Top Banner
03 May, 2004 1 DUWIND, section Wind Energy, Faculty CiTG Design of Airfoils for Wind Turbine Blades Ruud van Rooij ([email protected]) Nando Timmer Delft University of Technology The Netherlands
31

Airfoil Design

Mar 26, 2015

Download

Documents

Metin Yilmaz
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Airfoil Design

03 May, 2004 1DUWIND, section Wind Energy, Faculty CiTG

Design of Airfoils for Wind Turbine Blades

Ruud van Rooij([email protected])

Nando Timmer

Delft University of TechnologyThe Netherlands

Page 2: Airfoil Design

03 May, 2004 2DUWIND, section Wind Energy, Faculty CiTG

Delft University of Technology13200 Bsc+ Msc students, 4750 employees

Delft University Wind Energy Research Institute(Coordinator: Section Wind Energy)

Faculties:• Civil Engineering and Geosciences (Wind Energy, Offshore)

http://www.windenergy.citg.tudelft.nl/home/flash/index.html

• Information Technology and Systems (Electrical group)

• Design, Engineering and Production (Systems &Control)

• Aerospace Engineering (Aero, Aeroelastics)

Page 3: Airfoil Design

03 May, 2004 3DUWIND, section Wind Energy, Faculty CiTG

Section Wind Energy (Civil Engineering and Geosciences => Aerospace Engineering)

Aerodynamic research

- Facilities

open-jetwind tunnel research wind turbine

low speed wind-tunnel

Page 4: Airfoil Design

03 May, 2004 4DUWIND, section Wind Energy, Faculty CiTG

Contents

• Background

• Design goals HAWT airfoils

• Design approach• Performance comparison

• Airfoil testing

• Effect on wind turbine power Cp

• Overview HAWT airfoils

Page 5: Airfoil Design

03 May, 2004 5DUWIND, section Wind Energy, Faculty CiTG

Background

Operational area

High Cp80% of Energy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0 20.0 25.0

W inds speed (m /s)

Pow er

Variable RPMControl: Power restriction

High max. L/DAirfoil: Max. lift considerations

Page 6: Airfoil Design

03 May, 2004 6DUWIND, section Wind Energy, Faculty CiTG

Background

Blade geometry

- High max. L/D- Insensitive to

roughness- Similar design

angle

Airfoil:

- High max. lift(Rot. Effects)

No Aerodynamicdemands

Outboard: t/= .15-18

Mid span: t/= .25

Inboard: t/> .30

Structural:

Transition piece

Page 7: Airfoil Design

03 May, 2004 7DUWIND, section Wind Energy, Faculty CiTG

Background

Effect of rotation

RFOIL code

• Integral boundary layer eq.

• Extended for radial flow• Radial equations• Cross flow profile

parameter is c/r(= local solidity)

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-5.0 0.0 5.0 10.0 15.0 20.0 25.0

Angle (deg.)

cl

DU 91-W2-250Re = 3.0x10e6

2d

mid-span

inboard

Stall delay

Page 8: Airfoil Design

03 May, 2004 8DUWIND, section Wind Energy, Faculty CiTG

Design goals HAWT airfoilssteady

Low noise

.21 >.28 - .21> .28Thickness-to-chord ratio

High maximum lift-to-drag ratio

Structural demands

Geometric compatibility

Insensitivity to roughness

Low max. and benign post stall

Page 9: Airfoil Design

03 May, 2004 9DUWIND, section Wind Energy, Faculty CiTG

Design approach(example DU 91-W2-250)

DU 91-W2-250

NACA 63-425

Main features

S-Tail => Aft-loading

Small upper surface thickness => reduced roughness sensitivity

Page 10: Airfoil Design

03 May, 2004 10DUWIND, section Wind Energy, Faculty CiTG

Design approach(pressure distributions DU 91-W2-250, Re = 3.0x106)

- 4. 0

- 3. 0

- 2. 0

- 1. 0

0. 0

1. 00.0 0.2 0.4 0.6 0.8 1.0x/c

Cp

Separation

Aft-loading

TransitionAlpha= 0.0o

7.0o

11.0o

Low roughness sensitivity=> Transition at nose for Cl_max

Low drag=> Aft transition at Cl_design

Page 11: Airfoil Design

03 May, 2004 11DUWIND, section Wind Energy, Faculty CiTG

-0.50

0.00

0.50

1.00

1.50

0 50 100 150cl/cd

cl

-0.50

0.00

0.50

1.00

1.50

-5.0 0.0 5.0 10.0 15.0 20.0Angle (deg.)

cl

DU 91-W2-250

NACA 63-425Re = 3.0x106

Airfoil design(2d performance)

Design lift

Measurements at LST-TU Delft: Clean

Page 12: Airfoil Design

03 May, 2004 12DUWIND, section Wind Energy, Faculty CiTG

-0.50

0.00

0.50

1.00

1.50

0 30 60 90cl/cd

cl

-0.50

0.00

0.50

1.00

1.50

-5.0 0.0 5.0 10.0 15.0 20.0Angle (deg.)

cl

DU 91-W2-250

NACA 63-425Re = 3.0x106

Airfoil design(2d performance)

Design lift

Measurements at LST-TU Delft: Roughness simulatedZZ-Tape at 5% u.s.

Page 13: Airfoil Design

03 May, 2004 13DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(Low speed low turbulence tunnel)

Test section size 1.80 x 1.25 mMaximum speed 120 m/sTurbulence level 0.015% at 10 m/s

0.07% at 70 m/s

Test section

Page 14: Airfoil Design

03 May, 2004 14DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(effect of leading edge thickness)

-0.4

0

0.4

0.8

1.2

1.6

-5 0 5 10 15 20 25 30 35 40

angle of attack (degrees)

Lift

coef

ficie

nt

Re=1.0x106

DU 97-W-300

DU 96-W-180

Page 15: Airfoil Design

03 May, 2004 15DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(effect of high Reynolds numbers)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10Re x10-6

0

20

40

60

80

100

120

0 5 10Re x10-6

Clean

Zigzag tape 0.4 mm

Carborundum 60

Airfoil: DU 97-W-300Mod

(Cl/Cd)max Cl,max

Page 16: Airfoil Design

03 May, 2004 16DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

Page 17: Airfoil Design

03 May, 2004 17DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α=24o

Page 18: Airfoil Design

03 May, 2004 18DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 40o

Cl= 1.145

Page 19: Airfoil Design

03 May, 2004 19DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(360 degrees)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

α=90o

Cl= 0.10 Cd= 1.914

Page 20: Airfoil Design

03 May, 2004 20DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 160o

Cl= -.627

Page 21: Airfoil Design

03 May, 2004 21DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 194o

Cl= 0.541

Page 22: Airfoil Design

03 May, 2004 22DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 224o

Cl= 0.811

Page 23: Airfoil Design

03 May, 2004 23DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 270o

Cl= -0.11 Cd= 1.832

Page 24: Airfoil Design

03 May, 2004 24DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 316o

Cl=- 0.971

Page 25: Airfoil Design

03 May, 2004 25DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing (aerodynamic devices)

• Stall strips Ø 1.2 mm

DU 93-W-210 R = 2.0x106

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.01 0.02 0.03cd

cl

-1.0

-0.5

0.0

0.5

1.0

1.5

-10 0 10 20α ( o)

cl

no trip wire

wire at 0.5%c l.s.

wire at 0.25%c l.s.

Page 26: Airfoil Design

03 May, 2004 26DUWIND, section Wind Energy, Faculty CiTG

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

0.0 30.0 60.0 90.0 120.0Cl/Cd

Cl

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

-5.0 0.0 5.0 10.0 15.0 20.0 25.0Alpha (deg.)

Cl

VG at x/c= 0.2VG at x/c= 0.3Clean

DU 91-W2-250Re = 2.0x106

Airfoil testing (aerodynamic devices)

• Vortex generators

Page 27: Airfoil Design

03 May, 2004 27DUWIND, section Wind Energy, Faculty CiTG

Effect on wind turbine performance(2d stationary performance)

Calculated optimal element performance at mid-span for TSR= 7.5

ZZ-tape 5% u.s.

CpLoadingCp_elem“Static load”Cl_max*c

L/D-maxc/RClean

-5.1%8%.532.155600.135DU 91-W2-250

-0.24%6%.560.1521190.119NACA 63-425

.212

0.143

0.149

.503

.561

.56

-10.2%48%390.212NACA 63-425

0%0%1250.105DU 91-W2-250

-0.06%4%1220.106AH 93-W-257

* “Static load” reference based on 1 year gust for fixed pitch blades

Page 28: Airfoil Design

03 May, 2004 28DUWIND, section Wind Energy, Faculty CiTG

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0 20 40 60 80 100 120 140max. L/D

local Aero Cp

Effect on wind turbine performance (2d stationary performance)

25% thick airfoil class (mid-span for TSR= 7.5)

“Rough”

DU 91-W2-250

-5%

NACA 63-425

-10%

Page 29: Airfoil Design

03 May, 2004 29DUWIND, section Wind Energy, Faculty CiTG

Overview of HAWT airfoils

General aviation airfoils• NACA 63-4xx and NACA 63-6xx series• NACA 64-4xx

Dedicated airfoils• S8xx series (NREL, USA)

• FFA W-xxx (FOI, Sweden)

• Risø-A1-xxx (also B, P-series, Risø, Denmark)

• DU xx-W-xxx (Delft, Netherlands)

Page 30: Airfoil Design

03 May, 2004 30DUWIND, section Wind Energy, Faculty CiTG

Overview of HAWT airfoils

• Overview of DU-airfoils and users

GE-Wind, REpower, Dewind, Suzlon, Gamesa, LM Glasfiber, NOI Rotortechnik, Fuhrlander, Pfleiderer, EUROS, NEG Micon, Umoe blades, Ecotecnia ……..

DU 97DU 97--WW--300300DU 96DU 96--WW--180180

DU 95DU 95--WW--180180

DU 93DU 93--WW--210210

DU 00DU 00--WW--212212DU 00DU 00--WW--350350

DU 91DU 91--W2W2--250250

Page 31: Airfoil Design

03 May, 2004 31DUWIND, section Wind Energy, Faculty CiTG

Next steps:

Extending to all operational situations :

• Measurements => “high” Reynolds number=> chart unsteady behavior of DU airfoils

New airfoil designs :

• Very thick airfoils for lightweight blades

• Control of rpm only => Low TSRLow Cl-max, benign stall

=> High TSRLow drag

• Aero-elastic tailoring => Dynamic airfoil design(Probably low Cl-max)