Top Banner
All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby
21

All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Mar 31, 2015

Download

Documents

Jazmyn Blackmon
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

All Particle Simulation of a Cathodic Arc Plasma

I.J. Cooper

D. R. McKenzie

Tim Ruppin and Andrew Rigby

Page 2: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Traces left by an arc on tungsten cathode

Page 3: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

3

Vacuum Arc• High Current, Low

Voltage discharge in vacuum ambient

• Current conducted in metal vapor plasma produced by discharge itself from evaporated electrode material

Usually plasma production concentrated at cathode spots

Page 4: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Ion flow rapid heating of micro-protrusion shock wave traveling to base explosion of micro-protrusion

Liquid drops, energetic electrons, ions and atoms ejected from cathode leaving a micro-crater

Atoms ionized by electron impact or if density sufficient, self ionization

Time Evolution of Cathode Spot Cell

Expanding hot dense plasma cell in non-thermal equilibrium layer

New ion flow to cathode

Ion flow to anode

Micro-protrusions on cathode surface

Page 5: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Cathodic arc plasma Subspots (fragments) Cells

Initial confinement of plasmaL = 1×10-8 mV = 1×10-24 m3

Number of ions 10 to 100Densitymax ~ 1026 ions.m3

Hot e- Te =3x104 K

Cold ions

Page 6: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

3

( ) ( ) ( , )( )

4 ( , )x

oj i

q i q j x i jF i

r i j

All particle N body simulation

Coulomb forces between electrons and ions

( ) ( ) 1

4 ( , )oj i

q i q jU

r i j

212

( ) ( ) ( )i i

K m i v i K i

E U K Up > 0 Ue > 0 Upe < 0

Page 7: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

2

3

( , )

2 ( , ) ( , )

( ) ( , ) ( , )( )

4 ( ) ( , , )o j i

x i t t

x i t x i t t

q j x i t x j tq i t

m i r i j t

r(i, j, t) small problems

r(i, j, t) r(i, j, t) +

Problem: Lots of particles – lots of calculations

Page 8: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Can modify equations to include external electric and magnetic fields

xj(t+1): qj Ex t2

FB = q v x B Bx =0, By = 0, Bz vz = 0

x(t+1):

G2[2x(t) + (G12-1)x(t-1) + 2G1y(t) – 2G1y(t-1)]

G1 = t Bz /2m G2 = 1 / (1+G12)

Page 9: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04Motion of a proton: B = 0.8 T and E = 0 V/m

x (m)

y (

m)

Page 10: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Software MATLAB slow need to remove loops by using array operations

qq = meshgrid(q,q)

xx = meshgrid(x_1,x_1);

yy = meshgrid(y_1,y_1);

zz = meshgrid(z_1,z_1);

xd = xx - xx';

yd = yy - yy';

zd = zz - zz';

rd = sqrt(xd.^2 + yd.^2 + zd.^2);

rd = rd + rdMin;

rd3 = rd.^3;

Sx = (qq.*xd) ./rd3;

Sy = (qq.*yd) ./rd3;

Sz = (qq.*zd) ./rd3;

SSx = -A2 .* sum(Sx');

SSy = -A2 .* sum(Sy');

SSz = -A2 .* sum(Sz');

xfp = 2.*x_1 - x_2 + SSx;

yfp = 2.*y_1 - y_2 + SSy;

zfp = 2.*z_1 - z_2 + SSz;

For each time step t ~ 1x10-18 s Nsteps ~ 107:

Page 11: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

SIMULATIONS single, multiple and mixed charged states H C Ti

10 ps 50 Ti+ 50 e-

Page 12: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps

100 Ti+

100 e-

Page 13: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps

100 Ti+

100 e-

Page 14: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

0.10 ps

50 Ti+

50 e-

Page 15: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps 50 ions 50 e-

Page 16: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps

100 Ti+

100 e-

Page 17: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps 100 Ti+ 100 e-

Page 18: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps

100 Ti+

100 e-

Page 19: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps1026 ion.m-3 Kavg ~ 3.8 eV

Kavg(real) ~ 60 eV 1028 ion.m-3

Page 20: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

Initial Volume

(m3)

Initial Ion

density (ion.m-3)

No. of

e-

No. of Ti ions

Average ion KE (eV)

1.0×10-24 100×1024 100 100 Ti+ 3.8 0.5

1.0×10-24 30×1024 30 30 Ti+ 1.7 0.6

1.0×10-24 30×1024 60 30 Ti2+ 9.6 1.2

1.0×10-24 30×1024 6010 Ti+

10 Ti2+

10 Ti3+

1.8 0.68.2 1.211.8 1.6

Page 21: All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby.

10 ps

R = Ti2+ / Ti+