Top Banner

of 15

aircraft control Lecture 7

Apr 04, 2018

Download

Documents

Arief Hadiyanto
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 aircraft control Lecture 7

    1/15

    16.333: Lecture# 7ApproximateLongitudinalDynamicsModels

    Acouplemorestabilityderivatives Given mode shapes found identify simpler models that capture the main re-

    sponses

  • 7/29/2019 aircraft control Lecture 7

    2/15

    Fall2004 16.33361MoreStabilityDerivatives

    Recallfrom62thatthederivativestabilityderivativetermsZw and

    Mw endedupontheLHSasmodificationstothenormalmassandinertiatermsThese are the apparentmass effects someof the surroundingdisplacedairisentrainedandmoveswiththeaircraft

    AccelerationderivativesquantifythiseffectSignificantforblimps,lesssoforaircraft.

    Maineffect: rateofchangeofthenormalvelocityw causesatransientinthedownwashfromthewingthatcreatesachangeintheangleofattackofthetailsometimelaterDownwashLageffect

    IfaircraftflyingatU0,willtakeapproximatelyt=lt/U0 toreachthetail.Instantaneousdownwashatthetail(t) isduetothewingattimett.

    (t)=

    (tt)

    Taylorseriesexpansion(tt)(t)t

    Notethat(t) =t. Change inthetailAOAcanbecom-putedas

    d d lt(t)= t= =t

    d d U0

  • 7/29/2019 aircraft control Lecture 7

    3/15

    Fall2004 16.33362 For the tail,we have that the lift increment due to the change in

    downwashisd

    ltCLt =CLtt =CLtd U0

    Thechangeinliftforceisthen1

    Lt = (U02)tStCLt2IntermsoftheZ-forcecoefficient

    Lt

    St

    St

    d ltCZ = 1 = CLt = CLt U02S S S d U 02 c/(2U0)tonondimensionalizetime,sotheappropriatestabil-Weuse

    itycoefficientformis(noteuseCz tobegeneral,butwearelookingatCz frombefore):

    CZ 2U0 CZ= =CZ 0( c/2U0) c 02U0St lt d

    = c S U0CLtd

    d= 2VHCLtd

    ThepitchingmomentduetotheliftincrementisMcg = ltLt

    1(U20)tStCLt1CMcg = lt2 U02Sc2

    d lt=

    VHCLt =

    VHCLtd U0

  • 7/29/2019 aircraft control Lecture 7

    4/15

    Fall2004 16.33363

    SothatCM 2U0 CM

    =

    =CM 0( c/2U0) c 0d lt 2U0

    = VHCLtd U0 cdlt

    = 2VHCLtdclt

    CZ c Similarly,pitchingmotionoftheaircraftchangestheAOAofthetail.

    Nosepitchupatrateq,increasesapparentdownwardsvelocityoftailbyqlt,changingtheAOAby

    qltt =

    U0whichchangestheliftatthetail(andthemomentaboutthecg).

    Followingsameanalysisasabove: LiftincrementLt = CLtqltU0

    12(U20)tSt

    CZ = Lt12(U20)S =

    StSCLt

    qltU0

    CZq CZ(qc/2U0) 0 =

    2U0c

    CZq 0 =

    2U0c

    ltU0

    StSCLt

    = 2VHCLtCanalsoshowthat

    ltCMq = CZq c

  • 7/29/2019 aircraft control Lecture 7

    5/15

    Fall2004 16.33364ApproximateAircraftDynamicModels

    It isoftengoodtodevelopsimplermodelsofthe fullsetofaircraftdynamics.

    Provides insightson the roleof theaerodynamicparametersonthefrequencyanddampingofthetwomodes.

    Usefulforthecontroldesignworkaswell

    Basicapproachistorecognizethatthemodeshaveveryseparatesetsofstatesthatparticipateintheresponse.

    ShortPeriodprimarilyandw inthesamephase.Theuandq responseisverysmall.

    Phugoidprimarilyandu,and lagsbyabout90.Thewandq responseisverysmall.

    Fullequationsfrombefore: Xu

    u m

    w Zuw

    [Mu+Zu]

    =

    mZ

    q

    Iyy0

    XwmZw

    mZw[Mw+Zw]

    Iyy0

    0Zq+mU0mZw

    [Mq+(Zq+mU0)]Iyy1

    gcos0 u Xcmgsin0mZ w Zc

    mgsin0w

    q + McIyy0 0

  • 7/29/2019 aircraft control Lecture 7

    6/15

    Fall2004 16.33365 FortheShortPeriodapproximation,

    1.Since u

    0 in thismode, then u

    0 and can eliminate theX-forceequation. Zq+mU0 mgsin0

    mZZw Zcw wmZw mZw[Mq+(Zq+mU0)]

    w = +[Mw+Zw] Mcmgsin0Iyyq qIyy Iyy 00 1 02.TypicallyfindthatZw

    mandZq

    mU0.Checkfor747:

    Zw =1909m=2.8866105Zq =4.5105mU0 =6.8107

    Mw Mw=

    mZw m Zw

    U0 gsin0 Zcw wm Mw+ZwMw Mq+(mU0)Mwm = +Mcmgsin0MwIyyq m qIyy Iyy m 00 1 0

    3.Set0 =0andremovefromthemodel(itcanbederivedfromq)

    Withtheseapproximations,thelongitudinaldynamicsreducetoxsp =Aspxsp+Bspe

    wheree istheelevatorinput,andw Zw/m U0xsp = q , Asp = I1(Mw +MwZw/m) I1(Mq +MwU0)yy yy

    Ze/mBsp = I1(Me +MwZe/m)yy

  • 7/29/2019 aircraft control Lecture 7

    7/15

    Fall2004 16.33366 Characteristic equation for this system: s2 +2spsps+2 = 0,sp

    wherethefullapproximationgives:Zw Mq Mw

    2spsp = + + U0m Iyy Iyy

    2 ZwMq U0Mw=sp mIyy Iyy

    Givenapproximatemagnitudeofthederivativesforatypicalaircraft,candevelopacoarseapproximate:

    2spsp MqIyy sp Mq2 1U0MwIyy

    2 U0Mw sp sp U0MwIyyIyyNumericalvaluesfor747

    Frequency Dampingrad/sec

    Fullmodel 0.962 0.387FullApproximate 0.963 0.385CoarseApproximate 0.906 0.187

    Bothapproximationsgivethefrequencywell,butfullapproximationgivesamuchbetterdampingestimate

    Approximations showed that shortperiodmode frequency is deter-minedbyMw measureoftheaerodynamicstiffnessinpitch.Sign of Mw negative if cg sufficient far forward changes sign(mode goes unstable)when cg at the stick fixed neutral point.FollowsfromdiscussionofCM (see211)

  • 7/29/2019 aircraft control Lecture 7

    8/15

    Fall2004 16.33367 ForthePhugoidapproximation,startagainwith:

    Xu Xw 0 gcos0m m mgsin0 Xcu u

    Zq+mU0Zu Zw

    Z

    cMc

    wq wqmZw mZw mZw mZw[Mq+(Zq+mU0)] += [Mu+Zu] [Mw+Zw] mgsin0IyyIyy Iyy Iyy 00 0 1 0

    1.Changestowandqareverysmallcomparedtou,sowecanSetw 0andq 0Set0 =0

    Xu Xw 0 gm m Xcu u

    Zq+mU0Zu Zw

    00

    ZcMc

    00 wqmZw mZw mZw[Mq+(Zq+mU0)] += [Mu+Zu] [Mw+Zw]

    Iyy Iyy Iyy 00 0 1 02.Usewhat is leftof the Z-equation to show thatwith theseap-proximations(elevatorinputs) ZeZuZq+mU0Zw

    mZw mZw mZwmZw

    w

    u e=

    [Mw+Zw] [Mq+(Zq+mU0)] [Me+Ze][Mu+Zu]qIyyIyy Iyy Iyy

    3.Use(Zw msoMw )and(ZqmU0)sothat:mZw mU0 w

    Mw +Zw Mw [Mq +U0Mw] qm

    Zu Ze= Mu+Zu Mw u Mw m Me +Ze m e

  • 7/29/2019 aircraft control Lecture 7

    9/15

    Fall2004 16.333684.Solvetoshowthat

    wq =

    mU0Mu

    ZuMq

    ZwMqmU0MwZuMwZwMu

    u+mU0Me

    ZeMq

    ZwMqmU0MwZeMwZwMe

    eZwMqmU0Mw ZwMqmU0Mw

    5.Substituteintothereducedequationstogetfullapproximation:mU M Z M 0 u u qZwMqmU0Mw

    Xu Xw+ gu

    m m u=

    ZuMwZwMu 0ZwMqmU0Mw Xe Xw mU0MeZeMq+m m ZwMqmU0Mw

    e+

    ZeMwZwMeZwMq

    mU0Mw

    6.Stillabitcomplicated.Typicallygetthat(1.4:4)|MuZw| |MwZu|(1:0.13)|MwU0m| |MqZw|

    MuXw/Mw|

    Xu small|

    7.With theseapproximations, the longitudinaldynamics reduce tothecoarseapproximation

    xph =Aphxph+Bphewheree istheelevatorinput.

  • 7/29/2019 aircraft control Lecture 7

    10/15

    Fall2004 16.33369And

    u

    xph = Aph = Xu

    g

    m

    Zu0

    mU0

    Bph =

    MeMwXe Xwm

    Zw+

    Ze Mw Me

    mU0

    8.Which

    gives

    2phph = Xu/m

    2 gZu=ph mU0

    Numericalvaluesfor747Frequency Dampingrad/sec

    Fullmodel 0.0673 0.0489FullApproximate 0.0670 0.0419CoarseApproximate 0.0611 0.0561

  • 7/29/2019 aircraft control Lecture 7

    11/15

    Fall2004 16.333610 Furtherinsights: recallthat

    U0 Z U0 L= + 2CL0)QS u 0 QS u 0 (CLu

    M2=

    1M2CL0 2CL0 2CL0so

    Z UoS 2mgZu = (2CL0) = u 0 2 U0

    Then

    mg2ph = gZu =

    mU02mU0

    g= 2

    U0whichisexactlywhatLanchestersapproximationgave 2 gU0Notethat

    X UoSXu = (2CD0) = UoSCD0u 0 2

    and2mg= U2SCL0o

    soXu XuU0ph =

    2mph = 22mg1 U2SCD0o=

    2 U2SCL0o1 CD0=

    2 CL0sothedampingratiooftheapproximatephugoidmodeisinverselyproportionaltothelifttodragratio.

  • 7/29/2019 aircraft control Lecture 7

    12/15

    Fall2004 16.333611

    102

    10

    1

    10

    0

    10

    0

    10

    1

    10

    2

    10

    3

    10

    4

    |Gude

    |

    F

    req(rad/sec)

    Transferfunction

    frome

    levatortoflightvariables

    102

    10

    1

    10

    0

    10

    1

    10

    0

    10

    1

    10

    2

    10

    3

    10

    4

    |Gde

    |

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    250

    200

    150

    100

    500

    50

    argGude

    F

    req

    (rad/sec)

    102

    10

    1

    10

    0

    350

    300

    250

    200

    150

    100

    500

    argGde

    Freq

    (rad/sec)

    FreqComparisonfromelevator(PhugoidModel)B747atM=0.8.BlueFullmodel,BlackFullapproximatemodel,MagentaCoarseapproximatemodel

  • 7/29/2019 aircraft control Lecture 7

    13/15

    Fall2004 16.333612

    102

    10

    1

    10

    0

    10

    1

    10

    0

    10

    1

    10

    2

    |G

    de

    |

    F

    req(rad/sec)

    Transferfunction

    frome

    levatortoflightvariables

    102

    10

    1

    10

    0

    10

    1

    10

    0

    10

    1

    10

    2

    |Gde

    |

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    050

    100

    150

    200

    250

    300

    argGude

    F

    req

    (rad/sec)

    102

    10

    1

    10

    0

    350

    300

    250

    200

    150

    100

    500

    argGde

    Freq

    (rad/sec)

    FreqComparisonfromelevator(ShortPeriodModel)B747atM=0.8.BlueFullmodel,MagentaApprox-imatemodel

  • 7/29/2019 aircraft control Lecture 7

    14/15

    Fall2004 16.333613Summary

    Approximatelongitudinalmodelsarefairlyaccurate

    Indicate that theaircraft responsesaremainlydeterminedby thesestabilityderivatives:

    Property StabilityderivativeDampingoftheshortperiod MqFrequencyoftheshortperiod MwDampingofthePhugoid XuFrequencyofthePhugoid Zu

  • 7/29/2019 aircraft control Lecture 7

    15/15

    Fall2004 16.333614 Givenachange in,expectchanges inuaswell. Thesewillboth

    impact the lift and drag of the aircraft, requiring thatwe re-trimthrottlesettingtomaintainwhateveraspectsoftheflightconditionmighthavechanged(otherthantheoneswewantedtochange).Wehave:

    L Lu L u=D Du D

    ButtomaintainL=W,wantL=0,sou= Lu L

    GivingD= LDu+D Lu2CL0CD = CL D =QSCDeAR

    L =QSCLQS

    Du = (2CD0) (416)U0QS

    Lu = (2CL0) (417)U0CL 2CD0D = QS +CD 2CL0/U0 U0

    QS 2C2L0=CL0

    CD0 +eAR CL(T0+T)(D0+D) Dtan = = L0+L L0

    CD0 2CL0 CL=CL0

    eAR CL0

    For 747 (Reid 165 andNelson 416), AR = 7.14, so eAR 18,CL0 = 0.654 CD0 = 0.043, CL = 5.5, for a =

    0.0185rad

    (67) = 0.0006rad. This is the opposite sign to the linearsimulationresults,buttheyarebothverysmallnumbers.