Top Banner
Global Unit Gas An insight into downstream developments: Energy efficiency in gas heating appliances Werner Weßing, Head of Efficient Home and Building Technology Kraków, 24/25 May 2012
20

An insight into downstream developments: Energy efficiency in

Feb 04, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: An insight into downstream developments: Energy efficiency in

Global Unit Gas

An insight into downstream developments:

Energy efficiency in gas heating appliances

Werner Weßing, Head of Efficient Home and Building Technology

Kraków, 24/25 May 2012

Page 2: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 2

Contents

1. Requirements on the global energy market

2. Target in Europe: Increase share of renewable energies

3. Environmental targets in Germany

4. Market structure in Germany

5. Research subjects at E.ON Ruhrgas

6. Intercomparison of appliance technologies

7. Conclusion

Page 3: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 3

1. Requirements on the global energy market

CO2 reductions

Primary energy reductions (e.g. improved thermal insulation)

Increase in renewable energy use (e.g. appliances, biomethane, hydrogen)

Predicted long-term rise in global temperatures caused

by increasing levels of carbon emissions

62

209

69 62

391

1444

763

157

0

200

400

600

800

1000

1200

1400

1600

Kernbrennstoffe Kohle Erdgas Erdöl

Re

ich

we

ite

in

Ja

hre

n

Reserve Reserve + Ressource

Static lifetime of (global) conventional energy sources

Source: BGR / EWI / Prognos

Global warming according to IPCC

scenario A1B: 2046-2065,

Source: IPCC

Coal Natural gas Oil Nuclear fuels

Tem

per

atu

re d

evia

tio

n (

rela

tive

to

196

1-9

0) in

K

Sta

tic lifetim

e in y

ears

Page 4: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 4

2. Target in Europe: Increase share of renewable energies

Share of energy from renewable sources in gross final

energy consumption in 2008 and targets for 2020

Source: IE Leipzig

Page 5: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 5

3. Political requirements in Germany

20%

50%

18%

30%

45%

60%

40%

55%

70%80%

0%

20%

40%

60%

80%

100%

Phase 1 Phase 2 Phase 3 Phase 4

Reduzierung des Primärenergieverbrauchs

(Bezugsjahr 2008)

Bruttoendenergieverbrauch,

erneuerbarer Anteil

CO2-Reduzierung

(Bezugsjahr 1990)

2020 2030 2040 2050

Reduction in primary energy consumption (relative to 2008 levels)

Gross final energy consump-tion (renewable share)

CO2 reduction (rel.to 1990 level)

For the heat market in Germany (buildings and technology) from 2010 to 2050:

total capital expenditure ~ 2,200 billion €

capital expenditure per year: 55 billion €

Page 6: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 6

4. 'New' customer groups

Differentiated offers required

Source: SW Bonn Energie und Wasser

Price-sensitive customers

Lifestyle

customers

Ecologically-

minded

customers

Will

ing

ness to

pa

y

Personal commitment

Today

Uniform

group

Yesterday

Many different groups with

very individual requests

Page 7: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 7

4. Building statistics

Heat market is dominated by existing building stock

Very old boilers

existing buildings

Accumulated heating demand of new buildings until 2030: only 5%!

2008 2030

634 TWh

511 TWh

existing buildings

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

11 - 25 25 - 50 50 - 100 >100 alle

Leistung [kW]

Anza

hl [

Stü

ck] 33 und älter

32-29

28-22

21-14

Source: Chimney sweep statistics for 2009

(excl. condensing boiler systems)

Source: Prof. Kleemann

Total: 9.2 million

boilers >14 years

Rating [kW]

Qu

an

tity

[u

nit

s]

all

and over

Page 8: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 8

5. "Appliance technology" responsibilities of the

Gas Utilisation Department at E.ON Ruhrgas

Applications &

Renewables

Local Power

Generation

Condensing type

Gas & Solar

MicroCHP

GHP Initiative

Fuel Cell

Smart Home

Appliance tests:

Laboratory tests

Field tests

to determine

energy efficiency aspects

environmental aspects

gas property aspects

economic aspects

Page 9: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 9

5. Gas heat pump field tests

66 test sites in total

Page 10: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 10

5. Micro-CHP field tests

176 test sites in total

Page 11: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 11

6. Intercomparison of appliance technologies

(Standard appliances for single-family homes)

ηth: 0,92 - 0,98 *)

Gas-fired

condensing

appliance

ηth: 0,98 – 1,02 *)

Gas-fired condensing appliance plus solar

SPF: 2,2 – 2,9

~ 2,65

Electric heat pump

(air/water)

SPF: 3,2 – 4,0

~ 3,70

Electric heat pump

(brine/water)

Images: Viessmann, Vaillant, Buderus; data: ITG Dresden

*) HI,n

Page 12: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 12

6. Intercomparison of appliance technologies

(New appliances for single-family homes)

ηth: 0,80 – 0,82 *)

ηe: 0,11 – 0,13

Micro-CHP

Sterling

Images: Viessmann, Vaillant, Robur; data: ITG Dresden

Micro-CHP

combustion engine

ηth: 0,60 *)

ηe: 0,23

ηth: 1,20 – 1,50 *)

RoburViessmann

DesorptionAdsorption DesorptionAdsorption

Gas heat pump

Adsorption, <10kW

Gas heat pump

Absorption, <40kW

Page 13: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 13

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

Ausgangszustand Öl

- 40%

- 55%

- 70%

- 80%

Ausgangszustand Gas

- 40%

- 55%

- 70%

- 80%

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Öl-/Gas-Altkessel

GBW GBWSOL GBWSOL,HMikro-KWKMikro-KWKMikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

CO

2-E

mis

sio

ne

n in

kg

CO

2/a

System

CO2-Emissionen im EFH Bestand, 2010 Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100% Bioerdgas

Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050

Minderung der CO2-Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,82 ηth=0,60 JAZ=2,65 JAZ=3,70 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,11 ηel=0,13 ηel=0,23 *) Bilanziell negative CO2-Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch

*)

approx. 36%

reduction

Source: ITG Dresden

CO2 emissions in SFH building stock in 2010 Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Page 14: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 14

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

approx. 35%

reduction

Source: ITG Dresden

Non-renewable primary energy demand in SFH building stock Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Page 15: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 15

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

18%

30%

45%

60%

0%

10%

20%

30%

40%

50%

60%

70%

80%

GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

An

teil

ern

eu

erb

are

r En

erg

ien

System

Anteil erneuerbarer Energien im EFH BestandEnergieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100 % Bioerdgas

bis 2020 bis 2030 bis 2040 bis 2050

Entwicklung des Anteils erneuerbaren Energien bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,82 ηth=0,60 JAZ=2,65 JAZ=3,70 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,11 ηel=0,13 ηel=0,23

Source: ITG Dresden

Share of renewable energies in SFH building stock Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Page 16: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 16

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

Ausgangszustand Öl

- 40%

- 55%

- 70%

- 80%

Ausgangszustand Gas

- 40%

- 55%

-70%

- 80%

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Öl-/Gas-Altkessel

GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

CO

2-E

mis

sio

ne

n in

kg

CO

2/a

System

CO2-Emissionen im EFH Bestand, 2020 Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100% Bioerdgas

Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050

Minderung der CO2-Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,65 JAZ=2,80 JAZ=3,90 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,15 ηel=0,25 *) Bilanziell negative CO2-Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch

*) *)

approx. 46%

reduction

Source: ITG Dresden

CO2 emissions in SFH building stock in 2020 Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Page 17: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 17

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

Ausgangszustand Öl

- 40%

- 55%

- 70%

- 80%

Ausgangszustand Gas

- 40%

- 55%

-70%

- 80%

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Öl-/Gas-Altkessel

GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

CO

2-E

mis

sio

ne

n in

kg

CO

2/a

System

CO2-Emissionen im EFH Bestand, 2030 Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100% Bioerdgas

Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050

Minderung der CO2-Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,65 JAZ=3,00 JAZ=4,10 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,15 ηel=0,25 *) Bilanziell negative CO2-Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch

*)

Increased biomethane share

required to reach target

Source: ITG Dresden

CO2 emissions in SFH building stock in 2030 Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Page 18: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 18

6. Intercomparison of appliance technologies (only gas )

(Standard and new appliances for single-family homes)

Gas-fired condensing boiler

+Low investment costs

+Low total annual costs

+Final and primary energy

savings in comparison to old

boiler

- No integration of renewables

if operated with natural gas

Gas-fired condensing boiler

+ solar thermal energy

+Tangible share of

renewables

+Higher final and primary

energy savings in comparison

to old boiler

- Higher investment costs than

for gas-fired condensing boiler

- Higher total annual costs

than for gas-fired condensing

boiler

Micro-CHP system

+Credit for the electricity

generated

+Considerable primary energy

savings in comparison to old

boiler

- Ecological benefits to

become smaller with expected

change of electricity

generation structures

- Higher investment costs than

for gas-fired condensing

systems

- Higher total annual costs

than for gas-fired condensing

systems

- No integration of renewable

energies if operated with

natural gas

Gas heat pump

+High share of renewable

energies

+Higher final and primary

energy savings in comparison

to old boiler

+Lowest CO2 emission levels

+Economic efficiency

expected to improve for

increasing levels of utilisation

- Investment costs still high

- Market presence currently

low

- Further technical

improvements required

Source: ITG Dresden

Page 19: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 19

7. Conclusion

New gas technologies (micro-CHP, gas heat pumps) are about to come into

the market in Germany on a major scale.

These technologies meet environmental requirements in the long term.

Compared with the current state of the art, some further technical

developments and a reduction in capital expenditure are required and

achievable.

Page 20: An insight into downstream developments: Energy efficiency in

Global Unit Gas

GIE, Kraków 24/25 May 2012 20

Energieträger

Kohlendioxidemissionsfaktoren in kg CO2/kWh

2010 2020 2030

Mittlerer CO2-

Emissions-

faktor über

20 Jahre

Strom 0,573 0,505 0,338 0,456

Erdgas 0,226 0,226 0,226 0,226

Bioerdgas, 100% Biogas 0,073 0,050 0,050 0,062

Bioerdgas, 20% Biogas 0,195 0,191 0,191 0,191

Bioerdgas, 25% Biogas 0,188 0,182 0,182 0,185

Energieträger

Kohlendioxidemissionsfaktoren in kg CO2/kWh

2010 2020 2030

Mittlerer CO2-

Emissions-

faktor über

20 Jahre

Strom 0,573 0,505 0,338 0,456

Erdgas 0,226 0,226 0,226 0,226

Bioerdgas, 100% Biogas 0,073 0,050 0,050 0,062

Bioerdgas, 20% Biogas 0,195 0,191 0,191 0,191

Bioerdgas, 25% Biogas 0,188 0,182 0,182 0,185

Ökologische Bewertung von GWP (CO2-Emissionsfaktoren)