Top Banner

of 28

AdvanceThermodynamics_Materi_6

Jun 02, 2018

Download

Documents

Damy Manesi
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 AdvanceThermodynamics_Materi_6

    1/28

    1

    ACTIVITY MODELS

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    2/28

    2

    Modified Raoult's Law and Excess GibbsFree Energy

    Equilibrium criteria:For vapor phase:For liquid phase, we may use an activity coefficient( i), giving:

    Poynting method is used to calculate the purecomponent liquid phase fugacities:Combining:

    f iV = f i

    L

    f iV = yi i P

    f i L= xi i f i

    L

    f i L= i

    sat P isat exp

    V i L P P i

    sat

    RT yi i P = xi i i

    sat P isat exp

    V i L P P i

    sat

    RT

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    3/28

    3

    K-ratio ==> Ki=yi/xi

    At low pressure: Poynting Correction and ratio offor the component approach unity ==> MODIFIED

    RAOULT'S LAW

    K i =i L P i

    sat

    P [isat exp

    V i L P P i

    sat / RT

    i

    ] isat / iK i =

    i L P i

    sat

    Patau y i P= xi i P i

    sat

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    4/28

    4

    Excess Gibbs free energy: G E=G-G is

    dst diperoleh:

    Activity Coefficient and excess Gibbs free energyare coupled.Excess Gibbs energy is zero for an ideal solution

    Activity Coefficients as derivatives:

    G E = RT i

    xi ln i

    G E

    n i T , P, n j i= RT ln i

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    5/28

    5

    Comparison with Equation of State

    Methods

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    6/28

    6

    Determination of G E from

    Experimental DataModified Raoult's Law:Excess Gibbs energy from activity coefficient (for

    binary system):

    plot G E/RT vs x 1Example (1): system of 2-propanol (1) + water (2)from citation data: T=30 oC, P 1

    sat = 60.7 mmHg, P 2sat = 32.1

    mmHg, y 1 = 0.6462, when x 1 = 0.6369 at P=66.9 mmHg

    ==> determine activity coefficient and relate to excess Gibbsenergy

    i= yi P

    xi P isat

    G E

    RT = x1 ln 1 x2 ln 2

    1= y1 P

    x1 P 1sat =

    0.6462 66.90.6369 60.7

    = 1.118 2 = y2 P

    x2 P 2sat =

    0.3538 66.90.3631 32.1

    = 2.031

    G E

    RT = x1 ln 1 x2 ln 2 =0.6369 ln 1.118 0.3631ln 2.031 =0.328

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    7/28

    7

    plot to G E/RT vs x 1

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    8/28

    8

    One-Parameter MARGULES

    Equationthe simplest expression for Gibbs excess energyfunction

    Parameter A is a constant which is not associated withthe other uses of the variable (equation of stateparameters, Helmholtz energy, Antoine coefficients).

    Example: derive the expression for the activitycoefficients for the one-parameter Margules equation

    ==>

    G E

    RT

    = A x1 x2

    G E

    RT = A n2

    n1n

    1 RT G E n i T, P, n j i= An 2[ 1n n 1n 2]= A n 2n [1 n1n ]= Ax2 1 x1

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    9/28

    9

    ==>Dengan cara yg sama ==>

    Example (2): continued from example (1), at 30o

    Cshow x 1=0.1168 and y 1=0.5316 at P=60.3 mmHg.What are the pressure and vapor phase compositionspredicted by the one-parameter Margules Equation.at x 1=0.6369, we found G

    E/RT = 0.328.

    Fitting the Margules equation:

    at the new composition:

    ln 1= Ax22

    ln 2= Ax12

    G E

    RT = A x1 x2 A= 0.328 /[ 0.6369 0.3631 ]=1.42

    x1= 0.1168, we find : ln 1= Ax22= 1.42 0.8832 2= 1.107, 1 = 3.03

    ln 2= Ax12= 1.42 0.1168 2= 0.0194, 2= 1.02

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    10/28

    10

    Substituting into Modified Raoult's Law: y1 P = x1 1 P 1

    sat = 0.1168 3.03 60.7 =21.48 mmHg y

    2P = x

    1 2P

    2

    sat = 0.8832 1.02 32.1 =28.92 mmHg

    P = y1 P y2 P = 50.4 mmHg y1= y1 P /P = 21.48 /50.4 = 0.426

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    11/28

    11

    Two-Parameters MARGULES

    Equationrequires differentiation of nG E/RT with respect to a

    mole number the equation is multiplied by n (mole numbers)where x 1=n 1/(n 1+n 2), and x 2=n 2/(n 1+n 2):

    differentiation with respect to n 1:

    Reconversion of n i to x i:

    G E

    x1 x2 RT = A21 x1 A12 x2 alternatively

    G E

    RT = A21 x1 A12 x2 x1 x2

    nG E

    RT = A

    21n

    1 A

    12n

    2

    n1 n 2

    n1 n2 2 nG E / RT n1 T , P, n 2= ln 1

    ln 1= n2

    [ A21 n 1 A12 n2

    1n1 n2

    2 2n 1n1 n 2

    3

    n1 A21n 1 n 2

    2

    ]ln 1= x2[ A21 x1 A12 x2 1 2x 1 A21 x1]

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    12/28

    12

    note: x 2=1-x 1, so:

    For the limiting conditions of infinite dilution:

    ln 1= x22[ A12 2 A21 A12 x1]

    ln 2= x12[ A21 2 A12 A21 x2]Margules Equation

    ln 1= A12 x1= 0 andd ln 2

    = A21 x2= 0

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    13/28

    13

    Example of Margules Equation

    Following is set of VLE data for the systemmethanol(1)/water(2) at 333.15 K:

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    14/28

    14

    calculate i ==> modified Raoult's law

    calculate ln iplot ln i vs x i

    A12 and A 21 are values of the intercepts at x 1=0 and x 1=1 ofthe straight line drawn to represent the G E/x1x2RT:

    we get: A 12 =0.372 and A 21 =0.198

    calculate G E/RT and G E/x1x2RT

    We have equation:or ==>

    i= yi P

    xi P isat

    ln 1= A12 x1= 0 andd ln 2= A21 x2= 0

    G E

    RT = 0.198 x1 0.372 x2 x1 x2

    G E

    RT = x1 ln 1 x2 ln 2

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    15/28

    15

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    16/28

    16

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    17/28

    17

    Use 1 and 2 to calculate VLE predictions:

    Another method:by fitting ln i vs x i for the following Margules equation:

    or to obtain A 12 and A 21

    i = yi P

    xi P isat P = x1 1 P 1

    sat x2 2 P 2sat

    y1= x1 1 P 1sat

    x1 1 P 1sat x2 2 P 2

    sat

    ln 1= x22[ A12 2 A21 A12 x1] ln 2= x12[ A21 2 A12 A21 x2]

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    18/28

    18

    van Laar Equation for Activity

    Coefficient Model

    by infinite solutions method:

    or rearranging to:

    ln 1= A12

    [1

    A12 x1 A21 x2

    ]

    2

    van Laar Equation ln 2= 21

    [1 A21 x1 A12 x2]2

    ln 1= A12 x1= 0 andd ln 2

    = A21 x2= 0

    A12= ln 1 [1 x2 ln 2 x1 ln 1]2

    A21= ln 2 [1 x1 ln 1 x2 ln 2 ]2

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    19/28

    19

    Example of van Laar Equation

    Consider benzene(1) + ethanol(2) system which exhibits anazeotrope at 760 mmHg and 68.24 oC containing 44.8 mole% ethanol. Calculate the composition of the vapor in

    equilibrum with an equimolar liquid solution at 760 mmHggiven the Antoine constants:log P 1

    sat =6.87987-1196.76/(T+219.161)

    log P2

    sat =8.1122-1592.86/(T+226.18)

    Solution:

    at T=68.24 oC, P 1sat =519.7 mmHg; P 2

    sat =503.5 mmHg

    at azeotrope: x 1=y 1 ==> 1=P/P 1sat

    ; =P/P 2sat

    1=760/519.7=1.4624; =760/503.5=1.5094

    where x 1=0.552; x 2=0.448

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    20/28

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    21/28

    21

    Wilson's Equation for Activity

    Coefficient

    Vi, V j : molar volume of pure liquid i, j, at temperature T

    ln 1= ln x1 x2 12 x2 12

    x1 x2 12

    21 x1 21 x2

    Wilson's Equation

    ln 2= ln x1 21 x2 x1 12

    x1 x2 12 21

    x1 21 x2

    12=

    V 2

    V 1exp

    A12 RT

    and. 21

    =V 1

    V 2exp

    A21 RT

    G E

    RT = x1 ln x1 x2 12 x2 ln x2 x1 21

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    22/28

    22

    NRTL Equation for Activity

    Coefficient (3 parameters)

    , b 12 , and b 21 are parameters specific to a particular pair ofspecies, and are independent of composition and temperatureNRTL: Non Random Two Liquid

    ln 1= x22

    [21 G21

    x1 x2 G 21

    2

    G12 12 x2 x1 G 12

    2]

    NRTL EquationG E

    x1 x2 RT =

    G 21 21 x1 x2 G 21

    G 12 12 x2 x1 G 12

    ln 2= x12

    [12

    G 12

    x2 x1 G 12

    2 G 21 21

    x1 x2 G 212

    ]G 12= exp 12 G21= exp 2112=

    b12 RT

    21= b21 RT

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    23/28

    23

    For the infinite-dilution values of the activity coefficient: ln 1

    = 21 12 exp 12

    ln 2

    = 12 21 exp 21

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    24/28

    24

    UNIQUAC Equation for Activity

    CoefficientFor multicomponent solution:

    UNIQUAC equation requires two adjustable parameters

    characterized from experimental data for each binarysystem ==>

    G E

    RT =

    j x j ln j/ x j 5

    jq j x j ln j/ j

    jq j x j ln

    ii ij

    ln k = ln k COMB ln k

    RES

    ln k COMB = ln k / xk 1 k / xk 5q k [ln k / k 1 k / k ]

    ln k RES = q k [1 ln i i ik j j kj

    i

    i ij]

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    25/28

    25

    UNIQUAC for Binary Solution

    ==>

    ==>

    where ==>

    Q, R, v ???

    ln 1 = ln1

    x11 1

    x15q 1 [ln

    1

    1

    1 11

    ]

    q1

    [1 ln 1 2 21

    11 2 21

    212

    1 12 2

    ]ln 2= ln

    2

    x21 2

    x25q 2 [ln

    2

    2

    1 22

    ]

    q 2[1 ln 1 12 2

    1 21

    1 2 21

    2

    1 12 2] j

    x j r j

    i

    xi r i j

    x j q j

    i

    xi q i

    r j= k

    vk j Rk ; q j=

    k vk

    j Q k

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    26/28

    26

    R k parameter ==> group volume

    Q k parameter ==> group surface area

    Molecule size (r j) and molecule shape (q j) may becalculated by multiplying the group parameters by thenumber of times each group appears in the molecule,and summing all the groups in the moleculewhere v k

    (j) is the number of groups of the k th type in the j th molecule.

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    27/28

    27

    T h i f Fitti M d l t

  • 8/10/2019 AdvanceThermodynamics_Materi_6

    28/28

    28

    Technique for Fitting Model to

    Experimental dataTools in Matlab: lsqcurvefit%Assume you det er mi ned xdat a and ydat a exper i ment al l yxdat a = [ 0. 9 1. 5 13. 8 19. 8 24. 1 28. 2 35. 2 60. 3 74. 6 81. 3] ;ydat a = [ 455. 2 428. 6 124. 1 67. 3 43. 2 28. 1 13. 1 - 0. 4 - 1. 3 - 1. 5] ;x0 = [ 100; - 1] % St ar t i ng guess[ x, r esnor m] = l sqcur vef i t ( @myf un, x0, xdat a, ydat a)

    function F = myf un( x, xdat a)

    F = x( 1) *exp( x( 2) *xdat a) ;

    Result:

    x =498. 8309 - 0. 1013

    r esnor m =9. 5049

    or using GUI of Matlab: >>cftool