Top Banner
Amit Ramji – A4 – University of Hertfordshire 1 COURSEWORK ASSIGNMENT Module Title: Mechanics and Properties of Materials Module Code: 6ACM0003 Assignment Title: Finite Element Analysis of a Wind Tunnel Model Individual Tutor: Dr Y Xu/Dr A Chrysanthou Internal Moderator: Dr. Yong Chen ASSIGNMENT SUBMISSION Students, this section must be completed before your work is submitted. Please print your forename and surname in capitals, provide your student registration number, your study year code (e.g. ASE1, EE1), and your signature in the spaces provided below. For Group work, each team member must complete this information. You may add or delete rows as required. Copyright Statement By completing the information below, I/we certify that this piece of assessment is my/our own work, that it is has not been copied from elsewhere, and that any extracts from books, papers, or other sources have been properly acknowledged as references or quotations. Forename: Family Name: SRN: Year Code: Signature: Amit Ramji 10241445 A4 Marks Awarded %: Marks Awarded after Lateness Penalty applied %: Penalties for Late Submissions Late submission of any item of coursework will be capped at a minimum pass mark if received up to one week late. Any submission received more than one week late will be awarded a mark of zero. Late submission of referred coursework will automatically be awarded a mark of zero. Guidance on avoiding academic assessment offences such as plagiarism and collusion is given at the URL: http://www.studynet.herts.ac.uk/ptl/common/LIS.nsf/lis/citing_menu
12
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

1

COURSEWORK ASSIGNMENT

Module Title: Mechanics and Properties of Materials Module Code: 6ACM0003

Assignment Title: Finite Element Analysis of a Wind Tunnel Model Individual

Tutor: Dr Y Xu/Dr A Chrysanthou Internal Moderator: Dr. Yong Chen

ASSIGNMENT SUBMISSION Students, this section must be completed before your work is submitted.

Please print your forename and surname in capitals, provide your student registration number, your study year code (e.g. ASE1, EE1), and your signature in the spaces provided below. For Group work, each team member must complete this information. You may add or delete rows as required.

Copyright Statement

By completing the information below, I/we certify that this piece of assessment is my/our own work, that it is has not been copied from elsewhere, and that any extracts from books, papers, or other sources have been properly acknowledged as references or quotations.

Forename: Family Name: SRN: Year Code: Signature:

Amit Ramji 10241445 A4

Marks Awarded %:

Marks Awarded after Lateness Penalty applied %:

Penalties for Late Submissions

• Late submission of any item of coursework will be capped at a minimum pass mark if received up to one week late. Any submission received more than one week late will be awarded a mark of zero.

• Late submission of referred coursework will automatically be awarded a mark of zero.

Guidance on avoiding academic assessment offences such as plagiarism and collusion is given at the URL: http://www.studynet.herts.ac.uk/ptl/common/LIS.nsf/lis/citing_menu

Page 2: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

2

ASSIGNMENT BRIEF Students, you should delete this section before submitting your work.

This Assignment assesses the following module Learning Outcomes:

4. Examine existing designs and actual components in engineering situations, using methods such as finite element analysis, photoelasticity, non-destructive testing and fractography. 5. Limit the occurrence of failure in materials by appropriate modelling, design and materials selection. 6. Apply analytical methods to structural components subjected to complex stress/strain fields. Assignment Brief:

In this assignment, you will create a finite element model of a wind tunnel model of a wing to be tested at supersonic speeds in order to assess its structural integrity. You should carry out the modelling and write a short report on your findings. Further details are provided on the attached sheets.

Submission Requirements:

Submission shall be through StudyNet

This assignment is worth 50 % of the overall in- course assessment for this module.

Marks Awarded for:

Validity of the FE results - 40%; Extent to which reporting requirements are met - 20%; concluding remarks section – 20%; presentation of report - 20%.

A note to the Students:

1. For undergraduate modules, a score above 40% represent a pass performance at honours level. 2. For postgraduate modules, a score of 50% or above represents a pass mark. 3. Modules may have several components of assessment and may require a pass in all elements.

For further details, please consult the relevant Module Guide or ask the Module Leader.

Typical (hours) required by the student(s) to complete the assignment: 15 hours

Date Work handed out:

7th November 2013

Date Work to be handed in:

29th November 2013

Target Date for the return of the marked assignment:

7th January 2014

Type of Feedback to be given for this assignment:

General feedback on StudyNet and individual feedback for each report.

Page 3: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

3

Finite Element Analysis

ANSYS Report

Group E

Amit Ramji 10241445

University of Hertfordshire - Aerospace Engineering

Year 4 – Mechanics and Properties of Materials - 6ACM0003

26th November 2013

Page 4: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

4

Contents   Introduction .......................................................................................................................................................................... 5  Preliminary Analysis ............................................................................................................................................................ 5  Finite Element Analysis (FEA) Procedure ........................................................................................................................... 5  Analysis: ............................................................................................................................................................................... 8  Alternative methods of analysis ........................................................................................................................................... 9  Conclusions: ....................................................................................................................................................................... 10  Discussion .......................................................................................................................................................................... 11  References .......................................................................................................................................................................... 12  

Table  of  Figures  Figure 1 – Cantilever Plate geometry ....................................................................................................................................... 5  Figure 2 – Material Properties Input ........................................................................................................................................ 6  Figure 3 - Uniform stiffness properties .................................................................................................................................... 6  Figure 4 - Uniform thickness properties .................................................................................................................................. 6  Figure 5 - Selection of fine mesh ............................................................................................................................................. 6  Figure 6 - Post meshing operation ............................................................................................................................................ 6  Figure 7 - Boundary conditions (Fix all DOF between Node ID’s E to F) .............................................................................. 7  Figure 8 - Applying Pressure Loading onto wind surface ....................................................................................................... 7  Figure 9 – Nodal Displacements stating Max Deflection at Wing Tip (CD) is 1.596mm ....................................................... 7  Figure 10 - Stress Intensity Showing Highest Stress at Node F, lowest at Node A as expected. ............................................ 8  Figure 11 - Von-Misses Stress peak at Node F as expected. ................................................................................................... 8   Data  Tables  Table 1 - Provided Parameters and calculated pressures ......................................................................................................... 5  Table 2 - Cantilever Plate Coordinates .................................................................................................................................... 5  Table 3 - Summary Material Properties ................................................................................................................................... 6  Table 4 - Raw material properties from sample tests ............................................................................................................... 6  Table 5 - Post Processor Output Summary Table of results .................................................................................................... 8  Table 6 - Roark's Stress and Strain simplification into Rectangular Plate. .............................................................................. 9  

Page 5: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

5

Introduction  This   study   considers   a   single   edge   cantilever   plate   bending   for   interpretation   and   simplification   of   a  model   aircraft   wing   at   supersonic   speeds   for   wind   tunnel   testing.   The   objectives   are   to   evaluate   the  pressure  loads  and  analyse  the  structural  integrity  of  the  wing  model  to  be  tested.  The  relation  to  a  real  wing   allows   for   identification   of   stress   concentration   centre   and   maximum   stress   regions   which  attention   can   be   paid   in   more   detail   by   further   analysis,   reinforcement   or   alternative   modelling  techniques.   The   Finite   Element   methods   used   in   this   report   provide   a   basis   for   understanding   the  properties   of   thin   plates   under   uniform  pressure   loads,   however   in   reality   the   loading   conditions   and  boundary  conditions  are  very  complex.  Simple  analytical  methods  do  not  exist  for  complex  shapes  such  as  a  wing  plan-­‐form,  hence  a  comparative  study  is  shown  using  rectangular  cantilever  plates  to  display  that  the  theory  agrees  but  the  values  obtained  are  non  comparable.  Thus  providing  further  significance  to  Finite  Element  Modelling  (FEM)  methods  in  order  to  analyse  the  part  geometry  chosen  for  design  in  haste,  compared  to  non-­‐conservative  approximations  such  as  rectangular  plate  methods  described  later  in  this  report.  

Table 1 - Provided Parameters and calculated pressures  

Preliminary  Analysis  Sample  Calculation  of  Pressure  Loads  

∆𝑝 = 𝑞!4

𝑀!! − 1

𝛼

Calculation  of  Max  Pressure  Loading  from  Mach  No:  

𝑀!" = 1.5     ∴  𝑞!" = 260  𝑀𝑃𝑎     ∴    Δ𝑝!" = 𝑞!"4

𝑀!"! − 1

8!360

2𝜋= 129.881  𝑀𝑃𝑎

𝑀!" = 2.5     ∴  𝑞!" = 275  𝑀𝑃𝑎   ∴    Δ𝑝!" = 𝑞!"4

𝑀!"! − 1

8!360

2𝜋= 67.032  𝑀𝑃𝑎

∴    Δ𝑝!"# = 𝑆.𝐹  ×  𝑀𝐴𝑋 Δ𝑝!" Δ𝑝!" = 𝟏𝟗𝟒.𝟖𝟐𝟐  𝐌𝐏𝐚                              (𝑊ℎ𝑒𝑟𝑒  𝑆.𝐹 = 1.5  𝑔𝑙𝑜𝑏𝑎𝑙)

Finite  Element  Analysis  (FEA)  Procedure  Initially   set   up   the   geometry   of   a   flat   plate   with   the   dimensions   as   shown   in   Figure 1   and   tabulated  coordinates  in  Table 2.  Later  set  up  the  plate  geometry  by  selecting  the  points  and  creating  the  lines  as  in  Figure 1.  

Table 2 - Cantilever Plate Coordinates

Figure 1 – Cantilever Plate geometry

Given  Parameters    Angle  of  attack,  𝛼  (deg)   8.0   7.0   6.0   5.0   4.0   3.0   2.0   1.0  

Angle  of  attack,  𝛼  (rad)   0.13963   0.12217   0.10472   0.08727   0.06981   0.05236   0.03491   0.01745  M01   1.5  M02   2.5  S.F  (Safety  Factor)   1.5  Δ𝑝!"For  M01   129881.0   113645.9   97410.8   81175.6   64940.5   48705.4   32470.3   16235.1  Δ𝑝!"  For  M02   67031.7   58652.8   50273.8   41894.8   33515.9   25136.9   16757.9   8379.0  

Node  ID   X  (m)   Y  (m)  A   0   0.180  B   0   0  C   0.080   0.080  D   0.030   0.080  E   0   0.150  F   0   0.025  

Page 6: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

6

Secondly   set  up   the   linear   elastic   isotropic  material   properties   as   shown  below   in  Figure 2   and  Table 3,  where   the   steel   plate   is   assumed   to   perfectly  manufactured  with   uniform   (isotropic)   properties   in   all  directions,  perfectly  elastic,  and  without  consideration  of  thermal  expansion  as  the  plate  dimensions  are  relatively  small.  

Table 3 - Summary Material Properties

Table 4 - Raw material properties from sample tests

Figure 2 – Material Properties Input Next   set   up   the   thickness   properties   of   the   plate   to   account   for   the   stiffness   properties,   again   this  assumes  the  material  stiffness  is  uniform  in  all  directions,  which  isn’t  the  case  for  all  material  scenarios.  

Figure 3 - Uniform stiffness properties Figure 4 - Uniform thickness properties

Subsequently  set  up  a  Fine  4  Node  quadrilateral  mesh  using  the  surface  selection  tool.  This  type  of  mesh  can   be   used   for   analysis   of   plane   stress   or   strain,   thin   plate   bending   and   for   shear   analysis   of   plates.  Other  mesh  types  are  explained  in  Table  5.1  of  literature  [1],  also  in  [2]  and  new  approaches  found  in  [3-­‐6].  Package  specific  FEA  guides  also  explain  the  use  and  types  of  mesh’s  and  their  applications  whereas  tools  such  as  Abaqus,  Hypermesh  and  MSC  PATRAN  can  allow  specific  mesh  optimisation   in  key  areas,  however  is  out  of  the  scope  in  this  application  of  simple  cantilever  plate  bending.  

      Figure 5 - Selection of fine mesh Figure 6 - Post meshing operation    

Steel  Plate    [Rolled:  tmin<3mm<tmax]     Units  Young’s  modulus,  E   200   Gpa  Poisson’s  Ratio,  v   0.30   -­‐  Tensile  strength  (Yield),  𝝈𝑻𝒀𝑺   600   Mpa  Tensile  strength  (Ultimate)  𝝈𝑼𝑻𝑺   800   Mpa  

Page 7: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

7

Following  meshing,  apply  boundary  conditions  and   load  cases   into   the  pre-­‐processor  menu,  where   the  wing  root  is  treated  as  fixed  in  all  Degrees  of  Freedom  (DOF)  and  apply  the  uniform  maximum  pressure  load  (Δp!"#)  as  calculated  in  the  Preliminary Analysis  section  of  this  report.  The  direction  of  the  pressure  load  is  to  be  applied  normal  to  the  wing  surface,  however  as  the  analysis  is  linear,  geometry  above  and  below   the  mid-­‐plane   is   symmetric,  weight   direction   is   not   considered,   therefore   the   loading   direction  does  not  affect  the  results.  

Figure 7 - Boundary conditions (Fix all DOF between Node ID’s E to F)

Figure 8 - Applying Pressure Loading onto wind surface

Finally  proceed  with  simulation  of  the  load  case  and  view  the  solution  as  nodal  for  Displacements,  Stress  intensity  and  Von-­‐Misses  stress.    

  Figure 9 – Nodal Displacements stating Max Deflection at Wing Tip (CD) is 1.596mm  

Page 8: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

8

Figure 10 - Stress Intensity Showing Highest Stress at Node F, lowest at Node A as expected.

Figure 11 - Von-Misses Stress peak at Node F as expected.

Post  Processor  Outputs   Output  (unit)   Output  (Required  unit)  Displacement  (Normal  to  Wing  surface)   0.001596  (m)   1.596  (mm)  Stress  Intensity  (Node  F)   729,000,000  (Pa)   729  (MPa)  Von-­‐Misses  (Node  F)   694,000,000  (Pa)   694  (MPa)  Table 5 - Post Processor Output Summary Table of results

Analysis:     From   the   Finite   Element  method   above,   the   results   state   that   the  maximum   stress   is   seen   at   Node   F,  which   agrees   with   classical   static   mechanics.   Node   F   is   the   point   that   is   surrounded   by   most   of   the  perpendicular  area  from  the  root  chord  therefore  will  have  the  highest  stress  concentration.  Additionally  the  method  of  constraint  for  the  FE  modelling  means  that  this  area  is  showing  to  fail  and  go  beyond  the  elastic  region  of  the  material,  however  the  truth  may  be  that  the  part  will  not  fail  in  this  region  and  is  a  property  of  the  constraint  method  used  in  modelling.    Furthermore  the  stress  distribution  will  become  smaller  as  the  leading  edge  (AC)  is  approached  until  the  stress  is  the  same  as  the  wing  loading  pressure.  In  the  lateral  direction  moving  from  the  root  to  the  tip,  the  stress  levels  will  decrease  as  the  constraint  is  moved  further  away  from  the  area  of  interest.  Thus  the  stress  distribution  in  the   lateral  direction  will  decrease  to  the  pressure  loading  value  (wing  tip)  as  this  case  is  considering  a  cantilever  solution.  The  maximum  deflection  nodes  are  also  as  expected  as  the  wing  tip   is   furthest   from   the   support   of   the   root   structure,   hence  will   be   prone   to   relatively   high   levels   of  deflections.  The  slope  of  deflection  at  the  root  will  be  greatest  as  once  again  the  constraint  is  present  in  this  region  from  EF.    

Page 9: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

9

Overall   the   FE   model   does   correctly   describes   what   is   true   regarding   cantilever   plate   bending   and  justifies  a  reason  to  conduct  further  analysis  in  the  constraint  region  at  Node  F.  The  possibility  of  gradual  increased  cross  section  can  be  justified  or  a  reinforcement  wing  spar  added.  However  for  this  analysis,  the   Von   Misses   stress   is   shown   to   be   694   MPa   (Table 5),   the   material   Tensile   Yield   Strength  (σ!"#)=600MPa  (Table 3),  therefore  suggests  this  cantilever  plate  has  exceeded  its  elastic  limits  and  could  potentially  fail  rapidly  under  plastic  fast  fracture.  This  is  the  most  extreme  case,  judging  from  the  stress  difference   between   beginning   of   plastic   region   and   maximum   Von-­‐Misses   stress,   the   difference   is   94  MPa,  therefore  requires  further  investigation  if  reinforcement  is  not  to  be  carried  out.   Alternative  methods  of  analysis    There  can  be  many  methods,  which  attempt  to  calculate  the  stress  for  a  non-­‐rectangular  cantilever  plate  to  calculate  the  stress  at  different  locations.  Using  integration  methods  to  work  out  the  areas  in  different  locations  over  the  wing  and  discretizing  the  areas  into  dy  and  dx  of  which  the  product  is  a  small  element  area.  The  slope  of  the  leading  edge  and  trailing  edge  will  lead  one  to  encounter  a  function  of  geometry  for  the   integration   limits.   Later   the   pressure   loading   is  multiplied   to   acquire   a   loading   function   per   dydx  area.   Subsequently   a   function   for   moment   arm   is   required   which   cantilever   beam   bending   theory  provides  for  uniform  load  distribution.  However  this  is  the  exact  same  as  discretising  the  problem  into  4  Node  Quad  Elements,  which  FEA  has  provided  a  solution  for  in  a  shorter  time.    Other  methods   found   in  chapter  7  of   reference   [7]  by  Megson,   considers  a  pure  analytical  approach   is  methods   using   Kirchhoff-­‐Love   plate   representation,   Navier   Solutions,   Mildlins   methods   for   thicker  plates,  or  the  most  appropriate  for  the  current  case  would  be  to  utilise  Reissner-­‐Stein  Cantilever  plates.  [1,  7-­‐13]  

Rectangular  plate  approximation  An  attempt  to  show  the  trend  has  been  made  below  which  utilises  methods  based  on  stiffness  constants  of  flat  plates  through  experimental  means  and  problem  simplification  into  a  rectangular  plate.  The  same  solution  is  not  reached,  as  the  real  solution  would  require  an  iterative  and  element  wise  approach  as  FE  provides   and   is   explained   above.   This   does   however   provide   a   justification   of   classic   mechanics   of  perpendicular   moment   arms   being   kept   constant   and   the   wing   root   (parameter   “a”   below)   being  increased.  

 Table 6 - Roark's Stress and Strain simplification into Rectangular Plate.

From  the  above,  increasing  root  length  has  very  shallow  stress  climb  rate  compared  with  perpendicular  distance  (Span)  increase,  thus  confirming  classic  beam  bending  theory.      

Roarks  [Table  11.4]  (Simplification  of  wing  into  Flat  Rectangular  Cantilever  Plate  to  observe  trend)  [1]  t  (mm)   3  a  (mm)   50   80   120   160   240  b  (mm)   80  a/b   0.625   1   1.5   2   3  

Δ𝑝!"#  (MPa)   -­‐0.194821529  𝛽!   0.38   0.665   1.282   1.804   2.45  𝛽!   0.386   0.565   0.73   0.688   0.434  𝛾!   0.541   0.701   0.919   1.018   1.055  𝛾!   0.526   0.832   1.491   1.979   2.401  

𝜎 =−𝛽!Δ𝑝!"#𝑏!

𝑡!  

(at  centre  of  fixed  edge)  (MPa)   52.6451   92.1289   177.6080   249.9257   339.4224  𝑅 =  𝛾!Δ𝑝!"#𝑏  

(at  centre  of  fixed  edge)  (mm)   8.4319   10.9256   14.3233   15.8663   16.4429  

𝜎 =−𝛽!Δ𝑝!"#𝑏!

𝑡!  

(at  centre  of  free  edge)  (MPa)   -­‐53.4763   -­‐78.2750   -­‐101.1340   -­‐95.3154   -­‐60.1263  𝑅 =  𝛾!Δ𝑝!"#𝑏  

(at  end  of  free  edge)  (mm)   8.1981   12.9673   23.2383   30.8441   37.4213  

Page 10: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

10

Conclusions:    By  observing  the  Maximum  Von  Misses  stress  of  694  MPa  from  Table 5,  one  can  observe  that  some  areas  have   indeed   surpassed   the   elastic   limit   of   steel   with   the   current   geometry   of  which   the   yield   limit   is  shown   in  Table 3  of  600  MPa.  This  may  be  due  to  modelling  constraints  as  discusses  earlier,  where   the  maximum  stressed  area  is  amplified  by  the  presence  of  constraint  features.  This  has  the  same  effect  as  stress   concentration   factors   where   stresses   are   amplified   based   on   geometry,   further   reading   can   be  found  in  Petersons  et  al  [14]  for  stress  concentrations  factors  (Kt)  based  on  geometry.    The   structural   integrity   of   the   plate   wing   model   in   the   wind   tunnel   will   be   effected   as   the   stressed  material  would  yield  in  some  places  as  indicated  by  FEA,  therefore  may  exhibit  fast  fracture.  To  reduce  the  chances  of  failure  and  damage  to  the  wind  tunnel,  this  case  should  be  investigated  further  by;  Non-­‐Linear  FEA,   a  better   representation  of   constraints,   possible   structural   improvements   such  as  a   thicker  plate,   thicker  wing   root,   adding   a   stiffener   spar   or   spreading   the   loads   through   the   cantilever   over   a  larger  root  chord  distance  if  possible.  In  actuality  the  structural  integrity  of  the  wind  tunnel  will  be  fine  as  the  safety  factor  will  not  cause  the  part  to  fail  during  testing,  however  the  wing  plate  will  need  to  be  checked   regularly   if   left   as   is,   there   will   be   some   permanent   deformation   which   could   progressively  worsen.      Non-­‐strength  related  issues  identified  with  the  FEA  is  with  the  use  of  constrains.  Use  of  nodal  elements  to  constrain  the  root  of  the  wing  has  identified  and  amplified  a  potential  highly  stressed  region  as  stated  previously.  Material  is  said  to  be  failing  by  surpassing  the  steel’s  elastic  yield  limit.  This  indicates  a  high  stress   concentration  when   in   actual   fact  more   information   is   required   on   the   part.   A   static   deflection  experiment  can  be  conducted  to  prove  or  disprove  the  FEA  and  is  usually  what  is  done  on  actual  aircraft  skins.  The  use  of  strain  rosettes  and  bonded  strain  gauges  on  aircraft  test  skins  can  identify  experimental  strains  which  can  be  later  input  back  into  the  FEA  model  for  comparison.    Checking   by   analytical  methods   is   a   lengthy   task   and   the   solution  will   not   always   be   accurate   as   the  number   of   iterations   can   never   be  matched   to   that   carried   out   by   FEA.   Some   analytical   methods   are  shown  above  and  their  limitations  on  the  real  geometry  of  the  plate.    The  objective  of  this  FE  investigation  was  to  determine  the  structural  integrity  of  a  test  wing  to  be  tested  at  supersonic  speeds   in  a  wind  tunnel.  The  analysis  shows  that   further   investigation   is  required  as   the  material  would  be  prone  to  yielding  in  some  areas.  Therefore  simply  based  on  that  evidence,  justification  for  FEA  is  complete  as  it  avoids  potential  damage  to  the  wind  tunnel,  saves  on  costs  for  development  as  components   can   be   sized   to   withstand   the   loads   imparted   on   them   without   testing.   For   the   case   of  Cantilever  thin  plates,  analytical  methods  exist  for  rectangular  shapes  however  the  boundary  conditions  for   simply   supported   plates   cannot   be   applied   in   this   application   directly.   Cantilever   beam   bending  theory  can  be  used  to  determine  the  maximum  Bending  Moment  (BM)  at  the  root;  however  often  in  most  cases  the  faster  and  accurate  solution  will  be  by  FEM  methods.    The   maximum   deflection   of   this   plate   during   peak   loading   conditions   was   approximately   1.6mm   as  shown  in  Table 5.  Which  means  it  has  a  deflection  ratio  of  approximately  2%  over  the  span  of  80mm.  This  is  a  reasonable  deflection  and  can  be  calculated  with  cantilever  beam  bending  functions.  (A  clamped  15  cm  steel  rule  will  also  help  to  understand  the  static  mechanics  of  this  wing  loading  problem).  To  improve  deflection  the  real  wing  is  given  a  thickness,  with  reinforcement  stringers,  spars  and  ribs,  thus  provides  a  larger   Second   Moment   of   Area   (I)   and   enables   the   skins   to   be   in   pure   tension   or   compression.  Composites   can   therefore   be   introduced   in   order   to   use   this   geometry   and   loading   condition   to   one’s  advantage.  

Page 11: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

11

Discussion  The  direction  of  pressure   loads  as  described   in   the  Finite Element Analysis (FEA) Procedure   section  of   this  report  explains  how  direction  is  important.  However  for  this  simplification  of  a  thin  cantilever  plate,  the  mid  plane  symmetry  and  combination  of  not  considering  weight  means  this  analysis  is  valid  if  a  +ve  or  –ve   pressure   is   applied.   Other   investigations   including   sinusoidal   loading   due   to   shock   waves,   ground  interference,  weather   gusts   or  microbursts  may   be   considered   for  wing   loading   along  with   frequency  analysis  of  sustained  engine  imbalance  and  its  effects  on  fatigue.    Plate  modelling   can   be   used   for   fuselage   and  wing   skin   loading   analysis   alongside   other   applications  using  composite  structures  and  sandwich  panels  [15-­‐18].  Consideration  of  cantilever  plate  methods  have  also   been  made   in   gear   tooth   analysis   as   reported   by  Wellauer   et   al   [19].   Composite  modelling   with  isotropic  properties  can  also  be  made  simple  with  thin  plate  analogies  where  minimum  strength  values  are   input   into   the   model   to   identify   stress   hot-­‐spots,   delamination   and   surface   effects   for   further  consideration  and  fibre  orientation  and  design  sizing.  [16,  18,  20,  21]    From  Table 1,  one  can  see  how  the  pressure  loading  is  increasing  as  the  angle  of  attack  is  increased  and  at  lower  Mach  No’s.  The  benefit  of  FEM  methods  is  that  one  can  input  all  these  complex  combinations  into  the  model   as   separate   load   cases   and   run   the   analysis   in   a   very   short   amount   of   time.   Therefore   the  sizing  and  analysis   can  be   carried  out  on   the   components  with   consideration   to  a  wide   range  of   input  variables/cases.  The  same  applies  for  frequency  and  vibration  analysis,  a  range  band  can  be  set  for  each  load  case  and  studied  further  in  the  post-­‐processor  or  numerically  through  direct  output  files.  It  may  be  interesting   to   investigate   increases   in   aircraft   pitch   angle,   thus  Mach  No   decreases,  meaning   from   the  range  considered  in  Table 1,   the  combination  of  these  flight  characteristics  could  worsen  the  loading  on  the  wing.      

Page 12: AmitRamji10241445FEA Report

Amit Ramji – A4 – University of Hertfordshire

12

References   [1] Young, W., Budynas R. Roark’s formulas for stress and strain. 7. 2002, McGraw-Hill. [2] Jaehwan, K., et al., Finite-element modeling of a smart cantilever plate and comparison with experiments. Smart

Materials and Structures, 1996. 5(2): p. 165. [3] Clough, R.W. and C.A. Felippa, A refined quadrilateral element for analysis of plate bending. 1968, DTIC

Document. [4] Batoz, J.L., An explicit formulation for an efficient triangular plate-bending element. International Journal for

Numerical Methods in Engineering, 1982. 18(7): p. 1077-1089. [5] Batoz, J.L., K.J. Bathe, and L.W. Ho, A study of three-node triangular plate bending elements. International

Journal for Numerical Methods in Engineering, 1980. 15(12): p. 1771-1812. [6] Hughes, T.J.R., R.L. Taylor, and W. Kanoknukulchai, A simple and efficient finite element for plate bending.

International Journal for Numerical Methods in Engineering, 1977. 11(10): p. 1529-1543. [7] Megson, T.H.G., Chapter 7 - Bending of thin plates, in Aircraft Structures for Engineering Students (Fifth

Edition), T.H.G. Megson, Editor. 2013, Butterworth-Heinemann: Boston. p. 233-266. [8] Wang, W. and M.X. Shi, Thick plate theory based on general solutions of elasticity. Acta mechanica, 1997.

123(1): p. 27-36. [9] Arnold, D.N. and R.S. Falk. Edge effects in the Reissner-Mindlin plate theory. in Presented at the winter annual

meeting of the American Society of Mechanical Engineers. 1989. [10] Karam, V.J. and J.C.F. Telles, On boundary elements for Reissner's plate theory. Engineering Analysis, 1988.

5(1): p. 21-27. [11] Fo-van, C., Bending of uniformly cantilever rectangular plates. Applied Mathematics and Mechanics, 1980. 1(3):

p. 371-383. [12] Reissner, E. and M. Stein, Torsion and transverse bending of cantilever plates. 1951: National Advisory

Committee for Aeronautics. [13] Reissner, E., On bending of elastic plates. Quart. Appl. Math, 1947. 5(1): p. 55-68. [14] Pilkey, W.D. and D.F. Pilkey, Peterson's stress concentration factors. 2008: John Wiley & Sons. [15] Thomsen, O.T. and W. Rits, Analysis and design of sandwich plates with inserts—a high-order sandwich plate

theory approach. Composites Part B: Engineering, 1998. 29(6): p. 795-807. [16] Lu, P., et al., Thin plate theory including surface effects. International Journal of Solids and Structures, 2006.

43(16): p. 4631-4647. [17] Barbero, E.J., J.N. Reddy, and J. Teply, An accurate determination of stresses in thick laminates using a

generalized plate theory. International journal for numerical methods in engineering, 1990. 29(1): p. 1-14. [18] Barbero, E.J. and J.N. Reddy, Modeling of delamination in composite laminates using a layer-wise plate theory.

International Journal of Solids and Structures, 1991. 28(3): p. 373-388. [19] Wellauer, E.J. and A. Seireg, Bending strength of gear teeth by cantilever-plate theory. Journal of Engineering

for Industry, 1960. 82: p. 213. [20] Newman Jr, J.C. and I.S. Raju, Analyses of Surface Cracks in Finite Plates Under Tension or Bending Loads.

1979, DTIC Document. [21] Reddy, J.N., E.J. Barbero, and J.L. Teply, A plate bending element based on a generalized laminate plate theory.

International Journal for Numerical Methods in Engineering, 1989. 28(10): p. 2275-2292.