Top Banner
0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006
24

Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

Aug 16, 2019

Download

Documents

VũDương
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

0

Constructive Homological Algebra V.

Algebraic Topology background

Francis Sergeraert, Institut Fourier, Grenoble, FranceGenova Summer School, 2006

Page 2: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

1

“General” topological spaces

cannot be directly installed in a computer.

A combinatorial translation is necessary.

Main methods:

1. Simplicial complexes.

2. Simplicial sets.

Warning: Simplicial sets more complex (!)

but more powerful than simplicial complexes.

Page 3: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

2

Simplicial complex K = (V, S) where:

1. V = set = set of vertices of K;

2. S ∈ P(Pf∗ (V )) (= set of simplices) satisfying:

(a) σ ∈ S ⇒ σ = non-empty finite set of vertices;

(b) {v} ∈ S for all v ∈ V ;

(c) {(σ ∈ S) and (∅ 6= σ′ ⊂ σ)} ⇒ (σ′ ∈ S).

Notes:

1. V may be infinite (⇒ S infinite).

2. ∀σ ∈ S, σ is finite.

Page 4: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

3

Example:

V = {0, 1, 2, 3, 4, 5, 6}

S =

{0}, {1}, {2}, {3}, {4}, {5}, {6},{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {3, 4},{4, 5}, {4, 6}, {5, 6}, {0, 1, 2}, {4, 5, 6}

Page 5: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

4

Disadvantages of simplicial complexes.

Example: 2-sphere :

Needs 4 vertices, 6 edges, 4 triangles.

The simplicial set model needs only

1 vertex + 1 “triangle”

but an infinite number of degenerate simplices. . .

Product?

∆1 ×∆1 = I × I?

In general, constructions are difficult

with simplicial complexes.

???−→

Page 6: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

5

Main differences between:

Simplicial complexes???←→ Simplicial Sets

In a simplicial set:

1. A simplex is not defined by its vertices:

Own existence + relations with smaller simplices.

X = {X0oo //ww ''zz $$

X1oo //ww ''zz $$

X2oo //ww ((

X3oo // · · ·}

Page 7: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

6

Examples: two different edges can have same vertices:

• •

Several faces (ends) can be the same:

Page 8: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

7

2. Simplices can be degenerate = more or less “collapsed”.

•0 1•// oo=⇒ 0 • 1

•0

•1

• 2NNNNNNNNNNNNNNN

ppppppppppppppp

OO��

=⇒ •0

1• 2

•0

•1

• 2NNNNNNNNNNNNNNN

ppppppppppppppp

��::::::::

AA��������

oo =⇒ •0

12

Page 9: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

8

Example:

The minimal description as simplicial complex

of the two-sphere S2

needs: 4 vertices + 6 edges + 4 triangles:

Page 10: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

9

But the minimal description of the two-sphereas a simplicial set

needs: 1 vertex + 1 triangle.

•N

•0

•2

•1

// oo

FF

�� 2222222222222222222

XX1111111

��1111111

=⇒

_chlqw~������ " ' + 05=DJOTY ] a ejntz������

$)-39@GLRV[

•012

•N

Note N is not a vertex.

Page 11: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

10

Other example = Real Projective Plane = P 2(R).

Minimal triangulation = 6 vertices + 15 edges + 10 triangles.

Page 12: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

11

Minimal presentation of P 2R as a simplicial set =

1 vertex + 1 edge + 1 triangle.

Triangle

Edge

Vertex

oooooooooooooooooo

OOOOOOOOOOOOOOOOOO ��OO

ttjjjjjjjjjjjjjjjjjjjjjjj

jjTTTTTTTTTTTTTTTTTTTTTTT

oo

oooo

oo??

OO

OO0

0

1

1

2

0

Page 13: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

12

Support for the notion of simplicial set: The ∆ category.

Objects: 0 = {0}, 1 = {0, 1}, . . . , m = {0, 1, . . . , m}, . . .

Morphisms:

∆(m, n) = {α : m↗ n st (k ≤ `⇒ α(k) ≤ α(`))}.

Definition: A simplicial set is

a contravariant functor X : ∆→ Sets.

X(m) = Xm = {m-simplices} of X.

X(α : m→ n) = Xα =

{Incidence relations of type α between Xm and Xn}.

Page 14: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

13

Product construction for simplicial sets.

X = ({Xm}, {Xα}), Y = ({Ym}, {Yα}) two simplicial sets.

Z = X × Y = ???

Simple and natural definition:

Z = X × Y defined by Z = ({Zm}, {Zα}) with:

Zm = Xm × Ym

If ∆(n, m) 3 α : n↗ m:

Zα: Xm × YmXα×Yα−→ Xn × Yn

Page 15: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

14

Example:

This natural product:

automatically constructs

the “right” triangulation of I × I.

=⇒

Page 16: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

15

Twisted Products

Ingredients:

B = base space = simplical set

F = fibre space = simplicial set

G = structural group = simplicial group

τ : B → G = twisting function

Result: E = F × τ B

⇒ Fibration:

F � � // [E = F × τ B] // B

Main point: twist τ = modifier of incidence relations

in F ×B.

Page 17: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

16

Example 1: B = S1, G = Z, τ 1(s1) = 00 ∈ G0

⇒ B ×τ G = S1 × Z = trivial product.

In particular ∂0(s1, τ (s1).k1) = (∗, k0).

Example 2: B = S1, G = Z, τ ′1(s1) = 10 ∈ G0

⇒ B ×τ G = S1 × Z = twisted product.

Now ∂0(s1, k1) = (∗, τ ′(s1).k0) = (∗, (k + 1)0).

Page 18: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

17

Daniel Kan’s fantastic work (∼ 1960− 1980).

Every “standard” natural topological construction process

has a translation in the simplicial world.

Frequently the translation is even “better”.

Typical example. The loop space construction in ordinary

topology gives only an H-space (= group up to homotopy).

Kan’s loop space construction produces a genuine simplicial

group, playing an essential role in Algebraic Topology.

Conclusion: Simplicial world = Paradise! ???

Page 19: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

18

Translation process: Topology → Algebra

X 7−→ C∗(X)

⇒ C∗(X) = chain complex canonically associated to X.

Cm(X) := Z[Xm] and d(σ) :=∑m

i=0(−1)m∂mi (σ).

Hm(X) := Hm(C∗(X)).

“Equivalent” version: CND∗ (X) with:

CNDm (X) := Z[XND

m ] and d(σ) :=∑m

i=0(−1)m∂mi (σ mod ND).

HNDm (X) := Hm(CND

∗ (X))thr= Hm(X).

Page 20: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

18

General work style in Algebraic Topology.

Main problem = Classification.

Main invariants = Homology groups.

X given. H∗(X) = ???

Game rule: Please find a fibration:

F ↪→ E → B

where X = F or E or B

and where the homology of both other terms is known.

Then use the fibration !

Page 21: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

19

Main tools: (F ↪→ E → B)

Serre spectral sequence:

H∗(B; H∗(F ))⇒ H∗(E)

Eilenberg-Moore spectral sequence I:

CobarH∗(B)(H∗(E), Z)⇒ H∗(F )

Eilenberg-Moore spectral sequence II:

BarH∗(G)(H∗(E), H∗(F ))⇒ H∗(F )

But these spectal sequences are not algorithms!

Page 22: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

20

Example. π6S3 = ???.

Solution (Serre). Consider 7 fibrations:

(EM2-SS) K(Z, 1) ↪→ ∗ → K(Z, 2)

(EM2-SS) K(Z2, 1) ↪→ ∗ → K(Z2, 2)

(EM2-SS) K(Z2, 2) ↪→ ∗ → K(Z2, 3)

(EM2-SS) K(Z2, 3) ↪→ ∗ → K(Z2, 4)

(S-SS) K(Z, 2) ↪→ X4 → S3

(S-SS) K(Z2, 3) ↪→ X5 → X4

(S-SS) K(Z2, 4) ↪→ X6 → X5

Solution: π6(S3) = H6(X6)

Page 23: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

21

Effective Homology gives

effective versions

of Serre and Eilenberg-Moore spectral sequences.

⇒ Basic Algebraic Topology

is within range of Symbolic Computation.

Page 24: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

0

The END

Francis Sergeraert, Institut Fourier, Grenoble, FranceGenova Summer School, 2006