Top Banner
1 Aldehydes and Ketones Building Bridges to Knowledge Photo of the Huanpu River Cruise Boat’s gangplank in Shanghai, China
59

Aldehydes and Ketones, Building Bridges to Knowledge

Jul 27, 2016

Download

Documents

Aldehydes have an alkyl, R, or aryl, Ar, group and a hydrogen atom that sandwiches a carbonyl group. A ketone has two groups (alkyl or aryl) sandwiching a carbonyl group. Aldehydes and ketones undergo a series of important reactions. This paper discusses those reactions and their mechanisms. In addition, the paper discusses several syntheses of aldehydes and ketones and their mechanisms.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Aldehydes and Ketones, Building Bridges to Knowledge

1

AldehydesandKetones

BuildingBridgestoKnowledge

Photo of the Huanpu River Cruise Boat’s gangplank in Shanghai, China

Page 2: Aldehydes and Ketones, Building Bridges to Knowledge

2

Thestructureofaldehydesandketonescanberepresentedbythefollowinggeneral

formulas.

Aldehydeshaveanalkyl,R,oraryl,Ar,groupandahydrogenatomthatsandwiches

acarbonylgroup.Aketonehastwogroups(alkyloraryl)sandwichingacarbonyl

group.

Followingaresomeexamplesofaldehydesandketones:

Page 3: Aldehydes and Ketones, Building Bridges to Knowledge

3

benzaldehyde diphenylketone

(benzophenone)

methylphenylketone

(acetophenone)

n-butanaln-butylethylketone

(3-heptanone)

Innamingaldehydes,oneselectsthelongestcontinuouschaincontaining,and

Page 4: Aldehydes and Ketones, Building Bridges to Knowledge

4

dropthe“e”ofthelongestcontinuousalkanecontainingthealdehydicgroup,and

replacethe“e”with“al.”Thealdehydereceivesnumericalpreferenceoverside

chainsubstituentsand/orcentersofunsaturation.

Followingtheserules,theIUPACnamefor

is4,4-dimethylnonanal.

TheIUPACnamefor

is4-methyl-4-phenyloctanedial

WhenCHO,aformylgroup,isattachedtoaring,theringnameisfollowedbythe

suffix“carbaldehyde.”

Forexample,theIUPACnamefor

Iscyclohexanecarbaldehyde

Page 5: Aldehydes and Ketones, Building Bridges to Knowledge

5

Somefamiliaraldehydesareformaldehyde(I),acetaldehyde(II),andbenzaldehyde

(III):

Suggestnamesforthefollowingaldehydes.

(a)

(b)

Answers

(a) 3-bromo-4-ethoxybenzenecarbaldehyde

(b) (e,e)3-ethylcyclohexanecarbaldehyde

Somefamiliarketonesareacetone(IV);acetophenone(V);benzophenone(VI):

Page 6: Aldehydes and Ketones, Building Bridges to Knowledge

6

Ketonescanbenamedbyselectingthelongestcontinuouschaininthecarbonchain,

includingthecarbonylcarbon,andnamingtheattachedgroupsassubstituents.

Forexample,theIUPACnamefor

is5-hexen-2-one.

TheIUPACnamefor

is2,2-dimethyl-6-phenyl-3-hexanone.

UsingIUPACrulesfornomenclature,suggestnamesforthefollowingketones.

Page 7: Aldehydes and Ketones, Building Bridges to Knowledge

7

(a)

(b)

(c)

(d)

Answers

(a) 6-methyl-5-hepten-2-one

(b) (E)-5-hepten-2-one

(c) 2-methyl-2,6-diphenyl-3-hexanone

(d) (Z)-5-hepten-2-one

Page 8: Aldehydes and Ketones, Building Bridges to Knowledge

8

TheNatureoftheCarbonylGroup

TheC=ObonddistanceisshorterthantheC-Obonddistance.TheH-C-Obondangle

inketonesandaldehydesisapproximately120o.Thehybridizationaroundthe

carbonylcarbonatomsofaldehydesandketonesissp2.

Thegeometryaroundthecarbonylcarbonatomsinaldehydeandketonesistrigonal

planar,andtheC=ObondismorepolarthantheC=Cbond.

PhysicalProperties

Aldehydesandketoneshavehigherboilingpointsthancomparablemolecularmass

alkenes,becausetheintermolecularforcesbetweenaldehydesandketonesare

strongerthantheintermolecularforcesbetweenalkenes.

Aldehydesandketoneshavelowerboilingpointsthancomparablemolecularmass

alcohols,becausealcoholscanmolecularassociatewitheachother.

However,carbonylgroupscanmolecularlyassociatewiththeOHofalcoholsor

phenolsorcarboxylicacidsorwater;therefore,carbonylcompoundsaremore

solubleinwaterthancomparablemolecularmassalkenes.Thesolubilityof

carbonylcompoundsdecreasesinalcohols.

ReactionsofAldehydesandKetones

Aldehydesandketonescanformcyanohydrins.Cynanohydrinsarecompounds

containinganitrilegroup,CN,andahydroxylgroup,OHonthesamecarbonatom.

Page 9: Aldehydes and Ketones, Building Bridges to Knowledge

9

Cyanohydrinsareformedwhenalkalimetalcyanidesreactwiththecarbonylgroup

ofaldehydesandketones.

Cyanohydrinscanbeconvertedtoα-hydroxycarboxylicacidsbyacidifying

cyanohydrins.

Thenetionicequationforthereactionis

Page 10: Aldehydes and Ketones, Building Bridges to Knowledge

10

Thefollowingsequenceofreactionsrepresentsaplausiblemechanismfor

explainingtheacidhydrolysisofcyanohydrins.

(1)

(2)

+H2O

(3)

Page 11: Aldehydes and Ketones, Building Bridges to Knowledge

11

(4)

(5)

NaturalCyanohydrins

Naturalcyanohydrinsexistascyanogenicglycosides.Glycosidesareacetals,

geminaldiethers,formedfromnaturalsugarsorsugarderivativesandHOR.

Laetrileisanexampleofaglycoside.

Laetrile

TheIUPACnameforlaetrileis(2S,3S,4S,5R,6R)-6-[(R)-cyano(phenyl)methoxy]-

3,4,5-trihydroxyoxane-2-carboxylicacid.

TheoxaneringortheglucuronicacidstructureofLaetrilecanbevisualizedby

thinkingofanintramolecularnucleophilicattackoftheoxygenatomonthefifth

carbonatomofglucuronicacidwiththealdehydiccarbonylgroupofglucuronicacid

Page 12: Aldehydes and Ketones, Building Bridges to Knowledge

12

toformahemiacetalstructure.Theresultwouldbeasixmemberedheterocyclic

ring(theoxanering).Thisprocessisillustratedbythefollowingequation.

ThefinalstepintheformationofLaetrilewouldbetheformationoftheglycosidic

linkageattheanomericcarbonatom,andthisisillustratedbythefollowing

equation.

O

COOH

OH

H

H

H

H

H

HO

OH

OH

..

.. O

H

H

H

H OH

OH

HOHO

HCO

HO

Page 13: Aldehydes and Ketones, Building Bridges to Knowledge

13

AcetalFormation

Acetalsareformedfromthereactionofalcoholswithaldehydesinthepresenceofa

mineralacid.Thereactionsequenceproceedsfirstthroughtheformationofa

hemiacetal,andthentotheformationoftheacetal.Followingisanillustrationof

theformationofacetals.

O

H

H

H

H OH

OH

HOHO

HCO

HO

+ C

C N :

HHO

HOCOH

HOHO

OH

H

H

H

H

OOH

:NC

C

Page 14: Aldehydes and Ketones, Building Bridges to Knowledge

14

Thesequenceofelementarystepsthatwouldaccountforthisreactionmaybe

visualizedinthefollowingmanner.

(1)

(2)

Page 15: Aldehydes and Ketones, Building Bridges to Knowledge

15

(3)

(4)

(5)

Page 16: Aldehydes and Ketones, Building Bridges to Knowledge

16

(6)

(7)

Diolsinthe1,2and1,3positionsformcyclicacetals(1,3-dioxolanes,5-member

rings,or1,3-dioxane,6-memberrings)withaldehydesandketones.

anacetal(a1,3-dioxolane) 2-phenyl-1,3-dioxane

C

O

+

HO

HO

S

O

O

OHCH3O

O

H H

+ H2O

Page 17: Aldehydes and Ketones, Building Bridges to Knowledge

17

anacetal(a1,3-dioxane)

2-phenyl-1,3-dioxane

Ketonescanalsoundergoreactionswith1,2and1,3diolsanalogoustoaldehydes.

Theresulting1,3-dioxolaneor1,3-dioxanecanbereferredtoasketals.

aketal(a1,3-dioxolane)

2-phenyl-2-methyl-1,3-dioxolane

aketal(a1,3-dioxane)

2-phenyl-2-methyl-1,3-dioxane

Thewaterproducedinthesereactionsisremovedazeotropically*,anddrivesthe

equilibriumtotheright,i.e.,towardthe2-phenyl-1,3-dioxane,the2-phenyl-1,3-

dioxolane,the2-phenyl-2-methyl-1,3-dioxolane,orthe2-phenyl-2-methyl-1,3-

dioxane.

C

O

+

HO

HO

S

O

O

OHCH3O

O + H2O

CH3 H3C

C

O

+

HO

HO

S

O

O

OHCH3

+ H2O

CH3 H3CO

O

Page 18: Aldehydes and Ketones, Building Bridges to Knowledge

18

Acetals/ketalsreadilyhydrolyzeinacidtoformthealdehydeortheketone.This

reaction,forexample,canbeobservedintheacidcatalyzedhydrolysisof2-phenyl-

1,3-dioxane.

Followingisasequenceofelementarystepsthatrationalizethisobservation.

(1)

(2)

(3)

(4)

Page 19: Aldehydes and Ketones, Building Bridges to Knowledge

19

(5)

(6)

Page 20: Aldehydes and Ketones, Building Bridges to Knowledge

20

Acetals/ketalsasProtectiveGroups

Likeethers,theacetal/ketalgroupisunaffectedbymanyreactions;however,

acetals/ketalscanbeconvertedtoaldehydesorketonesbyacidhydrolysis.

Assumeanundergraduateseniorchemistrystudentunderthesupervisionofa

facultyadvisorisinterestedinsynthesizing1-phenyl-3-hexyn-2-onefrom

benzylcarboxylicacid(phenylaceticacid).

phenylaceticacid1-phenyl-3-hexyn-2-one

Thereactioncanbeapproachedbythefollowingretrosynthesis,i.e.,working

backwardstodevelopasynthesisfor1-phenyl-3-hexyn-2-one.

Page 21: Aldehydes and Ketones, Building Bridges to Knowledge

21

Page 22: Aldehydes and Ketones, Building Bridges to Knowledge

22

Usingananalogousprocessastheoneabove,suggestasynthesisforp-acetylbenzyl

alcoholfromp-acetylbenzoicacid

Page 23: Aldehydes and Ketones, Building Bridges to Knowledge

23

p-acetylbenzyalcohol p-acetylbenzoicacid

Answer

Thesynthesisofp-acetylbenzylalcoholusingp-acetylbenzoicacidasaprecursor

canbeaccomplishedinthreesteps.

Step1istheuseof1,3-butandiolasaprotectiveforcarbonyl.

Page 24: Aldehydes and Ketones, Building Bridges to Knowledge

24

Step2isthereductionoftheacidwithsodiumborohydride.

Step3isacidhydrolysisofthe1,3-dioxaneringinordertoreleasetheprotective

group.

Theprotectivegroupisrequired,becausesodiumborohydridewouldreducethe

ketonegroupaswellasthecarboxylicacidgroup.

AldehydesandKetonescanreactwithprimaryaminesasindicatedinthefollowing

reactiontoproduceN-substitutedimines.

Page 25: Aldehydes and Ketones, Building Bridges to Knowledge

25

Theproduct,anN-substitutedimine,isformedthroughacarbinolamine

intermediate.

carbinolamineintermediate

Followingisthemechanismforthisreactioninanacidicmedium.

Thereactionisoptimizedat[H3O+]=1x10-5mol/L,i.e.,atpH=5.

AtapHlessthan5,theprimaryaminewillbeprotonatedandhydrogenionswillnot

beavailabletoprotonatethealdehydeortheketone.AtapHgreaterthan5,the

carbocationintheratedeterminingstep(step6)willbenotbeproduced,because

thesolutionwillbetoobasicfortheformationofthepositivecharge.

(1)

Page 26: Aldehydes and Ketones, Building Bridges to Knowledge

26

(2)

(3)

(4)

(5)

(6)

Page 27: Aldehydes and Ketones, Building Bridges to Knowledge

27

(7)

(8)

(9)

Imine-typecompoundsareusefulinthetraditionalidentificationofaldehydesand

ketones.Thesecompoundsarereferredtoasoximes,semicarbozones,

phenylhydrazones,and2,4-dinitrophenylhydrazones.Thesecompoundsandtheir

mechanismswillbediscussedinafuturepaper.Themechanismsofthesereactions

aresimilartotheadditionandeliminationofprimaryaminestocarbonyl

compoundstoformimines.

Oxime

Page 28: Aldehydes and Ketones, Building Bridges to Knowledge

28

anoxime

Semicarbazone

asemicarbazone

Phenylhydrazone

Page 29: Aldehydes and Ketones, Building Bridges to Knowledge

29

aphenylhydrazone

2,4-Dinitophenylhydrazone

a2,4-dinitrophenylhydrazone

Page 30: Aldehydes and Ketones, Building Bridges to Knowledge

30

ReactionsofAldehydesandKetoneswithSecondaryAmines

Thereactionofaldehydesandketoneswithsecondaryaminesproceedsviathe

formationofcarbinolamineintermediates,followedbydehydrationtostable

enamines(alkenyl-substitutedamines).

Page 31: Aldehydes and Ketones, Building Bridges to Knowledge

31

Thefollowingsequenceofthreeelementarystepsrepresentsthemechanismthat

wouldrationalizetheformationoftheenamine.

(1)

(2)

(3)

(4)

Page 32: Aldehydes and Ketones, Building Bridges to Knowledge

32

Theenamine

TheWittigReaction

TheWittigreactionisamethodforconvertingaldehydesandketonestoalkenesvia

theuseofaphosphorusylideslikemethylenetriphenylphosporane.

Thereactionisgenerallycarriedoutinaproticsolventslikedimethylsulfoxide

(DMSO)ortetrahydrofuran.

DMSO

Page 33: Aldehydes and Ketones, Building Bridges to Knowledge

33

FollowingisaproposedmechanismfortheWittigreaction.

(1)

(2)

(3)

Page 34: Aldehydes and Ketones, Building Bridges to Knowledge

34

oxaphosphetane

(4)

(5)

ThephosphorusylideispreparedfromanalkylhalidebyanSN2reaction.

Theresultingmethyltriphenylphosphoniumiodidecrystallizesinhighyieldfrom

nonpolarsolvents.Thesaltisisolated,andconvertedtothedesiredylidebya

strongbasesuchasthesodiumsaltofdimethylsulfoxideororganolithiumreagents.

Page 35: Aldehydes and Ketones, Building Bridges to Knowledge

35

Phosphorusylidesareexcellentprecursorsforplanningsynthesesforalkenes.For

example,thesynthesisof3-ethyl-4-methyl-3-hexenecanberetrosynthetically

executedinthreesteps.

Step3isthereactionoftheylidewiththedesiredketonetoform3-ethyl-4-methyl-

3-hexene.

Page 36: Aldehydes and Ketones, Building Bridges to Knowledge

36

Step2isthepreparationoftheylidefromthephosphoniumiodidesalt,3-

pentyltriphenylphosphoniumiodide,andastrongbase,lithiumethide.

Step1isthesynthesisof3-pentyltriphenylphosphoniumiodide,theprecursorto

theylide,fromtriphenylphosphineandanappropriatealkylhalide,3-iodopentane.

Page 37: Aldehydes and Ketones, Building Bridges to Knowledge

37

IodoformReaction

Methylketones,aswellasmethylgroupsattachedtocarbonatomsforminga

secondaryalcohol,reactwithiodineinsodiumhydroxidetoformayellow

precipitate.Thereactionofmethylketoneswithiodineinsodiumhydroxideis

referredtoastheiodoformreaction.Theyellowprecipitateistriiodomethaneor

iodoform,thenamethatgivesrisetothenomenclatureofthereactionFollowingis

anexampleoftheiodoformreactionshowingthestoichiometryofthereaction.The

stoichiometryofthereactiongivesinsightintotheseriesofelementarystepthat

couldrationalizetheformationoftheproducts.

Page 38: Aldehydes and Ketones, Building Bridges to Knowledge

38

Thefollowingseriesofelementarystepsexplainhowmethylketonescanform

iodoform(ayellowprecipitate).

(1)

(2)

(3)

Page 39: Aldehydes and Ketones, Building Bridges to Knowledge

39

(4)

(5)

(6)

(7)

(8)

Page 40: Aldehydes and Ketones, Building Bridges to Knowledge

40

(9)

(10)

(11)

yellowprecipitate

Thesumoftheelementarysteps1-11gives

Page 41: Aldehydes and Ketones, Building Bridges to Knowledge

41

Ketoneswithmethylgroupsattachedwillreactwithiodineandsodiumhydroxide

togiveayellowprecipitate,iodoform.Secondaryalcoholswithmethylgroups

attachedwillalsoreactwithiodineandsodiumhydroxidetoproduceiodoform.

Theformationoftheyellowprecipitateisreferredtoasapositiveiodoformtest.

Similarreactionswilloccurwhenmethylketonesorsecondaryalcoholsarereacted

withchlorineandsodiumhydroxide.Also,similarreactionswilloccurwhenmethyl

ketonesorsecondaryalcoholswithmethylgroupsattachedreactwithNaOHand

bromine.However,theresultingchloroformandbromoformmoleculesarenot

precipitateswithdramaticcolorsasiodoform.

TheCannizzaroReaction

TheCannizzaroreactionisnamedafteritsdiscovererStanislaoCannizzarowho

discovereditsometimeduringthemiddleofthenineteenthcentury.Thereaction

involvesthebase-induceddisproportionationofanaldehydethatdoesn’thavea

hydrogenatomattachedtothealphacarbonatom.Theproductsofthe

disproportionationreactionarethesaltofacarboxylicacid,theoxidationproduct,

andanalcohol,thereductionproduct.FollowingisanexampleoftheCannizzaro

Reaction.

OH

CH3(R or Ar)C

H

+ I2 NaOH+

C(R or Ar)

O

H

+ +

3 3

3 3H2O NaI CHI3+

Page 42: Aldehydes and Ketones, Building Bridges to Knowledge

42

FollowingisthemechanismoftheCannizzaroreaction.

(1)

(2)

(3)

StereoselectiveAdditiontoCarbonylGroups

Nucleophilicadditiontocarbonylgroupscangiverisetostereoisomericproducts.

Stericfactorsplayamajorroleintheresultingproductwherethenucleophile

approachesthecarbonylatthelesshindereddirection.

Forexample,treating7,7-diethylbicyclo[2.2.1]heptan-2-onecangiverisetotwo

possibleproducts-exo-7,7-diethylbicyclo[2.2.1]heptan-2-olorendo-7,7-

diethylbicyclo[2.2.1]heptan-2-ol.Theexo-7,7-diethylbicyclo[2.2.1]heptan-2-ol

Page 43: Aldehydes and Ketones, Building Bridges to Knowledge

43

wouldbethepredominantproduct,becausethetwoethylgroupswouldhinderthe

approachoftheBH4-anionfromtheendoposition;consequently,theexoproduct

wouldpredominate.

Therefore,thereductionproductisstereoselective.Thepreferredattachisendo

whichleadstotheexoproduct.Exoattackwouldleadtotheendoproduct.Both

productsaretheoreticallypossible,but,inthiscase,theexoproductpredominates.

Page 44: Aldehydes and Ketones, Building Bridges to Knowledge

44

Ifthereactionisenzyme-catalyzed,thenonewouldexpectthattheoneofthetwo

possiblestereoisomerswouldbeexclusivelyformed.Forexample,whenpyruvic

acidisconvertedtolacticacidviatheenzymelactatedehydrogenaseandits

coenzyme,reducedformofnicotinimideadeninedinucleotide,NADH,the

predominateproductistheS-configurationwhichisdetrorotatory,i.e.,(S)-(+)-lactic

acidexclusively.

TheBaeyer-VilligerOxidationofKetones

TheBaeyer-Villigerreactionisthesynthesisofanesterfromaketone,andAdolfvon

BaeyerandVictorVilligerreportedthereactionin1899.Ketonesreactwith

peroxyacidstoinsertanoxygenatombetweenthecarbonylgroupandthelargerof

twoattachedalkylorarylgroupstoformanester.Forexample,

MethylchlorideisonesolventthatmaybeusedintheBaeyer-Villigeroxidation

reactions.

Theseriesofelementarystepsthatleadtotheformationoftheesterincludesthe

migrationofthealkylgroupwithretentionofconfiguration;therefore,if

Page 45: Aldehydes and Ketones, Building Bridges to Knowledge

45

stereochemistryispossible,thereactionleadstotheretentionofconfiguration,i.e.,

thereactionisstereospecific.

(1)

(2)

Sincethealkylgroupmigrateswithretentionofconfiguration,trans-(e,e)-4-

methylcyclohexylmethylketonewouldformtrans-(e,e)-4-methylcyclohexylacetate

astheexclusivestereospecificproduct.

Page 46: Aldehydes and Ketones, Building Bridges to Knowledge

46

ReformatskyReaction

Aldehydesandketonescanreactwithα-haloestersinthepresenceofmetalliczinc

toformβ-hydroxyesters.Thefollowingrepresentsareactionbetweenmethylethyl

ketoneandethylα-bromoacetateinthepresenceofzinctoproduceethyl3-

hydroxy-3-methylpentanoate.

Followingaretheseriesofelementarystepstorationalizetheformationofthe

productfortheReformatskyreactionusingtheabovereactionasamodel.

(1) Zincrelinquishestwoelectronstoethyl2-bromoacetatetoproducea

zincbromoenolate.

Page 47: Aldehydes and Ketones, Building Bridges to Knowledge

47

(2) Thezincbromoenolatereactswith2-butanonetogivethezincbromosaltof

ethyl3-methyl-3-hydroxypentanoate.

Acidhydrolysisofthezincbromoenolatewouldformtheproduct,ethyl3-methyl-3-

hydroxypentanoate.

*AzeotropicDistillation

Anyofseveralprocessesbywhichliquidmixturescontainingazeotropesmaybeseparatedintotheirpurecomponentswiththeaidofanadditionalsubstance(calledtheentrainer,thesolvent,orthemassseparatingagent)tofacilitatethedistillation.Distillationisaseparationtechniquethatexploitsthefactthatwhenaliquidispartiallyvaporizedthecompositionsofthetwophasesaredifferent.Byseparatingthephases,andrepeatingtheprocedure,itisoftenpossibletoseparatetheoriginalmixturecompletely.However,manymixturesexhibitspecialstates,knownasazeotropes,atwhichthecomposition,temperature,andpressureoftheliquidphasebecomeequaltothoseofthevaporphase.Thus,furtherseparationbyconventionaldistillationisnolongerpossible.Byaddingacarefullyselectedentrainertothemixture,itisoftenpossibleto“break”theazeotropeandtherebyachievethedesiredseparation.

Entrainersfallintoatleastfourdistinctcategoriesthatmaybeidentifiedbythewayinwhichtheymaketheseparationpossible.Thesecategoriesare:(1)liquidentrainersthatdonotinduceliquid-phaseseparation,usedinhomogeneousazeotropicdistillations,ofwhichclassicalextractivedistillationisaspecialcase;(2)liquidentrainersthatdoinducealiquid-phaseseparation,usedinheterogeneousazeotropicdistillations;(3)entrainersthatreactwithoneofthecomponents;and(4)entrainersthatdissociateionically,thatis,salts.SeeSalt-effectdistillation

Withineachofthesecategories,notallentrainerswillmaketheseparationpossible,thatis,notallentrainerswillbreaktheazeotrope.Inordertodeterminewhethera

Page 48: Aldehydes and Ketones, Building Bridges to Knowledge

48

givenentrainerisfeasible,aschematicrepresentationknownasaresiduecurvemapforamixtureundergoingsimpledistillationiscreated.Thepathofliquidcompositionsstartingfromsomeinitialpointistheresiduecurve.Thecollectionofallsuchcurvesforagivenmixtureisknownasaresiduecurvemap(seeillustration).Thesemapscontainexactlythesameinformationasthecorrespondingphasediagramforthemixture,buttheyrepresentitinsuchawaythatitismoreusefulforunderstandinganddesigningdistillationsystems.

http://encyclopedia2.thefreedictionary.com/azeotropic+distillation

Page 49: Aldehydes and Ketones, Building Bridges to Knowledge

49

Problems

AldehydesandKetones

1. SuggestIUPACnamesforthefollowingmolecules.

(a)

(b)

(c)

2. Suggestamechanismforthefollowingconversion.

Page 50: Aldehydes and Ketones, Building Bridges to Knowledge

50

3. Suggesttheproductexpectedfromthereactionofbenzaldehydewitheachofthe

following.

(a)

(b) dilutesodiumhydroxide

(c) concentratedsodiumhydroxide

(d) propanalanddilutehydroxide

(e) butanalanddilutesodiumhydroxide

(f)

Page 51: Aldehydes and Ketones, Building Bridges to Knowledge

51

4. Suggestasynthesisforthefollowingmoleculefromtheindicatedstarting

materialandanynecessaryorganicandinorganicmaterials.

5. Writeamechanismforyoursynthesisoftheesterinproblem4.

6. Using1-propanolastheonlysourceoforganiccompoundsandanyother

necessaryinorganicreagents,suggestsynthesesforthefollowing.

(a)

(b)

7. Suggestasynthesisforthefollowingmoleculefromtheindicatedorganic

compoundandanyotheravailableinorganicmaterials.

Page 52: Aldehydes and Ketones, Building Bridges to Knowledge

52

8. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialand

anynecessaryinorganicandorganiccompounds.

9. CompoundIexhibitsthefollowingprotonmagneticresonancespectrum.

1HNMRofcompoundI

AconstitutionalisomerofcompoundI,compoundII,exhibitsthe

followingprotonmagneticspectrum.

Page 53: Aldehydes and Ketones, Building Bridges to Knowledge

53

1HNMRofcompoundII

WhencompoundIwastreatedwithlithiumaluminumhydride

followedbyhydrolysis,thenaqueousacidatabout200oC,

compoundIII,C10H12wasproduced.CompoundIIIhastwo

isomers.

FollowingistheprotonmagneticresonancespectrumofcompoundIII,C10H12

1HNMRofcompoundIII

Page 54: Aldehydes and Ketones, Building Bridges to Knowledge

54

WhencompoundIIwastreatedwithlithiumaluminumhydridefollowedby

hydrolysis,thenaqueousacidatabout200oC,compoundIV,C10H12was

produced.Followingistheprotonmagneticresonancespectrumof

compoundIV,C10H12.CompoundIVhasoneisomer.CompoundsIIIandIV

arealsoconstitutionalisomers.

1HNMRofcompoundIV

SuggeststructuralformulasforcompoundsI,II,III,andIV.

10. Acertainbiologicallyactiveterpene,C10H16Ofollowstheisoprenerulewillform

anoxime,asemicarbozide,anda2,4-dintrophenylhyradazide.Uponozonolysis,

theterpenesproducesthefollowingcompounds

Suggestastructureconsistentwiththeexperimentaldataandtheisoprene

rule.

11. Aterpenethatfollowstheisopreneruledecolorizesadilutesolutionof

potassiumpermanganate,and,upon,treatmentwithhotconcentrated

Page 55: Aldehydes and Ketones, Building Bridges to Knowledge

55

potassiumpermanganateinsulfuricacid,producesthefollowingtwoorganic

acidsacids:

Suggestastructurefortheterpenethatisconsistentwiththe

experimentalevidence.

12. Suggestasynthesisforthefollowingconversionusingappropriateinorganic

reagents.

13. Suggestaseriesofelementarystepsthatwouldrationalizethefollowing

observations.

(a)

Page 56: Aldehydes and Ketones, Building Bridges to Knowledge

56

(b)

14. Predicttheproductorproductsexpectedinthefollowingsequenceofreactions.

15. CompoundIistreatedwiththereagentsoftheClemmensenreductionto

producecompoundII.TreatingcompoundIIwiththereagentsfor

hydroboration-oxidationproducescompoundIII.CompoundIIIupon

treatmentwithpyridiniumchlorochromateproducescompoundIV.

CompoundI

SuggeststructuralformulasforcompoundsII,III,andIV.

16.

Considerthefollowingsynthesispathway:

CH3CH2

C

O

CH2CH2C

OH

O

+ 1,3-propandiolH3O

+C9H16O4

Page 57: Aldehydes and Ketones, Building Bridges to Knowledge

57

SuggeststructuresofC9H16O4;C9H18O3;C6H12O2;andC6H10O2.

17. Treatingcompound17A,C6H12O,withiodineinsodiumhydroxide,resultsin

theformationayellowprecipitateandcompound17B,C5H9O2Na.Acidification

ofcompound17BformedC5H10O2,compound17C.Treatingcompound17C

withLiAlH4followedbyhydrolysisproducescompound17D.Theinfrared

spectrumofcompound17Dexhibitedaprominentstretchingtransmittance

signalat3333cm-1.Followingaretheprotonmagneticresonancespectrum

andcarbon-13magneticresonancespectrumofcompound17D.

C9H16O4 + LiAlH4H2O

C9H18O3

C9H18O3H3O

+C6H12O2

C6H10O2C6H12O2 + PDC

Page 58: Aldehydes and Ketones, Building Bridges to Knowledge

58

1HNMRCompound17D

13CNMRCompound17D

Sulfuricacidconvertedcompound17Dtocompound17E.Ozonolysisofcompound

17Egavecompound17Fand17G.Prominentmassspectrumpeaksforcompound

17Foccuratm/e29and43.Prominentmassspectrumpeaksforcompound17G

occuratm/e43and58.

Page 59: Aldehydes and Ketones, Building Bridges to Knowledge

59

Usethesedatatodeterminethestructuresofcompounds17A,17B,17C,17D,17

E,17F,and17G.Pleasesupportyouranswerswithchemicalequationsandany

givenspectradata.

Provideadetailedmechanismfortheconversionof17Dto17Ewithsulfuricacid.