Top Banner

AKM Sampling

May 18, 2017



Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Page 1: AKM Sampling


Page 2: AKM Sampling

Fundamental Statistical Terminologies

A measurement is considered to be accurate if the difference between the measured value and the true value falls within an acceptable margin.

How do we know the true value? We rely on statistics therefore.

A random error (or variation) on average, over a period of time, tend to zero whereas integrated systematic errors result in a net positive or negative value

Page 3: AKM Sampling

• The bias is the difference between the true value and the average of a

number of experimental values and hence is the same as the systematic error. • The variance between repeated samples is a measure of precision or

reproducibility. • The difference between the mean of a series of repeat samples and the true

value is a measure of accuracy

Page 4: AKM Sampling

Mode and median are measures of the central value of a distribution. The mode forms the peak of the frequency distribution, while the median divides the total number of measurements into two equal sets of data. If the frequency distribution is symmetrical, then its mean, mode and median coincide.

Symmetrical Distribution Asymmetrical Distribution

Page 5: AKM Sampling

The variance, and its derived parameters such as the standard deviation and the coefficient of variation, are the most important measures for variability between test results.

The classical formula for the calculation of the variance is:

where n = number of measurementsn-l = degrees of freedom

The standard deviation, a, is the square root of the variance.

Another important term is confidence interval

Page 6: AKM Sampling

What is Sampling ?What is Sampling ?

• Procedure by which some members of a Procedure by which some members of a population are selected as representative population are selected as representative of the entire populationof the entire population

• The sub-group thus selected to represent The sub-group thus selected to represent the whole population is known as SAMPLEthe whole population is known as SAMPLE

Page 7: AKM Sampling

Methods Of SamplingMethods Of Sampling• Several methods are used to ascertain a Several methods are used to ascertain a

particular aspect of the population, through particular aspect of the population, through an unbiased sample drawn from the an unbiased sample drawn from the populationpopulation

Sampling is divided in two categoriesSampling is divided in two categories• 1. Probability Sampling1. Probability Sampling• 2. Non-probability Sampling 2. Non-probability Sampling

Page 8: AKM Sampling

Probability samplingProbability sampling

• It is any method of sampling that utilizes It is any method of sampling that utilizes some form of some form of random selectionrandom selection

• The procedure should assure that the The procedure should assure that the different units in the population have different units in the population have equal probabilities of being chosen.equal probabilities of being chosen.

Page 9: AKM Sampling

Non probability samplingNon probability sampling

• It does not involve It does not involve randomrandom selection selection • May or may not represent the population May or may not represent the population

well well • Used when researcher lacks a sampling Used when researcher lacks a sampling

frame for the populationframe for the population

Page 10: AKM Sampling

Probability samplingProbability sampling

Includes: Includes: • Simple Random MethodSimple Random Method• Systematic Sampling Systematic Sampling • Stratified SamplingStratified Sampling• Cluster SamplingCluster Sampling• Multistage SamplingMultistage Sampling

Page 11: AKM Sampling

Nonprobability SamplingNonprobability Sampling

Includes :Includes :• Accidental SamplingAccidental Sampling• Voluntary SamplingVoluntary Sampling• Purposive SamplingPurposive Sampling• Quota SamplingQuota Sampling

Page 12: AKM Sampling

Importance of Sampling in Metallurgical Accounting

Page 13: AKM Sampling
Page 14: AKM Sampling
Page 15: AKM Sampling
Page 16: AKM Sampling
Page 17: AKM Sampling
Page 18: AKM Sampling
Page 19: AKM Sampling
Page 20: AKM Sampling
Page 21: AKM Sampling



Primary Secondary Analysis Resultsample sample

s1 s2 s3 sx

Propagation of errors:


GOAL: x =

2ix ss

%5.5(%)30%)1(%)2(%)5( 2222 xs

Analytical process usually contains several sampling and sample preparation steps

Page 22: AKM Sampling

Error components of analytical determination according to P.Gy

Global Estimation Error GEE

Total Sampling ErrorTSE

Point Selection ErrorPSE

Total Analytical ErrorTAE

Point Materialization ErrorPME

Weighting ErrorSWE

Increment Delimi-tation Error


Long Range Point Selection Error


Periodic Point Selection Error


Fundamental Sampling Error


Grouping and Segregation Error


Increment Extraction ErrorIXE

Increment and SamplePreparation Error



Page 23: AKM Sampling

Weighting error Sample No.

Concentration mg/l

Volume m 3

c·V g

1 6.25 4.58 28.6

2 4.36 3.71 16.2 3 5.58 5.20 28.99

4 4.64 5.71 26.48

5 4.86 4 .54 22.08

6 3.65 6.78 24.75

7 3.73 7.12 26.55

8 5.98 5.81 34.76

9 4.96 5.86 29.05

Mean 4.89 5.479 26.39 Sum 44.01 49.3 237.47


Total emission estimate (unweighted):

mmgVcM 241.13479.5/89.499 33

Total emission estimate (weighted):

mmgVcM ww 237.47 g479.5/86.499 33

Weighting error (in concentration): 0.03 mg/l

Weighting error (in total emission): 3.66 g

Weighted mean concentration: = 4.86 mg/l


Page 24: AKM Sampling

Sample delimitation

Incorrect Correct

Page 25: AKM Sampling

Correct design for proportional sampler:correct increment extraction




v = constant 0.6 m/s

if d > 3 mm, b 3d = b0

if d < 3 mm, b 10 mm = b0

d = diameter of largest particlesb0 = minimum opening of the sample cutter

Page 26: AKM Sampling

Incorrect Increment and Sample Preparation

Errors • Contamination (extraneous material in sample)• Losses (adsorption, condensation, precipitation, etc.)• Alteration of chemical composition (preservation)• Alteration of physical composition (agglomeration,

breaking of particles, moisture, etc.)• Involuntary mistakes (mixed sample numbers, lack

of knowledge, negligence)• Deliberate faults (salting of gold ores, deliberate

errors in increment delimitation, forgery, etc.)

Page 27: AKM Sampling

Estimation of Fundamental Sampling Error by Using Poisson Distribution

• Poisson distribution describes the random distribution of rare events in a given interval.

• If n is the number of critical particles in sample, the relative standard deviation expressed as the number of particles is



Page 28: AKM Sampling


Plant Manager: I am producing fine-ground limestone that is used in paper mills for coating printing paper. According to their speci-fication my product must not contain more than 5 particles/tonne particles larger than 5 m. How should I sample my product?

Sampling Expert: That is a bit too general a question. Let’s first define our goal. Would 20 % relative standard deviation for the coarse particles be sufficient?

Plant Manager: Yes.

Sampling Expert: Well, let’s consider the problem. We could use the Poisson distribution to estimate the required sample size. Let’s see:

Page 29: AKM Sampling

The maximum relative standard deviation sr = 20 % = 0.2. From equation 2 we can estimate how many coarse particles there should be in the sample to have this standard deviation


22 rs


If 1 tonne contains 5 coarse particles this result means that the primary sample should be 25 tonnes. This is a good example of an impossible sampling problem. Even though you could take a 25 tonne sample there is no feasible technology to separate and count the coarse particles from it. You shouldn’t try the traditional analytical approach in con-trolling the quality of your product. Instead, if the specification is really sensible, you forget the particle size analyzers and maintain the quality of your product by process technological means, that is, you take care that all equipment are regularly serviced and their high performance maintained to guarantee the product quality.

Plant Manager: Thank you

Page 30: AKM Sampling

d d d d

f= 1 f= 0,524 f= 0,5 f= 0,1

default in most cases

Page 31: AKM Sampling
Page 32: AKM Sampling
Page 33: AKM Sampling

l = (L/d)0.5 l = 1

Page 34: AKM Sampling

Limitations of Gy’s Equation

Page 35: AKM Sampling


l l = 0.4

C = f.g.l.m = 0.5*0.25*0.4*19.3 = 0.97

Page 36: AKM Sampling
Page 37: AKM Sampling

Example 2

Page 38: AKM Sampling
Page 39: AKM Sampling
Page 40: AKM Sampling



What are the analytes to be determined? What kind of estimates are needed?

Average (hour, day, shift, batch, shipment, etc.) Distribution (heterogeneity) of the determinand in the lot Highest or lowest values

Is there available useful a priory information (variance estimates, unit costs)?

Is all the necessary personnel and equipment available? What is the maximum cost or uncertainty level of the investigation?

Page 41: AKM Sampling



Manual vs. automatic sampling Sampling frequency Sample sizes Sampling locations Individual vs. composite samples Sampling strategy

Random selection Stratified random selection Systematic stratified selection


Page 42: AKM Sampling

Plant Sampling – Moving Stream

Page 43: AKM Sampling
Page 44: AKM Sampling

Incorrect Sampling

All these do not collect samples from the full stream

Page 45: AKM Sampling

Reverse Spoon Cutter – Incorrect because of Preferential Losses of Coarse Particles

Page 46: AKM Sampling
Page 47: AKM Sampling

Sampling of smelter products, residues and wastes

Page 48: AKM Sampling
Page 49: AKM Sampling

Sampling from Stationary Situations

Sampling from Stockpiles

Sampling from the side of a stockpile will not provide a representative sample

Page 50: AKM Sampling

Sampling from Ships, Trucks and Wagons

Page 51: AKM Sampling
Page 52: AKM Sampling
Page 53: AKM Sampling

Moisture Sampling

Substantial moisture loss can occur when primary increments are conveyed to the secondary cutter on small open conveyors in sample stations

Page 54: AKM Sampling

Moisture loss can occur when samples are stored in containers for long periods prior to being taken back to the laboratory for moisture determination

Page 55: AKM Sampling

Laboratory Sampling

Grab Sampling

Step 1

Step 2

Page 56: AKM Sampling

Coning and Quartering

Page 57: AKM Sampling

Sample Splitters

Page 58: AKM Sampling

Rotary Riffle

Page 59: AKM Sampling
Page 60: AKM Sampling


Page 61: AKM Sampling
Page 62: AKM Sampling

ISO 13909-2 Guideline for Coal & Coke Samples

Page 63: AKM Sampling
Page 64: AKM Sampling