Top Banner
String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Workshop on “Strongly Interacting Field Theories” Jena, October 1, 2010
82

Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Sep 26, 2018

Download

Documents

phammien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Dynamics in Yang-Mills Theory

Uwe-Jens Wiese

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern University

Workshop on “Strongly Interacting Field Theories”Jena, October 1, 2010

Collaboration: Ferdinando Gliozzi (INFN Torino)Michele Pepe (INFN Milano)

Page 2: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Dynamics in Yang-Mills Theory

Uwe-Jens Wiese

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern University

Workshop on “Strongly Interacting Field Theories”Jena, October 1, 2010

Collaboration: Ferdinando Gliozzi (INFN Torino)Michele Pepe (INFN Milano)

Page 3: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Dynamics in Yang-Mills Theory

Uwe-Jens Wiese

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics, Bern University

Workshop on “Strongly Interacting Field Theories”Jena, October 1, 2010

Collaboration: Ferdinando Gliozzi (INFN Torino)Michele Pepe (INFN Milano)

Page 4: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 5: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 6: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills theory

Gµ(x) = igG aµ(x)T a, a ∈ 1, 2, . . . , nG,

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)],

S [Gµ] =

∫d4x

1

4g2Tr[GµνGµν ]

Main sequence gauge groups

group SU(N) Sp(N) SO(2N + 1) SO(4N) SO(4N + 2)

nG N2 − 1 2N2 + N 2N2 + N 8N2 − 2N 8N2 + 6N + 1rank N − 1 N N 2N 2N + 1

center Z(N) Z(2) Z(2) Z(2)× Z(2) Z(4)

Exceptional gauge groups

group G (2) F (4) E (6) E (7) E (8)

nG 14 52 78 133 248rank 2 4 6 7 8

center 1 1 Z(3) Z(2) 1

Page 7: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills theory

Gµ(x) = igG aµ(x)T a, a ∈ 1, 2, . . . , nG,

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)],

S [Gµ] =

∫d4x

1

4g2Tr[GµνGµν ]

Main sequence gauge groups

group SU(N) Sp(N) SO(2N + 1) SO(4N) SO(4N + 2)

nG N2 − 1 2N2 + N 2N2 + N 8N2 − 2N 8N2 + 6N + 1rank N − 1 N N 2N 2N + 1

center Z(N) Z(2) Z(2) Z(2)× Z(2) Z(4)

Exceptional gauge groups

group G (2) F (4) E (6) E (7) E (8)

nG 14 52 78 133 248rank 2 4 6 7 8

center 1 1 Z(3) Z(2) 1

Page 8: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills theory

Gµ(x) = igG aµ(x)T a, a ∈ 1, 2, . . . , nG,

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)],

S [Gµ] =

∫d4x

1

4g2Tr[GµνGµν ]

Main sequence gauge groups

group SU(N) Sp(N) SO(2N + 1) SO(4N) SO(4N + 2)

nG N2 − 1 2N2 + N 2N2 + N 8N2 − 2N 8N2 + 6N + 1rank N − 1 N N 2N 2N + 1

center Z(N) Z(2) Z(2) Z(2)× Z(2) Z(4)

Exceptional gauge groups

group G (2) F (4) E (6) E (7) E (8)

nG 14 52 78 133 248rank 2 4 6 7 8

center 1 1 Z(3) Z(2) 1

Page 9: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String tension from Polyakov loop correlators

@ @

0 rt = 0

t = β = 1/T

Φ(~x) = Tr P exp

(∫ β

0dt G0(~x , t)

),

〈Φ(0)∗Φ(r)〉 ∼ exp (−βV (r)) , V (r) ∼ σr

σ ≈ (0.4GeV)2 ≈ 105NAs strong as a cm-thick steel cable, but 13 orders of magnitude thinner.

Page 10: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String tension from Polyakov loop correlators

@ @

0 rt = 0

t = β = 1/T

Φ(~x) = Tr P exp

(∫ β

0dt G0(~x , t)

),

〈Φ(0)∗Φ(r)〉 ∼ exp (−βV (r)) , V (r) ∼ σr

σ ≈ (0.4GeV)2 ≈ 105N

As strong as a cm-thick steel cable, but 13 orders of magnitude thinner.

Page 11: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String tension from Polyakov loop correlators

@ @

0 rt = 0

t = β = 1/T

Φ(~x) = Tr P exp

(∫ β

0dt G0(~x , t)

),

〈Φ(0)∗Φ(r)〉 ∼ exp (−βV (r)) , V (r) ∼ σr

σ ≈ (0.4GeV)2 ≈ 105NAs strong as a cm-thick steel cable, but 13 orders of magnitude thinner.

Page 12: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

Page 13: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

Page 14: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

Page 15: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

How many people can be lifted by a Yang-Mills elevator?

@Gravity F = Mg

@ String tension σ

Mg = σ ≈ 105N, g ≈ 10m/sec2 ⇒ M ≈ 104kg ≈ 100 People

Page 16: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 17: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 18: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 19: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 20: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 21: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 22: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 23: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Low-energy effective string theory

@ @

0 r

The height variable ~h(x , t) points to the fluctuating string world-sheet in

the (d − 2) transverse dimensions (~h(0, t) = ~h(r , t) = 0).

S [~h] =

∫ β

0

dt

∫ r

0

dxσ

2∂µ~h · ∂µ

~h, µ ∈ 0, 1,

V (r) = σr − π(d − 2)

24r+O(1/r3),

w2lo(r/2) =

d − 2

2πσlog(r/r0)

M. Luscher, K. Symanzik, P. Weisz, Nucl. Phys. B173 (1980) 365M. Luscher, Nucl. Phys. B180 (1981) 317M. Luscher, G. Munster, P. Weisz, Nucl. Phys. B180 (1981) 1

Page 24: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Effective string theory for d = 3 at the 2-loop level

S [h] =

∫ β

0dt

∫ r

0dx

σ

2

[∂µh∂µh −

1

8σ(∂µh∂µh)2

]Even to the next order, the action agrees with the one of theNambu-Goto string.O. Aharony and E. Karzbrun, JHEP 0906 (2009) 012

w2(r/2) = 〈h(r/2, t) h(r/2 + ε, t + ε′)〉

=

(1 +

4πf (τ)

σr2

)w2

lo(r/2)− f (τ) + g(τ)

σ2r2,

f (τ) =E2(τ)− 4E2(2τ)

48,

g(τ) = iπτ

(E2(τ)

12− q

d

dq

)(f (τ) +

E2(τ)

16

)+

E2(τ)

96,

E2(τ) = 1− 24∞∑

n=1

n qn

1− qn, q = exp(2πiτ), τ = iβ/2r

F. Gliozzi, M. Pepe, UJW, arXiv:1006.2252 [hep-lat]

Page 25: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Effective string theory for d = 3 at the 2-loop level

S [h] =

∫ β

0dt

∫ r

0dx

σ

2

[∂µh∂µh −

1

8σ(∂µh∂µh)2

]Even to the next order, the action agrees with the one of theNambu-Goto string.O. Aharony and E. Karzbrun, JHEP 0906 (2009) 012

w2(r/2) = 〈h(r/2, t) h(r/2 + ε, t + ε′)〉

=

(1 +

4πf (τ)

σr2

)w2

lo(r/2)− f (τ) + g(τ)

σ2r2,

f (τ) =E2(τ)− 4E2(2τ)

48,

g(τ) = iπτ

(E2(τ)

12− q

d

dq

)(f (τ) +

E2(τ)

16

)+

E2(τ)

96,

E2(τ) = 1− 24∞∑

n=1

n qn

1− qn, q = exp(2πiτ), τ = iβ/2r

F. Gliozzi, M. Pepe, UJW, arXiv:1006.2252 [hep-lat]

Page 26: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 27: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Two-link operators

x1

x0

r

T (t)αβγδ = U0(0, t)∗αβU0(r , t)γδ

Multiplication law

T (t)T (t + a)αβγδ = T (t)αλγεT (t + a)λβεδ

Polyakov loop correlator

Φ(0)∗Φ(r) = T (0)T (a) . . .T (β − a)ααγγ

M. Luscher and P. Weisz, JHEP 0109 (2001) 010

Page 28: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Two-link operators

x1

x0

r

T (t)αβγδ = U0(0, t)∗αβU0(r , t)γδ

Multiplication law

T (t)T (t + a)αβγδ = T (t)αλγεT (t + a)λβεδ

Polyakov loop correlator

Φ(0)∗Φ(r) = T (0)T (a) . . .T (β − a)ααγγ

M. Luscher and P. Weisz, JHEP 0109 (2001) 010

Page 29: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Two-link operators

x1

x0

r

T (t)αβγδ = U0(0, t)∗αβU0(r , t)γδ

Multiplication law

T (t)T (t + a)αβγδ = T (t)αλγεT (t + a)λβεδ

Polyakov loop correlator

Φ(0)∗Φ(r) = T (0)T (a) . . .T (β − a)ααγγ

M. Luscher and P. Weisz, JHEP 0109 (2001) 010

Page 30: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Page 31: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Page 32: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Page 33: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Page 34: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Sub-lattice expectation value

[T (t) . . .T (t ′)] =1

Zsub

∫DUsub T (t) . . .T (t ′) exp(−S [U]sub)

〈Φ(0)∗Φ(r)〉 = 〈[T (0)T (a)] . . . [T (β − 2a)T (β − a)]ααγγ〉

Page 35: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 36: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Simulations in (2 + 1)-d SU(2) Yang-Mills theory

S [U] = − 1

g2

∑x ,µ,ν

Tr[Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†],

〈Φ(0)Φ(r)〉 =1

Z

∫DU Φ(0)Φ(r) exp(−S [U]) ∼ exp(−βV (r))

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V(R) = a + b R + c/Rspin 1/2

V (r) = σr − π24r + . . .

There is very good agreement with the effective string theory.The value of the string tension obtained on a 542 × 48 lattice at4/g2 = 9 is σ = 0.025897(15)/a2.

Page 37: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Simulations in (2 + 1)-d SU(2) Yang-Mills theory

S [U] = − 1

g2

∑x ,µ,ν

Tr[Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†],

〈Φ(0)Φ(r)〉 =1

Z

∫DU Φ(0)Φ(r) exp(−S [U]) ∼ exp(−βV (r))

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V(R) = a + b R + c/Rspin 1/2

V (r) = σr − π24r + . . .

There is very good agreement with the effective string theory.The value of the string tension obtained on a 542 × 48 lattice at4/g2 = 9 is σ = 0.025897(15)/a2.

Page 38: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Simulations in (2 + 1)-d SU(2) Yang-Mills theory

S [U] = − 1

g2

∑x ,µ,ν

Tr[Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†],

〈Φ(0)Φ(r)〉 =1

Z

∫DU Φ(0)Φ(r) exp(−S [U]) ∼ exp(−βV (r))

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V(R) = a + b R + c/Rspin 1/2

V (r) = σr − π24r + . . .

There is very good agreement with the effective string theory.The value of the string tension obtained on a 542 × 48 lattice at4/g2 = 9 is σ = 0.025897(15)/a2.

Page 39: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Computation of the string width

P(x) = Tr[U1(x)U0(x + 1)U1(x + 0)†U0(x)†],

C (x2) =〈Φ(0)Φ(r)P(x)〉〈Φ(0)Φ(r)〉

− 〈P(x)〉

0.88545

0.8855

0.88555

0.8856

0.88565

0.8857

0.88575

0.8858

0 2 4 6 8 10 12 14 16 18

fitdata

2

4

6

8

10

12

14

5 10 15 20 25

fit w2(r/2)

There is very good agreement with the effective string theory at thetwo-loop level. The values of the low-energy parameters areσ = 0.025897(15)/a2, r0 = 2.26(2)a = 0.364(4)/

√σ ≈ 0.2 fm.

F. Gliozzi, M. Pepe, UJW, Phys. Rev. Lett. 104 (2010) 232001

Page 40: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Computation of the string width

P(x) = Tr[U1(x)U0(x + 1)U1(x + 0)†U0(x)†],

C (x2) =〈Φ(0)Φ(r)P(x)〉〈Φ(0)Φ(r)〉

− 〈P(x)〉

0.88545

0.8855

0.88555

0.8856

0.88565

0.8857

0.88575

0.8858

0 2 4 6 8 10 12 14 16 18

fitdata

2

4

6

8

10

12

14

5 10 15 20 25

fit w2(r/2)

There is very good agreement with the effective string theory at thetwo-loop level. The values of the low-energy parameters areσ = 0.025897(15)/a2, r0 = 2.26(2)a = 0.364(4)/

√σ ≈ 0.2 fm.

F. Gliozzi, M. Pepe, UJW, Phys. Rev. Lett. 104 (2010) 232001

Page 41: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Computation of the string width

P(x) = Tr[U1(x)U0(x + 1)U1(x + 0)†U0(x)†],

C (x2) =〈Φ(0)Φ(r)P(x)〉〈Φ(0)Φ(r)〉

− 〈P(x)〉

0.88545

0.8855

0.88555

0.8856

0.88565

0.8857

0.88575

0.8858

0 2 4 6 8 10 12 14 16 18

fitdata

2

4

6

8

10

12

14

5 10 15 20 25

fit w2(r/2)

There is very good agreement with the effective string theory at thetwo-loop level. The values of the low-energy parameters areσ = 0.025897(15)/a2, r0 = 2.26(2)a = 0.364(4)/

√σ ≈ 0.2 fm.

F. Gliozzi, M. Pepe, UJW, Phys. Rev. Lett. 104 (2010) 232001

Page 42: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String width at finite temperature

w2(r/2) =1

2πσlog

4r0

)+

r

2β+ . . .

At finite temperature, the effective string theory predicts a linear increaseof the width as one separates the static sources.

4

6

8

10

12

14

16

18

20

5 10 15 20 25

Again, there is excellent agreement with the effective string theory at thetwo-loop level, now without any adjustable parameters.F. Gliozzi, M. Pepe, UJW, to be published

Page 43: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String width at finite temperature

w2(r/2) =1

2πσlog

4r0

)+

r

2β+ . . .

At finite temperature, the effective string theory predicts a linear increaseof the width as one separates the static sources.

4

6

8

10

12

14

16

18

20

5 10 15 20 25

Again, there is excellent agreement with the effective string theory at thetwo-loop level, now without any adjustable parameters.F. Gliozzi, M. Pepe, UJW, to be published

Page 44: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String width at finite temperature

w2(r/2) =1

2πσlog

4r0

)+

r

2β+ . . .

At finite temperature, the effective string theory predicts a linear increaseof the width as one separates the static sources.

4

6

8

10

12

14

16

18

20

5 10 15 20 25

Again, there is excellent agreement with the effective string theory at thetwo-loop level, now without any adjustable parameters.F. Gliozzi, M. Pepe, UJW, to be published

Page 45: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 46: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String breaking

and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

Page 47: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String breaking and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

Page 48: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String breaking and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

Page 49: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String breaking and string decay (strand rupture)

Static potential between triplet (Q = 1) charges in (2+1)-d SU(2)Yang-Mills theory

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16

V(R)spin 1

M. Pepe and UJW, Phys. Rev. Lett. 102 (2009) 191601

Page 50: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String decay

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16

fitQ = 1/2Q = 3/2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14

fitQ = 1/2Q = 3/2

Potential and force between quadruplet (Q = 3/2) charges

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16

fitQ = 1Q = 2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14

fitQ = 1Q = 2

Potential and force between quintet (Q = 2) charges

Page 51: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String decay

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16

fitQ = 1/2Q = 3/2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14

fitQ = 1/2Q = 3/2

Potential and force between quadruplet (Q = 3/2) charges

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16

fitQ = 1Q = 2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14

fitQ = 1Q = 2

Potential and force between quintet (Q = 2) charges

Page 52: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Constituent gluon model: EQ,n(r) = σQr − cQ

r+ 2MQ,n

H1(r) =

(E1,0(r) A

A E0,1(r)

),

H3/2(r) =

(E3/2,0(r) B

B E1/2,1(r)

),

H2(r) =

E2,0(r) C 0C E1,1(r) A0 A E0,2(r)

,

Q σQa2 σQ/σ 4Q(Q + 1)/3

1/2 0.06397(3) 1 1

1 0.144(1) 2.25(2) 8/3

3/2 0.241(5) 3.77(8) 5

2 0.385(5) 6.02(8) 8

We observe deviations from Casimir scaling.

Page 53: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Constituent gluon model: EQ,n(r) = σQr − cQ

r+ 2MQ,n

H1(r) =

(E1,0(r) A

A E0,1(r)

),

H3/2(r) =

(E3/2,0(r) B

B E1/2,1(r)

),

H2(r) =

E2,0(r) C 0C E1,1(r) A0 A E0,2(r)

,

Q σQa2 σQ/σ 4Q(Q + 1)/3

1/2 0.06397(3) 1 1

1 0.144(1) 2.25(2) 8/3

3/2 0.241(5) 3.77(8) 5

2 0.385(5) 6.02(8) 8

We observe deviations from Casimir scaling.

Page 54: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Page 55: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Page 56: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Page 57: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Masses and mass differences: ∆Q,n = MQ−1,n+1 −MQ,n

Q MQ,0a MQ−1,1a MQ−2,2a ∆Q,0a ∆Q−1,1a

1/2 0.109(1) — — — —

1 0.37(3) 1.038(1) — 0.67(3) —

3/2 0.72(5) 1.32(5) — 0.60(5) —

2 1.04(3) 1.71(3) 2.42(1) 0.67(3) 0.71(3)

Constituent gluon mass:MG = 0.65(4)/a = 2.6(2)

√σ ≈ 1 GeV

0+ glueball mass: M0+ = 1.198(25)/aH. Meyer and M. Teper, Nucl. Phys. B668 (2003) 111

A simple constituent gluon model describes the data rather well.

Page 58: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 59: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1,

14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Page 60: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1,

14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Page 61: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1, 14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Page 62: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Exceptional Lie Group G (2) ⊂ SO(7)

ΩabΩac = δbc , Tabc = Tdef ΩdaΩebΩfc ,

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

0

0

3

4

6

7

5

12

1/ 3

1/2 3

−1/2 3

−1/2 1/2

−1/ 3

0

0 TT

V

V

U

U

X

X

Z

Z

Y

Y

+

+

+

+

+

−−

+

1/2 1−1 −1/2

1 / 3

3 / 2

−1/ 2 3

− 3 / 2

7 = 3 ⊕ 3 ⊕ 1, 14 = 8 ⊕ 3 ⊕ 3

The fact that G (2) has a trivial center causes exceptional confinement.K. Holland, P. Minkowski, M. Pepe, UJW, Nucl. Phys. B668 (2003) 207

Page 63: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Casimir Scaling in G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

Three gluons can screen a single quark.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7

Vst

.at

r/as

71427647777’

L. Liptak and S. Olejnik, Phys. Rev. D78 (2008) 074501B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

Page 64: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Casimir Scaling in G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

Three gluons can screen a single quark.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7

Vst

.at

r/as

71427647777’

L. Liptak and S. Olejnik, Phys. Rev. D78 (2008) 074501B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

Page 65: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Casimir Scaling in G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

Three gluons can screen a single quark.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7

Vst

.at

r/as

71427647777’

L. Liptak and S. Olejnik, Phys. Rev. D78 (2008) 074501B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

Page 66: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

Page 67: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

Page 68: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305

The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

Page 69: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

String Breaking in 3-d G (2) Yang-Mills Theory

14 ⊗ 14 ⊗ 14 = 1 ⊕ 7 ⊕ 5 14 ⊕ 3 27 ⊕ 2 64⊕ 4 77 ⊕ 3 77′ ⊕ 182 ⊕ 3 189⊕ 273 ⊕ 2 448

One or two gluons cannot screen a fundamental quark to a smallercharge, but three can.

B. H. Wellegehausen, A. Wipf, and C. Wozar, arXiv:1006.2305The fundamental string breaks by the simultaneous creation of six gluons,without intermediate string decay.

Page 70: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Outline

Yang-Mills Theory

Systematic Low-Energy Effective String Theory

Luscher-Weisz Multi-Level Simulation Technique

String Width at Zero and at Finite Temperature

String Breaking and String Decay

Exceptional Confinement in G (2) Yang-Mills Theory

Conclusions

Page 71: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Page 72: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Page 73: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Page 74: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Page 75: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Conclusions

• In Yang-Mills theory there is a systematic low-energy effective stringtheory (analogous to chiral perturbation theory in QCD), which describesthe dynamics of the Goldstone modes of the spontaneously brokentranslation symmetry of the string world-sheet.

• The effective theory has been tested at the two-loop level with veryhigh precision using the Luscher and Weisz multi-level simulationtechnique, which led to the determination of low-energy parameter r0.

• Strings connecting static charges in higher representations may decaybefore they break completely.

• A constitutent gluon model accounts for the “brown muck”surrounding a screened color charge.

• The exceptional group G (2) is the smallest one with a trivial center.One observes Casimir scaling at the few percent accuracy level.A fundamental 7 quark can bescreened by three adjoint 14 gluons.

The fundamental G (2) string breaks by the simultaneous creation of six

gluons without string decay.

Page 76: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Page 77: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Page 78: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Page 79: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Page 80: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Page 81: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!

Page 82: Albert Einstein Center for Fundamental Physics Institute ... · String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical

Yang-Mills elevator as a metaphor for our workshop

@Gravity F = Mg

@ String tension σ

Thanks for organizing a very nice workshop thatcontributes to quickly elevate us to a higher level ofunderstanding of strongly interacting field theories!