY_VDDRX

PHY_VSSRX

PL2/SPDLED

VDDR

PL1/LNKLED

PL0/ACTLED

PA

D0/

AN

0

PA

D1/

AN

1

PA

D2/

AN

2

PA

D3/

AN

3

PA

D4/

AN

4

PA

D5/

AN

5

PA

D6/

AN

6

PA

D7/

AN

7

VD

DA

VR

H

VR

L

VS

SA

VS

S1

VD

D1

PT7/

TIM

_ IO

C7

PT6/

TIM

_ IO

C6

PT5/

TIM

_ IO

C5

PT4/

TIM

_ IO

C4

PJ7

/ KW

J7/ I

IC_

SC

L

PJ6

/ KW

J6/ I

IC_S

DA

EC

LK/P

E4

FLA

G

PL1/LNKLED

R4

330

PL2/SPDLED

R10

10M

J2

BACKGROUND DEBUG

135

246

135

246

3.3V

SC

I_R

x

R12

10k

P1

2-PAD JUMPER

12

12

C8 0.22

R13

10k

C10

15pF

3.3V

C140.22

R5

49.9

C1

4700pF

LED1

USER_LED

PL1/LNKLED

*RESET

+3.3V C6

0.1

3

SC

I_T

x

SCI_Tx

3.3V

GND

3.3V

PL2/SPDLED

R2

330

C9 0.22

R9

12.4k 1%

R8

49.9

C2 470Pf

SCI_Rx

R6

49.9

3.3V

R7

49.9

R3

330

P22-PAD JUMPER

1 23 41 2

3 4

R1

2.2k

*RE

SE

T

C30.22

C12 0.22

Citizen page 627,top left300-8105-1-ND

3.3V

C11 0.22

C13

15pF

3.3V

Y125 MHz

3.3V

R7

49.9

R3

330

P22-PAD JUMPER

1 23 41 2

3 4

R1

2.2k

*RE

SE

T

C30.22

C12 0.22

Citizen page 627,top left300-8105-1-ND

3.3V

C11 0.22

C13

15pF

3.3V

Y125 MHz

U1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

6162636465666768697071727374757677787980

29

81

MII_TXER/KWH6/PH6

MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4

MII_TXD3/KWH3/PH3

MII_TXD2/KWH2/PH2

MII_TXD1/KWH1/PH1

MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0

MII_MDIO/KWJ1/PJ1

VDDX1

VSSX1

MII_CRS/KWJ6/PJ2

MII_COL/KWJ7/PJ3

MII_RXD0/KWG0/PG0

MII_RXD1/KWG1/PG1

MII_RXD2/KWG2/PG2

MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4

MII_RXDV/KWG5/PG5

MII_RXER/KWG6/PG6

SC

I0_

RXD

/ PS

0

SC

I0_

TX

D/ P

S1

SC

I1_

RXD

/ PS

2

SC

I1_

TXD

/ PS

3

SP

I_ M

ISO

/ PS

4

SP

I_ M

OS

I/ P

S5

SP

I_ S

CK

/ P

S6

U1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

6162636465666768697071727374757677787980

29

81

MII_TXER/KWH6/PH6

MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4

MII_TXD3/KWH3/PH3

MII_TXD2/KWH2/PH2

MII_TXD1/KWH1/PH1

MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0

MII_MDIO/KWJ1/PJ1

VDDX1

VSSX1

MII_CRS/KWJ6/PJ2

MII_COL/KWJ7/PJ3

MII_RXD0/KWG0/PG0

MII_RXD1/KWG1/PG1

MII_RXD2/KWG2/PG2

MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4

MII_RXDV/KWG5/PG5

MII_RXER/KWG6/PG6

SC

I0_

RXD

/ PS

0

SC

I0_

TX

D/ P

S1

SC

I1_

RXD

/ PS

2

SC

I1_

TXD

/ PS

3

SP

I_ M

ISO

/ PS

4

SP

I_ M

OS

I/ P

S5

SP

I_ S

CK

/ P

S6

SP

I_S

S/ P

S7

VS

SX2

VD

DX2

RE

SE

T

VD

DP

LL

XFC

VS

SP

LL

EX

TA

L

XTA

L

TE

ST

IRQ

/ PE

1

XIR

Q/ P

E0

BKGD/MODC

PL4/COLLED

PL3/DUPLED

VSS2

VDD2

PHY_RBIAS

PHY_VSSA

PHY_VDDA

PHY_VDDTX

PHY_TXP

PHY_TXN

PHY_VSSTX

PHY_RXP

PHY_RXN

PHY_VDDRX

PHY_VSSRX

PL2/SPDLED

VDDR

PL1/LNKLED

PL0/ACTLED

PA

D0/

AN

0

PA

D1/

AN

1

PA

D2/

AN

2

PA

D3/

AN

3

PA

D4/

AN

4

PA

D5/

AN

5

PA

D6/

AN

6

PA

D7/

AN

7

VD

DA

VR

H

VR

L

VS

SA

VS

S1

VD

D1

PT7/

TIM

_ IO

C7

PT6/

TIM

_ IO

C6

PT5/

TIM

_ IO

C5

PT4/

TIM

_ IO

C4

PJ7

/ KW

J7/ I

IC_

SC

L

PJ6

/ KW

J6/ I

IC_S

DA

EC

LK/P

E4

FLA

G

PL1/LNKLED

R4

330

PL2/SPDLED

SP

I_S

S/ P

S7

VS

SX2

VD

DX2

RE

SE

T

VD

DP

LL

XFC

VS

SP

LL

EX

TA

L

XTA

L

TE

ST

IRQ

/ PE

1

XIR

Q/ P

E0

BKGD/MODC

PL4/COLLED

PL3/DUPLED

VSS2

VDD2

PHY_RBIAS

PHY_VSSA

PHY_VDDA

PHY_VDDTX

PHY_TXP

PHY_TXN

PHY_VSSTX

PHY_RXP

PHY_RXN

PHY_VDDRX

PHY_VSSRX

PL2/SPDLED

VDDR

PL1/LNKLED

PL0/ACTLED

PA

D0/

AN

0

PA

D1/

AN

1

PA

D2/

AN

2

PA

D3/

AN

3

PA

D4/

AN

4

PA

D5/

AN

5

PA

D6/

AN

6

PA

D7/

AN

7

VD

DA

VR

H

VR

L

VS

SA

VS

S1

VD

D1

PT7/

TIM

_ IO

C7

PT6/

TIM

_ IO

C6

PT5/

TIM

_ IO

C5

PT4/

TIM

_ IO

C4

PJ7

/ KW

J7/ I

IC_

SC

L

PJ6

/ KW

J6/ I

IC_S

DA

EC

LK/P

E4

FLA

G

PL1/LNKLED

R4

330

PL2/SPDLED

R10

10M

J2

BACKGROUND DEBUG

135

246

135

246

3.3V

SC

I_R

x

R12

10k

P1

2-PAD JUMPER

12

12

C8 0.22

R13

10k

C10

15pF

3.3V

C140.22

R5

49.9

C1

4700pF

LED1

USER_LED

R10

10M

J2

BACKGROUND DEBUG

135

246

135

246

3.3V

SC

I_R

x

R12

10k

P1

2-PAD JUMPER

12

12

C8 0.22

R13

10k

C10

15pF

3.3V

C140.22

R5

49.9

C1

4700pF

LED1

USER_LED

PL1/LNKLED

*RESET

+3.3V C6

0.1

3

SC

I_T

x

SCI_Tx

3.3V

GND

3.3V

PL2/SPDLED

R2

330

C9 0.22

PL1/LNKLED

*RESET

+3.3V C6

0.1

3

SC

I_T

x

SCI_Tx

3.3V

GND

3.3V

PL2/SPDLED

R2

330

C9 0.22

R9

12.4k 1%

R8

49.9

C2 470Pf

SCI_Rx

R6

49.9

Page 21: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Design Examples

Figure 14 provides all artwork for the MC9S12NE64 80-pin package design example.

Figure 14. 80-Pin Package Artwork

Power Layer

Ground Layer

All Layers

Top Layer

Bottom Layer

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 21

Page 22: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Conclusion

Exposed Flag

Because the 80-pin TQFP-EP package has an exposed flag, which provides additional heat dissipation for the MC9S12NE64, the artwork shows special PCB design to accommodate the exposed flag. There are two ways to accommodate the flag:

• Have a hatched pattern in the solder mask

• Use small copper areas under the flag

The concept is to have about 50% of the flag soldered to the PC board.

Conclusion

The MC9S12NE64 is a highly integrated, flexible and easy-to-use Ethernet-capable microcontroller with an integrated MAC and PHY. No external active components are needed to implement an Ethernet interface. The schematics in this document illustrate the simplicity of implementing such a system.

Interfacing the device to an Ethernet trunk is accomplished with the addition of only four resistors, a decoupling capacitor and an integrated transformer/RJ45 connector. PCB layout around the high-speed LAN magnetics isolation module is critical, as with any high frequency design. Using techniques discussed in this document makes that task easier.

NOTE

With the exception of mask set errata documents, if any other Freescale Semiconductor document contains information that conflicts with the information in the device user guide, the user guide should be considered to have the most current and correct data.

Notes

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

22 Freescale Semiconductor

Page 23: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

Notes

This page is intentionally blank

Implementing an Ethernet Interface with the MC9S12NE64, Rev. 0.2

Freescale Semiconductor 23

Page 24: AN2759: Implementing an Ethernet Interface with the MC9S12NE64 · Rev. 0.2, 9/2004 Implementing an Ethernet Interface with the MC9S12NE64 By: Bill Lucas and Steven Torres Systems

AN2759Rev. 0.2, 9/2004

How to Reach Us:

USA/Europe/Locations not listed:Freescale Semiconductor Literature DistributionP.O. Box 5405, Denver, Colorado 802171-800-521-6274 or 480-768-2130

Japan:Freescale Semiconductor Japan Ltd.SPS, Technical Information Center3-20-1, Minami-AzabuMinato-kuTokyo 106-8573, Japan81-3-3440-3569

Asia/Pacific:Freescale Semiconductor H.K. Ltd.2 Dai King StreetTai Po Industrial EstateTai Po, N.T. Hong Kong852-26668334

Learn More:For more information about Freescale Semiconductor products, please visithttp://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004.