Top Banner
Aeropropulsion Unit Introduction and 2-D Analysis in Turbomachinery 2005 - 2010 International School of Engineering, Chulalongkorn University Regular Program and International Double Degree Program, Kasetsart University Assist. Prof. Anurak Atthasit, Ph.D.
59

Aircraft propulsion turbomachine 2 d

Jul 08, 2015

Download

Engineering

Anurak Atthasit

Prerequisite - Thermodynamics/ Propulsion Review of Fundamentals/ Ideal Turbojet Performance/ Component Performance/ Non Ideal Cycle Analysis/ Ideal Turbofan Performance/ Non Ideal Turbofan cycle Analysis/ Matching and Off Design/
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

Introduction and 2-D Analysis in

Turbomachinery

2005 - 2010 International School of Engineering, Chulalongkorn University Regular Program and International Double Degree Program, Kasetsart University

Assist. Prof. Anurak Atthasit, Ph.D.

Page 2: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

2 A. ATTHASIT Kasetsart University

Work input into compressors

Intro : Thermodynamics concept

Compressor Work/Mass

compressor p3 t3 p2 t2w C T C T

compressor t3 t2w h h

Compressor Pressure Ratio

1t3 t3

c

t 2 t 2

P T

P T

1

p t2

compressor c

c

C Tw 1

Compressor Efficiency

Page 3: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

3 A. ATTHASIT Kasetsart University

General Design Consideration

Intro : Comp. Design

First step of design : Choice of stage loading

(ex. the pressure rise in relation to the

number of stages and the rotational speed)

Decision to have an axial radial compressor

(ex. For aircraft propulsion the high flow rate per

unit area of the axial is a big advantage)

(ex. Radial compressor has a huge cost advantage

over the axial)

Page 4: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

4 A. ATTHASIT Kasetsart University

Axial Compressor

Preliminary design : at a mean radius (pitchline)

Criteria have to be chosen for satisfactory

• Blade loading

• Pressure rise at the walls

• Maximum Mach number

Page 5: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

5 A. ATTHASIT Kasetsart University

Blade Loading : de Haller n° Criteria for endwall loading or pressure rise :

De Haller number 2 1V / V 0.72

De Haller (1953)

But lowing value ---> excessive losses

Page 6: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

6 A. ATTHASIT Kasetsart University

Blade Loading : diffusion factor

Diffusion factor

High fluid deflection = high rate of diffusion

Definition & termology :

Page 7: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

7 A. ATTHASIT Kasetsart University

Blade Loading : diffusion factor

Diffusion factor

High velocity gradient ---> high boundary layer thicnkness ---> high losses

w1 2

max 2

1 1

C sV V

V V 2 cDV V

w2

1 1

CV sD 1

V 2V c

max 1 w

sV V 0.5( C )

c When

csolidity

s

Page 8: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

8 A. ATTHASIT Kasetsart University

Diffusion factor

Diffusion factor

w2

1 1

CV sD 1

V 2V c

Wide range of cascade NACA tests

Criterian's limit :

D < 0.6

Advantage :

'D' help to construct

the velocity diagram

Page 9: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

9 A. ATTHASIT Kasetsart University

Many criterias left for prelim-design

Degree of reaction

Degree of reaction (°Rc) : T1

T2

T3

2 1 2 1c

3 1 3 1

h h T TR

h h T T

One

stag

e of

com

pre

ssor

°Rc desirable is 0.5 (share the burden)

Stage loading

p tt t

2 2 2

c Th h

( r ) U U

0.3 0.35

Page 10: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

10 A. ATTHASIT Kasetsart University

Many criterias left for preliminary design

Flow Coefficient

a1 a1C C

r U

0.45 0.55

Flow coefficient

Page 11: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

11 A. ATTHASIT Kasetsart University

3D Flow Field

Typical gas turbine design procedure

Design procedure

Market

research

Specification Customer

requirements

Preliminary studies: Choice of cycle,

Type of turbomachinery, layout

Turmodynamic design point studies

Aerodynamics of compressor,

turbine, Intake, exhaust, etc.

Ex: Take-off-Thrust

(12,000 N)

c 4.15 m 20kg / s

4T 1100K

Axial flow, Turbojet

Rotational Speed,

Annulus Dim,

N° of stages,

Air Angles,

Balde Design, Etc.

Page 12: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

12 A. ATTHASIT Kasetsart University

3D Flow Field

Typical gas turbine d'sign procedure

Design procedure

Ex: Take-off-Thrust

(12,000 N)

c 4.15 m 20kg / s

4T 1100K

Axial flow, Turbojet

Rotational Speed,

Annulus Dim,

N° of stages,

Air Angles,

Balde Design, Etc.

Desired

Performance

Parameters

Turbomachinery

Design Criterias

Blade Loading,

etc..

Page 13: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

13 A. ATTHASIT Kasetsart University

Three Dimensional Flow

Sum of 2-D flow:

- Throughflow field

- Cascade field (blade-to-blade)

- Secondary flow field

3-D Flow

Page 14: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

14 A. ATTHASIT Kasetsart University

Throughflow field

2-D Flow

Page 15: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

15 A. ATTHASIT Kasetsart University

Throughflow field Mass flow parameter

2-D Flow

Pm PV V PV M

A RT RRT RT T

1

1 2t t 2

t t

T Tm P 1MFP M M 1 M

A P R P R 2T

Mass Flow Parameter (MFP)

Page 16: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

16 A. ATTHASIT Kasetsart University

Cascade field

2-D Flow

Page 17: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

17 A. ATTHASIT Kasetsart University

Cascade field

2-D Flow

Page 18: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

18 A. ATTHASIT Kasetsart University

Secondary field

2-D Flow

Page 19: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

19 A. ATTHASIT Kasetsart University

Coordinate systems

2-D Flow

1 2 3

• Absolute coordinate : U,u2,V2

(fixed to the compressor housing)

U( r )

2V

2u2RV

• Relative coordinate : V2R

(fixed to the rotating blades)

Page 20: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

20 A. ATTHASIT Kasetsart University

Euler's Equation

Designing Tools

Fluid Mech Eq :

Torque & Work :

A e e i im( r v rv )

C AW

1st Law of Thermo Eq :

C te tiW m( h h )

te ti e e i ih h ( r v rv ) 'This relation will be used to obtain total

temperature changes throughout the blade' p te ti e e i iC (T T ) ( r v rv )

Page 21: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

21 A. ATTHASIT Kasetsart University

Velocity Diagrams Velocity Diagrams

Page 22: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

22 A. ATTHASIT Kasetsart University

Velocity Diagrams & Euler's Equation Velocity Diagrams

p t2 t1 2 2 1 1C (T T ) ( r v r v )

2r1r

2 1 2

p t2 t1 1 2

1

u uC (T T ) r tan tan

r u

2 1 2

p t2 t1 2 1

1

u uC (T T ) r tan tan

r u

Page 23: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

23 A. ATTHASIT Kasetsart University

ii i i i i ii i i i

i i i i i

PPV cos V cos PmV cos M

A RT RRT RT T

Velocity Diagrams & Flow Annulus Area Velocity Diagrams

2r1r

i

ti

i

ti i M

m TA

P cos MFP

Page 24: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

24 A. ATTHASIT Kasetsart University

Coordinate systems : important!

2-D Flow : Caution!

1 2 3

• Absolute coordinate : U,u2,V2

(fixed to the compressor housing)

• Relative coordinate : V2R

(fixed to the rotating blades)

t1 t1R t1 t1RT ,T ,P ,P

t 2 t2R t2 t2RT ,T ,P ,P

Page 25: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

25 A. ATTHASIT Kasetsart University

Mean radius geometry

Constant mean radius

Nomenclature for constant mean radius

Constant Mean Radius

Page 26: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

26 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

rm

t1 t1

m

1 3

t321 3

1 t1

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

PuM M 0.7, 1.1, 1.3

u P

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Stage calculation

t1 t1R t1 t1RT ,T ,P ,P

t 2 t2R t2 t2RT ,T ,P ,P

&Velocity diagram

t1

1 2

1

TT

1 1 / 2 M

t1

1 /( 1 )2

1

PP

1 1 / 2 M

1t1 t1

1 1

P T

P T

Page 27: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

27 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

t1 t1

m

1 3

t321 3

1 t1

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

PuM M 0.7, 1.1, 1.3

u P

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Step 1: Find Triangle "V" at Station 1

Properties

Geometry

V_Compo

V_Compo

(relative)

Properties

(relative)

1T 1a1P

1 1 1V M a 1 1 1u V cos 1 1 1v V sin

1

t1

1

t1 1 M

m TA

P cos MFP

U r

1R 1v r v 2 2

1R 1 1RV u v 1R1R

1

VM

a

t1R 1 1RT f (T ,M , ) t1R 1 1 t1RP g( P ,T ,T , )

Page 28: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

28 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

t1 t1

m

1 3

t321 3

1 t1

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

PuM M 0.7, 1.1, 1.3

u P

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Step 2: Find "P&T" at Station 2

Properties :

t 2 t2T ,P ?

t 2R t2RT ,P ?

t 2 t3 t1 c,stageP P P ( 1 ) /

t 2t 2 t3 t1

t1

PT T T

P

t 2R t1R t2R t1RT T ,P P

Page 29: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

29 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

t1 t1

m

1 3

t321 3

1 t1

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

PuM M 0.7, 1.1, 1.3

u P

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Step 3: Find Triangle "V" at Station 2 ?

Which Eq can link "V" from station 1-2 ?

2 1 2

p t2 t1 1 2

1

u uC (T T ) r tan tan

r u

Euler's Equation :

Then 2 is determined

Page 30: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

30 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

t1 t1

m

1 3

t321 3

1 t1

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

PuM M 0.7, 1.1, 1.3

u P

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Step 4: Find Triangle "V" at Station 2

22 1 2R 2 2

1

uu u ,v u tan

u

2RV

1 22 2R 2

2

vv U v , tan

u 2V

Step 5: Find "T&P" at Station 2

/( 1 )2

2 22 t2 2 t2

P t2

V TT T ,P P

2C T

Page 31: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

31 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

t1 t1

m

1 3

t321 3

1 t1

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

PuM M 0.7, 1.1, 1.3

u P

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Step 6: Find the rest at Station 2

2 2 2a ,M ,A

Step 7: Find the rest at Station 3

t3 t3R t3 t3RP ,P ,T ,T ?

3 3P ,T

3 3 3 3 3a ,V ,u ,v ,A

Page 32: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

32 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow without loss

Rotor : Adiabatic in the relative reference frame

Stator : Adiabatic in the absolute reference frame

§ I M P O R T A N T §

Page 33: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

33 A. ATTHASIT Kasetsart University

Flow with loss : Introduction

Flow with loss

Adiabatic Stage Efficiency s

( 1 ) /

t3s t1 t3s t1 t3 t1s

t3 t1 t3 t1 t3 t1

h h T T ( P / P ) 1

h h T T T / T 1

When t t3 t1T T T

/( 1 )

t3 ts

t1 t1

P T1

P T

Page 34: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

34 A. ATTHASIT Kasetsart University

Flow with loss : Introduction

Flow with loss

ti ti ti t t tc

t t t t t t

dh dT dT / T dP / P1e

dh dT dT / T dT / T

Adiabatic Polytropic Efficiency ce

t3 t1c

t3 t1

ln( P / P )1e

ln(T / T )

0.9

(Preliminary design)

When t t3 t1T T T

c ce /( 1 ) e /( 1 )

t3 t3 t

t1 t1 t1

P T T1

P T T

Page 35: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

35 A. ATTHASIT Kasetsart University

Flow with loss : Life is still not easy …

Flow with loss

Adiabatic Polytropic Efficiency

Adiabatic Stage Efficiency When

are

unknown …

Page 36: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

36 A. ATTHASIT Kasetsart University

Flow with loss : Experiment data

Flow with loss

Cascade tests result :

• The optimum angle

(minimum loss)

• Profile drag coefficient

(cascade efficiency)

(must be increased to account

for end losses (e.g., tip leakage,

wall boundary layer or cavity

leakage)

Page 37: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

37 A. ATTHASIT Kasetsart University

Flow with loss : Cascade data

Flow with loss

Total pressure loss coefficient

t ,drop ti tec 2

dynamic i

P P P

P V / 2

Remark :

• Rotor - relative reference

• Stator - fixed reference

Page 38: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

38 A. ATTHASIT Kasetsart University

Flow with loss : Total pressure loss coefficient

Flow with loss

t ,drop ti tec 2

dynamic i

P P P

P V / 2

Example for Rotor

t1R t2Rcr 2

1 1R

P P

V / 2

2 2

t2R 1 1R 1 1Rcr cr

t1R t1R t1R

P V PM1 1

P 2P 2P

2

t2R 1Rcr /( 1 )

t1R 2

1R

P M / 21

P 11 M

2

Page 39: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

39 A. ATTHASIT Kasetsart University

Flow with loss : Total pressure loss coefficient

Flow with loss

For Rotor

2

t2R 1Rcr /( 1 )

t1R 2

1R

P M / 21

P 11 M

2

For Stator

2

t3 2cs /( 1 )

t 2 2

2

P M / 21

P 11 M

2

How can we evaluate the total

pressure ratio of a stage ?

t 3

t1

P

P

2 1Rcs , 2 2 R cr , 1R 1

t3 t 2 t 2R t1R2 1

t2 2 t2R t1R 1 t1M MM M M M

P P P PP P

P P P P P P

Page 40: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

40 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow with loss

Stage calculation

t1 t1R t1 t1RT ,T ,P ,P

t 2 t2R t2 t2RT ,T ,P ,P

&Velocity diagram

t1 t1

m

1 3

21 3 t

1

cr cs

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

uM M 0.7, 1.1, T 22.43K

u

0.09, 0.03

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

tT

Page 41: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

41 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow with loss

t1 t1

m

1 3

21 3 t

1

cr cs

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

uM M 0.7, 1.1, T 22.43K

u

0.09, 0.03

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Step 1: Find Triangle "V" at Station 1

Properties

Geometry

V_Compo

V_Compo

(relative)

Properties

(relative)

1T 1a1P

1 1 1V M a 1 1 1u V cos 1 1 1v V sin

1

t1

1

t1 1 M

m TA

P cos MFP

U r

1R 1v r v 2 2

1R 1 1RV u v 1R1R

1

VM

a

t1R 1 1RT f (T ,M , ) t1R 1 1 t1RP g( P ,T ,T , )

Page 42: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

42 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow with loss

Step 2: Find "P&T" at Station 2

Properties :

t1 t1

m

1 3

21 3 t

1

cr cs

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

uM M 0.7, 1.1, T 22.43K

u

0.09, 0.03

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

cr , 1R

t 2Rt2R t1R

t1R M

PP P

P

t 2R t1RT T 290.07K

t 2 t1 tT T T

t 2PStill don't know ,let's keep it later!

Page 43: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

43 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow with loss

Step 3: Euler's Equation : ?

2 1 2

p t2 t1 1 2

1

u uC (T T ) r tan tan

r u

Euler's Equation :

Then 2 is determined t1 t1

m

1 3

21 3 t

1

cr cs

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

uM M 0.7, 1.1, T 22.43K

u

0.09, 0.03

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Page 44: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

44 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Flow with loss

Step 4: Find Triangle "V" at Station 2

22 1 2R 2 2

1

uu u ,v u tan

u

2RV

1 22 2R 2

2

vv U v , tan

u 2V

Step 5: Find "T&P" at Station 2 t1 t1

m

1 3

21 3 t

1

cr cs

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

uM M 0.7, 1.1, T 22.43K

u

0.09, 0.03

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

/( 1 )2

2 22 t2 2 t2R

P t2R

V TT T ,P P

2C T

Page 45: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

45 A. ATTHASIT Kasetsart University

Mean radius stage calculation

Step 6: Find the rest at Station 2

2 2 2a ,M ,A

Step 7: Find the rest at Station 3

t3 t3R t3 t3RP ,P ,T ,T ?

3 3P ,T

3 3 3 3 3a ,V ,u ,v ,A

Flow with loss

t1 t1

m

1 3

21 3 t

1

cr cs

T 288.16K ,P 101.3kPa

1000rad / s,r 0.3048m

40 , 1,m 22.68kg / s

uM M 0.7, 1.1, T 22.43K

u

0.09, 0.03

1.4,Cp 1.004kJ / kgK ,R 0.287kJ / kgK

Page 46: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

46 A. ATTHASIT Kasetsart University

t 2R t2RT ,P

cr , 1RM

Euler Eq.

2

Mean radius stage calculation - Summary

Flow with loss

t1 t1 m

1 3

1 3 2 1 t

cr cs

T ,P , ,r

, , ,m

M ,M ,u ,u , T

,

t1 t1R t1 t1RT ,T ,P ,Pt 2 t1 tT T T

cs 2,M

Page 47: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

47 A. ATTHASIT Kasetsart University

d e 1ug

Design Constrain (Performance control)

Design Overview

Design constrain

Where is the starting point… and the next step …?

Blade Profile Determination

b

c t1Tt1P

13

m1M

cr

cs

Fixed Parameters

(input data)

a mr

3M2u

tT

f

Variable Parameters

Obtained Flow Properties

Page 48: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

48 A. ATTHASIT Kasetsart University

Discusion

Design constrain

Preliminary design parameters ….?

a

b

c

d

t1T

t1P

e

mr1

3

m1M 3M

2u

1u

tT

cr

cs

f

g

Nobody can help me ….?!?!

Page 49: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

49 A. ATTHASIT Kasetsart University

Engineering Aproach Repeating-Stage, Repeating-Row, Mean-Line Design

R-S, R-R, M-L

Input data

1Mg

D

ec

t1T1

Variables

Flow Properties in each station

Repeating-Stage (Exit condition = Inlet condition)

Repeating-Row (Mirror-image of each row)

Mean-Line Design

Assumption :

- 1=2=3,1=2=3

- u1=u2=u3

- Constant mean radius

- Polytropic efficiency representing stage losses

- Two-dimensional flow (extimate annulus area)

c t1P1utTf

Controled parameter

Simplified

Your life !

Page 50: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

50 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

R-S, R-R, M-L

Repeating-row constraint : 1=2=3,1=2=3

2R 1 2v v r v

or

1 2v v r

3 2 3R 2 3 1v v ,v v

And also

Page 51: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

51 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

Diffusion Factor

R-S, R-R, M-L

Diffusion factor : High velocity gradient ---> high boundary layer thicnkness ---> high losses

2R 1R 1R

1R 1R

V v v sD 1

V 2V c

csolidity

s

3 2 32R 1R 1R 2 2 12

1R 1R 2 2 1

V v vV v v cos tan tanD 1 1 1 cos ...

V 2V V 2V cos 2

2 1f ( D, , )

Page 52: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

52 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

Stage Total Temperature/Pressure Ratio

R-S, R-R, M-L

2 2

t3 1 1s 2 2

t1 1 2

T ( 1)M cos1 1

T 1 ( 1) / 2 M cos

c

c

e /( 1 )

e /( 1 )t3 t3s s

t1 t1

P T

P T

s 1 1 2

s s c

f ( M , , , )

f ( , ,e )

From Euler Eq: p t2 t1 p t3 t1 2 1C (T T ) C (T T ) r( v v )

2 1r v v & Diffusion Factor ?

H

O

w

Page 53: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

53 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

Degree of Reaction and Stage Efficiency

R-S, R-R, M-L

( 1 ) /

ss

s

1

1

s s s cf ( , , ,e )

2 2

2 3 p3 22 1 2 1c

3 1 3 1 3 1 t3 t1

V V / 2CT Th h T TR 1 1

h h T T T T T T

2 2

2 3 p

c 2 2

2 3 p

V V / 2C 1R 1

2V V / C

Euler Eq :

Stage Efficiency :

Page 54: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

54 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

Stage Exit Mach Number

R-S, R-R, M-L

11 2

Vf ( , )

r

3 3 3 1

2 21 1 1 3 s 1 1

M V / RT T 11

M V / RT T 1 ( 1) / 2 M ( 1) / 2 M

1 1 1 1 1

1 2 1 1 2 1 1 2

V u / cos u / cos 1

r v v u (tan tan ) cos (tan tan )

Inlet velocity/Wheel speed ratio :

Page 55: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

55 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

Stage Loading and Flow Coefficient

R-S, R-R, M-L

p t 2 1

2

2 1

C T tan tan

( r ) tan tan

1

1 2

u 1

r tan tan

Flow Coefficient : Axial velocity/rotor speed

Stage Loading : stage work/rotor speed squared

0.3 0.35

0.45 0.55

Page 56: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

56 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

General Solution

R-S, R-R, M-L

c( D 0.5, 1,e 0.9 )

Page 57: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

57 A. ATTHASIT Kasetsart University

Repeating-Stage, Repeating-Row, Mean-Line Design

General Solution

R-S, R-R, M-L

c( D 0.5, 1,e 0.9 )

Page 58: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

58 A. ATTHASIT Kasetsart University

Annulus Area

Flow Path Dimensions

rm

Page 59: Aircraft propulsion   turbomachine 2 d

Aeropropulsion Unit

59 A. ATTHASIT Kasetsart University

Conclusion