Top Banner

of 37

AEMC15

Apr 03, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 AEMC15

    1/37

    15 Integral Transform Method

    Exercises 15.1

    1. (a) The result follows by letting = u2 or u =

    in erf(

    t ) =2

    t0

    eu2

    du.

    (b) Using {t1/2} =

    s1/2and the first translation theorem, it follows from the convolution theorem that

    erf(

    t)

    =1

    t0

    e

    d

    =

    1

    {1}

    t1/2et

    =1

    1

    s

    t1/2

    ss+1

    =

    1

    1

    s

    s + 1 =1

    ss + 1 .

    2. Since erfc(

    t ) = 1 erf(t ) we have

    erfc(

    t )

    = {1}

    erf(

    t )

    =1

    s 1

    s

    s + 1=

    1

    s

    1 1

    s + 1

    .

    3. By the first translation theorem,

    et erf(

    t )

    =

    erf(

    t )

    ss1

    =1

    s

    s + 1

    ss1

    =1

    s (s

    1)

    .

    4. By the first translation theorem and the result of Problem 2,

    et erfc(

    t )

    =

    erfc(

    t )

    ss1=

    1

    s 1

    s

    s + 1

    ss1

    =1

    s 1 1

    s (s 1)

    =

    s 1

    s (s 1) =

    s 1s (

    s + 1)(

    s 1) =1

    s (

    s + 1).

    5. From table entry 3 and the first translation theorem we have

    eGt/Cerfx2RCt = eGt/C1 erfcx2RCt =

    eGt/C

    eGt/Cerfc

    x

    2

    RC

    t

    =1

    s + G/C e

    xRC

    s

    s

    ss+G/C

    =1

    s + G/C e

    xRC

    s+G/C

    s + G/C=

    C

    Cs + G

    1 ex

    RCs+RG

    .

    702

  • 7/28/2019 AEMC15

    2/37

    Exercises 15.1

    6. We first compute

    sinh a

    s

    s sinh

    s=

    eas ea

    s

    s(es es) =

    e(a1)s e(a+1)

    s

    s(1 e2s )

    =

    e(a1)s

    s 1 + e2s + e4s + e(a+1)s

    s 1 + e2s + e4s + =

    e(1a)

    s

    s+

    e(3a)s

    s+

    e(5a)s

    s+

    e(1+a)s

    s+

    e(3+a)s

    s+

    e(5+a)s

    s+

    =n=0

    e(2n+1a)

    s

    s e

    (2n+1+a)s

    s

    .

    Then

    sinh a

    s

    s sinhs =

    n=0

    e(2n+1a)s

    s e(2n+1+a)s

    s =

    n=0

    erfc

    2n + 1 a

    2

    t

    erfc

    2n + 1 + a

    2

    t

    =n=0

    1 erf

    2n + 1 a

    2

    t

    1 erf

    2n + 1 + a

    2

    t

    =n=0

    erf

    2n + 1 + a

    2

    t

    erf

    2n + 1 a

    2

    t

    .

    7. Taking the Laplace transform of both sides of the equation we obtain

    {y(t)} = {1} t0

    y()t d

    Y(s) =

    1

    s Y(s)

    s

    s +

    sY(s) =

    1

    s

    Y(s) =1

    s (

    s +

    ).

    Thus

    y(t) = 1

    s (

    s +

    ) = et erfc(

    t ). By entry 5 in the table

    8. Using entries 3 and 5 in the table, we haveeabeb2t erfc

    b

    t +a

    2

    t

    + erfc

    a

    2

    t

    =

    eabeb2t erfc

    b

    t +a

    2

    t

    +

    a

    2

    t

    = eas

    s (

    s + b)+

    eas

    s

    703

  • 7/28/2019 AEMC15

    3/37

    -10 -5 5 10x

    -2

    -1

    1

    2

    y

    erfHxLerfcHxL

    Exercises 15.1

    = eas

    1

    s 1

    s (

    s + b)

    = ea

    s

    1

    s

    s

    s (

    s + b)

    = eas

    s + b s

    s (s + b) =bea

    s

    s (s + b).

    9.

    ba

    eu2

    du =

    0a

    eu2

    du +

    b0

    eu2

    du =

    b0

    eu2

    dua

    0

    eu2

    du

    =

    2erf(b)

    2erf(a) =

    2[erf(b) erf(a)]

    10. Since f(x) = ex2

    is an even function, aa

    eu2

    du = 2

    a0

    eu2

    du.

    Therefore,

    aa

    eu2

    du = erf(a).

    11. The function erf(x) is symmetric with respect to the origin,

    while erfc(x) appears to be symmetric with respect to the point

    (0, 1). From the graph it appears that limx erf(x) = 1and limx erfc(x) = 2.

    Exercises 15.2

    1. The boundary-value problem is

    a22u

    x2=

    2u

    t2, 0 < x < L, t > 0,

    u(0, t) = 0, u(L, t) = 0, t > 0,

    u(x, 0) = A sin

    Lx,

    u

    t

    t=0

    = 0.

    Transforming the partial differential equation gives

    d2U

    dx2 s

    a

    2U = s

    a2A sin

    Lx.

    Using undetermined coefficients we obtain

    U(x, s) = c1 coshs

    ax + c2 sinh

    s

    ax +

    As

    s2 + a22/L2sin

    Lx.

    The transformed boundary conditions, U(0, s) = 0, U(L, s) = 0 give in turn c1 = 0 and c2 = 0. Therefore

    U(x, s) =As

    s2 + a22/L2sin

    Lx

    704

  • 7/28/2019 AEMC15

    4/37

    Exercises 15.2

    and

    u(x, t) = A

    s

    s2 + a22/L2

    sin

    Lx = A cos

    a

    Lt sin

    Lx.

    2. The transformed equation isd2U

    dx2 s2U = 2sin x 4sin3xand so

    U(x, s) = c1 cosh sx + c2 sinh sx +2

    s2 + 2sin x +

    4

    s2 + 92sin3x.

    The transformed boundary conditions, U(0, s) = 0 and U(1, s) = 0 give c1 = 0 and c2 = 0. Thus

    U(x, s) =2

    s2 + 2sin x +

    4

    s2 + 92sin3x

    and

    u(x, t) = 2

    1

    s2 + 2

    sin x + 4

    1

    s2 + 92

    sin3x

    =2

    sin t sin x +

    4

    3sin3t sin3x.

    3. The solution of

    a2d2U

    dx2 s2U = 0

    is in this case

    U(x, s) = c1e(x/a)s + c2e(x/a)s.

    Since limx u(x, t) = 0 we have limx U(x, s) = 0. Thus c2 = 0 and

    U(x, s) = c1e(x/a)s.

    If {u(0, t)} = {f(t)} = F(s) then U(0, s) = F(s). From this we have c1 = F(s) and

    U(x, s) = F(s)e(x/a)s

    .

    Hence, by the second translation theorem,

    u(x, t) = f

    t xa

    t x

    a

    .

    4. Expressing f(t) in the form (sin t)[1 (t 1)] and using the result of Problem 3 we find

    u(x, t) = f

    t xa

    t x

    a

    = sin

    t x

    a

    1

    t x

    a 1

    t x

    a

    = sin t

    x

    a t x

    a tx

    a t x

    a 1

    = sin

    t xa

    t x

    a

    t x

    a 1

    Now

    t xa

    t x

    a 1

    =

    0, 0 t < x/a1, x/a t x/a + 10, t > x/a + 1

    =

    0, x < a(t 1) or x > at1, a(t 1) x at

    705

  • 7/28/2019 AEMC15

    5/37

    Exercises 15.2

    so

    u(x, t) =

    0, x < a(t 1) or x > atsin (t x/a), a(t 1) x at.

    The graph is shown for t > 1.

    5. We use

    U(x, s) = c1e(x/a)s g

    s3.

    Now

    {u(0, t)} = U(0, s) = As2 + 2

    and so

    U(0, s) = c1 gs3

    =A

    s2 + 2or c1 =

    g

    s3+

    A

    s2 + 2.

    Therefore

    U(x, s) =A

    s2 + 2e(x/a)s +

    g

    s3e(x/a)s g

    s3

    and

    u(x, t) = A

    e(x/a)s

    s2 + 2

    + g

    e(x/a)s

    s3

    g

    1

    s3

    = A sin

    t xa

    t x

    a

    +

    1

    2g

    t xa

    2 t x

    a

    1

    2gt2.

    6. Transforming the partial differential equation gives

    d2U

    dx2 s2U =

    s2 + 2 sin x.

    Using undetermined coefficients we obtain

    U(x, s) = c1 cosh sx + c2 sinh sx +

    (s2 + 2)(s2 + 2)sin x.

    The transformed boundary conditions U(0, s) = 0 and U(1, s) = 0 give, in turn, c1 = 0 and c2 = 0. Therefore

    U(x, s) =

    (s2 + 2)(s2 + 2)sin x

    and

    u(x, t) = sin x 1(s2 + 2)(s2 + 2)=

    2 2 sin x

    1

    s2 + 2 1

    s2 + 2

    =

    (2 2) sin t sin x 1

    2 2 sin t sin x.

    7. We use

    U(x, s) = c1 coshs

    ax +2 sinh

    s

    ax.

    706

  • 7/28/2019 AEMC15

    6/37

    Exercises 15.2

    Now U(0, s) = 0 implies c1 = 0, so U(x, s) = c2 sinh(s/a)x. The condition EdU

    dx

    x=L

    = F0 then yields

    c2 = F0a/Es cosh(s/a)L and so

    U(x, s) =aF0Es

    sinh(s/a)x

    cosh(s/a)L=

    aF0Es

    e(s/a)x e(s/a)xe(s/a)L + e(s/a)L

    =aF0Es

    e(s/a)(xL) e(s/a)(x+L)1 + e2sL/a

    =aF0

    E

    e(s/a)(Lx)

    s e

    (s/a)(3Lx)

    s+

    e(s/a)(5Lx)

    s

    aF0E

    e(s/a)(L+x)

    s e

    (s/a)(3L+x)

    s+

    e(s/a)(5L+x)

    s

    =aF0

    E

    n=0

    (1)n

    e(s/a)(2nL+Lx)

    s e

    (s/a)(2nL+L+x)

    s

    and

    u(x, t) = aF0

    En=0

    (1)n e(s/a)(2nL+Lx)s

    e(s/a)(2nL+L+x)s

    =aF0

    E

    n=0

    (1)n

    t 2nL + L xa

    t 2nL + L x

    a

    t 2nL + L + xa

    t 2nL + L + x

    a

    .

    8. We use

    U(x, s) = c1e(x/a)s + c2e(x/a)s v0

    s2.

    Now limxdU

    dx = 0 implies c2 = 0, and U(0, s) = 0 then gives c1 = v0/s2. Hence

    U(x, s) =v0s2

    e(x/a)s v0s2

    and

    u(x, t) = v0

    t x

    a

    t x

    a

    v0t.

    9. Transforming the partial differential equation gives

    d2U

    dx2 s2U = sxex.

    Using undetermined coefficients we obtain

    U(x, s) = c1esx + c2esx 2s

    (s2

    1)2

    ex +s

    s2

    1

    xex.

    The transformed boundary conditions limx U(x, s) = 0 and U(0, s) = 0 give, in turn, c2 = 0 andc1 = 2s/(s2 1)2. Therefore

    U(x, s) =2s

    (s2 1)2 esx 2s

    (s2 1)2 ex +

    s

    s2 1 xex.

    From entries (13) and (26) in the table we obtain

    u(x, t) =

    2s

    (s2 1)2 esx 2s

    (s2 1)2 ex +

    s

    s2 1 xex

    = 2(t x)sinh(t x) (t x) tex sinh t + xex cosh t.

    707

  • 7/28/2019 AEMC15

    7/37

    0 2 4 6

    8 10x

    510

    15

    t

    0

    25

    50

    75

    100

    uHx,tL

    2 4

    5 00 10 00 15 00 2 00 0t

    20

    40

    60

    80

    100

    uH10,tL

    Exercises 15.2

    10. We use

    U(x, s) = c1exs + c2exs +

    s

    s2 1 ex.

    Now limx u(x, t) = 0 implies limx U(x, s) = 0, so we define c2 = 0. Then

    U(x, s) = c1exs +s

    s2 1 ex.Finally, U(0, s) = 1/s gives c1 = 1/s s/(s2 1). Thus

    U(x, s) =1

    s s

    s2 1 exs +

    s

    s2 1 ex

    and

    u(x, t) =

    s

    s2 1 e(x/a)s

    +

    s

    s2 1

    ex

    = cosh

    t xa

    t x

    a

    + ex cosh t.

    11. (a) We useU(x, s) = c1e

    s/k x + c2es/k x.

    Now limx u(x, t) = 0 implies limx U(x, s) = 0, so we define c2 = 0. Then

    U(x, s) = c1es/k x.

    Finally, from U(0, s) = u0/s we obtain c1 = u0/s. Thus

    U(x, s) = u0es/k x

    s

    and

    u(x, t) = u0 es/k x

    s = u0 e(x/

    k )s

    s = u0 erfc x2kt .

    Since erfc(0) = 1,

    limt

    u(x, t) = limt

    u0 erfc(x/2

    kt ) = u0.

    (b)

    12. (a) Transforming the partial differential equation and using the initial condition gives

    kd2U

    dx2 sU = 0.

    Since the domain of the variable x is an infinite interval we write the general solution of this differential

    equation as

    U(x, s) = c1es/k x + c2e

    s/k x.

    708

  • 7/28/2019 AEMC15

    8/37

    0 2 4 6 8 10x

    510

    15

    t

    0

    10

    20

    30

    40

    uHx,tL

    2 4

    5 00 1 00 0 1 50 0 2 00 0t

    100

    200

    300

    400

    500

    uH10,tL

    Exercises 15.2

    Transforming the boundary conditions gives U(0, s) = A/s and limx

    U(x, s) = 0. Hence we find c2 = 0

    and c1 = A

    k/s

    s . From

    U(x, s) = A

    kes/k x

    s

    s

    we see that

    u(x, t) = A

    k

    es/k x

    s

    s

    .

    With the identification a = x/

    k it follows from entry 49 of the table in Appendix III that

    u(x, t) = A

    k

    2

    t

    ex

    2/4kt xk

    x/2

    kt

    = 2A

    kt

    ex

    2/4kt Ax erfc

    x/2

    kt

    .

    Since erfc(0) = 1,

    limt

    u(x, t) = limt

    2Akt

    ex

    2/4kt Ax erfc x2

    kt

    = .

    (b)

    13. We use

    U(x, s) = c1es x + c2e

    sx + u1s

    .

    The condition limx u(x, t) = u1 implies limx U(x, s) = u1/s, so we define c2 = 0. Then

    U(x, s) = c1es x +

    u1s

    .

    From U(0, s) = u0/s we obtain c1 = (u0 u1)/s. Thus

    U(x, s) = (u0 u1) es x

    s+

    u1s

    and

    u(x, t) = (u0 u1)

    exs

    s

    + u1

    1

    s= (u0 u1) erfc

    x

    2

    t+ u1.

    14. We use

    U(x, s) = c1es x + c2e

    sx +

    u1x

    s.

    The condition limx u(x, t)/x = u1 implies limx U(x, s)/x = u1/s, so we define c2 = 0. Then

    U(x, s) = c1es x +

    u1x

    s.

    From U(0, s) = u0/s we obtain c1 = u0/s. Hence

    U(x, s) = u0e

    s x

    s+

    u1x

    s

    709

  • 7/28/2019 AEMC15

    9/37

    Exercises 15.2

    and

    u(x, t) = u0

    ex

    s

    s

    + u1x

    1

    s

    = u0 erfc

    x

    2

    t

    + u1x.

    15. We use

    U(x, s) = c1es x + c2esx +u

    0s .

    The condition limx u(x, t) = u0 implies limx U(x, s) = u0/s, so we define c2 = 0. Then

    U(x, s) = c1es x +

    u0s

    .

    The transform of the remaining boundary conditions gives

    dU

    dx

    x=0

    = U(0, s).

    This condition yields c1 = u0/s(s + 1). Thus

    U(x, s) =

    u0

    es x

    s(s + 1)+

    u0

    sand

    u(x, t) = u0

    exs

    s(

    s + 1)

    + u0

    1

    s

    = u0ex+t erfc

    t +

    x

    2

    t

    u0 erfc

    x

    2

    t

    + u0 By (5) in the table in 15.1.

    16. We use

    U(x, s) = c1es x + c2e

    s x.

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0, so we define c2 = 0. Hence

    U(x, s) = c1es x.

    The remaining boundary condition transforms into

    dU

    dx

    x=0

    = U(0, s) 50s

    .

    This condition gives c1 = 50/s(

    s + 1). Therefore

    U(x, s) = 50e

    s x

    s(

    s + 1)

    and

    u(x, t) = 50 ex

    s

    s(s + 1) = 50ex+t erfc

    t +

    x

    2t + 50 erfcx

    2t .17. We use

    U(x, s) = c1es x + c2e

    s x.

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0, so we define c2 = 0. Hence

    U(x, s) = c1es x.

    The transform of u(0, t) = f(t) is U(0, s) = F(s). Therefore

    U(x, s) = F(s)es x

    710

  • 7/28/2019 AEMC15

    10/37

    Exercises 15.2

    and

    u(x, t) =

    F(s)exs

    =x

    2

    t0

    f(t )ex2/43/2

    d.

    18. We use

    U(x, s) = c1es x

    + c2e

    s x

    .

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0, so we define c2 = 0. Then U(x, s) = c1esx.

    The transform of the remaining boundary condition gives

    dU

    dx

    x=0

    = F(s)

    where F(s) = {f(t)}. This condition yields c1 = F(s)/s . Thus

    U(x, s) = F(s)e

    s x

    s

    .

    Using entry (44) of the table and the convolution theorem we obtain

    u(x, t) =

    F(s) es x

    s

    =

    1

    t0

    f()ex2/4(t)

    t d.

    19. Transforming the partial differential equation gives

    d2U

    dx2 sU = 60.

    Using undetermied coefficients we obtain

    U(x, s) = c1es x + c2e

    s x +

    60

    s.

    The condition limx u(x, t) = 60 implies limx U(x, s) = 60/s, so we define c2 = 0. The transform of the

    remaining boundary condition gives

    U(0, s) =60

    s+

    40

    se2s.

    This condition yields c1 =40

    se2s. Thus

    U(x, s) =60

    s+ 40e2s

    es x

    s.

    Using entry (46) of the table in Appendix III and the second translation theorem we obtain

    u(x, t) =

    60

    s+ 40e2s

    es x

    s

    = 60 + 40erfc

    x

    2

    t 2

    (t 2).

    20. The solution of the transformed equationd2U

    dx2 sU = 100

    by undetermined coefficients is

    U(x, s) = c1esx + c2e

    s x +100

    s.

    From the fact that limx

    U(x, s) = 100/s we see that c1 = 0. Thus

    U(x, s) = c2es x +

    100

    s. (1)

    711

  • 7/28/2019 AEMC15

    11/37

    Exercises 15.2

    Now the transform of the boundary condition at x = 0 is

    U(0, s) = 20

    1

    s 1

    ses

    .

    It follows from (1) that

    20s 20

    ses = c2 + 100

    sor c2 = 80

    s 20

    ses

    and so

    U(x, s) =

    80

    s 20

    ses

    e

    sx +

    100

    s

    =100

    s 80

    se

    s x 20

    se

    s xes.

    Thus

    u(x, t) = 100

    1

    s

    80

    e

    s x

    s

    20

    e

    s x

    ses

    = 100 80 erfcx/2t 20 erfcx/2t 1 (t 1).21. Transforming the partial differential equation gives

    d2U

    dx2 sU = 0

    and so

    U(x, s) = c1es x + c2e

    s x.

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0, so we define c1 = 0. The transform of the

    remaining boundary condition givesdU

    dx x=1=100

    s U(1, s).

    This condition yields

    c2

    s es =

    100

    s c2e

    s

    from which it follows that

    c2 =100

    s(

    s + 1)e

    s.

    Thus

    U(x, s) = 100e(1x)

    s

    s(

    s + 1).

    Using entry (49) of the table in Appendix III we obtain

    u(x, t) = 100e(1x)s

    s(

    s + 1)

    = 100

    e1x+t erfc

    t + 1 xt

    + erfc

    1 x2

    t

    .

    22. Transforming the partial differential equation gives

    kd2U

    dx2 sU = r

    s.

    Using undetermined coefficients we obtian

    U(x, s) = c1es/k x + c2e

    s/k x +

    r

    s2.

    712

  • 7/28/2019 AEMC15

    12/37

    Exercises 15.2

    The condition limx

    u

    x= 0 implies lim

    xdU

    dx= 0, so we define c2 = 0. The transform of the remaining boundary

    condition gives U(0, s) = 0. This condition yields c1 = r/s2. Thus

    U(x, s) = r 1s2 es/k x

    s2 .Using entries (3) and (46) of the table in Appendix III and the convolution theorem we obtain

    u(x, t) = r

    1

    s2 1

    s e

    s/k x

    s

    = rt r

    t0

    erfc

    x

    2

    k

    d.

    23. The solution ofd2U

    dx2 sU = u0 u0 sin

    Lx

    is

    U(x, s) = c1 cosh(

    s x) + c2 sinh(

    s x) +u0s

    +u0

    s + 2/L2sin

    Lx.

    The transformed boundary conditions U(0, s) = u0/s and U(L, s) = u0/s give, in turn, c1 = 0 and c2 = 0.

    Therefore

    U(x, s) =u0s

    +u0

    s + 2/L2sin

    Lx

    and

    u(x, t) = u0

    1

    s

    + u0

    1

    s + 2/L2

    sin

    Lx = u0 + u0e

    2t/L2 sin

    Lx.

    24. The transform of the partial differential equation is

    kd2U

    dx2 hU + h um

    s= sU u0

    or

    kd2U

    dx2 (h + s)U = h um

    s u0.

    By undetermined coefficients we find

    U(x, s) = c1e

    (h+s)/k x + c2e

    (h+s)/k x +hum + u0s

    s(s + h).

    The transformed boundary conditions are U(0, s) = 0 and U(L, s) = 0. These conditions imply c1 = 0 and

    c2 = 0. By partial fractions we then get

    U(x, s) =hum + u0s

    s(s + h)=

    ums um

    s + h+

    u0s + h

    .

    Therefore,

    u(x, t) = um

    1

    s

    um

    1

    s + h

    + u0

    1

    s + h

    = um umeht + u0eht.

    25. We use

    U(x, s) = c1 cosh

    s

    kx + c2 sinh

    s

    kx +

    u0s

    .

    The transformed boundary conditionsdU

    dx

    x=0

    = 0 and U(1, s) = 0 give, in turn, c2 = 0 and

    713

  • 7/28/2019 AEMC15

    13/37

    Exercises 15.2

    c1 = u0/s cosh

    s/k . Therefore

    U(x, s) =u0s u0 cosh

    s/k x

    s cosh

    s/k=

    u0s u0 e

    s/k x + e

    s/k x

    s(es/k + e

    s/k )

    = u0s u0 es/k (x1) + es/k (x+1)

    s(1 + e2s/k )

    =u0s u0

    es/k (1x)

    s e

    s/k (3x)

    s+

    es/k (5x)

    s

    u0

    es/k (1+x)

    s e

    s/k (3+x)

    s+

    es/k (5+x)

    s

    =u0s u0

    n=0

    (1)n

    e(2n+1x)s/k

    s+

    e(2n+1+x)s/k

    s

    and

    u(x, t) = u0

    1

    s

    u0

    n=0

    (1)n

    e(2n+1x)s/k

    s

    e(2n+1+x)

    s/k

    s

    = u0 u0n=0

    (1)n

    erfc

    2n + 1 x

    2

    kt

    erfc

    2n + 1 + x

    2

    kt

    .

    26. We use

    c(x, s) = c1 cosh

    s

    Dx + c2 sinh

    s

    Dx.

    The transform of the two boundary conditions are c(0, s) = c0/s and c(1, s) = c0/s. From these conditions we

    obtain c1 = c0/s and

    c2 = c0(1 coshs/D )/s sinhs/D .Therefore

    c(x, s) = c0

    cosh

    s/D x

    s+

    (1 cosh

    s/D )

    s sinh

    s/Dsinh

    s/D x

    = c0

    sinh

    s/D (1 x)

    s sinh

    s/D+

    sin

    s/Dx

    s sinh

    s/D

    = c0

    es/D (1x) e

    s/D (1x)

    s(es/D e

    s/D )

    +es/Dx e

    s/D x

    s(es/D e

    s/D )

    = c0es/D x es/D (2x)

    s(1 e2s/D )

    +es/D (x1) es/D (x+1)

    s(1 e2s/D )

    = c0(e

    s/Dx e

    s/D (2x))

    s

    1 + e2

    s/D + e4

    s/D +

    + c0(es/D (x1) e

    s/D (x+1)

    s

    1 + e2

    s/D + e4

    s/D +

    714

  • 7/28/2019 AEMC15

    14/37

    Exercises 15.2

    = c0

    n=0

    e(2n+x)

    s/D

    s e

    (2n+2x)s/D

    s

    + c0

    n=0

    e(2n+1x)s/D

    s e(2n+1+x)

    s/D

    s and

    c(x, t) = c0

    n=0

    e

    (2n+x)D

    s

    s

    e

    (2n+2x)D

    s

    s

    + c0

    n=0

    e

    (2n+1x)D

    s

    s

    e

    (2n+1+x)D

    s

    s

    = c0

    n=0

    erfc

    2n + x

    2

    Dt

    erfc

    2n + 2 x

    2

    Dt

    + c0

    n=0

    erfc

    2n + 1 x

    2

    Dt

    erfc

    2n + 1 + x

    2

    Dt

    .

    Now using erfc(x) = 1 erf(x) we get

    c(x, t) = c0

    n=0

    erf

    2n + 2 x

    2

    Dt

    erf

    2n + x

    2

    Dt

    + c0

    n=0

    erf

    2n + 1 + x

    2

    Dt

    erf

    2n + 1 x

    2

    Dt

    .

    27. We use

    U(x, s) = c1eRCs+RGx + c2eRCs+RG + Cu0Cs + G

    .

    The condition limx u/x = 0 implies limx dU/dx = 0, so we define c2 = 0. Applying U(0, s) = 0 to

    U(x, s) = c1eRCsRGx +

    Cu0Cs + G

    gives c1 = Cu0/(Cs + G). Therefore

    U(x, s) = Cu0 eRCs+RGx

    Cs + G+

    Cu0Cs + G

    and

    u(x, t) = u0 1s + G/C u0 ex

    RCs+G/C

    s + G/C = u0e

    Gt/C u0eGt/Cerfc

    x

    RC

    2

    t

    = u0eGt/C

    1 erfc

    x

    2

    RC

    t

    = u0eGt/Cerf

    x

    2

    RC

    t

    .

    715

  • 7/28/2019 AEMC15

    15/37

    x

    cHx,tL

    t=0.1

    t=0.5

    t=1t=2t=5

    Exercises 15.2

    28. We use

    U(x, s) = c1es+hx + c2e

    s+hx.

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0, so we take c2 = 0. Therefore

    U(x, s) = c1es+hx.

    The Laplace transform of u(0, t) = u0 is U(0, s) = u0/s and so

    U(x, s) = u0e

    s+hx

    s

    and

    u(x, t) = u0

    e

    s+hx

    s

    = u0

    1

    se

    s+hx

    .

    From the first translation theorem,e

    s+hx

    = eht {ex

    s} = eht x

    2

    t3ex

    2/4t.

    Thus, from the convolution theorem we obtain

    u(x, s) =u0x

    2

    t0

    ehx2/4

    3/2d.

    29. (a) Letting C(x, s) = {c(x, t)} we obtaind2C

    dx2 s

    kC = 0 subject to

    dC

    dx

    x=0

    = A.

    The solution of this initial-value problem is

    C(x, s) = A

    ke(x/

    k )s

    s

    ,

    so that

    c(x, t) = Ak

    tex2/4kt.

    (b)

    (c)

    0

    c(x, t)dx = Ak erfx

    2

    kt

    0

    = Ak(1 0) = Ak

    30. (a) We use

    U(x, s) = c1e(s/a)x + c2e(s/a)x +

    v20F0(a2 v20)s2

    e(s/v0)x.

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0, so we must define c2 = 0. Consequently

    U(x, s) = c1e(s/a)x +

    v20 F0(a2 v20 )s2

    e(s/v0)x.

    716

  • 7/28/2019 AEMC15

    16/37

    Exercises 15.3

    The remaining boundary condition transforms into U(0, s) = 0. From this we find

    c1 = v20F0/(a2 v20)s2.

    Therefore, by the second translation theorem

    U(x, s) = v20F0(a2 v20)s2

    e(s/a)x +v20F0

    (a2 v20 )s2e(s/v0)x

    and

    u(x, t) =v20 F0

    a2 v20

    e(x/v0)s

    s2

    e(x/a)s

    s2

    =v20 F0

    a2 v20

    t x

    v0

    t x

    v0

    t xa

    t x

    a

    .

    (b) In the case when v0 = a the solution of the transformed equation is

    U(x, s) = c1e(s/a)x + c2e(s/a)x

    F0

    2as

    xe(s/a)x.

    The usual analysis then leads to c1 = 0 and c2 = 0. Therefore

    U(x, s) = F02as

    xe(s/a)x

    and

    u(x, t) = xF02a

    e(x/a)s

    s

    = xF0

    2a

    t x

    a

    .

    Exercises 15.3

    1. From formulas (5) and (6) in the text,

    A() =

    01

    (1)cos xdx +1

    0

    (2)cos xdx = sin

    + 2sin

    =

    sin

    and

    B() =

    01

    (1) sin xdx +1

    0

    (2)sin xdx

    =1 cos

    2 cos 1

    =

    3(1 cos )

    .

    Hencef(x) =

    1

    0

    sin cos x + 3(1 cos )sin x

    d.

    2. From formulas (5) and (6) in the text,

    A() =

    2

    4cos xdx = 4sin2 sin

    and

    B() =

    2

    4sin xdx = 4cos cos2

    .

    717

  • 7/28/2019 AEMC15

    17/37

    Exercises 15.3

    Hence

    f(x) =4

    0

    (sin2 sin )cos x + (cos cos2)sin x

    d

    =4

    0

    sin2 cos x cos2 sin x sin cos x + cos sin x

    d

    =4

    0

    sin (2 x) sin ( x)

    d.

    3. From formulas (5) and (6) in the text,

    A() =

    30

    x cos xdx =x sin x

    30

    1

    30

    sin xdx

    =3sin3

    +

    cos x

    2

    30

    =3 sin3 + cos 3 1

    2

    and

    B() =3

    0

    x sin xdx = x cos x

    30

    +1

    30

    cos xdx

    = 3cos3

    +sin x

    2

    30

    =sin3 3 cos3

    2.

    Hence

    f(x) =1

    0

    (3 sin3 + cos 3 1) cos x + (sin 3 3 cos3)sin x2

    d

    =1

    0

    3(sin3 cos x cos3 sin x) + cos 3 cos x + sin 3 sin x cos x2

    d

    = 1

    0

    3 sin (3 x) + cos (3 x) cos x2

    d.

    4. From formulas (5) and (6) in the text,

    A() =

    f(x)cos xdx

    =

    0

    0 cos xdx +

    0

    sin x cos xdx +

    0 cos xdx

    =1

    2

    0

    [sin(1 + )x + sin(1 )x] dx

    =1

    2

    cos(1 + )x

    1 + cos(1 )x

    1

    0

    = 12

    cos(1 + ) 1

    1 + +

    cos(1 ) 11

    = 12

    cos(1 + ) cos(1 + ) + cos(1 ) + cos(1 ) 2

    1 2

    =1 + cos

    1 2 ,

    718

  • 7/28/2019 AEMC15

    18/37

    Exercises 15.3

    and

    B() =

    0

    sin x sin xdx =1

    2

    0

    [cos(1 )x cos(1 + )] dx

    =1

    2 sin(1 )

    1

    sin(1 + )

    1 + =sin

    1

    2.

    Hence

    f(x) =1

    0

    cos x + cos x cos + sin x sin

    1 2 d

    =1

    0

    cos x + cos (x )1 2 d.

    5. From formula (5) in the text,

    A() =

    0

    ex cos xdx.

    Recall {cos kt} = s/(s2 + k2). If we set s = 1 and k = we obtain

    A() =1

    1 + 2.

    Now

    B() =

    0

    ex sin xdx.

    Recall {sin kt} = k/(s2 + k2). If we set s = 1 and k = we obtainB() =

    1 + 2.

    Hence

    f(x) =1

    0

    cos x + sin x

    1 + 2d.

    6. From formulas (5) and (6) in the text,

    A() =11

    ex cos xdx

    =e(cos + sin ) e1(cos sin )

    1 + 2

    =2(sinh1) cos 2(cosh 1) sin

    1 + 2

    and

    B() =

    11

    ex sin xdx

    =e(sin cos ) e1( sin cos )

    1 + 2

    =2(cosh 1) sin 2(sinh 1) cos

    1 + 2.

    Hence

    f(x) =1

    0

    [A()cos x + B()sin x] d.

    7. The function is odd. Thus from formula (11) in the text

    B() = 5

    10

    sin xdx =5(1 cos )

    .

    719

  • 7/28/2019 AEMC15

    19/37

    Exercises 15.3

    Hence from formula (10) in the text,

    f(x) =10

    0

    (1 cos )sin x

    d.

    8. The function is even. Thus from formula (9) in the text

    A() =

    21

    cos xdx =

    sin2 sin

    .

    Hence from formula (8) in the text,

    f(x) = 2

    0

    (sin2 sin )cos x

    d.

    9. The function is even. Thus from formula (9) in the text

    A() =

    0

    x cos xdx =x sin x

    0

    1

    0

    sin xdx

    =

    sin

    +

    1

    2 cos x

    0 =

    sin + cos

    1

    2 .

    Hence from formula (8) in the text

    f(x) =2

    0

    ( sin + cos 1) cos x2

    d.

    10. The function is odd. Thus from formula (11) in the text

    B() =

    0

    x sin xdx = x cos x

    0

    +1

    0

    cos xdx

    = cos

    +1

    2sin x

    0

    = cos + sin

    2.

    Hence from formula (10) in the text,

    f(x) =2

    0

    ( cos + sin )sin x2

    d.

    11. The function is odd. Thus from formula (11) in the text

    B() =

    0

    (ex sin x)sin xdx

    =1

    2

    0

    ex[cos(1 )x cos(1 + )x] dx

    =1

    2

    0

    ex cos(1 )x dx 12

    0

    ex cos(1 + )x, dx.

    Now recall

    {cos kt} =

    0

    est cos ktdt = s/(s2 + k2).

    If we set s = 1, and in turn, k = 1 and then k = 1 + , we obtain

    B() =1

    2

    1

    1 + (1 )2 1

    2

    1

    1 + (1 + )2=

    1

    2

    (1 + )2 (1 )2[1 + (1 )2][1 + (1 + )2] .

    Simplifying the last expression gives

    B() =2

    4 + 4.

    720

  • 7/28/2019 AEMC15

    20/37

    Exercises 15.3

    Hence from formula (10) in the text

    f(x) =4

    0

    sin x

    4 + 4d.

    12. The function is odd. Thus from formula (11) in the text

    B() =

    0

    xex sin xdx.

    Now recall

    {t sin kt} = dds

    {sin kt} = 2ks/(s2 + k2)2.If we set s = 1 and k = we obtain

    B() =2

    (1 + 2)2.

    Hence from formula (10) in the text

    f(x) =4

    0

    sin x

    (1 + 2)2d.

    13. For the cosine integral,

    A() =

    0

    ekx cos xdx =k

    k2 + 2.

    Hence

    f(x) =2

    0

    k cos x

    k2 + 2=

    2k

    0

    cos x

    k2 + 2d.

    For the sine integral,

    B() =

    0

    ekx sin xdx =

    k2 + 2.

    Hence

    f(x) =2

    0

    sin x

    k2 + 2d.

    14. From Problem 13 the cosine and sine integral representations of ekx, k > 0, are respectively,

    ekx =2k

    0

    cos x

    k2 + 2d and ekx =

    2

    0

    sin x

    k2 + 2d.

    Hence, the cosine integral representation of f(x) = ex e3x is

    ex e3x = 2

    0

    cos x

    1 + 2d 2(3)

    0

    cos x

    9 + 2d =

    4

    0

    3 2(1 + 2) (9 + 2)

    cos xd.

    The sine integral representation of f is

    ex e3x = 2

    0

    sin x

    1 + 2d 2

    0

    sin x

    9 + 2d =

    16

    0

    sin x

    (1 + 2) (9 + 2)d.

    15. For the cosine integral,

    A() =

    0

    xe2x cos x dx.

    But we know

    {t cos kt} = dds

    s

    (s2 + k2)=

    (s2 k2)(s2 + k2)2

    .

    If we set s = 2 and k = we obtain

    A() =4 2

    (4 + 2)2.

    721

  • 7/28/2019 AEMC15

    21/37

    Exercises 15.3

    Hence

    f(x) =2

    0

    (4 2)cos x(4 + 2)2

    d.

    For the sine integral,

    B() = 0

    xe2x sin x dx.

    From Problem 12, we know

    {t sin kt} = 2ks(s2 + k2)2

    .

    If we set s = 2 and k = we obtain

    B() =4

    (4 + 2)2.

    Hence

    f(x) =8

    0

    sin x

    (4 + 2)2d.

    16. For the cosine integral,

    A() =

    0

    ex cos x cos xdx

    =1

    2

    0

    ex[cos(1 + )x + cos(1 )x] dx

    =1

    2

    1

    1 + (1 + )2+

    1

    2

    1

    1 + (1 )2

    =1

    2

    1 + (1 )2 + 1 + (1 + )2[1 + (1 + )2][1 + (1 )2]

    = 2 + 2

    4 + 4.

    Hence

    f(x) =2

    0

    (2 + 2)cos x

    4 + 4d.

    For the sine integral,

    B() =

    0

    ex cos x sin xdx

    =1

    2

    0

    ex[sin(1 + )x sin(1 )x] dx

    = 12

    1 + 1 + (1 + )2

    12

    1 1 + (1 )2

    =1

    2

    (1 + )[1 + (1 )2] (1 )[1 + (1 + )2]

    [1 + (1 + )2][1 + (1 )2]

    =3

    4 + 4.

    Hence

    f(x) =2

    0

    3 sin x

    4 + 4d.

    722

  • 7/28/2019 AEMC15

    22/37

    Exercises 15.4

    17. By formula (8) in the text

    f(x) = 2

    0

    e cos xd =2

    1

    1 + x2, x > 0.

    18. From the formula for sine integral of f(x) we have

    f(x) =2

    0

    0

    f(x)sin xdx

    sin xdx

    =2

    10

    1 sin xd +

    1

    0 sin xd

    =2

    ( cos x)x

    10

    =2

    1 cos xx

    .

    19. (a) From formula (7) in the text with x = 2, we have

    1

    2

    =2

    0

    sin cos

    d =1

    0

    sin2

    d.

    If we let = x we obtain 0

    sin2x

    xdx =

    2.

    (b) If we now let 2x = kt where k > 0, then dx = (k/2)dt and the integral in part (a) becomes0

    sin kt

    kt/2(k/2) dt =

    0

    sin kt

    tdt =

    2.

    20. With f(x) = e|x|, formula (16) in the text is

    C() =

    e|x|eixdx =

    e|x| cos xdx + i

    e|x| sin xdx.

    The imaginary part in the last line is zero since the integrand is an odd function of x. Therefore,

    C() =

    e|x| cos xdx = 2

    0

    ex cos xdx =2

    1 + 2

    and so from formula (15) in the text,

    f(x) =1

    cos x

    1 + 2d =

    2

    0

    cos x

    1 + 2d.

    This is the same result obtained from formulas (8) and (9) in the text.

    Exercises 15.4

    For the boundary-value problems in this section it is sometimes useful to note that the identities

    ei = cos + i sin and ei = cos i sin imply

    ei + ei = 2cos and ei ei = 2i sin .

    723

  • 7/28/2019 AEMC15

    23/37

    Exercises 15.4

    1. Using the Fourier transform, the partial differential equation becomes

    dU

    dt+ k2U = 0 and so U(, t) = cek

    2t.

    Now

    {u(x, 0)} = U(, 0) = e|x| .We have

    e|x|

    =

    e|x|eixdx =

    e|x|(cos x + i sin x) dx =

    e|x| cos x dx.

    The integral

    e|x| sin xdx = 0

    since the integrand is an odd function of x. Continuing we obtain

    e|x|

    = 2

    0

    ex cos xdx =2

    1 + 2.

    But U(, 0) = c =2

    1 + 2gives

    U(, t) =2ek

    2t

    1 + 2

    and so

    u(x, t) =2

    2

    ek2teix

    1 + 2d =

    1

    ek2t

    1 + 2(cos x i sin x)d

    =1

    ek2t cos x

    1 + 2d =

    2

    0

    ek2t cos x

    1 + 2d.

    2. Since the domain of x is (,) we transform the differential equation using the Fourier transform:k2U(, t) = du

    dtdu

    dt+ k2U(, t) = 0

    U(, t) = cek2t. (1)

    The transform of the initial condition is

    {u(x, 0)} =

    u(x, 0)eixdx =

    01

    (100eix)dx +1

    0

    100eixdx

    = 1001

    ei

    i + 100

    ei

    1

    i = 100

    ei + ei

    2

    i

    = 1002cos 2

    i= 200

    cos 1i

    .

    Thus

    U(, 0) = 200cos 1

    i,

    and since c = U(, 0) in (1) we have

    U(, t) = 200cos 1

    iek

    2t.

    724

  • 7/28/2019 AEMC15

    24/37

    Exercises 15.4

    Applying the inverse Fourier transform we obtain

    u(x, t) = 1{U(, t)}

    =1

    2

    200cos 1

    iek

    2teix d

    =100

    200cos 1

    iek

    2t(cos x i sin x) d

    =100

    cos x(cos 1)i

    ek2t

    odd function

    d 100

    sin x(cos 1)

    ek2t

    even function

    d

    =200

    0

    sin x(1 cos )

    ek2td.

    3. Using the Fourier transform, the partial differential equation equation becomes

    dUdt

    + k2U = 0 and so U(, t) = cek2t.

    Now

    {u(x, 0)} = U(, 0) = e2/4

    by the given result. This gives c =

    e2/4 and so

    U(, t) =

    e(14+kt)

    2

    .

    Using the given Fourier transform again we obtain

    u(x, t) =

    1

    {e(1+4kt)

    2/4

    }=

    1

    1 + 4ktex

    2/(1+4kt).

    4. (a) We use U(, t) = cek2t. The Fourier transform of the boundary condition is U(, 0) = F(). This gives

    c = F() and so U(, t) = F()ek2t. By the convolution theorem and the given result, we obtain

    u(x, t) = 1{F() ek2t} = 12

    kt

    f()e(x)2/4kt d.

    (b) Using the definition of f and the solution is part (a) we obtain

    u(x, t) =u0

    2

    kt

    11

    e(x)2/4ktd.

    If u = x 2

    kt, then d = 2ktdu and the integral becomes

    u(x, t) =u0

    (x+1)/2t(x1)/2

    kt

    eu2

    du.

    Using the result in Problem 9, Exercises 15.1, we have

    u(x, t) =u02

    erf

    x + 1

    2

    kt

    erf

    x 12

    kt

    .

    725

  • 7/28/2019 AEMC15

    25/37

    -4-2

    02

    4x

    2

    4

    6

    t

    0

    20

    40uHx,tL

    4-2

    02

    -4 -2 2 4t

    20

    40

    60

    80

    100

    u

    t=0.05

    t=15

    Exercises 15.4

    5.

    Since erf(0) = 0 and limx erf(x) = 1, we have

    limt

    u(x, t) = 50[erf(0) erf(0)] = 0

    and

    limx

    u(x, t) = 50[erf() erf()] = 50[1 1] = 0.

    6. (a) Using the Fourier sine transform, the partial differential equation becomes

    dU

    dt+ k2U = ku0.

    The general solution of this linear equation is

    U(, t) = cek2t +

    u0

    .

    But U(, 0) = 0 implies c = u0/ and soU(, t) = u0

    1 ek2t

    and

    u(x, t) =2u0

    0

    1 ek2t

    sin x d.

    (b) The solution of part (a) can be written

    u(x, t) =2u0

    0

    sin x

    d 2u0

    0

    sin x

    ek

    2t d.

    Using

    0

    sin x

    d = /2 the last line becomes

    u(x, t) = u0 2u0

    0

    sin x

    ek

    2t d.

    7. Using the Fourier sine transform we find

    U(, t) = cek2t.

    Now

    S{u(x, 0)} = U(, 0) =1

    0

    sin xdx =1 cos

    .

    726

  • 7/28/2019 AEMC15

    26/37

    Exercises 15.4

    From this we find c = (1 cos )/ and so

    U(, t) =1 cos

    ek

    2t

    and

    u(x, t) =

    2

    0

    1

    cos

    ek2t

    sin xd.

    8. Since the domain of x is (0,) and the condition at x = 0 involves u/x we use the Fourier cosine transform:

    k2U(, t) kux(0, t) = dUdt

    dU

    dt+ k2U(, t) = kA

    U(, t) = cek2t +

    A

    2.

    Since

    {u(x, 0)} = U(, 0) = 0

    we find c = A/2, so thatU(, t) = A

    1 ek2t2

    .

    Applying the inverse Fourier cosine transform we obtain

    u(x, t) = C1{U(, t)} = 2A

    0

    1 ek2t2

    cos xd.

    9. Using the Fourier cosine transform we find

    U(, t) = cek2t.

    Now

    C{u(x, 0)} = 10

    cos xdx =sin

    = U(, 0).

    From this we obtain c = (sin )/ and so

    U(, t) =sin

    ek

    2t

    and

    u(x, t) =2

    0

    sin

    ek

    2t cos xd.

    10. Using the Fourier sine transform we find

    U(, t) = cek2t +

    1

    .

    NowS{u(x, 0)} = S

    ex

    =

    0

    ex sin xdx =

    1 + 2= U(, 0).

    From this we obtain c = /(1 + 2) 1/. Therefore

    U(, t) =

    1 + 2 1

    ek

    2t +1

    =

    1

    e

    k2t

    (1 + 2)

    and

    u(x, t) =2

    0

    1

    e

    k2t

    (1 + 2)

    sin xd.

    727

  • 7/28/2019 AEMC15

    27/37

    Exercises 15.4

    11. (a) Using the Fourier transform we obtain

    U(, t) = c1 cos at + c2 sin at.

    If we write

    {u(x, 0)} = {f(x)} = F()and

    {ut(x, 0)} = {g(x)} = G()

    we first obtain

    c1 = F() from U(, 0) = F() and then c2 = G()/a fromdU

    dt

    t=0

    = G(). Thus

    U(, t) = F()cos at +G()

    asin at

    and

    u(x, t) =

    1

    2

    F()cos at + G()a sin at eixd.(b) If g(x) = 0 then c2 = 0 and

    u(x, t) =1

    2

    F()cos ateixd

    =1

    2

    F()

    eati + eati

    2

    eixd

    =1

    2

    1

    2

    F()ei(xat)d +1

    2

    F()ei(x+at)d

    =

    1

    2 [f(x at) + f(x + at)] .12. Using the Fourier sine transform we obtain

    U(, t) = c1 cos at + c2 sin at.

    Now

    S{u(x, 0)} =

    xex

    =

    0

    xex sin xdx =2

    (1 + 2)2= U(, 0).

    Also,

    S{ut(x, 0)} = dUdt

    t=0

    = 0.

    This last condition gives c2 = 0. Then U(, 0) = 2/(1 + 2

    )2

    yields c1 = 2/(1 + 2

    )2

    . Therefore

    U(, t) =2

    (1 + 2)2cos at

    and

    u(x, t) =4

    0

    cos at

    (1 + 2)2sin x d.

    13. Using the Fourier cosine transform we obtain

    U(x, ) = c1 cosh x + c2 sinh x.

    728

  • 7/28/2019 AEMC15

    28/37

    Exercises 15.4

    Now the Fourier cosine transforms of u(0, y) = ey and u(, y) = 0 are, respectively, U(0, ) = 1/(1 + 2) andU(, ) = 0. The first of these conditions gives c1 = 1/(1 +

    2). The second condition gives

    c2 = cosh (1 + 2) sinh

    .

    Hence

    U(x, ) =cosh x

    1 + 2 cosh sinh x

    (1 + 2)sinh =

    sinh cosh cosh sinh x(1 + 2) sinh

    =sinh ( x)

    (1 + 2) sinh

    and

    u(x, t) =2

    0

    sinh ( x)(1 + 2)sinh

    cos y d.

    14. Since the boundary condition at y = 0 now involves u(x, 0) rather than u(x, 0), we use the Fourier sine

    transform. The transform of the partial differential equation is then

    d2U

    dx2 2U + u(x, 0) = 0 or d

    2U

    dx2 2U = .

    The solution of this differential equation is

    U(x, ) = c1 cosh x + c2 sinh x +1

    .

    The transforms of the boundary conditions at x = 0 and x = in turn imply that c1 = 1/ and

    c2 =cosh

    sinh 1

    sinh +

    (1 + 2)sinh .

    Hence

    U(, x) =1

    cosh x

    +

    cosh

    sinh sinh x sinh x

    sinh +

    sinh x

    (1 + 2)sinh

    = 1 sinh ( x) sinh sinh x(1 + 2) sinh .Taking the inverse transform it follows that

    u(x, y) =2

    0

    1

    sinh ( x)

    sinh sinh x

    (1 + 2) sinh

    sin y d.

    15. Using the Fourier cosine transform with respect to x gives

    U(, y) = c1ey + c2ey.

    Since we expect u(x, y) to be bounded as y we define c2 = 0. Thus

    U(, y) = c1ey.

    Now

    C{u(x, 0)} =1

    0

    50 cos xdx = 50sin

    and so

    U(, y) = 50sin

    ey

    and

    u(x, y) =100

    0

    sin

    ey cos xd.

    729

  • 7/28/2019 AEMC15

    29/37

    Exercises 15.4

    16. The boundary condition u(0, y) = 0 indicates that we now use the Fourier sine transform. We still have

    U(, y) = c1ey, but

    S{u(x, 0)} =1

    0

    50sin xdx = 50(1 cos )/ = U(, 0).

    This gives c1 = 50(1 cos )/ and so

    U(, y) = 501 cos

    ey

    and

    u(x, y) =100

    0

    1 cos

    ey sin xd.

    17. We use the Fourier sine transform with respect to x to obtain

    U(, y) = c1 cosh y + c2 sinh y.

    The transforms of u(x, 0) = f(x) and u(x, 2) = 0 give, in turn, U(, 0) = F() and U(, 2) = 0. The first

    condition gives c1 = F() and the second condition then yields

    c2 = F()cosh2sinh2

    .

    Hence

    U(, y) = F() cosh y F()cosh2 sinh ysinh2

    = F()sinh2 cosh y cosh2 sinh y

    sinh2

    = F()sinh (2 y)

    sinh2

    and

    u(x, y) =2

    0

    F()sinh (2 y)

    sinh2sin x d.

    18. The domain of y and the boundary condition at y = 0 suggest that we use a Fourier cosine transform. The

    transformed equation is

    d2U

    dx2 2U uy(x, 0) = 0 or d

    2U

    dx2 2U = 0.

    Because the domain of the variable x is a finite interval we choose to write the general solution of the latter

    equation as

    U(x, ) = c1 cosh x + c2 sinh x.

    Now U(0, ) = F(), where F() is the Fourier cosine transform of f(y), and U(, ) = 0 imply c1 = F()

    and c2 = F() sinh / cosh . Thus

    U(x, ) = F() cosh x F() sinh cosh

    sinh x = F()cosh ( x)

    cosh .

    Using the inverse transform we find that a solution to the problem is

    u(x, y) =2

    0

    F()cosh ( x)

    cosh cos y d.

    730

  • 7/28/2019 AEMC15

    30/37

    Exercises 15.4

    19. We solve two boundary-value problems:

    Using the Fourier sine transform with respect to y gives

    u1(x, y) =2

    0

    ex

    1 + 2sin y d.

    The Fourier sine transform with respect to x yields the solution to the second problem:

    u2(x, y) =2

    0

    ey

    1 + 2sin xd.

    We define the solution of the original problem to be

    u(x, y) = u1(x, y) + u2(x, y) = 2

    0

    1 + 2

    ex sin y + ey sin x d.

    20. We solve the three boundary-value problems:

    Using separation of variables we find the solution of the first problem is

    u1(x, y) =n=1

    Aneny sin nx where An = 2

    0

    f(x)sin nxdx.

    Using the Fourier sine transform with respect to y gives the solution of the second problem:

    u2(x, y) =200

    0

    (1 cos )sinh ( x) sinh

    sin y d.

    Also, the Fourier sine transform with respect to y gives the solution of the third problem:

    u3(x, y) =2

    0

    sinh x

    (1 + 2) sinh sin y d.

    The solution of the original problem is

    u(x, y) = u1(x, y) + u2(x, y) + u3(x, y).

    21. Using the Fourier transform with respect to x gives

    U(, y) = c1 cosh y + c2 sinh y.

    The transform of the boundary conditionu

    y

    y=0

    = 0 isdU

    dy

    y=0

    = 0. This condition gives c2 = 0. Hence

    U(, y) = c1 cosh y.

    Now by the given information the transform of the boundary condition u(x, 1) = ex2

    is

    731

  • 7/28/2019 AEMC15

    31/37

    Exercises 15.4

    U(, 1) =

    e2/4. This condition then gives c1 =

    e

    2/4 cosh . Therefore

    U(, y) =

    e

    2/4 cosh y

    cosh

    and

    U(x, y) = 12

    e2

    /4 cosh ycosh

    eixd

    =1

    2

    e2/4 cosh y

    cosh cos xd

    =1

    0

    e2/4 cosh y

    cosh cos xd.

    22. Entries 42 and 43 of the table in Appendix III imply0

    estsin at

    tdt = arctan

    a

    s

    and 0

    estsin at cos bt

    tdt =

    1

    2arctan

    a + b

    s+

    1

    2arctan

    a bs

    .

    Identifying = t, x = a, and y = s, the solution of Problem 16 is

    u(x, y) =100

    0

    1 cos

    ey sin xd

    =100

    0

    sin x

    eyd

    0

    sin x cos

    eyd

    =100

    arctanx

    y 1

    2arctan

    x + 1

    y 1

    2arctan

    x 1y .

    Exercises 15.5

    1. We show that 14 F4F4 = I:

    1

    4F4F4 =

    1

    4

    1 1 1 1

    1 i 1 i1 1 1 11 i 1 i

    1 1 1 1

    1 i 1 i1 1 1 11 i 1 i

    =1

    4

    4 0 0 0

    0 4 0 0

    0 0 4 0

    0 0 0 4

    = I.

    Thus F14 =14

    F4.

    2. We have

    f(x)(x a)dx = 12

    a+a

    f(x)dx =1

    2f(c)(2) = f(c)

    by the mean value theorem for integrals.

    3. By the sifting property,

    {(x)} =

    (x)eixdx = ei0 = 1.

    732

  • 7/28/2019 AEMC15

    32/37

    Exercises 15.5

    4. We already know that f = f. Then, by the sifting property,

    (f )(x) =

    f()(x )d =

    f()( x)d = f(x).

    5. Using integration by parts with u = f(x) and dv = (x

    a) we find

    f(x)(x a)dx =

    f(x)(x a)dx = f(a)

    by the sifting property.

    6. Using a CAS we find

    {g(x)} = 12

    [sign(A ) + sign(A + )]where sign(t) = 1 if t > 0 and sign t = 1 if t < 0. Thus

    {g(x)} =

    1, A < < A0, elsewhere.

    7. Using

    8 =

    2

    2+ i

    2

    2

    28 = i

    38 =

    2

    2+ i

    2

    2

    48 = 1

    58 =

    2

    2 i

    2

    2

    68 = i

    78 =

    2

    2 i

    2

    2

    88 = 1

    we have

    F8 =

    1 1 1 1 1 1 1 1

    1 22 + i2

    2i 22 + i22 1 22 i22 i 22 i22

    1 i 1 i 1 i 1 i1

    2

    2 + i

    22 i

    2

    2 + i

    22 1

    2

    2 i

    22

    i

    22 i

    2

    2

    1 1 1 1 1 1 1 11

    2

    2 i

    22

    i

    22 i

    2

    2 1

    22 + i

    2

    2 i

    22 + i

    2

    2

    1 i 1 i 1 i 1 i1

    2

    2 i

    22 i

    2

    2 i

    22 1

    2

    2 + i

    22

    i

    22 + i

    2

    2

    .

    In factored form

    F8 = I4 D4I4 D4

    F4 00 F4

    P,where I4 is the 4 4 identity matrix.

    D4 =

    1 0 0 0

    0

    2/2 + i

    2/2 0 0

    0 0 i 0

    0 0 0 2/2 + i2/2

    ,

    and P is the 8 8 matrix with 1 in positions (1, 1), (2, 3), (3, 5), (4, 7), (5, 2), (6, 4), (7, 6), and (8, 8).

    733

  • 7/28/2019 AEMC15

    33/37

    -1 -0.5 0.5 1 x

    -1

    -0.5

    0.5

    1

    y

    -2 -1 1 2

    0.2

    0.4

    0.6

    0.8

    Exercises 15.5

    8. The 8th roots of unity, 18, 28, . . .,

    88 are shown in the solution

    of Problem 7 above. The points in the complex plane are equally

    spaced on the perimeter of the unit circle.

    9. The Fourier transform of g(x) = (sin 2x)/x is

    G() =

    1, 2 < < 20, elsewhere.

    This implies that (f g)(x) = 1{F()G()} is band-limited.The graph ofF()G(), which is identical to the graph of (f g), is shown.

    10. For N = 6,

    F6 =

    1 1 1 1 1 1

    1 1/2 +

    3i/2 1/2 + 3i/2 1 1/2 3i/2 1/2 3i/21 1/2 + 3i/2 1/2 3i/2 1 1/2 + 3i/2 1/2 3i/21 1 1 1 1 11 1/2 3i/2 1/2 + 3i/2 1 1/2 3i/2 1/2 + 3i/21 1/2 3i/2 1/2 3i/2 1 1/2 + 3i/2 1/2 + 3i/2

    .

    If, for example, f = (2, 0, 1, 6, 2, 3), then

    c =1

    6F6f =

    7/3

    2/3 +

    3i/3

    5/6 3i/62/3

    5/6 3i/62/3 i/3

    .

    Chapter 5 Review Exercises

    1. The partial differential equation and the boundary conditions indicate that the Fourier cosine transform is

    appropriate for the problem. We find in this case

    u(x, y) =2

    0

    sinh y

    (1 + 2)cosh cos xd.

    2. We use the Laplace transform and undetermined coefficients to obtain

    U(x, s) = c1 cosh

    s x + c2 sinh

    s x +50

    s + 42sin2x.

    The transformed boundary conditions U(0, s) = 0 and U(1, s) = 0 give, in turn, c1 = 0 and c2 = 0. Hence

    U(x, s) =50

    s + 42sin2x

    734

  • 7/28/2019 AEMC15

    34/37

    Chapter 5 Review Exercises

    and

    u(x, t) = 50 sin 2x

    1

    s + 42

    = 50e4

    2t sin2x.

    3. The Laplace transform gives

    U(x, s) = c1e

    s+hx

    + c2e

    s+hx

    +

    u0

    s + h .The condition limx u/x = 0 implies limx dU/dx = 0 and so we define c2 = 0. Thus

    U(x, s) = c1es+hx +

    u0s + h

    .

    The condition U(0, s) = 0 then gives c1 = u0/(s + h) and so

    U(x, s) =u0

    s + h u0 e

    s+hx

    s + h.

    With the help of the first translation theorem we then obtain

    u(x, t) = u0 1

    s + h u0

    e

    s+hx

    s + h

    = u0e

    ht u0eht erfcx

    2

    t= u0e

    ht

    1 erfc

    x

    2

    t

    = u0e

    hterf

    x

    2

    t

    .

    4. Using the Fourier transform and the result

    e|x|

    = 1/(1 + 2) we find

    u(x, t) =1

    2

    1 e2t2(1 + 2)

    eixd

    =1

    2

    1 e2t2(1 + 2)

    cos xd

    =1

    0

    1 e2t

    2

    (1 + 2

    )

    cos xd.

    5. The Laplace transform gives

    U(x, s) = c1es x + c2e

    s x.

    The condition limx u(x, t) = 0 implies limx U(x, s) = 0 and so we define c2 = 0. Thus

    U(x, s) = c1es x.

    The transform of the remaining boundary condition is U(0, s) = 1/s2. This gives c1 = 1/s2. Hence

    U(x, s) =e

    s x

    s2and u(x, t) =

    1

    s

    es x

    s

    .

    Using 1

    s

    = 1 and

    es x

    s

    = erfc

    x

    2

    t

    ,

    it follows from the convolution theorem that

    u(x, t) =

    t0

    erfc

    x

    2

    d.

    6. The Laplace transform and undetermined coefficients gives

    U(x, s) = c1 cosh sx + c2 sinh sx +s 1

    s2 + 2sin x.

    735

  • 7/28/2019 AEMC15

    35/37

    Chapter 5 Review Exercises

    The conditions U(0, s) = 0 and U(1, s) = 0 give, in turn, c1 = 0 and c2 = 0. Thus

    U(x, s) =s 1

    s2 + 2sin x

    and

    u(x, t) = sin x ss2 + 2 1 sin x s2 + 2= (sin x)cos t 1

    (sin x)sin t.

    7. The Fourier transform gives the solution

    u(x, t) =u02

    ei 1

    i

    eixek

    2td

    =u02

    ei(x) eixi

    ek2td

    =u02

    cos ( x) + i sin ( x) cos x + i sin xi

    ek2td.

    Since the imaginary part of the integrand of the last integral is an odd function of , we obtain

    u(x, t) =u02

    sin ( x) + sin x

    ek2td.

    8. Using the Fourier cosine transform we obtain

    U(x, ) = c1 cosh x + c2 sinh x.

    The condition U(0, ) = 0 gives c1 = 0. Thus

    U(x, ) = c2 sinh x.

    Now

    C{u(, y)} = 2

    1 cos ydy =

    sin2

    sin

    = U(, ).

    This last condition gives c2 = (sin 2 sin )/ sinh . Hence

    U(x, ) =sin2 sin

    sinh sinh x

    and

    u(x, y) =2

    0

    sin2 sin sinh

    sinh x cos y d.

    9. We solve the two problems

    2u1x2

    +2u1y2

    = 0, x > 0, y > 0,

    u1(0, y) = 0, y > 0,

    u1(x, 0) =

    100, 0 < x < 1

    0, x > 1

    and2u2x2

    +2u2y2

    = 0, x > 0, y > 0,

    u2(0, y) =

    50, 0 < y < 1

    0, y > 1

    u2(x, 0) = 0.

    736

  • 7/28/2019 AEMC15

    36/37

    Chapter 5 Review Exercises

    Using the Fourier sine transform with respect to x we find

    u1(x, y) =200

    0

    1 cos

    ey sin x d.

    Using the Fourier sine transform with respect to y we find

    u2(x, y) =100

    0

    1 cos

    ex sin y d.

    The solution of the problem is then

    u(x, y) = u1(x, y) + u2(x, y).

    10. The Laplace transform gives

    U(x, s) = c1 cosh

    s x + c2 sinh

    s x +r

    s2.

    The conditionu

    x

    x=0

    = 0 transforms intodU

    dx

    x=0

    = 0. This gives c2 = 0. The remaining condition u(1, t) = 0

    transforms into U(1, s) = 0. This condition then implies c1 = r/s2 coshs . Hence

    U(x, s) =r

    s2 r cosh

    s x

    s2 cosh

    s.

    Using geometric series and the convolution theorem we obtain

    u(x, t) = r

    1

    s2

    r

    cosh

    s x

    s2 cosh

    s

    = rt rn=0

    (1)nt

    0

    erfc

    2n + 1 x

    2

    d +

    t0

    erfc

    2n + 1 + x

    2

    d

    .

    11. The Fourier sine transform with respect to x and undetermined coefficients give

    U(, y) = c1 cosh y + c2 sinh y +A

    .

    The transforms of the boundary conditions are

    dU

    dy

    y=0

    = 0 anddU

    dy

    y=

    =B

    1 + 2.

    The first of these conditions gives c2 = 0 and so

    U(, y) = c1 cosh y +A

    .

    The second transformed boundary condition yields c1 = B/(1 +

    2

    ) sinh . Therefore

    U(, y) =B cosh y

    (1 + 2) sinh +

    A

    and

    u(x, y) =2

    0

    B cosh y

    (1 + 2) sinh +

    A

    sin xd.

    12. Using the Laplace transform gives

    U(x, s) = c1 cosh

    s x + c2 sinh

    s x.

    737

  • 7/28/2019 AEMC15

    37/37

    Chapter 5 Review Exercises

    The condition u(0, t) = u0 transforms into U(0, s) = u0/s. This gives c1 = u0/s. The condition u(1, t) = u0

    transforms into U(1, s) = u0/s. This implies that c2 = u0(1 cosh

    s )/s sinh

    s . Hence

    U(x, s) =u0s

    cosh

    s x + u0

    1 coshs

    s sinh

    s

    sinh

    s x

    = u0 sinhs coshs x cosh sinhs sinhs x + sinhs x

    s sinh

    s

    = u0

    sinh

    s (1 x) + sinhs x

    s sinh

    s

    = u0

    sinh

    s (1 x)

    s sinh

    s+

    sinh

    s x

    s sinh

    s

    and

    u(x, t) = u0

    sinh

    s (1 x)

    s sinh

    s

    +

    sinh

    s x

    s sinh

    s

    = u0

    n=0

    erf2n + 2 x2t erf2n + x2t + u0

    n=0

    erf

    2n + 1 + x

    2

    t

    erf

    2n + 1 x

    2

    t

    .

    13. Using the Fourier transform gives

    U(, t) = c1ek2t.

    Now

    u(, 0) =

    0

    exeix dx =e(i1)x

    i 1

    0

    = 0 1i 1 =

    1

    1 i = c1so

    U(, t) =

    1 + i

    1 + 2 ek2t

    and

    u(x, t) =1

    2

    1 + i

    1 + 2ek

    2teix d.

    Since1 + i

    1 + 2(cos x i sin x) = cos x + sin x

    1 + 2+

    i( cos x sin x)1 + 2

    and the integral of the product of the second term with ek2t is 0 (it is an odd function), we have

    u(x, t) =1

    2

    cos x + sin x

    1 + 2ek

    2t d.