Top Banner
3412 2413 2314 3214 4213 1423 1324 1234 43 3241 3142 2143 2134 3124 4123 4132 PERMUTAHEDRA, ASSOCIAHEDRA & SORTING NETWORKS Vincent PILAUD
67

AlgoPerm2012 - 09 Vincent Pilaud

Jun 20, 2015

Download

Education

AlgoPerm 2012

Vincent Pilaud (LIX, CNRS)
Permutahedra, Associahedra and Sorting Networks

Algorithms & Permutations 2012, Paris.
http://igm.univ-mlv.fr/AlgoB/algoperm2012/
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AlgoPerm2012 - 09 Vincent Pilaud

4321

43123421 4231

3412

2413

2314

3214

4213

1423

1432

2431

1324

1234

1243

1342

23413241

3142

2143

2134

3124

41234132

PERMUTAHEDRA,ASSOCIAHEDRA

& SORTING NETWORKSVincent PILAUD

Page 2: AlgoPerm2012 - 09 Vincent Pilaud

PRIMITIVE SORTING NETWORKS— & —

PSEUDOLINE ARRANGEMENTS

Page 3: AlgoPerm2012 - 09 Vincent Pilaud

PRIMITIVE SORTING NETWORKS

network N = n horizontal levels and m vertical commutators

bricks of N = bounded cells

Page 4: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOLINE ARRANGEMENTS ON A NETWORK

pseudoline = abscissa-monotone path

crossing = contact =

pseudoline arrangement (with contacts) = n pseudolines supported by N which have

pairwise exactly one crossing, possibly some contacts, and no other intersection

Page 5: AlgoPerm2012 - 09 Vincent Pilaud

CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

contact graph Λ# of a pseudoline arrangement Λ =

• a node for each pseudoline of Λ, and

• an arc for each contact of Λ oriented from top to bottom

Page 6: AlgoPerm2012 - 09 Vincent Pilaud

FLIPS

flip = exchange an arbitrary contact with the corresponding crossing

Combinatorial and geometric properties of the graph of flips G(N )?

VP & M. Pocchiola, Multitriangulations, pseudotriangulations and sorting networks, 2012+

VP & F. Santos, The brick polytope of a sorting network, 2012

A. Knutson & E. Miller, Subword complexes in Coxeter groups, 2004

C. Ceballos, J.-P. Labbe & C. Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, 2012+

VP & C. Stump, Brick polytopes of spherical subword complexes [. . . ], 2012+

Page 7: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS— & —

MINIMAL SORTING NETWORKS

Page 8: AlgoPerm2012 - 09 Vincent Pilaud

MINIMAL SORTING NETWORKS

bubble sort insertion sort even-odd sort

D. Knuth, The art of Computer Programming (Vol. 3, Sorting and Searching), 1997

Page 9: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 10: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 11: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 12: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 13: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 14: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 15: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 16: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 17: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

Page 18: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

n points in R2 =⇒ minimal primitive sorting network with n levels

point ←→ pseudoline

edge ←→ crossing

boundary edge ←→ external crossing

Page 19: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

n points in R2 =⇒ minimal primitive sorting network with n levels

not all minimal primitive sorting networks correspond to points sets of R2

=⇒ realizability problems

Page 20: AlgoPerm2012 - 09 Vincent Pilaud

POINT SETS & MINIMAL SORTING NETWORKS

J. Goodmann & R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, 1980

D. Knuth, Axioms and Hulls, 1992

A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, & G. Ziegler, Oriented Matroids, 1999

J. Bokowski, Computational oriented matroids, 2006

Page 21: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS— & —

ALTERNATING SORTING NETWORKS

Page 22: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 23: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 24: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 25: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 26: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 27: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 28: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 29: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 30: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 31: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

Page 32: AlgoPerm2012 - 09 Vincent Pilaud

TRIANGULATIONS & ALTERNATING SORTING NETWORKS

triangulation of the n-gon ←→ pseudoline arrangement

triangle ←→ pseudoline

edge ←→ contact point

common bisector ←→ crossing point

dual binary tree ←→ contact graph

Page 33: AlgoPerm2012 - 09 Vincent Pilaud

FLIPS

Page 34: AlgoPerm2012 - 09 Vincent Pilaud

PROPERTIES OF THE FLIP GRAPH

The diameter of the graph of flips on triangulations of the n-gon

is precisely 2n− 10 when n is large enough.

D. Sleator, R. Tarjan, & W. Thurston, Rotation distance, triangulations, and hyperbolic geometry, 1988

The graph of flips on triangulations of the n-gon is Hamiltonian.

L. Lucas, The rotation graph of binary trees is Hamiltonian, 1988

F. Hurado & M. Noy, Graph of triangulations of a convex polygon and tree of triangulations, 1999

The graph of flips on triangulations of the n-gon is polytopal.

C. Lee, The associahedron and triangulations of the n-gon, 1989

L. Billera, P. Filliman, & B. Strumfels, Construction and complexity of secondary polytopes, 1990

J.-L. Loday, Realization of the Stasheff polytope, 2004

C. Holhweg & C. Lange, Realizations of the associahedron and cyclohedron, 2007

A. Postnikov, Permutahedra, associahedra, and beyond, 2009

VP & F. Santos, The brick polytope of a sorting network, 2012

C. Ceballos, F. Santos, & G. Ziegler, Many non-equivalent realizations of the associahedron, 2012+

Page 35: AlgoPerm2012 - 09 Vincent Pilaud

ASSOCIAHEDRA

Page 36: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS— & —

MULTITRIANGULATIONS

Page 37: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

Page 38: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

Page 39: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

Page 40: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

pseudotriangulation of P = maximal crossing-free and pointed set of edges on P

Page 41: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

pseudotriangulation of P = maximal crossing-free and pointed set of edges on P

= complex of pseudotriangles

Page 42: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

pseudotriangulation of P = maximal crossing-free and pointed set of edges on P

= complex of pseudotriangles

object from computational geometry

applications to visibility, rigidity, motion planning, . . .

Page 43: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

pseudotriangulation of P = maximal crossing-free and pointed set of edges on P

= complex of pseudotriangles

object from computational geometry

applications to visibility, rigidity, motion planning, . . .

properties of the flip graph: Ω(n) ≤ diameter ≤ O(n lnn)

graph of the pseudotriangulation polytope

Page 44: AlgoPerm2012 - 09 Vincent Pilaud

PSEUDOTRIANGULATIONS

The flip graph on

pseudotriangulations of a planar

point set P is polytopal

G. Rote, F. Santos, I. Streinu,Expansive motions and the polytope

of pointed pseudotriangulations, 2008

Page 45: AlgoPerm2012 - 09 Vincent Pilaud

MULTITRIANGULATIONS

Page 46: AlgoPerm2012 - 09 Vincent Pilaud

MULTITRIANGULATIONS

Page 47: AlgoPerm2012 - 09 Vincent Pilaud

MULTITRIANGULATIONS

k-triangulation of the n-gon = maximal (k + 1)-crossing-free set of edges

Page 48: AlgoPerm2012 - 09 Vincent Pilaud

MULTITRIANGULATIONS

k-triangulation of the n-gon = maximal (k + 1)-crossing-free set of edges

= complex of k-stars

Page 49: AlgoPerm2012 - 09 Vincent Pilaud

MULTITRIANGULATIONS

k-triangulation of the n-gon = maximal (k + 1)-crossing-free set of edges

= complex of k-stars

object from combinatorics

counted by the Hankel determinant det([Cn−i−j]1≤i,j≤n) of Catalan numbers, . . .

Page 50: AlgoPerm2012 - 09 Vincent Pilaud

MULTITRIANGULATIONS

k-triangulation of the n-gon = maximal (k + 1)-crossing-free set of edges

= complex of k-stars

object from combinatorics

counted by the Hankel determinant det([Cn−i−j]1≤i,j≤n) of Catalan numbers, . . .

properties of the flip graph: (k + 1/2)n ≤ diameter ≤ 2kn

graph of a combinatorial sphere

Page 51: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Page 52: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector ω(Λ) ∈ Rn

ω(Λ)j = number of bricks of N below the jth pseudoline of Λ

Brick polytope Ω(N ) = conv ω(Λ) | Λ pseudoline arrangement supported by N

Page 53: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector ω(Λ) ∈ Rn

ω(Λ)j = number of bricks of N below the jth pseudoline of Λ

2Brick polytope Ω(N ) = conv ω(Λ) | Λ pseudoline arrangement supported by N

Page 54: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector ω(Λ) ∈ Rn

ω(Λ)j = number of bricks of N below the jth pseudoline of Λ

62

Brick polytope Ω(N ) = conv ω(Λ) | Λ pseudoline arrangement supported by N

Page 55: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector ω(Λ) ∈ Rn

ω(Λ)j = number of bricks of N below the jth pseudoline of Λ

862

Brick polytope Ω(N ) = conv ω(Λ) | Λ pseudoline arrangement supported by N

Page 56: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector ω(Λ) ∈ Rn

ω(Λ)j = number of bricks of N below the jth pseudoline of Λ

1862

Brick polytope Ω(N ) = conv ω(Λ) | Λ pseudoline arrangement supported by N

Page 57: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Λ pseudoline arrangement supported by N 7−→ brick vector ω(Λ) ∈ Rn

ω(Λ)j = number of bricks of N below the jth pseudoline of Λ

61862

Brick polytope Ω(N ) = conv ω(Λ) | Λ pseudoline arrangement supported by N

Page 58: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Xm = network with two levels and m commutators

graph of flips G(Xm) = complete graph Km

brick polytope Ω(Xm) = conv

(m− i

i− 1

) ∣∣∣∣ i ∈ [m]

=

[(m− 1

0

),

(0

m− 1

)]

Page 59: AlgoPerm2012 - 09 Vincent Pilaud

BRICK POLYTOPE

Xm = network with two levels and m commutators

graph of flips G(Xm) = complete graph Km

brick polytope Ω(Xm) = conv

(m− i

i− 1

) ∣∣∣∣ i ∈ [m]

=

[(m− 1

0

),

(0

m− 1

)]

The brick vector ω(Λ) is a vertex of Ω(N ) ⇐⇒ the contact graph Λ# is acyclic

The graph of the brick polytope Ω(N ) is a subgraph of the flip graph G(N )

The graph of the brick polytope Ω(N ) coincides with the graph of flips G(N )

⇐⇒ the contact graphs of the pseudoline arrangements supported by N are forests

Page 60: AlgoPerm2012 - 09 Vincent Pilaud

ASSOCIAHEDRA— & —

PERMUTAHEDRA

Page 61: AlgoPerm2012 - 09 Vincent Pilaud

ALTERNATING NETWORKS & ASSOCIAHEDRA

triangulation of the n-gon ←→ pseudoline arrangement

triangle ←→ pseudoline

edge ←→ contact point

common bisector ←→ crossing point

dual binary tree ←→ contact graph

The brick polytope is an associahedron.

Page 62: AlgoPerm2012 - 09 Vincent Pilaud

ALTERNATING NETWORKS & ASSOCIAHEDRA

for x ∈ a, bn−2, define a reduced alternating network Nx and a polygon Px

aaa

aab

54321

54321

aba

54321

5

432

1 a a a 5

4

32

1 a a b 5

4

3

2

1 a b a

Pseudoline arrangements on N 1x ←→ triangulations of the polygon Px.

Page 63: AlgoPerm2012 - 09 Vincent Pilaud

ALTERNATING NETWORKS & ASSOCIAHEDRA

For any word x ∈ a, bn−2, the brick polytope Ω(N 1x ) is an associahedron

C. Hohlweg & C. Lange, Realizations of the associahedron and cyclohedron, 2007

VP & F. Santos, The brick polytope of a sorting network, 2012

Page 64: AlgoPerm2012 - 09 Vincent Pilaud

DUPLICATED NETWORKS & PERMUTAHEDRA

reduced network = network with n levels and(n2

)commutators

it supports only one pseudoline arrangement

duplicated network Π = network with n levels and 2(n2

)commutators obtained by

duplicating each commutator of a reduced network

Any pseudoline arrangement supported by Π has one contact

and one crossing among each pair of duplicated commutators.

Page 65: AlgoPerm2012 - 09 Vincent Pilaud

DUPLICATED NETWORKS & PERMUTAHEDRA

Any pseudoline arrangement supported by Π has one contact and one crossing among

each pair of duplicated commutators =⇒ The contact graph Λ# is a tournament.

Vertices of Ω(Π) ⇐⇒ acyclic tournaments ⇐⇒ permutations of [n]

Brick polytope Ω(Π) = permutahedron

Page 66: AlgoPerm2012 - 09 Vincent Pilaud

DUPLICATED NETWORKS & PERMUTAHEDRA

4321

43123421 4231

3412

2413

2314

3214

4213

14231432

2431

1324

1234

1243

1342

23413241

3142

2143

2134

3124

41234132

Page 67: AlgoPerm2012 - 09 Vincent Pilaud

THANK YOU