Top Banner
INTRODUCTION IMPROVED HARDY-SOBOLEV INEQUALITIES IMPROVED RELLICH INEQUALITIES MISSING TERMS IN CLASSICAL INEQUALITIES ALNAR L. DETALLA Department of Mathematics College of Arts and Sciences Central Mindanao University 8710 Musuan, Bukidnon May 21, 2010 A. L. Detalla Missing Terms in Classical Inequalities
259

Al Detalla Theory

Dec 27, 2015

Download

Documents

Rennel Mallari

Dr. Detalla Math Theory
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MISSING TERMS IN CLASSICAL

INEQUALITIES

ALNAR L. DETALLA

Department of MathematicsCollege of Arts and SciencesCentral Mindanao University

8710 Musuan, Bukidnon

May 21, 2010

A. L. Detalla Missing Terms in Classical Inequalities

Page 2: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:

A. L. Detalla Missing Terms in Classical Inequalities

Page 3: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:

A. L. Detalla Missing Terms in Classical Inequalities

Page 4: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:Let 1 < p < ∞ and denote

A. L. Detalla Missing Terms in Classical Inequalities

Page 5: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:Let 1 < p < ∞ and denote

F (t) :=

∫ t

0f(x)dx, for ǫ < p− 1

∫∞t

f(x)dx, for ǫ > p− 1

A. L. Detalla Missing Terms in Classical Inequalities

Page 6: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:Let 1 < p < ∞ and denote

F (t) :=

∫ t

0f(x)dx, for ǫ < p− 1

∫∞t

f(x)dx, for ǫ > p− 1

f : is a non-negative measurable function on (0,∞). Then

A. L. Detalla Missing Terms in Classical Inequalities

Page 7: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:Let 1 < p < ∞ and denote

F (t) :=

∫ t

0f(x)dx, for ǫ < p− 1

∫∞t

f(x)dx, for ǫ > p− 1

f : is a non-negative measurable function on (0,∞). Then

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 8: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

INRODUCTION

In 1920, G. H. Hardy proved the following:Let 1 < p < ∞ and denote

F (t) :=

∫ t

0f(x)dx, for ǫ < p− 1

∫∞t

f(x)dx, for ǫ > p− 1

f : is a non-negative measurable function on (0,∞). Then

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

where C > 0 independent of f .

A. L. Detalla Missing Terms in Classical Inequalities

Page 9: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 10: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 11: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

C =(

p

|ǫ−p+1|

)p

by: E. Landau (1930)

A. L. Detalla Missing Terms in Classical Inequalities

Page 12: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

C =(

p

|ǫ−p+1|

)p

by: E. Landau (1930)

NOTE: (1) can be written as

A. L. Detalla Missing Terms in Classical Inequalities

Page 13: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

C =(

p

|ǫ−p+1|

)p

by: E. Landau (1930)

NOTE: (1) can be written as

∫ ∞

0

|u(t)|ptǫ−pdt ≤(

p

|ǫ− p+ 1|

)p ∫ ∞

0

|u′(t)|ptǫdt (2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 14: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

C =(

p

|ǫ−p+1|

)p

by: E. Landau (1930)

NOTE: (1) can be written as

∫ ∞

0

|u(t)|ptǫ−pdt ≤(

p

|ǫ− p+ 1|

)p ∫ ∞

0

|u′(t)|ptǫdt (2)

where u′(t) := dudt, u ∈ Cc((0,∞)), p > 1, ǫ 6= p− 1.

A. L. Detalla Missing Terms in Classical Inequalities

Page 15: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∫ ∞

0

F p(t)tǫ−pdt ≤ C

∫ ∞

0

f p(t)tǫdt (1)

C =(

p

|ǫ−p+1|

)p

by: E. Landau (1930)

NOTE: (1) can be written as

∫ ∞

0

|u(t)|ptǫ−pdt ≤(

p

|ǫ− p+ 1|

)p ∫ ∞

0

|u′(t)|ptǫdt (2)

where u′(t) := dudt, u ∈ Cc((0,∞)), p > 1, ǫ 6= p− 1.

We call (2) the classical Hardy inequality

A. L. Detalla Missing Terms in Classical Inequalities

Page 16: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

A. L. Detalla Missing Terms in Classical Inequalities

Page 17: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

A. L. Detalla Missing Terms in Classical Inequalities

Page 18: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

∫ ∞

0

|u′(t)|pdt ≥(

p− 1

p

)p ∫ ∞

0

|u(t)|p|t|p dt (3)

A. L. Detalla Missing Terms in Classical Inequalities

Page 19: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

∫ ∞

0

|u′(t)|pdt ≥(

p− 1

p

)p ∫ ∞

0

|u(t)|p|t|p dt (3)

from (3) a Hardy inequality of higher dimension can bederived which is a classical Sobolev embedding inequality.

A. L. Detalla Missing Terms in Classical Inequalities

Page 20: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

∫ ∞

0

|u′(t)|pdt ≥(

p− 1

p

)p ∫ ∞

0

|u(t)|p|t|p dt (3)

from (3) a Hardy inequality of higher dimension can bederived which is a classical Sobolev embedding inequality.For n > 2,

A. L. Detalla Missing Terms in Classical Inequalities

Page 21: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

∫ ∞

0

|u′(t)|pdt ≥(

p− 1

p

)p ∫ ∞

0

|u(t)|p|t|p dt (3)

from (3) a Hardy inequality of higher dimension can bederived which is a classical Sobolev embedding inequality.For n > 2,

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω). (4)

A. L. Detalla Missing Terms in Classical Inequalities

Page 22: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

∫ ∞

0

|u′(t)|pdt ≥(

p− 1

p

)p ∫ ∞

0

|u(t)|p|t|p dt (3)

from (3) a Hardy inequality of higher dimension can bederived which is a classical Sobolev embedding inequality.For n > 2,

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω). (4)

Lp-version of (4) where 1 ≤ p < n is

A. L. Detalla Missing Terms in Classical Inequalities

Page 23: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

for ǫ = 0, (2) becomes

∫ ∞

0

|u′(t)|pdt ≥(

p− 1

p

)p ∫ ∞

0

|u(t)|p|t|p dt (3)

from (3) a Hardy inequality of higher dimension can bederived which is a classical Sobolev embedding inequality.For n > 2,

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω). (4)

Lp-version of (4) where 1 ≤ p < n is

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx, ∀u ∈ W 1,p

0 (Ω).

(5)A. L. Detalla Missing Terms in Classical Inequalities

Page 24: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A higher order generalization of (4) was proven by Rellich

A. L. Detalla Missing Terms in Classical Inequalities

Page 25: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A higher order generalization of (4) was proven by Rellich

A. L. Detalla Missing Terms in Classical Inequalities

Page 26: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A higher order generalization of (4) was proven by RellichFor n > 4,

A. L. Detalla Missing Terms in Classical Inequalities

Page 27: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A higher order generalization of (4) was proven by RellichFor n > 4,

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx,

∀u ∈ W 2,20 (Ω).

(6)

A. L. Detalla Missing Terms in Classical Inequalities

Page 28: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A higher order generalization of (4) was proven by RellichFor n > 4,

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx,

∀u ∈ W 2,20 (Ω).

(6)

Lp-version of (6) is

A. L. Detalla Missing Terms in Classical Inequalities

Page 29: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A higher order generalization of (4) was proven by RellichFor n > 4,

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx,

∀u ∈ W 2,20 (Ω).

(6)

Lp-version of (6) is

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx,

∀u ∈ W 2,p0 (Ω).

(7)

A. L. Detalla Missing Terms in Classical Inequalities

Page 30: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

W l,p(Ω):function space on Ω whose generalized derivatives∂γu of order ≤ l satisfies

A. L. Detalla Missing Terms in Classical Inequalities

Page 31: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

W l,p(Ω):function space on Ω whose generalized derivatives∂γu of order ≤ l satisfies

A. L. Detalla Missing Terms in Classical Inequalities

Page 32: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

W l,p(Ω):function space on Ω whose generalized derivatives∂γu of order ≤ l satisfies

||u||W l,p(Ω) =∑

|γ|≤l

(∫

Ω

|∂γu(x)|pdx)

1p

< ∞

A. L. Detalla Missing Terms in Classical Inequalities

Page 33: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

W l,p(Ω):function space on Ω whose generalized derivatives∂γu of order ≤ l satisfies

||u||W l,p(Ω) =∑

|γ|≤l

(∫

Ω

|∂γu(x)|pdx)

1p

< ∞

W l,p0 (Ω) denotes the completion of C∞

0 (Ω) in W l,p(Ω).

A. L. Detalla Missing Terms in Classical Inequalities

Page 34: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

A. L. Detalla Missing Terms in Classical Inequalities

Page 35: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

A. L. Detalla Missing Terms in Classical Inequalities

Page 36: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω) (4)

A. L. Detalla Missing Terms in Classical Inequalities

Page 37: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω) (4)

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx, ∀u ∈ W 1,p

0 (Ω) (5)

A. L. Detalla Missing Terms in Classical Inequalities

Page 38: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω) (4)

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx, ∀u ∈ W 1,p

0 (Ω) (5)

Hardy-Sobolev-Rellich Inequalities

A. L. Detalla Missing Terms in Classical Inequalities

Page 39: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω) (4)

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx, ∀u ∈ W 1,p

0 (Ω) (5)

Hardy-Sobolev-Rellich Inequalities

A. L. Detalla Missing Terms in Classical Inequalities

Page 40: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω) (4)

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx, ∀u ∈ W 1,p

0 (Ω) (5)

Hardy-Sobolev-Rellich Inequalities

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx, ∀u ∈ W 2,2

0 (Ω) (6)

A. L. Detalla Missing Terms in Classical Inequalities

Page 41: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Hardy-Sobolev Inequalities

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx, ∀u ∈ W 1,20 (Ω) (4)

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx, ∀u ∈ W 1,p

0 (Ω) (5)

Hardy-Sobolev-Rellich Inequalities

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx, ∀u ∈ W 2,2

0 (Ω) (6)

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

A. L. Detalla Missing Terms in Classical Inequalities

Page 42: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (4)

NOTATIONS

A. L. Detalla Missing Terms in Classical Inequalities

Page 43: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (4)

NOTATIONS

A. L. Detalla Missing Terms in Classical Inequalities

Page 44: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (4)

NOTATIONS

For t > 0 and ρ ≥ 2,

A. L. Detalla Missing Terms in Classical Inequalities

Page 45: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (4)

NOTATIONS

For t > 0 and ρ ≥ 2,

A1(t) = log Rt, A2(t) = logA1(t), . . . Aρ(t) = logAρ−1(t)

A. L. Detalla Missing Terms in Classical Inequalities

Page 46: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (4)

NOTATIONS

For t > 0 and ρ ≥ 2,

A1(t) = log Rt, A2(t) = logA1(t), . . . Aρ(t) = logAρ−1(t)

and

A. L. Detalla Missing Terms in Classical Inequalities

Page 47: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (4)

NOTATIONS

For t > 0 and ρ ≥ 2,

A1(t) = log Rt, A2(t) = logA1(t), . . . Aρ(t) = logAρ−1(t)

and

e1 = e, e2 = ee1 , . . . eρ = eeρ−1

A. L. Detalla Missing Terms in Classical Inequalities

Page 48: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM 1 ( A. Detalla, T. Horiuchi and H. Ando(2005))

A. L. Detalla Missing Terms in Classical Inequalities

Page 49: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM 1 ( A. Detalla, T. Horiuchi and H. Ando(2005))

A. L. Detalla Missing Terms in Classical Inequalities

Page 50: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM 1 ( A. Detalla, T. Horiuchi and H. Ando(2005))

Assume γ ≥ 2 and n ≥ 2. If R ≥ supΩ |x|ek then thereexists sharp remainder terms such that

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx+1

4

Ω

u(x)2

|x|2[

A1(|x|)−γ +

(

A1(|x|)A2(|x|))−γ

+ · · ·+(

A1(|x|)A2(|x|) . . . Ak(|x|))−γ]

dx.

(8)

for any u ∈ W 1,20 (Ω).

A. L. Detalla Missing Terms in Classical Inequalities

Page 51: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx+1

4

Ω

u(x)2

|x|2[

A1(|x|)−γ +

(

A1(|x|)A2(|x|))−γ

+ · · ·+(

A1(|x|)A2(|x|) . . . Ak(|x|))−γ]

dx (8)

A. L. Detalla Missing Terms in Classical Inequalities

Page 52: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx+1

4

Ω

u(x)2

|x|2[

A1(|x|)−γ +

(

A1(|x|)A2(|x|))−γ

+ · · ·+(

A1(|x|)A2(|x|) . . . Ak(|x|))−γ]

dx (8)

A. L. Detalla Missing Terms in Classical Inequalities

Page 53: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∇u(x)|2dx ≥(

n− 2

2

)2 ∫

Ω

u(x)2

|x|2 dx+1

4

Ω

u(x)2

|x|2[

A1(|x|)−γ +

(

A1(|x|)A2(|x|))−γ

+ · · ·+(

A1(|x|)A2(|x|) . . . Ak(|x|))−γ]

dx (8)

REMARK

In inequality (8), 14is best constant for all k-missing terms

and γ ≥ 2 is sharp

A. L. Detalla Missing Terms in Classical Inequalities

Page 54: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

A. L. Detalla Missing Terms in Classical Inequalities

Page 55: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 56: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Noncritical Case(1 < p < n)

A. L. Detalla Missing Terms in Classical Inequalities

Page 57: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Noncritical Case(1 < p < n)

A. L. Detalla Missing Terms in Classical Inequalities

Page 58: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Noncritical Case(1 < p < n)

Let R ≥ supΩ

(

|x|e 2p

)

. Then there exist K > 0 depending on

n, p, and R such that for any u ∈ W 1,p0 (Ω) and γ ≥ 2

A. L. Detalla Missing Terms in Classical Inequalities

Page 59: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Noncritical Case(1 < p < n)

Let R ≥ supΩ

(

|x|e 2p

)

. Then there exist K > 0 depending on

n, p, and R such that for any u ∈ W 1,p0 (Ω) and γ ≥ 2

Ω

|∇u(x)|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|p dx+

K

Ω

|u(x)|p|x|p

(

logR

|x|

)−γ

dx(9)

A. L. Detalla Missing Terms in Classical Inequalities

Page 60: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

A. L. Detalla Missing Terms in Classical Inequalities

Page 61: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 62: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Critical Case (p = n)

A. L. Detalla Missing Terms in Classical Inequalities

Page 63: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Critical Case (p = n)

A. L. Detalla Missing Terms in Classical Inequalities

Page 64: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Critical Case (p = n)

Let R ≥ supΩ

(

|x|e 2n

)

. Then for any u ∈ W 1,n0 (Ω)

A. L. Detalla Missing Terms in Classical Inequalities

Page 65: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (5)

THEOREM 2 ( Adimurthi, N. Chaudhuri and M.Ramaswamy (2001))

Let Ω be a bounded domain in Rn with 0 ∈ Ω and n ≥ 2.

Critical Case (p = n)

Let R ≥ supΩ

(

|x|e 2n

)

. Then for any u ∈ W 1,n0 (Ω)

Ω

|∇u(x)|ndx ≥(

n− 1

n

)n ∫

Ω

|u(x)|n|x|n

(

logR

|x|

)−n

dx

(10)

A. L. Detalla Missing Terms in Classical Inequalities

Page 66: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|pf(x)(

log1

|x|

)2

< ∞

A. L. Detalla Missing Terms in Classical Inequalities

Page 67: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|pf(x)(

log1

|x|

)2

< ∞

A. L. Detalla Missing Terms in Classical Inequalities

Page 68: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|pf(x)(

log1

|x|

)2

< ∞

If f ∈ Fp, ∃ λ(f) > 0 such that for u ∈ W 1,p0 (Ω)

Ω

|∇u|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|2p dx+λ(f)

Ω

|u(x)|pf(x)dx

A. L. Detalla Missing Terms in Classical Inequalities

Page 69: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|pf(x)(

log1

|x|

)2

< ∞

If f ∈ Fp, ∃ λ(f) > 0 such that for u ∈ W 1,p0 (Ω)

Ω

|∇u|pdx ≥(

n− p

p

)p ∫

Ω

|u(x)|p|x|2p dx+λ(f)

Ω

|u(x)|pf(x)dx

If f /∈ Fp and if |x|pf(x)(

log 1|x|

)2

tends to ∞ as |x| → 0,

then no inequality of the above type can hold.

A. L. Detalla Missing Terms in Classical Inequalities

Page 70: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A. L. Detalla Missing Terms in Classical Inequalities

Page 71: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

The results will be used to analyze the behaviour of thefirst eigenvalue of the weighted eigenvalue problem for theoperator

A. L. Detalla Missing Terms in Classical Inequalities

Page 72: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

The results will be used to analyze the behaviour of thefirst eigenvalue of the weighted eigenvalue problem for theoperator

A. L. Detalla Missing Terms in Classical Inequalities

Page 73: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

The results will be used to analyze the behaviour of thefirst eigenvalue of the weighted eigenvalue problem for theoperator

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

A. L. Detalla Missing Terms in Classical Inequalities

Page 74: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

The results will be used to analyze the behaviour of thefirst eigenvalue of the weighted eigenvalue problem for theoperator

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

as µ →(

n−p

p

)p

.

A. L. Detalla Missing Terms in Classical Inequalities

Page 75: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

A. L. Detalla Missing Terms in Classical Inequalities

Page 76: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

L∇µis related to the variational problem

A. L. Detalla Missing Terms in Classical Inequalities

Page 77: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

L∇µis related to the variational problem

A. L. Detalla Missing Terms in Classical Inequalities

Page 78: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

L∇µis related to the variational problem

infu∈K

Ω

(

|∇u|p − µ|u|p|x|p

)

dx

A. L. Detalla Missing Terms in Classical Inequalities

Page 79: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

L∇µis related to the variational problem

infu∈K

Ω

(

|∇u|p − µ|u|p|x|p

)

dx

where K is given by

A. L. Detalla Missing Terms in Classical Inequalities

Page 80: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

L∇µis related to the variational problem

infu∈K

Ω

(

|∇u|p − µ|u|p|x|p

)

dx

where K is given by

K =

u ∈ W 1,p0 (Ω) :

Ω

|u(x)|pf(x)dx = 1

,

f : is a weight function.

A. L. Detalla Missing Terms in Classical Inequalities

Page 81: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

A. L. Detalla Missing Terms in Classical Inequalities

Page 82: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

Consider the weighted eigenvalue problem

L∇µu = λ|u|p−2uf in Ω

u = 0 on ∂Ω

A. L. Detalla Missing Terms in Classical Inequalities

Page 83: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

Consider the weighted eigenvalue problem

L∇µu = λ|u|p−2uf in Ω

u = 0 on ∂Ω

A. L. Detalla Missing Terms in Classical Inequalities

Page 84: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

Consider the weighted eigenvalue problem

L∇µu = λ|u|p−2uf in Ω

u = 0 on ∂Ω

µ →(

n−p

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 85: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∇µu = −

(

div(

|∇u|p−2∇u)

|x|p |u|p−2u

)

Consider the weighted eigenvalue problem

L∇µu = λ|u|p−2uf in Ω

u = 0 on ∂Ω

µ →(

n−p

p

)p

The expression L∇µu = λ|u|p−2uf is related to the

improved Hardy-Sobolev inequality.

A. L. Detalla Missing Terms in Classical Inequalities

Page 86: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (6)

A. L. Detalla Missing Terms in Classical Inequalities

Page 87: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (6)

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx, ∀u ∈ W 2,2

0 (Ω) (6)

A. L. Detalla Missing Terms in Classical Inequalities

Page 88: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (6)

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx, ∀u ∈ W 2,2

0 (Ω) (6)

A. L. Detalla Missing Terms in Classical Inequalities

Page 89: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

IMPROVEMENT OF INEQUALITY (6)

Ω

|∆u(x)|2dx ≥ n2(n− 4)2

16

Ω

|u(x)|2|x|4 dx, ∀u ∈ W 2,2

0 (Ω) (6)

ON GOING RESEARCH

A. L. Detalla Missing Terms in Classical Inequalities

Page 90: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

A. L. Detalla Missing Terms in Classical Inequalities

Page 91: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of

A. L. Detalla Missing Terms in Classical Inequalities

Page 92: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of I(u) =∫Ω |∆u|pdx

∫Ω

|u(x)|p

|x|2pdx.

A. L. Detalla Missing Terms in Classical Inequalities

Page 93: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of I(u) =∫Ω |∆u|pdx

∫Ω

|u(x)|p

|x|2pdx.

No extremal function in W 2,p0 (Ω) which attains the infimum

of I(u).

A. L. Detalla Missing Terms in Classical Inequalities

Page 94: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of I(u) =∫Ω |∆u|pdx

∫Ω

|u(x)|p

|x|2pdx.

No extremal function in W 2,p0 (Ω) which attains the infimum

of I(u).

A. L. Detalla Missing Terms in Classical Inequalities

Page 95: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of I(u) =∫Ω |∆u|pdx

∫Ω

|u(x)|p

|x|2pdx.

No extremal function in W 2,p0 (Ω) which attains the infimum

of I(u).

The candidates of the extremals are singular at the originwhich are not in W 2,p

0 (Ω).

A. L. Detalla Missing Terms in Classical Inequalities

Page 96: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of I(u) =∫Ω |∆u|pdx

∫Ω

|u(x)|p

|x|2pdx.

No extremal function in W 2,p0 (Ω) which attains the infimum

of I(u).

The candidates of the extremals are singular at the originwhich are not in W 2,p

0 (Ω).

A. L. Detalla Missing Terms in Classical Inequalities

Page 97: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u(x)|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx (7)

Here the best constant(

n−2pp

)p (np−n

p

)p

is given by the

infimum of I(u) =∫Ω |∆u|pdx

∫Ω

|u(x)|p

|x|2pdx.

No extremal function in W 2,p0 (Ω) which attains the infimum

of I(u).

The candidates of the extremals are singular at the originwhich are not in W 2,p

0 (Ω).

Therefore it is natural to consider that there exists amissing terms in the right hand side of (7).

A. L. Detalla Missing Terms in Classical Inequalities

Page 98: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OBJECTIVE

A. L. Detalla Missing Terms in Classical Inequalities

Page 99: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OBJECTIVE

To achieve an optimal improvement of inequality (7) byadding sharp terms in the right hand side involving a

singular weight of type(

log 1|x|

)−2

A. L. Detalla Missing Terms in Classical Inequalities

Page 100: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OBJECTIVE

To achieve an optimal improvement of inequality (7) byadding sharp terms in the right hand side involving a

singular weight of type(

log 1|x|

)−2

A. L. Detalla Missing Terms in Classical Inequalities

Page 101: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OBJECTIVE

To achieve an optimal improvement of inequality (7) byadding sharp terms in the right hand side involving a

singular weight of type(

log 1|x|

)−2

Optimal in the sense that the improved inequality holds for

this weight function(

log 1|x|

)−2

but fails for any weight

more singular than this.

A. L. Detalla Missing Terms in Classical Inequalities

Page 102: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

A. L. Detalla Missing Terms in Classical Inequalities

Page 103: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

A. L. Detalla Missing Terms in Classical Inequalities

Page 104: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Noncritical Case(1 < p < n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 105: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Noncritical Case(1 < p < n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 106: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Noncritical Case(1 < p < n2)

There exists C = C(n,R) > 0 such that if R > supΩ |x| andfor any u ∈ W 2,p

0 (Ω),

A. L. Detalla Missing Terms in Classical Inequalities

Page 107: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Noncritical Case(1 < p < n2)

There exists C = C(n,R) > 0 such that if R > supΩ |x| andfor any u ∈ W 2,p

0 (Ω),

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx(11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 108: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

A. L. Detalla Missing Terms in Classical Inequalities

Page 109: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

A. L. Detalla Missing Terms in Classical Inequalities

Page 110: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Critical Case(p = n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 111: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Critical Case(p = n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 112: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Critical Case(p = n2)

There exists K∗ = K∗(n) > 0 and C∗ = C∗(n) > 0 such

that if R > K∗ supΩ |x| and for any u ∈ W2,n

20 (Ω),

A. L. Detalla Missing Terms in Classical Inequalities

Page 113: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

MAIN RESULTS

THEOREM 3 ( A. Detalla, T. Horiuchi and H. Ando(2004))

Let n ≥ 3, 0 ∈ Ω and Ω is a bounded domain in Rn.

Critical Case(p = n2)

There exists K∗ = K∗(n) > 0 and C∗ = C∗(n) > 0 such

that if R > K∗ supΩ |x| and for any u ∈ W2,n

20 (Ω),

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx(12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 114: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 115: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

REMARK 1

In inequality (11) the exponent 2 of the weight function isoptimal.

A. L. Detalla Missing Terms in Classical Inequalities

Page 116: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 117: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

REMARK 2

In inequality (12) the exponent n2of the weight function is

optimal and the constant(

n−2√n

)n

is sharp.

A. L. Detalla Missing Terms in Classical Inequalities

Page 118: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 119: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

REMARK 3

C and C∗ depends on R in a weak sense since(

log R|x|

)−2

and(

log R|x|

)−n2−1

tends to zero as R → ∞.

A. L. Detalla Missing Terms in Classical Inequalities

Page 120: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Noncritical Case(1 < p < n2)

There exists C = C(n,R) > 0 such that if R > supΩ |x| andfor any u ∈ W 2,p

0 (Ω),

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 121: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Noncritical Case(1 < p < n2)

There exists C = C(n,R) > 0 such that if R > supΩ |x| andfor any u ∈ W 2,p

0 (Ω),

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 122: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Noncritical Case(1 < p < n2)

There exists C = C(n,R) > 0 such that if R > supΩ |x| andfor any u ∈ W 2,p

0 (Ω),

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

REMARK 4

At first we prove inequality (11) assuming that

R > e1p supΩ |x| because of technical reason. Namely, the

weight function g(r) = r−2p(

log Rr

)−2should be monotone

decreasing. Then we can extend (11) for any R > supΩ |x|

A. L. Detalla Missing Terms in Classical Inequalities

Page 123: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Critical Case(p = n2): There exists K∗ = K∗(n) > 0 and

C∗ = C∗(n) > 0 such that if R > K∗ supΩ |x|,∫

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 124: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Critical Case(p = n2): There exists K∗ = K∗(n) > 0 and

C∗ = C∗(n) > 0 such that if R > K∗ supΩ |x|,∫

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 125: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Critical Case(p = n2): There exists K∗ = K∗(n) > 0 and

C∗ = C∗(n) > 0 such that if R > K∗ supΩ |x|,∫

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

REMARK 4

In the proof of the critical case (12), we used decreasing

rearrangement argument, hence g∗(r) = r−n(

log Rr

)−n2−1

should be monotone decreasing and R ≥ re12+ 1

n .

A. L. Detalla Missing Terms in Classical Inequalities

Page 126: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Critical Case(p = n2): There exists K∗ = K∗(n) > 0 and

C∗ = C∗(n) > 0 such that if R > K∗ supΩ |x|,∫

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

REMARK 4

In the proof of the critical case (12), we used decreasing

rearrangement argument, hence g∗(r) = r−n(

log Rr

)−n2−1

should be monotone decreasing and R ≥ re12+ 1

n .

A. L. Detalla Missing Terms in Classical Inequalities

Page 127: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Critical Case(p = n2): There exists K∗ = K∗(n) > 0 and

C∗ = C∗(n) > 0 such that if R > K∗ supΩ |x|,∫

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

REMARK 4

In the proof of the critical case (12), we used decreasing

rearrangement argument, hence g∗(r) = r−n(

log Rr

)−n2−1

should be monotone decreasing and R ≥ re12+ 1

n .Moreoverwe need the condition to absorb the error terms in the righthand side of (12) with C∗ > 0, hence K∗ ≥ e

12+ 1

n

A. L. Detalla Missing Terms in Classical Inequalities

Page 128: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n2, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞

A. L. Detalla Missing Terms in Classical Inequalities

Page 129: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n2, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞

A. L. Detalla Missing Terms in Classical Inequalities

Page 130: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n2, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞

If f ∈ Fp, ∃ λ(f) > 0 such that for u ∈ W 2,p0 (Ω)

Ω

|∆u|pdx ≥ Λn,p

Ω

|u(x)|p|x|2p dx+ λ(f)

Ω

|u(x)|pf(x)dx(13)

A. L. Detalla Missing Terms in Classical Inequalities

Page 131: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n2, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞

If f ∈ Fp, ∃ λ(f) > 0 such that for u ∈ W 2,p0 (Ω)

Ω

|∆u|pdx ≥ Λn,p

Ω

|u(x)|p|x|2p dx+ λ(f)

Ω

|u(x)|pf(x)dx(13)

If f /∈ Fp and if |x|2pf(x)(

log 1|x|

)2

tends to ∞ as |x| → 0,

then no inequality of type (13) can hold.A. L. Detalla Missing Terms in Classical Inequalities

Page 132: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

A. L. Detalla Missing Terms in Classical Inequalities

Page 133: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

We use the results to determine exactly when the firsteigenvalue of the weighted eigenvalue problem for theoperator

A. L. Detalla Missing Terms in Classical Inequalities

Page 134: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

We use the results to determine exactly when the firsteigenvalue of the weighted eigenvalue problem for theoperator

A. L. Detalla Missing Terms in Classical Inequalities

Page 135: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

We use the results to determine exactly when the firsteigenvalue of the weighted eigenvalue problem for theoperator

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

A. L. Detalla Missing Terms in Classical Inequalities

Page 136: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

We use the results to determine exactly when the firsteigenvalue of the weighted eigenvalue problem for theoperator

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

will tend to 0 as µ →(

n−2pp

)p (np−n

p

)p

.

A. L. Detalla Missing Terms in Classical Inequalities

Page 137: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

A. L. Detalla Missing Terms in Classical Inequalities

Page 138: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

L∆µis related to the variational problem

A. L. Detalla Missing Terms in Classical Inequalities

Page 139: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

L∆µis related to the variational problem

A. L. Detalla Missing Terms in Classical Inequalities

Page 140: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

L∆µis related to the variational problem

infu∈K

Ω

(

|∆u|p − µ|u|p|x|2p

)

dx

A. L. Detalla Missing Terms in Classical Inequalities

Page 141: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

L∆µis related to the variational problem

infu∈K

Ω

(

|∆u|p − µ|u|p|x|2p

)

dx

where K is given by

A. L. Detalla Missing Terms in Classical Inequalities

Page 142: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

L∆µis related to the variational problem

infu∈K

Ω

(

|∆u|p − µ|u|p|x|2p

)

dx

where K is given by

K =

u ∈ W 2,p(Ω) ∩W 1,p0 (Ω) :

Ω

|u(x)|pf(x)dx = 1

,

f : is a weight function which will be specified later.

A. L. Detalla Missing Terms in Classical Inequalities

Page 143: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

A. L. Detalla Missing Terms in Classical Inequalities

Page 144: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

Consider the weighted eigenvalue problem

L∆µu = λ|u|p−2uf in Ω

u = ∆u = 0 on ∂Ω

A. L. Detalla Missing Terms in Classical Inequalities

Page 145: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

Consider the weighted eigenvalue problem

L∆µu = λ|u|p−2uf in Ω

u = ∆u = 0 on ∂Ω

A. L. Detalla Missing Terms in Classical Inequalities

Page 146: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

Consider the weighted eigenvalue problem

L∆µu = λ|u|p−2uf in Ω

u = ∆u = 0 on ∂Ω

µ →(

n−2pp

)p (np−n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 147: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

Consider the weighted eigenvalue problem

L∆µu = λ|u|p−2uf in Ω

u = ∆u = 0 on ∂Ω

µ →(

n−2pp

)p (np−n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 148: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

L∆µu = ∆

(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u

Consider the weighted eigenvalue problem

L∆µu = λ|u|p−2uf in Ω

u = ∆u = 0 on ∂Ω

µ →(

n−2pp

)p (np−n

p

)p

The expression L∆µu = λ|u|p−2uf is related to the

improved Rellich inequality.

A. L. Detalla Missing Terms in Classical Inequalities

Page 149: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

REARRANGEMENT

For a domain Ω we define a ball Ω∗ such that |Ω∗| = |Ω|with center at the origin.

A. L. Detalla Missing Terms in Classical Inequalities

Page 150: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

REARRANGEMENT

For a domain Ω we define a ball Ω∗ such that |Ω∗| = |Ω|with center at the origin.

A. L. Detalla Missing Terms in Classical Inequalities

Page 151: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

REARRANGEMENT

For a domain Ω we define a ball Ω∗ such that |Ω∗| = |Ω|with center at the origin.

u∗(x) : spherically symmetric decreasing rearrangement offunction u(x)

A. L. Detalla Missing Terms in Classical Inequalities

Page 152: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

REARRANGEMENT

For a domain Ω we define a ball Ω∗ such that |Ω∗| = |Ω|with center at the origin.

u∗(x) : spherically symmetric decreasing rearrangement offunction u(x)

u∗(x) = inf

t ≥ 0 : µ(t) < B|x|n

in Ω∗

µ(t) = |x ∈ Ω : |u(x)| > t|

B: Volume of unit ball

A. L. Detalla Missing Terms in Classical Inequalities

Page 153: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

LEMMA (Talente)

Let f ∈ C∞0 (Ω). If u is a solution of

−∆u = f in Ω

u = 0 on ∂Ω

and v is a solution of

−∆v = f ∗ in Ω∗

v = 0 on ∂Ω∗

⇒v≥ u∗.

A. L. Detalla Missing Terms in Classical Inequalities

Page 154: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

From this lemma we can show that∫

Ω

|∆u|pdx =

Ω∗

|∆v|pdx

Ω

|u|p|x|2pdx ≤

Ω∗

|v|p|x|2pdx

A. L. Detalla Missing Terms in Classical Inequalities

Page 155: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

From this lemma we can show that∫

Ω

|∆u|pdx =

Ω∗

|∆v|pdx

Ω

|u|p|x|2pdx ≤

Ω∗

|v|p|x|2pdx

A. L. Detalla Missing Terms in Classical Inequalities

Page 156: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

From this lemma we can show that∫

Ω

|∆u|pdx =

Ω∗

|∆v|pdx

Ω

|u|p|x|2pdx ≤

Ω∗

|v|p|x|2pdx

Hence we have∫

Ω|∆u|pdx

Ω|u|p|x|2pdx

≥∫

Ω∗ |∆v|pdx∫

Ω∗

|v|p|x|2pdx

A. L. Detalla Missing Terms in Classical Inequalities

Page 157: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

From this lemma we can show that∫

Ω

|∆u|pdx =

Ω∗

|∆v|pdx

Ω

|u|p|x|2pdx ≤

Ω∗

|v|p|x|2pdx

Hence we have∫

Ω|∆u|pdx

Ω|u|p|x|2pdx

≥∫

Ω∗ |∆v|pdx∫

Ω∗

|v|p|x|2pdx

From this we can assume that u is radial and Ω is a ball.

A. L. Detalla Missing Terms in Classical Inequalities

Page 158: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

ASSUMPTIONS

Ω : unit ball B1

u : radially nonincreasing,

−∆u > 0

u > 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 159: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

1. Noncritical Case(1 < p < n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 160: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

1. Noncritical Case(1 < p < n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 161: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

1. Noncritical Case(1 < p < n2)

1a) We prove inequality (11)

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 162: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

1. Noncritical Case(1 < p < n2)

1a) We prove inequality (11)

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

1b) We show the sharpness of(

n−2pp

)p (np−n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 163: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

1. Noncritical Case(1 < p < n2)

1a) We prove inequality (11)

Ω

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

Ω

|u(x)|p|x|2p dx

+ C

Ω

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

1b) We show the sharpness of(

n−2pp

)p (np−n

p

)p

1c) We show the optimality of the exponent 2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 164: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

2. Critical Case(p = n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 165: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

2. Critical Case(p = n2)

A. L. Detalla Missing Terms in Classical Inequalities

Page 166: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

2. Critical Case(p = n2)

2a) We prove inequality (12)

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 167: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

2. Critical Case(p = n2)

2a) We prove inequality (12)

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

2b) We show the sharpness of(

n−2√n

)n

A. L. Detalla Missing Terms in Classical Inequalities

Page 168: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

OUTLINE OF THE PROOF

2. Critical Case(p = n2)

2a) We prove inequality (12)

Ω

|∆u|n2 dx ≥(

n− 2√n

)n ∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

Ω

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

2b) We show the sharpness of(

n−2√n

)n

2c) We show the optimality of the exponent n2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 169: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

LEMMA 2

For any R > 1, q ≤ 0, ν ∈ (0, 1) satisfying 2ν − 1 + q = 0

∫ 1

0

|h′(r)|2(

logR

r

)q

rdr ≥ ν2

∫ 1

0

|h(r)|2(

logR

r

)q−2dr

r(14)

holds for any h ∈ C([0, 1]) ∩ C1(0, 1), with h(0) = h(1) = 0.

A. L. Detalla Missing Terms in Classical Inequalities

Page 170: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

For u ∈ C20(B1), u > 0, radially nonincreasing , we define

v(r) = u(r)rnp−2 r = |x|.

then apply this to

A. L. Detalla Missing Terms in Classical Inequalities

Page 171: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

For u ∈ C20(B1), u > 0, radially nonincreasing , we define

v(r) = u(r)rnp−2 r = |x|.

then apply this to

A. L. Detalla Missing Terms in Classical Inequalities

Page 172: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

For u ∈ C20(B1), u > 0, radially nonincreasing , we define

v(r) = u(r)rnp−2 r = |x|.

then apply this to

B1

|∆u|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

we get

A. L. Detalla Missing Terms in Classical Inequalities

Page 173: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

B1

|∆u|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

≥ 4ωn

α

(

n− 2p

p

)p(np− n

p

)p(p− 1

p

)∫ 1

0

|(

vn2 (r)

)′ |2rdr

By Lemma 2(

v = 12, q = 0

)

A. L. Detalla Missing Terms in Classical Inequalities

Page 174: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

B1

|∆u|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

≥ 4ωn

α

(

n− 2p

p

)p(np− n

p

)p(p− 1

p

)∫ 1

0

|(

vn2 (r)

)′ |2rdr

By Lemma 2(

v = 12, q = 0

)

A. L. Detalla Missing Terms in Classical Inequalities

Page 175: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

B1

|∆u|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

≥ 4ωn

α

(

n− 2p

p

)p(np− n

p

)p(p− 1

p

)∫ 1

0

|(

vn2 (r)

)′ |2rdr

By Lemma 2(

v = 12, q = 0

)

LEMMA 2

∫ 1

0

|h′(r)|2(

logR

r

)q

rdr ≥ ν2

∫ 1

0

|h(r)|2(

logR

r

)q−2dr

r

A. L. Detalla Missing Terms in Classical Inequalities

Page 176: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

we get

B1

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

+ C

B1

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 177: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

we get

B1

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

+ C

B1

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

A. L. Detalla Missing Terms in Classical Inequalities

Page 178: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1a) PROOF OF INEQUALITY (11)

we get

B1

|∆u|pdx ≥(

n− 2p

p

)p(np− n

p

)p ∫

B1

|u(x)|p|x|2p dx

+ C

B1

|u(x)|p|x|2p

(

logR

|x|

)−2

dx (11)

where C =(

n−2pp

)p (np−n

p

)p (p−1p

)

A. L. Detalla Missing Terms in Classical Inequalities

Page 179: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

For ǫ > 0 sufficiently small, let us define

uǫ =

0, 0 < r < ǫ2

log r

ǫ2

rn−pp log 1

ǫ

, ǫ2 < r < ǫ

log 1r

rn−pp log 1

ǫ

, ǫ < r < 1

A. L. Detalla Missing Terms in Classical Inequalities

Page 180: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Let wǫ =∫ 1

ruǫ(ρ)dρ. Direct calculation gives

A. L. Detalla Missing Terms in Classical Inequalities

Page 181: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Let wǫ =∫ 1

ruǫ(ρ)dρ. Direct calculation gives

A. L. Detalla Missing Terms in Classical Inequalities

Page 182: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Let wǫ =∫ 1

ruǫ(ρ)dρ. Direct calculation gives

wǫ =

(

p

n−2p

)21−2ǫ

2−np +ǫ

2(2−np )

log 1ǫ

, 0 < r < ǫ2

p

n−2p

r2−n

p log r

ǫ2

log 1ǫ

+(

p

n−2p

)21−2ǫ

2−np +r

2−np

log 1ǫ

, ǫ2 < r < ǫ

p

n−2p

r2−n

p log 1r

log 1ǫ

+(

p

n−2p

)21−r

2−np

log 1ǫ

, ǫ < r < 1

A. L. Detalla Missing Terms in Classical Inequalities

Page 183: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

∆wǫ =

0, 0 < r < ǫ2

1p

r−np

(

−p+ n(1− p) log rǫ2

)

(

log 1ǫ

)−1, ǫ2 < r < ǫ

1p

r−np

(

p+ n(1− p) log 1r

)

(

log 1ǫ

)−1, ǫ < r < 1

A. L. Detalla Missing Terms in Classical Inequalities

Page 184: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Direct calculation gives

A. L. Detalla Missing Terms in Classical Inequalities

Page 185: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Direct calculation gives

A. L. Detalla Missing Terms in Classical Inequalities

Page 186: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Direct calculation gives

B1

|∆wǫ|pdx =2

p+ 1

(

n(p− 1)

p

)p

ωn log1

ǫ+O

(

(

log1

ǫ

)−1)

B1

|wǫ|p|x|2p dx ≥ 2

p+ 1

(

p

n− 2p

)p

ωn log1

ǫ+O

(

(

log1

ǫ

)−1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 187: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

B1

|∆wǫ|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B

|wǫ|p|x|2p dx

≤ O

(

(

log1

ǫ

)−1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 188: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

B1

|∆wǫ|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B

|wǫ|p|x|2p dx

≤ O

(

(

log1

ǫ

)−1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 189: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

B1

|∆wǫ|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B

|wǫ|p|x|2p dx

≤ O

(

(

log1

ǫ

)−1)

and

A. L. Detalla Missing Terms in Classical Inequalities

Page 190: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

B1

|∆wǫ|pdx−(

n− 2p

p

)p(np− n

p

)p ∫

B

|wǫ|p|x|2p dx

≤ O

(

(

log1

ǫ

)−1)

and∫

B1

|wǫ|p|x|2p

(

logR

|x|

)−γ

≥ O

(

(

log1

ǫ

)1−γ)

A. L. Detalla Missing Terms in Classical Inequalities

Page 191: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1b. SHARPNESS OF(

n−2pp

)p (np−n

p

)p

limǫ→0

I(wǫ) = limǫ→0

B1|∆wǫ|pdx

B1

|wǫ|p|x|2p dx

≤(

n− 2p

p

)p(np− n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 192: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1b. SHARPNESS OF(

n−2pp

)p (np−n

p

)p

limǫ→0

I(wǫ) = limǫ→0

B1|∆wǫ|pdx

B1

|wǫ|p|x|2p dx

≤(

n− 2p

p

)p(np− n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 193: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1b. SHARPNESS OF(

n−2pp

)p (np−n

p

)p

limǫ→0

I(wǫ) = limǫ→0

B1|∆wǫ|pdx

B1

|wǫ|p|x|2p dx

≤(

n− 2p

p

)p(np− n

p

)p

But by Rellich inequality

limǫ→0

I(wǫ) ≥(

n− 2p

p

)p(np− n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 194: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1b. SHARPNESS OF(

n−2pp

)p (np−n

p

)p

limǫ→0

I(wǫ) = limǫ→0

B1|∆wǫ|pdx

B1

|wǫ|p|x|2p dx

≤(

n− 2p

p

)p(np− n

p

)p

But by Rellich inequality

limǫ→0

I(wǫ) ≥(

n− 2p

p

)p(np− n

p

)p

hence

limǫ→0

I(wǫ) =

(

n− 2p

p

)p(np− n

p

)p

A. L. Detalla Missing Terms in Classical Inequalities

Page 195: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 196: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 197: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2. Optimality will follow if we can showfor a unit ball B1 that inf

u∈W 2,p0 (B1)\0

Iγ(u) = 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 198: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2. Optimality will follow if we can showfor a unit ball B1 that inf

u∈W 2,p0 (B1)\0

Iγ(u) = 0 where

Iγ(u) =

B1|∆u|pdx−

(

n−2pp

)p (np−n

p

)p∫

B1

|u|p|x|2pdx

B1

|u|p|x|2p

(

log R|x|

)−γ

dx

A. L. Detalla Missing Terms in Classical Inequalities

Page 199: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2. Optimality will follow if we can showfor a unit ball B1 that inf

u∈W 2,p0 (B1)\0

Iγ(u) = 0 where

Iγ(u) =

B1|∆u|pdx−

(

n−2pp

)p (np−n

p

)p∫

B1

|u|p|x|2pdx

B1

|u|p|x|2p

(

log R|x|

)−γ

dx

Hence using a family wǫ ∈ W 2,p0 (B1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 200: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2. Optimality will follow if we can showfor a unit ball B1 that inf

u∈W 2,p0 (B1)\0

Iγ(u) = 0 where

Iγ(u) =

B1|∆u|pdx−

(

n−2pp

)p (np−n

p

)p∫

B1

|u|p|x|2pdx

B1

|u|p|x|2p

(

log R|x|

)−γ

dx

Hence using a family wǫ ∈ W 2,p0 (B1) we have

limǫ→0 Iγ(wǫ) = 0.

A. L. Detalla Missing Terms in Classical Inequalities

Page 201: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

1c. OPTIMALITY OF THE EXPONENT 2

Assume 0 < γ < 2. Optimality will follow if we can showfor a unit ball B1 that inf

u∈W 2,p0 (B1)\0

Iγ(u) = 0 where

Iγ(u) =

B1|∆u|pdx−

(

n−2pp

)p (np−n

p

)p∫

B1

|u|p|x|2pdx

B1

|u|p|x|2p

(

log R|x|

)−γ

dx

Hence using a family wǫ ∈ W 2,p0 (B1) we have

limǫ→0 Iγ(wǫ) = 0. Thus optimality follow. i.e. γ ≥ 2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 202: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

LEMMA 3

Assume f ∈ C2(B1) and u ∈ C20(B1) are radial satisfying

f(r) > 0,∆f(r) ≤ 0, u(r) > 0, and −∆u > 0 where r = |x|.Set u(r) = f(r)v(r), then for any u ∈ C2

0(B1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 203: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

LEMMA 3

B1

|∆u|n2 dx ≥

n(n− 2)

4ωn

∫ 1

0

(v′(r))2v

n−42 (r)rn−1|∆f(r)|n−2

2 f(r)dr

+ ωn

∫ 1

0

vn2 (r)

rn−1|∆f(r)|n2 +

∂r

[

rn−1

(

|∆f(r)|n−22 f ′(r)− ∂r|∆f(r)|n−2

2 f(r)

)]

dr

A. L. Detalla Missing Terms in Classical Inequalities

Page 204: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

From Lemma 3, we denote

S1 =n(n− 2)

4ωn

∫ 1

0

(v′(r))2v

n−42 (r)rn−1|∆f(r)|n−2

2 f(r)dr

and

S2 =ωn

∫ 1

0

vn2 (r)

rn−1|∆f(r)|n2 +

∂r

[

rn−1

(

|∆f(r)|n−22 f ′(r)− ∂r|∆f(r)|n−2

2 f(r)

)]

dr

A. L. Detalla Missing Terms in Classical Inequalities

Page 205: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

Then∫

B1|∆u|n2 dx ≥ S1 + S2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 206: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

Then∫

B1|∆u|n2 dx ≥ S1 + S2.

A. L. Detalla Missing Terms in Classical Inequalities

Page 207: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

Then∫

B1|∆u|n2 dx ≥ S1 + S2. For f(r) =

(

log Rr

)a,

0 < a < 1

A. L. Detalla Missing Terms in Classical Inequalities

Page 208: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

Then∫

B1|∆u|n2 dx ≥ S1 + S2. For f(r) =

(

log Rr

)a,

0 < a < 1

S1 ≥a

n−22 (1− a)2(n− 2)

n2

4ωn

∫ 1

0

un2

(

logR

r

)−n2−1

dr

r

S2 ≥a

n−22 (1− a)(n− 2)

n2+1

2ωn

∫ 1

0

un2

(

logR

r

)−n2

(

1 +O

(

logR

r

)−2)

dr

r

A. L. Detalla Missing Terms in Classical Inequalities

Page 209: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

Then∫

B1|∆u|n2 dx ≥ S1 + S2. For f(r) =

(

log Rr

)a,

0 < a < 1

S1 ≥a

n−22 (1− a)2(n− 2)

n2

4ωn

∫ 1

0

un2

(

logR

r

)−n2−1

dr

r

S2 ≥a

n−22 (1− a)(n− 2)

n2+1

2ωn

∫ 1

0

un2

(

logR

r

)−n2

(

1 +O

(

logR

r

)−2)

dr

r

set Q(a) = an−22 (1− a),

A. L. Detalla Missing Terms in Classical Inequalities

Page 210: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

Then∫

B1|∆u|n2 dx ≥ S1 + S2. For f(r) =

(

log Rr

)a,

0 < a < 1

S1 ≥a

n−22 (1− a)2(n− 2)

n2

4ωn

∫ 1

0

un2

(

logR

r

)−n2−1

dr

r

S2 ≥a

n−22 (1− a)(n− 2)

n2+1

2ωn

∫ 1

0

un2

(

logR

r

)−n2

(

1 +O

(

logR

r

)−2)

dr

r

set Q(a) = an−22 (1− a), Q takes its maximum at a = n−2

2

A. L. Detalla Missing Terms in Classical Inequalities

Page 211: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

B1

|∆u|n2 dx ≥(

n− 2√n

)n ∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 212: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

B1

|∆u|n2 dx ≥(

n− 2√n

)n ∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

A. L. Detalla Missing Terms in Classical Inequalities

Page 213: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

B1

|∆u|n2 dx ≥(

n− 2√n

)n ∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

where C∗ =(

n−2√n

)n (

(n− 2)−1 − k(logR)−1)

A. L. Detalla Missing Terms in Classical Inequalities

Page 214: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

B1

|∆u|n2 dx ≥(

n− 2√n

)n ∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

where C∗ =(

n−2√n

)n (

(n− 2)−1 − k(logR)−1)

> 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 215: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2a. PROOF OF INEQUALITY (12)

B1

|∆u|n2 dx ≥(

n− 2√n

)n ∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2

dx

+ C∗∫

B1

|u(x)|n2|x|n

(

logR

|x|

)−n2−1

dx (12)

where C∗ =(

n−2√n

)n (

(n− 2)−1 − k(logR)−1)

> 0 if

R > e(n−2)k, k = k(n)

A. L. Detalla Missing Terms in Classical Inequalities

Page 216: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2b. SHARPNESS OF(

n−2√n

)n

To show sharpness, we use the test function

zǫ =

(

log1

r + ǫ

)n−2n

−(

log1

1 + ǫ

)n−2n

A. L. Detalla Missing Terms in Classical Inequalities

Page 217: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2b. SHARPNESS OF(

n−2√n

)n

To show sharpness, we use the test function

zǫ =

(

log1

r + ǫ

)n−2n

−(

log1

1 + ǫ

)n−2n

A. L. Detalla Missing Terms in Classical Inequalities

Page 218: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2b. SHARPNESS OF(

n−2√n

)n

To show sharpness, we use the test function

zǫ =

(

log1

r + ǫ

)n−2n

−(

log1

1 + ǫ

)n−2n

then we can show

limǫ→0

B1|∆zǫ|

n2 dx

B1

|zǫ|n2

|x|n

(

log R|x|

)−n2dx

=

(

n− 2√n

)n

A. L. Detalla Missing Terms in Classical Inequalities

Page 219: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

2c. OPTIMALITY OF THE EXPONENT n2

We use the same test function uǫ with p = n2, and

wǫ =∫ 1

ruǫ(ρ)dρ. Then for 0 < γ < n

2

limǫ→0

B1|∆wǫ|

n2 dx

B1

|wǫ|n2

|x|n

(

log R|x|

dx= 0

Thus optimality follow. i.e. γ ≥ n2

A. L. Detalla Missing Terms in Classical Inequalities

Page 220: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

APPLICATION

Consider the weighted eigenvalue problem with a singularweight

∆(

|∆u|p−2∆u)

− µ

|x|2p |u|p−2u = λ|u|p−2uf in Ω

u = ∆u = 0 on ∂Ω (15)

Here f ∈ Fp

Fp =

f : Ω → R+| lim

|x|→0|x|2pf(x) = 0, f ∈ L∞

loc

(

Ω \ 0)

,

1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

and λ ∈ R.

A. L. Detalla Missing Terms in Classical Inequalities

Page 221: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

We look for a weak solution

u ∈ W = W 2,p(Ω) ∩W 1,p0 (Ω)

of problem ♯15 and study the asymptotic behaviour of thefirst eigenvalues for different singular weights as µ increases

to(

n−2pp

)p (np−n

p

)p

.

A. L. Detalla Missing Terms in Classical Inequalities

Page 222: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

We look for a weak solution

u ∈ W = W 2,p(Ω) ∩W 1,p0 (Ω)

of problem ♯15 and study the asymptotic behaviour of thefirst eigenvalues for different singular weights as µ increases

to(

n−2pp

)p (np−n

p

)p

.

Definition

u ∈ W is said to be a weak solution of (15) iff for anyφ ∈ C2(Ω) with φ = 0 on ∂Ω

Ω

(

|∆u|p−2∆u∆φ− µ

|x|2p |u|p−2uφ

)

dx = λ

Ω

|u|p−2ufφdx.

A. L. Detalla Missing Terms in Classical Inequalities

Page 223: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

LEMMA

For u ∈ W ∃ v ∈ W such that v > 0 and satisfies

Ω|∆u|pdx− λ

Ω|u|p|x|2pdx

Ω|u|pfdx ≥

Ω|∆v|pdx− λ

Ω|v|p|x|2pdx

Ω|v|pfdx .

A. L. Detalla Missing Terms in Classical Inequalities

Page 224: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

LEMMA

For u ∈ W ∃ v ∈ W such that v > 0 and satisfies

Ω|∆u|pdx− λ

Ω|u|p|x|2pdx

Ω|u|pfdx ≥

Ω|∆v|pdx− λ

Ω|v|p|x|2pdx

Ω|v|pfdx .

REMARK

Since λ is first eigenvalue and u is the correspondingeigenfunction, by using the above lemma, we can assumeu > 0 in Ω. Then by the elliptic regularity theory, u issmooth near the boundary. From the definition of weaksolution one can derive the boundary condition of (15) byusing integration by parts.

A. L. Detalla Missing Terms in Classical Inequalities

Page 225: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM

For all 1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

, the above

problem ♯15 admits a positive weak solution u ∈ Wcorresponding to the first eigenvalue λ = λ1

µ(f) > 0.

A. L. Detalla Missing Terms in Classical Inequalities

Page 226: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM

For all 1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

, the above

problem ♯15 admits a positive weak solution u ∈ Wcorresponding to the first eigenvalue λ = λ1

µ(f) > 0.

A. L. Detalla Missing Terms in Classical Inequalities

Page 227: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM

For all 1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

, the above

problem ♯15 admits a positive weak solution u ∈ Wcorresponding to the first eigenvalue λ = λ1

µ(f) > 0.

Moreover, as µ →(

n−2pp

)p (np−n

p

)p

,

A. L. Detalla Missing Terms in Classical Inequalities

Page 228: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM

For all 1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

, the above

problem ♯15 admits a positive weak solution u ∈ Wcorresponding to the first eigenvalue λ = λ1

µ(f) > 0.

Moreover, as µ →(

n−2pp

)p (np−n

p

)p

,

If lim sup|x|→0

|x|2pf(x) = 0, ⇒ λ1µ(f) → λ(f) ≥ 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 229: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM

For all 1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

, the above

problem ♯15 admits a positive weak solution u ∈ Wcorresponding to the first eigenvalue λ = λ1

µ(f) > 0.

Moreover, as µ →(

n−2pp

)p (np−n

p

)p

,

If lim sup|x|→0

|x|2pf(x) = 0, ⇒ λ1µ(f) → λ(f) ≥ 0

If lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞, ⇒ λ(f) > 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 230: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THEOREM

For all 1 < p < n2, 0 ≤ µ <

(

n−2pp

)p (np−n

p

)p

, the above

problem ♯15 admits a positive weak solution u ∈ Wcorresponding to the first eigenvalue λ = λ1

µ(f) > 0.

Moreover, as µ →(

n−2pp

)p (np−n

p

)p

,

If lim sup|x|→0

|x|2pf(x) = 0, ⇒ λ1µ(f) → λ(f) ≥ 0

If lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞, ⇒ λ(f) > 0

If lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

= ∞, ⇒ λ(f) = 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 231: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

REMARK

In the proof of the theorem u will be characterize as asolution of variational problem defined by

Jµ(u) =

Ω

(

|∆u|p − µ|u|p|x|2p

)

dx

and the problem (♯15) stated earlier becomes Euler-Lagrange equation of this variational problem.

A. L. Detalla Missing Terms in Classical Inequalities

Page 232: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

A. L. Detalla Missing Terms in Classical Inequalities

Page 233: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

A. L. Detalla Missing Terms in Classical Inequalities

Page 234: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

We define Jµ(u) =∫

Ω

(

|∆u|p − µ |u|p|x|2p

)

dx

A. L. Detalla Missing Terms in Classical Inequalities

Page 235: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

We define Jµ(u) =∫

Ω

(

|∆u|p − µ |u|p|x|2p

)

dx

A. L. Detalla Missing Terms in Classical Inequalities

Page 236: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

We define Jµ(u) =∫

Ω

(

|∆u|p − µ |u|p|x|2p

)

dx

We minimize Jµ over M = u ∈ W |∫

Ω|u(x)|pf(x)dx = 1

and let λ1µ > 0 be the infimum.

A. L. Detalla Missing Terms in Classical Inequalities

Page 237: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

We define Jµ(u) =∫

Ω

(

|∆u|p − µ |u|p|x|2p

)

dx

We minimize Jµ over M = u ∈ W |∫

Ω|u(x)|pf(x)dx = 1

and let λ1µ > 0 be the infimum.

A. L. Detalla Missing Terms in Classical Inequalities

Page 238: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

We define Jµ(u) =∫

Ω

(

|∆u|p − µ |u|p|x|2p

)

dx

We minimize Jµ over M = u ∈ W |∫

Ω|u(x)|pf(x)dx = 1

and let λ1µ > 0 be the infimum.

We choose minimizing sequence (um)m∈N ⊂ M such thatJµ(um) → λ1

µ.

A. L. Detalla Missing Terms in Classical Inequalities

Page 239: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

A. L. Detalla Missing Terms in Classical Inequalities

Page 240: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

A. L. Detalla Missing Terms in Classical Inequalities

Page 241: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

For a subsequence umkof um, umk

u weakly in W whereu ∈ W ∩M and

Jµ(umk) → λ1

µ = λ

J ′µ(umk

) → 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 242: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

For a subsequence umkof um, umk

u weakly in W whereu ∈ W ∩M and

Jµ(umk) → λ1

µ = λ

J ′µ(umk

) → 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 243: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

For a subsequence umkof um, umk

u weakly in W whereu ∈ W ∩M and

Jµ(umk) → λ1

µ = λ

J ′µ(umk

) → 0

By Fatou’s lemma, we get

umk→ u strongly in W

umk→ u strongly in Lp (Ω, |x|−2p)

A. L. Detalla Missing Terms in Classical Inequalities

Page 244: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

A. L. Detalla Missing Terms in Classical Inequalities

Page 245: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

A. L. Detalla Missing Terms in Classical Inequalities

Page 246: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 247: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 248: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

u satisfies Euler- Lagrange equation in a distribution sense.

A. L. Detalla Missing Terms in Classical Inequalities

Page 249: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

u satisfies Euler- Lagrange equation in a distribution sense.

A. L. Detalla Missing Terms in Classical Inequalities

Page 250: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

u satisfies Euler- Lagrange equation in a distribution sense.

Since u ∈ W , it is a weak solution of problem (♯15).

A. L. Detalla Missing Terms in Classical Inequalities

Page 251: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

u satisfies Euler- Lagrange equation in a distribution sense.

Since u ∈ W , it is a weak solution of problem (♯15).

A. L. Detalla Missing Terms in Classical Inequalities

Page 252: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

SKETCH OF THE PROOF OF THE THEOREM

Hence

Jµ(umk) → Jµ(u) = λ1

µ = λ

J ′µ(umk

) = 0

u satisfies Euler- Lagrange equation in a distribution sense.

Since u ∈ W , it is a weak solution of problem (♯15).

The remaining part of the proof follows from the corollaryof the main theorem.

A. L. Detalla Missing Terms in Classical Inequalities

Page 253: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

Corollary

Let 1 < p < n2, and let

Fp =

f : Ω → R+|f ∈ L∞

loc(Ω \ 0) with

lim sup|x|→0

|x|2pf(x)(

log1

|x|

)2

< ∞

If f ∈ Fp, ∃ λ(f) > 0 such that for u ∈ W 2,p0 (Ω)

Ω

|∆u|pdx ≥ Λn,p

Ω

|u(x)|p|x|2p dx+λ(f)

Ω

|u(x)|pf(x)dx (13)

If f /∈ Fp and if |x|2pf(x)(

log 1|x|

)2

tends to ∞ as |x| → 0,

then no inequality of type (13) can hold.A. L. Detalla Missing Terms in Classical Inequalities

Page 254: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

As µ →(

n−2pp

)p (np−n

p

)p

, λ1µ → λ(f) where

A. L. Detalla Missing Terms in Classical Inequalities

Page 255: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

As µ →(

n−2pp

)p (np−n

p

)p

, λ1µ → λ(f) where

A. L. Detalla Missing Terms in Classical Inequalities

Page 256: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

As µ →(

n−2pp

)p (np−n

p

)p

, λ1µ → λ(f) where

λ(f) = infu∈W (Ω\0)

Ω

(

|∆u|p −(

n−2pp

)p (np−n

p

)p |u|p|x|2p

)

dx∫

Ω|u|pfdx ≥ 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 257: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

As µ →(

n−2pp

)p (np−n

p

)p

, λ1µ → λ(f) where

λ(f) = infu∈W (Ω\0)

Ω

(

|∆u|p −(

n−2pp

)p (np−n

p

)p |u|p|x|2p

)

dx∫

Ω|u|pfdx ≥ 0

if f ∈ Fp ⇒ λ(f) > 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 258: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

As µ →(

n−2pp

)p (np−n

p

)p

, λ1µ → λ(f) where

λ(f) = infu∈W (Ω\0)

Ω

(

|∆u|p −(

n−2pp

)p (np−n

p

)p |u|p|x|2p

)

dx∫

Ω|u|pfdx ≥ 0

if f ∈ Fp ⇒ λ(f) > 0if f 6= Fp ⇒ λ(f) = 0

A. L. Detalla Missing Terms in Classical Inequalities

Page 259: Al Detalla Theory

INTRODUCTIONIMPROVED HARDY-SOBOLEV INEQUALITIES

IMPROVED RELLICH INEQUALITIES

THANK YOU VERY MUCH!

A. L. Detalla Missing Terms in Classical Inequalities