Top Banner
Aging Genome 1. DNA damage 2. Epigenetic shifts 3. Telomere shortening Cellular level 1. Mitochondria: ROS, DNA damage, other 2. Misfolded proteins 3. Dysfunctional stem cells Organismal level 1. Autoimmune, other defects in immune system 2. Defective signaling
54

Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Jan 19, 2016

Download

Documents

Helena Gaines
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

AgingGenome

1. DNA damage2. Epigenetic shifts3. Telomere shortening

Cellular level1. Mitochondria: ROS, DNA damage, other2. Misfolded proteins3. Dysfunctional stem cells

Organismal level1. Autoimmune, other defects in immune system2. Defective signaling

Page 2: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA REPLICATIONWC: DNA replication is semi-conservative

strands melt: form templates

for copy

Copy is reverse &complement of template

Copy of other strand

Page 3: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & Stahl

proved DNA replication is semi-conservative

1) grew E. coli on 15N to tell new DNA from old

• make dense DNA

Page 4: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & Stahl1) grew E. coli on 15N to tell new DNA from old• make dense DNA

2) Xfer to 14N

Page 5: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & Stahl1) grew E. coli on 15N to tell new DNA from old• make dense DNA

2) Xfer to 14N• new DNA is light

Page 6: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & Stahl1) grew E.coli on 15N totell new DNA from old• make dense DNA

2) Xfer to 14N• new DNA is light

3) measure of F1 & F2 DNA by centrifuging in CsCl

Page 7: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & Stahlmeasure of F1 & F2 DNA by centrifuging in CsClforms gradients when spun@500,000 x g

Page 8: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & Stahlmeasure of F1 & F2 DNA by centrifuging in CsClforms gradients when spun@500,000 x gDNA bands where is same as CsCl

Page 9: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & StahlResultsF0 DNA forms HH band

control Parental

Page 10: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & StahlF0 DNA forms HH band F1 DNA forms one higher band Control Parental F1

Page 11: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & StahlF0 DNA forms HH bandF1 DNA forms one higher band: HL Control Parental F1

Page 12: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & StahlF0 DNA forms HH bandF1 DNA forms one higher band: HL F2 DNA forms 2 bands: #1 same as F1#2 same as 14N DNA Control Parental F1 F2

Page 13: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Meselson & StahlF2 DNA forms 2 bands: # 1 same as F1#2 same as 14N DNA# 1 = HL# 2 = LL : DNA replication is semiconservative

Page 14: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) Replication begins at origins of replication

Page 15: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) Replication begins at origins of replicationPolymerases are dumb!

Page 16: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) Replication begins at origins of replicationDNA polymerases are dumb!other proteins tell where to start

Page 17: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) where to begin?2) “melting” DNA

Page 18: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) where to begin?2) “melting” DNA• must melt DNA @ physiological T

Page 19: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationmust melt DNA @ physiological THelicase melts DNA

Page 20: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationmust melt DNA @ physiological THelicase melts DNAForms “replication bubble”

Page 21: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationhelicase melts DNAForms “replication bubble”

SSB proteins separate strands until they are copied

Page 22: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationhelicase melts DNAunwinding DNA increases supercoiling elsewhere

Page 23: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationhelicase melts DNAunwinding DNA increases supercoiling elsewhereDNA gyrase relieves supercoiling

Page 24: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationDNA gyrase relieves supercoilingTopoisomerases : enzymes that untie knots in DNAType I nick backbone & unwind once as strand rotatesType II cut both strands: relieve two supercoils/rxn

Page 25: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) where to begin?2) “melting”3) “priming” • DNA polymerase can only add

Page 26: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication “priming”

DNA polymerase can only addprimase makes short RNA primers

Page 27: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication “priming”

primase makes short RNA primersDNA polymerase adds to primer

Page 28: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication “priming”

primase makes short RNA primersDNA polymerase adds to primer later replace primers with DNA

Page 29: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication1) where to begin?2) “melting”3) “priming”4) DNA replication

Page 30: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication4) add bases bonding 5’ P to 3’ OH @ growing end

Page 31: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication4) add bases bonding 5’ P to 3’ OH @ growing endTemplate holds next base until make bond

Page 32: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationTemplate holds next base until make bond- only correct base fits

Page 33: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationTemplate holds next base until make bond- only correct base fits- energy comesfrom 2 PO4

Page 34: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationenergy comes from 2 PO4

"Sliding clamp" keeps polymerase from falling off

Page 35: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationenergy comes from 2 PO4

"Sliding clamp" keeps polymerase from falling offProof-reading: only correct DNA can exit

Page 36: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationProof-reading: only correct DNA can exit Remove bad bases & try again

Page 37: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replication

Only make DNA 5’ -> 3’

Page 38: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging StrandsOnly make DNA 5’ -> 3’strands go both ways!

Page 39: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging StrandsOnly make DNA 5’ -> 3’strands go both ways!Make leading strand continuously

Page 40: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging StrandsMake leading strand continuouslyMake lagging strand opposite way

Page 41: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging StrandsMake leading strand continuously Make lagging strand opposite waywait for DNA to melt, then make Okazaki fragments

Page 42: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging StrandsMake lagging strand opposite waywait for DNA to melt, then make Okazaki fragmentseach Okazaki fragment has its own primermade discontinuously

Page 43: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging Strandseach Okazaki fragment has its own primermade discontinuouslyDNA replication is semidiscontinuous

Page 44: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Leading and Lagging Strandseach Okazaki fragment has its own primermade discontinuouslyDNA replication is semidiscontinuousOkazaki fragments grow until hit one in front

Page 45: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Okazaki fragments grow until hit one in frontRNAse H removes primer & gap is filled

Page 46: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Okazaki fragments grow until hit one in frontRNAse H removes primer & gap is filledDNA ligase joins fragments

Page 47: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Okazaki fragments grow until hit one in front

RNAse H removes primer & gap is filled

DNA ligase joins fragments

Energy comesfrom ATP-> AMP

Page 48: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationReal process is far more complicated!Proteins replicating both strands are in replisome

Page 49: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationReal process is far more complicated!Proteins replicating both strands are in replisome: feed DNA through it

Page 50: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

DNA replicationProteins replicating both strands are in replisome: feed DNA through itlagging strand loops out so make both strands in same direction

Page 51: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

lagging strand loops out so make both strands in same directionDNA pol detaches when hits previous primer, reattaches at next primer

Page 52: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Bacterial DNA has one originEuk have ARS ~ every 100,000 bp

- speed DNA replication

Page 53: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

Euk have ARS ~ every 100,000 bp - speed DNA replication

ORC (Origin Recognition Complex) binds ARS

A B1 B2 B3

Page 54: Aging Genome 1.DNA damage 2.Epigenetic shifts 3.Telomere shortening Cellular level 1.Mitochondria: ROS, DNA damage, other 2.Misfolded proteins 3.Dysfunctional.

ORC binds ARSlicensing factors ensure each ARS is only replicated once/Sfall off when ARS is replicated, don't reattach until G1