Top Banner
An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO) * University of Michigan from Sep/2015
31

An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Dec 23, 2015

Download

Documents

Edward Osborne
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

An analytic explanation of the stellar initial mass function from the theory of spatial networks

Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)* University of Michigan from Sep/2015

Page 2: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Milky Way

Igor Chilingarian, IMF workshop STScI 6/29/15

2

Photo credit: I. Chilingarian, 2015

Pipe nebula

Page 3: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Interstellar medium

Igor Chilingarian, IMF workshop STScI 6/29/15

3

Pipe nebula, dust extinction mapAlves, Lombardi, Lada 2007

Dense core mass function

Page 4: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

4

DCMF-IMF correspondence

Alves, Lombardi, Lada 2007

~ factor of 4

Dense core collapses…

…and leaves a star and debris

Page 5: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

5

Universality of the power law exponent

Same tail slope!

Bastian et al. 2010 ARA&A 48 339

Page 6: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

6

Open questions Why does the IMF have power-law tail? Why is the tail exponent universal while ISM

density distributions differ among star-forming regions? Lo

mbard

i et a

l. (20

15)

Page 7: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

7

Overview of previous approaches

• Numerical sampling from fractal clouds(Elmegreen 1997)

• Press-Schechter formalism (1974)• Hennebelle & Chabrier (2008)

Elmegreen 1997

Page 8: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

8

Scale-free physics

𝑑𝑁/𝑑

log𝑀

log𝑀

Q: Maximum is here, why?A: Threshold/Jeans mass?

log𝑀

𝑑𝑁/𝑑

log𝑀

Q: Break is here, why?A: Change of mechanism?

𝑑𝑁/𝑑

log𝑀

log𝑀

Q: No features here, why?A: Preferential attachment?

Page 9: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

9

Competitive accretion

Accretion is competitive

Cores grow by accretion

Page 10: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

10

Capital gain vs “labor” salaries

V. Yakovenko, J. Barkley Rosser Jr.Rev. Mod. Phys. 81, 1703 (2009)

Wage labor

Capital gains

Page 11: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

11

Networks

R. Albert, A-L Barabási, Rev. Mod. Phys. 74, 47 (2002)

a. Internet routersb. Movie actor collaborationc. HEP collaborationd. Neuroscience collaboration

Page 12: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

12

Network science based approach

Preferential attachment

Fractality of ISM components

Master equation

Page 13: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

13

Parcel attachment

Mean-field accretion Parcel accretion

Gravity

Noise

Page 14: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

14

Distance factor

parcel j

for Newtonian gravity

probability force

Page 15: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

15

Gravitational acceleration field

Strong gravityDominant attractor very clear

Weak gravityDominant attractor unclear

Stochastic competition of forces

Page 16: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

16

Basins of attraction

Page 17: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

17

Two ISM phases

Turbulent bulk mediumDense cores

“Sub-turbulent” mediumParcels

VS

Page 18: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

18

Fractal interstellar medium

𝑅

subdense

Page 19: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

19

Fractal ISM in projection

CO lines observationsVogelaar, Wakker 1994

Page 20: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

20

Supersonic turbulence

Kolmogorov 1941

Page 21: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

21

Is 2.33 high or what?

Image credit: David Wenman

“Every branch carries around 13 branches 3 times smaller”http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension

Kim, J. Kor. Phys. Soc., 46, 2 (2005)

Page 22: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

22

Fractal nature of parcels

Diffusion-limited aggregation

Page 23: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

23

Two normalizations of probability

parcel jdense core i

I can attach to any core Any parcel can attach to meVS

Page 24: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

24

Dense core growth

Growth equation

Linear growth

Sublinear growth

Choice of dense cores

Choice of parcels

Page 25: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

25

𝑚

𝑝 (𝑚 , 𝑡) dense cores total

Accretion Source function

Time stepping

Master equation

Mass balance in a bin:

steady state

Page 26: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

26

Continuous Master equation

𝑚

𝑝 (𝑚 , 𝑡)

𝑚

𝑝 (𝑚 , 𝑡)

Normalizedsource functionGrowth exponent

regulates accretion speed

Page 27: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

27

Master equation as a filter

Lognormal Normal

Dirac delta ???

Nonlinear norm-preserving map

Same tail!

Page 28: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

28

High-mass limit

Guaranteed power law

Exponent handles

Page 29: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

29

Comparison with observations

Page 30: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

30

Bottom-heavy DCMF

Source function has be negative at some masses !!!

Page 31: An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)

Igor Chilingarian, IMF workshop STScI 6/29/15

31

Conclusions We obtained a fully analytical theory for the

DCMF shape Power law shape and exponent do not depend

on the source function (initial conditions or PDF)

Kroupa’s broken power law shape is acceptable as a fitting approximation of a smooth low-mass cutoff

Bottom-heavy IMF with the low-mass segment steeper than the high-mass one is ruled out