Top Banner
“Alternative” Data Structures
46

“Alternative” Data Structures. Information Spaces / Spatialization .

Dec 16, 2015

Download

Documents

Luisa Kelp
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: “Alternative” Data Structures. Information Spaces / Spatialization .

“Alternative” Data Structures

Page 2: “Alternative” Data Structures. Information Spaces / Spatialization .

Information Spaces / Spatialization

www.smartmoney.com

Page 3: “Alternative” Data Structures. Information Spaces / Spatialization .

Information Spaces / Spatialization

Chen et al. 1998

Page 4: “Alternative” Data Structures. Information Spaces / Spatialization .

Information Spaces / Spatialization

Page 5: “Alternative” Data Structures. Information Spaces / Spatialization .

Information Spaces / Spatialization

Page 6: “Alternative” Data Structures. Information Spaces / Spatialization .

Alternative Data Structures(especially w/ increased processing speeds, storage)

Page 7: “Alternative” Data Structures. Information Spaces / Spatialization .

Thiessen (Voronoi) Polygonsand Delaunay Triangles

they divide the space between the points as ‘evenly’ as possible

– market area delimitation, rain gauge area assignment, VIPs

DTs are as near equiangular as possible, thus minimizes distances for interpolation

elevation, slope and aspect of triangle calculated from heights of its three corners

A

Thiessen neighbors of point A share a common boundary. Delauney triangles are formed by

joining points to its Thiessen neighbors.

A

Thiessen Polygons

Delaunay Triangles

Page 8: “Alternative” Data Structures. Information Spaces / Spatialization .

• partition areas based on “influence” of sample points (Thiessen polys)• all sample points connected w/ 2 nearest neighbors to form triangles

• connect centroids of Thiessen polygons

market area delimitation, rain gauge area assignment, trusted elevation benchmarks or VIPs, etc.

Page 9: “Alternative” Data Structures. Information Spaces / Spatialization .

Sampled locations and values Thiessen polygons

Daniel P. Ames, Dept. of Geosciences (Geology), Idaho State University

Page 10: “Alternative” Data Structures. Information Spaces / Spatialization .

Visualization of Theissen Concept

Arthur J Lembo, Jr., Bowne

Page 11: “Alternative” Data Structures. Information Spaces / Spatialization .

Inverse Distance Weighting

Arthur J Lembo, Jr., Bowne

Page 12: “Alternative” Data Structures. Information Spaces / Spatialization .

Kriging

Arthur J Lembo, Jr., Bowne

Page 13: “Alternative” Data Structures. Information Spaces / Spatialization .
Page 14: “Alternative” Data Structures. Information Spaces / Spatialization .

Perspective Plot from TIN

Page 15: “Alternative” Data Structures. Information Spaces / Spatialization .
Page 16: “Alternative” Data Structures. Information Spaces / Spatialization .

TIN (Triangulated Irregular Network)

avoids redundancy of raster while still producing a continuous surface

more efficient than raster for some terrain analysis– slope and aspect (faces of triangles)– contouring

Measurements are irregularly spaced with more sampling in areas of greater complexity– requires fewer points or grid cells

Page 17: “Alternative” Data Structures. Information Spaces / Spatialization .

Contours from TIN(triangles can be many and extremely small with a

good sampling of points)

Page 18: “Alternative” Data Structures. Information Spaces / Spatialization .

• Computers love rasters• A cell on 1 map is at same position on all others

• Easy query, neighborhood ops., etc.

Page 19: “Alternative” Data Structures. Information Spaces / Spatialization .

Storage/Scan Orders

Page 20: “Alternative” Data Structures. Information Spaces / Spatialization .

Compression:Run Length Encoding

based on spatial autocorrelation– nearby things tend to be

more similar than distant things

data entered as pairs– run length & value

40 items instead of 704 a 6 b 4 a 6 b 4 a 1 c 4 b 3 a 2 c 5 b 3 a 4 c 3 b 2 a 5 c 3 b 8 c 2 b 8 c 2 b

a a a a b b b b b b

a a a a b b b b b b

a a a a c b b b b b

a a a c c c c b b b

a a c c c c c b b b

c c c c c c c c b b

c c c c c c c c b b

Page 21: “Alternative” Data Structures. Information Spaces / Spatialization .

• way of encoding irregularity of vector in raster form

• step beyond run-length-encoding compression• compress in row AND column directions

Page 22: “Alternative” Data Structures. Information Spaces / Spatialization .

Raster to Quadtree

Page 23: “Alternative” Data Structures. Information Spaces / Spatialization .

Divide into sub-quadrantsfocusing on irregularity

Page 24: “Alternative” Data Structures. Information Spaces / Spatialization .
Page 25: “Alternative” Data Structures. Information Spaces / Spatialization .
Page 26: “Alternative” Data Structures. Information Spaces / Spatialization .

Quadtrees of Chloropleth Raster Map

NW NE SW SE

NW NE

SW SE

Marc van Kreveld, U. of Utrecht

Page 27: “Alternative” Data Structures. Information Spaces / Spatialization .

Multiple resolution storage

Page 28: “Alternative” Data Structures. Information Spaces / Spatialization .

Adaptive MWVD solution Rene Reitsma, OSU CoB

Vector solution: infinite precision, difficult computing. Raster solution: limited precision, easy computing.

– Resolution increases allow higher precision.– Boundary-only, quadtree resolution increases.

Page 29: “Alternative” Data Structures. Information Spaces / Spatialization .

Gateway to the Literature“information spaces”

Reitsma, R. and Trubin, S., Information space partitioning Information space partitioning using adaptive Voronoi diagrams, using adaptive Voronoi diagrams, Information Information VisualizationVisualization, http://www.palgrave-journals.com/ivs/, 2006., http://www.palgrave-journals.com/ivs/, 2006.

Dodge, M., and R. Kitchin, Code and the transduction of Dodge, M., and R. Kitchin, Code and the transduction of space, space, Annals AAGAnnals AAG, , 9595 (1), 162-180, 2005. (1), 162-180, 2005.

Fabrikant, S.I., and B.P. Buttenfield, Formalizing semantic Fabrikant, S.I., and B.P. Buttenfield, Formalizing semantic spaces for information access, spaces for information access, Annals AAGAnnals AAG, , 9191 (2), 263- (2), 263-280, 2001.280, 2001.

Skupin, A., On Geometry and Transformation in Map-Like Skupin, A., On Geometry and Transformation in Map-Like Information Visualization. In: Börner, K., Chen, C (Eds.) Information Visualization. In: Börner, K., Chen, C (Eds.) Visual Interfaces to Digital LibrariesVisual Interfaces to Digital Libraries. Lectures in Computer . Lectures in Computer Science 2539. Springer Verlag, Berlin. 161-170, 2002Science 2539. Springer Verlag, Berlin. 161-170, 2002.

Page 30: “Alternative” Data Structures. Information Spaces / Spatialization .

Gateway to the Literature“natural spaces”

Chen, J., C. Li, Z. Li, and C. Gold, A Voronoi-based 9-intersection model for spatial relations, Int. J. Geog. Inf. Sci., 15 (3), 201-220, 2001. - voronoi_ijgis.pdf

Chen, J., C. Qiao, and R. Zhao, A Voronoi interior adjacency-based approach for generating a contour tree, Comp. Geosci, 30, 355-367, 2004.– voronoi_contour_tree.pdf

Gold, C.M., and A.R. Condal, A spatial data structure integrating GIS and simulation in a marine environment, Mar. Geod., 18 (3), 213-228, 1995.

Mostafavi, M.A., C. Gold, and M. Dakowicz, Delete and insert operations in Voronoi/Delauney methods and applications, Comp. Geosci, 29, 523-530, 2003. - voronoi_2003.pdf

Zhang, H., and C. Thurber, Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California, J. Geophys. Res., 110 (B04303), doi:10.1029/2004JB003186, 2005. - seismic_mesh.pdf

Page 31: “Alternative” Data Structures. Information Spaces / Spatialization .

Dynamic Segmentationmultiple attributes to a single arc...

attribute to a portion of an arc...

Page 32: “Alternative” Data Structures. Information Spaces / Spatialization .

DynSeg: Measures & “Events”

Page 33: “Alternative” Data Structures. Information Spaces / Spatialization .

DynSeg: Point Events

Page 34: “Alternative” Data Structures. Information Spaces / Spatialization .

DynSeg: Single Arc, Multiple Attributes

Page 35: “Alternative” Data Structures. Information Spaces / Spatialization .

Heceta Bank, Oregon

Page 36: “Alternative” Data Structures. Information Spaces / Spatialization .

Heceta Bank Fisheries InvestigationsM.S. Theses: Nasby, 2000; Whitmire, 2003

At what scales are there quantifiable relationships between groundfish populations and seafloor morphology/texture?

What are the factors that control these relationships?

What changes may have occurred in the fish populations after a decade?

What are the characteristics and extent of natural refugia?

Page 37: “Alternative” Data Structures. Information Spaces / Spatialization .

EM 300 Multibeam Bathymetry

Depth Range:– 60-1000 m

Gridded to 5 and 10 m

Nasby, 2000; Whitmire, 2003

Page 38: “Alternative” Data Structures. Information Spaces / Spatialization .

Dives

28 ROV dives 5 submersible dives 6 historical stations

Nasby, 2000; Whitmire, 2003

Page 39: “Alternative” Data Structures. Information Spaces / Spatialization .

Heceta Bank Fish Habitats

Seabed Classification– Mud– Sand– Pebble– Cobble– Boulder– Flat Rock– Rock Ridge

Nasby, 2000; Whitmire, 2003

Page 40: “Alternative” Data Structures. Information Spaces / Spatialization .

M = Mud S = Sand P = Pebble C = Cobble B= Boulder F = Flat Rock R = Rock Ridge

12671269

1268

ID TO HABITAT TRANSECT DELTA88#1 104.85 RR 1267A 102 146.79 CC 1267A 103 251.64 RR 1267A 104 293.58 BR 1267A 105 356.49 BB 1267A 106 377.46 BB 1267A 107 419.4 CR 1267A 108 440.37 BB 1267A 109 482.31 RR 1267A 1010 482.31 SC 1267A 10

Mud

Sand

Pebble

Cobble

Boulder

Flat rock

Rock ridge

Nasby, 2000

Page 41: “Alternative” Data Structures. Information Spaces / Spatialization .

Bottom Type

Whitmire, 2003

Page 42: “Alternative” Data Structures. Information Spaces / Spatialization .

Species TypeDensity of Dover Sole

Nasby, 2000

Page 43: “Alternative” Data Structures. Information Spaces / Spatialization .

Other Fish Species

Greenstripe rockfish

Sablefish

Yellowtail rockfish

Shortspine thornyhead

Rex Sole

Lingcod

Pygmy rockfish

Nasby, 2000

Page 44: “Alternative” Data Structures. Information Spaces / Spatialization .

3 3

2

0

0.5

1

1.5

2

2.5

3

Rock Ridge Pebble/Cobble/Boulder

Mud

Rock ridge:yellowtail rockfish and juvenile rockfish

Pebble/cobble/boulder:sharpchin rockfish, rosethorn rockfish, greenstripe rockfish and pygmy rockfish

Mud:Dover sole, rex sole, sablefish and shortspine thornyhead

Habitat Characterization

Summary

Nasby, 2000

Page 45: “Alternative” Data Structures. Information Spaces / Spatialization .

Segue to Terrain Analysis

Whitmire, 2003

Page 46: “Alternative” Data Structures. Information Spaces / Spatialization .

Thesis Downloads

Nicole Nasby, 2000dusk.geo.orst.edu/djl/theses/nasby_lucas.html

(also published in 2002 issue of Fisheries Bulletin)

Curt Whitmire, 2003dusk.geo.orst.edu/djl/theses/whitmire_abs.html