Top Banner
Advanced behavior models Recent development of discrete choice models Makoto Chikaraishi Hiroshima University October 13-15, 2017 The 16th Summer Course for Behavior Modeling in Transportation Networks @The University of Tokyo
24

Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

May 29, 2018

Download

Documents

buiphuc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Advanced behavior models

Recent development of discrete choice models

Makoto Chikaraishi

Hiroshima University

October 13-15, 2017The 16th Summer Course for Behavior Modeling in Transportation Networks@The University of Tokyo

Page 2: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Why advanced models are needed?A case of route choice

O D

1

ρ1-ρ

1-ρ

O D

1

ρ1-ρ

1-ρ

O D

1

ρ

1-ρ

1-ρ

D

D

O

O

120min125min5min10min

(a)Route overlap (b) Route length

2

(c) Route enumeration

D

O

D

O

D

O

Alternatives=2

Alternatives=?

Alternatives=?

Page 3: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Closed-form and open-form

• Closed-form expression

– A mathematical expression that can be evaluated in a finite number of operations

• Open-form expression

3

𝑃𝑖𝑗 =𝑒𝛽𝑥𝑖𝑗/𝜆𝑘 Σ𝑗∈𝐵𝑘

𝑒𝛽𝑥𝑖𝑗/𝜆𝑙𝜆𝑘−1

Σ𝑙=1𝐾 Σ𝑗∈𝐵𝑘

𝑒𝛽𝑥𝑖𝑗/𝜆𝑙𝜆𝑙

example

𝑃𝑖𝑗 = 𝛽𝑖∈𝐷𝛽𝑖

exp 𝛽𝑖𝑥𝑖𝑗

Σ𝑗′=1𝐽 exp 𝛽𝑖𝑥𝑖𝑗

𝑓 𝛽𝑖 𝑑𝛽𝑖example

Page 4: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Pros and cons

• Closed-form expression– Pros

• Easy to use in practice

• Can be embedded into a larger modeling system as a subcomponent

– Cons• Not flexible enough in some cases

• Open-form expression– Pros

• Very flexible and any kind of closed-form models can be approximately modeled

– Cons• Behavioral understanding of the model is sometimes

difficult

4

Page 5: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Contents (closed-form models)

1. McFadden’s G function (McFadden, 1978)

Route overlap

2. Generalized G function (Mattsson et al., 2014)

Route overlap and route length

3. Recursive logit (Fosgerau et al., 2013)

Route enumeration

5

Page 6: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Discrete choice models[based on Hato (2002)]

6

Multinomial logit (MNL)(Luce, 1959)

Multinomial Probit (MNP)(Thurstone, 1927)

Nested logit (NL)(Ben-Akiva, 1973)

Generalized extreme value (GEV)(McFadden, 1978)

Paired combinational logit (PCL) (Chu, 1981)

Cross-nested logit (CNL) (Vovsha, 1997)

Generalized nested logit (GNL), recursive nested logit extreme value model (RNEV), network-GEV(Wen & Koppelman, 2001; Daly, 2001; Bierlaire, 2002)

Error component logit (ECL); Mixed logit (MXL); Kernel logit (KL);

Heteroscedastic logit (HL)(Boyd and Mellman, 1980; Cardell and Dunbar, 1980; McFadden, 1989; Bhat,

1995; See Train (2009) for details)

Normal to Gumbel

Generalization

Generalization

Generalization

Special case

Heteroscedastic/mixed distributions

Derived from McFadden’s G function or “choice probability generating functions” (Fosgerau et al., 2013)

Generalization

Multinomial weibit (MNW)(Castillo, et al., 2008)

Gumbel to Weibull q-generalized logit

(Nakayama, 2013, Nakayama and

Chikaraishi, 2015)

Variance stabilization

(Li, 2011)

Generalized G function(Mattsson et al., 2014)

Generalization

Derived from the generalized G function

Weibull to GEV (not MEV)

Closed-form models

Open-form models

Page 7: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

McFadden’s G function

7

The properties that the 𝐺 function must exhibit

① 𝐺 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐽𝑖 ≥ 0

② 𝐺 is homogeneous of degree 𝑚:𝐺 𝛼𝑦𝑖1, … , 𝛼𝑦𝑖𝐽𝑖 = 𝛼𝑚𝐺 𝑦𝑖1, … , 𝑦𝑖𝐽𝑖

③ lim𝑦𝑖𝑗→∞

𝐺 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐽𝑖 = ∞ for any 𝑗

④ The cross partial derivatives of 𝐺 satisfy:

−1 𝑘−1 ∙𝜕𝑘𝐺 𝑦𝑖1,𝑦𝑖2,…,𝑦𝑖𝐽𝑖

𝜕𝑦𝑖1𝜕𝑦𝑖2⋯𝜕𝑦𝑖𝑘≥ 0

When all conditions are satisfied, the choice probability can be defined as:

𝑃𝑖𝑗 =𝑒𝑉𝑖𝑗 ∙ 𝐺𝑗 𝑒𝑉𝑖1 , 𝑒𝑉𝑖2 , … , 𝑒𝑉𝑖𝐽𝑖

𝐺 𝑒𝑉𝑖1 , 𝑒𝑉𝑖2 , … , 𝑒𝑉𝑖𝐽𝑖

𝐹(𝜖𝑖1, … , 𝜖𝑖𝐽) = exp{−𝐺(𝑒−𝜖𝑖1 , … , 𝑒−𝜖𝑖𝐽)}Assumption:

(where, 𝐺𝑗 = 𝜕𝐺/𝜕𝑦𝑖𝑗)

(McFadden, 1978)

※ 𝑢𝑖𝑗 = 𝑉𝑖𝑗 + 𝜖𝑖𝑗

Page 8: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Derivation of choice probability

Suppose 𝑢𝑖𝑗 = 𝑉𝑖𝑗 + 𝜖𝑖𝑗, where (𝜖𝑖1, … , 𝜖𝑖𝐽) is distributed 𝐹 defined as:

𝐹(𝜖𝑖1, … , 𝜖𝑖𝐽) = exp{−𝐺(𝑒−𝜖𝑖1 , … , 𝑒−𝜖𝑖𝐽)}

Then, the probability of the first alternative 𝑃𝑖1 satisfies:

𝑃𝑖1 =

𝜖=−∞

+∞

𝐹1 𝜖, 𝑉𝑖1 − 𝑉𝑖2 + 𝜖,… , 𝑉𝑖1 − 𝑉𝑖𝐽 + 𝜖 𝑑𝜖

=

𝜖=−∞

+∞

𝑒−𝜖𝐺1 𝑒−𝜖, 𝑒−𝜖−𝑉𝑖1+𝑉𝑖2 , … , 𝑒−𝜖−𝑉𝑖1+𝑉𝑖𝐽

× exp −𝐺 𝑒−𝜖, 𝑒−𝜖−𝑉𝑖1+𝑉𝑖2 , … , 𝑒−𝜖−𝑉𝑖1+𝑉𝑖𝐽𝑑𝜖

=

𝜖=−∞

+∞

𝑒−𝜖𝐺1 𝑒𝑉𝑖1 , 𝑒𝑉𝑖2 , … , 𝑒𝑉𝑖𝐽

× exp −𝑒−𝜖𝑒−𝑉𝑖1𝐺 𝑒𝑉𝑖1 , 𝑒𝑉𝑖2 , … , 𝑒𝑉𝑖𝐽𝑑𝜖

=𝑒𝑉𝑖1𝐺1 𝑒𝑉𝑖1 , 𝑒𝑉𝑖2 , … , 𝑒𝑉𝑖𝐽

𝐺 𝑒𝑉𝑖1 , 𝑒𝑉𝑖2 , … , 𝑒𝑉𝑖𝐽

8

multivariate extreme value (MEV) distribution (NOT GEV)

Uses the linear homogeneity

Page 9: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Some examples

G function Choice probability

Logit

𝐺 = Σ𝑗=1𝐽

𝑦𝑖𝑗 𝑃𝑖𝑗 =exp 𝑉𝑖𝑗

Σ𝑗′=1𝐽

exp 𝑉𝑖𝑗′

Nested logit

𝐺 = Σ𝑙=1𝐾 Σ𝑗∈𝐵𝑙

𝑦𝑖𝑗1/𝜆𝑙

𝜆𝑙𝑃𝑖𝑗 =

𝑒𝑉𝑖𝑗/𝜆𝑘 Σ𝑗∈𝐵𝑘𝑒𝑉𝑖𝑗/𝜆𝑙

𝜆𝑘−1

Σ𝑙=1𝐾 Σ𝑗∈𝐵𝑘

𝑒𝑉𝑖𝑗/𝜆𝑙𝜆𝑙

Pairedcombinational logit 𝐺 = Σ𝑘=1

𝐽−1Σ𝑙=𝑘+1𝐽

𝑦𝑖𝑘1/𝜆𝑘𝑙 + 𝑦𝑖𝑙

1/𝜆𝑘𝑙𝜆𝑘𝑙

𝑃𝑖𝑗 = 𝑚≠𝑗 𝑒

𝑉𝑖𝑗

𝜆𝑗𝑚 𝑒

𝑉𝑖𝑗

𝜆𝑗𝑚 + 𝑒𝑉𝑖𝑚𝜆𝑗𝑚

𝜆𝑗𝑚−1

Σ𝑘=1𝐽−1

Σ𝑙=𝑘+1𝐽

𝑒𝑉𝑖𝑘𝜆𝑘𝑙 + 𝑒

𝑉𝑖𝑙𝜆𝑘𝑙

𝜆𝑘𝑙

Generalized nested logit

𝐺 = Σ𝑘=1𝐾 Σ𝑗∈𝐵𝑘

𝛼𝑗𝑘𝑦𝑖𝑗1/𝜆𝑘

𝜆𝑘𝑃𝑖𝑗 =

Σ𝑘 𝛼𝑗𝑘𝑒𝑉𝑖𝑗

1𝜆𝑘 Σ𝑚∈𝐵𝑘

𝛼𝑚𝑘𝑒𝑉𝑖𝑚

1𝜆𝑘

𝜆𝑘−1

Σ𝑙=1𝐾 Σ𝑚∈𝐵𝑘

𝛼𝑚𝑙𝑒𝑉𝑖𝑚

1𝜆𝑙

𝜆𝑙

9* 𝑦𝑖𝑗 ≔ exp 𝑉𝑖𝑗

Page 10: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Illustration

10

Path 1 = {Link 1} [travel time: 20]

Path 2 = {Link 2, Link 3} [travel time: 20]

Path 3 = {Link 2, Link 4} [travel time: 20]

Origin Destination

Link 1 [travel time: 20]

Link 2 [travel time: 10] Link 4 [travel time: 10]

Link 3 [travel time: 10]

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Rho

Sh

are

𝑃1 =exp 𝛽𝑥

exp 𝛽𝑥 + exp(1𝜌𝛬)

𝑃2 = 𝑃3 =1

2∙

exp(1𝜌𝛬)

exp 𝛽𝑥 + exp(1𝜌𝛬)

※ 𝛬 = ln exp 𝜌𝛽𝑥 + exp 𝜌𝛽𝑥

𝛽 is fixed as −0.2

Choice probability of Path 1

Choice probability of Path 3

Choice probability of Path 2

Nested logit

(a)Route overlap

Page 11: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Generalized G (A) function

11

The properties that the 𝐴 function must exhibit

① 𝐴 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐽𝑖 ≥ 0

② 𝐴 is homogeneous of degree one: 𝐴 𝛼𝑦𝑖1, … , 𝛼𝑦𝑖𝐽𝑖 = 𝛼𝐴 𝑦𝑖1, … , 𝑦𝑖𝐽𝑖

③ lim𝑦𝑖𝑗→∞

𝐴 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐽𝑖 = ∞ for any 𝑗

④The cross partial derivatives of 𝐴 satisfy:

−1 𝑘−1 ∙𝜕𝑘𝐴 𝑦𝑖1,𝑦𝑖2,…,𝑦𝑖𝐽𝑖

𝜕𝑦𝑖1𝜕𝑦𝑖2⋯𝜕𝑦𝑖𝑘≥ 0

𝑃𝑖𝑗 =𝑤𝑖𝑗 ∙ 𝐴𝑗 𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝐽

𝐴 𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝐽

𝐹(𝑥𝑖1, … , 𝑥𝑖𝐽) = exp{−𝐴(−𝑤𝑖1ln[𝛹 𝑥𝑖1 ], … , −𝑤𝑖𝐽ln[𝛹 𝑥𝑖𝐽 ])}

When 𝑤𝑗 = 𝑒𝑉𝑖𝑗 and 𝛹 𝑥𝑗 ~𝑖. 𝑖. 𝑑. 𝐺𝑢𝑚𝑏𝑒𝑙, 𝐴 function becomes McFadden’s 𝐺 function

(Mattsson et al., 2014)

When all conditions are satisfied, the choice probability can be defined as:

(where, 𝐴𝑗 = 𝜕𝐴/𝜕𝑤𝑖𝑗)

Page 12: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Derivation of choice probability

Note that Pr[max𝑗∈𝐽

𝑋𝑖𝑗 ≤ 𝑥] = 𝐹 𝑥, 𝑥, … , 𝑥 , where 𝐹 is defined as:

𝐹(𝑥𝑖1, … , 𝑥𝑖𝐽) = exp{−𝐴 −𝑤𝑖1 ln 𝛹 𝑥𝑖1 , … , −𝑤𝑖𝐽 ln 𝛹 𝑥𝑖𝐽 }

Then, the probability of the first alternative 𝑃𝑖1 satisfies:

𝑃𝑖1 =

𝑥∈Ω𝑖

𝐹1 𝑥, 𝑥, … , 𝑥 𝑑𝑥

=

𝑥∈Ω𝑖

𝑒−𝐴 −𝑤𝑖1 ln 𝛹 𝑥 ,…,−𝑤𝑖𝐽 ln 𝛹 𝑥 ×

𝐴1 −𝑤𝑖1 ln 𝛹 𝑥 ,… ,−𝑤𝑖𝐽 ln 𝛹 𝑥 ∙ 𝑤𝑖1 ∙𝜓 𝑥

𝛹 𝑥

𝑑𝑥

= 𝑤𝑖1 ∙𝐴1 𝑤

𝐴 𝑤

𝑥∈Ω𝑖

𝐴 𝑤 𝛹 𝑥 𝐴 𝑤 −1𝜓 𝑥 𝑑𝑥

= 𝑤𝑖1 ∙𝐴1 𝑤

𝐴 𝑤

12

Uses the linear homogeneity

=density function of 𝐹

(Mattsson et al., 2014)

Page 13: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Some examples

13

G function Choice probability

Under the assumption of independence

Logit(Gumbel)

𝐴: summation, 𝑤𝑖𝑗 = 𝑒𝛽𝑉𝑖𝑗,

𝛹 𝑥𝑖𝑗 ~𝐺𝑢𝑚𝑏𝑒𝑙(𝛽, 0)𝑃𝑖𝑗 =

exp 𝛽𝑉𝑖𝑗

Σ𝑗′=1𝐽

exp 𝛽𝑉𝑖𝑗′

Weibit-type(Frechet)

𝐴: summation, 𝑤𝑖𝑗 = 𝑉𝑖𝑗𝛽,

𝛹 𝑥𝑖𝑗 ~𝐹𝑟𝑒𝑐ℎ𝑒𝑡(𝛽, 1)𝑃𝑖𝑗 =

𝑉𝑖𝑗𝛽

Σ𝑗′=1𝐽

𝑉𝑖𝑗′𝛽

Weibit(Weibull)

𝐴: summation, 𝑤𝑖𝑗 = 𝑉𝑖𝑗−𝛽,

𝛹 𝑥𝑖𝑗 ~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 1)𝑃𝑖𝑗 =

𝑉𝑖𝑗−𝛽

Σ𝑗′=1𝐽

𝑉𝑖𝑗′−𝛽

Under the statistical dependence

Nestedlogit

𝐴 = Σ𝑙=1𝐾 Σ𝑗∈𝐵𝑙

𝑤𝑖𝑗1/𝜆𝑙

𝜆𝑙, 𝑤𝑖𝑗 = 𝑒𝛽(𝑎𝑖𝑙+𝑏𝑖𝑗),

𝛹 𝑥𝑖𝑗 ~𝐺𝑢𝑚𝑏𝑒𝑙(𝛽, 0)

𝑃𝑖𝑗 =exp

𝛽𝑏𝑖𝑗

𝜆𝑙

𝑗′∈𝐽𝑙exp

𝛽𝑏𝑖𝑗′

𝜆𝑙

exp 𝛽𝑎𝑖𝑙+𝜆𝑙 𝑏0𝑖𝑙

𝑙′=1𝐿 exp 𝛽𝑎𝑖𝑙′+𝜆𝑙′

𝑏0𝑖𝑙′

𝑏0𝑖𝑙 = ln 𝑗∈𝐽𝑙exp 𝛽𝑏𝑖𝑗 𝜆𝑙

Nested weibit

𝐴=Σ𝑙=1𝐾 Σ𝑗∈𝐵𝑙

𝑤𝑖𝑗1/𝜆𝑙

𝜆𝑙, 𝑤𝑖𝑗 = 𝑎𝑖𝑙𝑏𝑖𝑗

−𝛽

𝛹 𝑥𝑖𝑗 ~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 1)

𝑃𝑖𝑗 =𝑏𝑖𝑗

−𝛽𝜆𝑙

𝑗′∈𝐽𝑙𝑏𝑖𝑗′

−𝛽𝜆𝑙

∙𝑎𝑖𝑙

−𝛽 𝑏0𝑖𝑙𝜆𝑙

𝑙′=1𝐿 𝑎𝑖𝑙′

−𝛽 𝑏0𝑖𝑙′𝜆𝑙′

𝑏0𝑖𝑙 = 𝑗∈𝐽𝑙𝑏𝑖𝑗− 𝛽 𝜆𝑙

(Mattsson et al., 2014)

(Chikaraishi and Nakayama, 2016)

Page 14: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Illustration

14

Origin Destination

Link 1 [travel time: x]

Link 2 [travel time: x + 5]

Link 3 [travel time: x + 10]

Logit Weibit

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Travel time

Sh

are

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Travel time

Sh

are

Choice probability of Path 1

Choice probability of Path 3

Choice probability of Path 2

(b) Route length

Page 15: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Travel time

Sh

are

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Travel time

Sh

are

Illustration

15

Nested logit Nested weibit

Origin Destination

Link 1 [travel time: x]

Link 2 [travel time: x/2] Link 4 [travel time: x/2 + 10]

Link 3 [travel time: x/2 + 5]Path 1 = {Link 1} [travel time: x]

Path 2 = {Link 2, Link 3} [travel time: x + 5]

Path 3 = {Link 2, Link 4} [travel time: x + 10]

𝜌 =1

𝜆= 1.0 (logit)

𝜌 =1

𝜆= 1.5

𝜌 =1

𝜆= 2.0

(b) Route length

Page 16: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Recursive logit

16

The recursive logit model corresponds to a dynamic discrete choice model where the path choice problem is formulated as a sequence of link choices (same as Akamatsu (1996))

Fasgerau et al. (2013)

𝑢 𝑎|𝑘 = 𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎

𝑉 𝑘 = 𝐸[ max𝑎∈𝐴(𝑘)

𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎 ]where

𝑉𝑛𝑑(𝑎)

𝑑𝑘

𝑎

𝑫𝑶 ...

.

.

.𝐴 𝑘

A set of links

𝑣𝑛 (𝑎|𝑘)

Instantaneous cost

The expected maximum utility to the destination

i.i.d. error terms (Gumbel)

(c) Route enumeration

Page 17: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Recursive logit

17

𝑃 𝑎|𝑘 =𝑒1𝜇 𝑣 𝑎|𝑘 +𝑉 𝑎

𝑎′∈𝐴 𝑘 𝑒1𝜇 𝑣 𝑎′|𝑘 +𝑉 𝑎′

𝑃 𝜎 = 𝑖=0

𝐼−1

𝑃 𝑘𝑖+1|𝑘𝑖 = 𝑖=0

𝐼−1

𝑒𝑣 𝑘𝑖+1 𝑘𝑖 +𝑉 𝑘𝑖+1 −𝑉 𝑘𝑖

= 𝑒−𝑉(𝑘0) 𝑖=0

𝐼−1

𝑒𝑣(𝑘𝑖+1|𝑘𝑖 )

Link choiceProbability:

Route choice probability:

𝜎 = 𝑘𝑖 𝑖=0𝐼

Fasgerau et al. (2013)

𝑢 𝑎|𝑘 = 𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎

𝑉 𝑘 = 𝐸[ max𝑎∈𝐴(𝑘)

𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎 ]where

𝐿𝐿 𝛽 = ln 𝑛=1

𝑁

𝑃 𝜎𝑛

=1

𝜇

𝑛=1

𝑁

𝑖=0

𝐼𝑛−1

𝑣 𝑘𝑖+1 𝑘𝑖 − 𝑉 𝑘0

Log-likelihood:

Can be analytically obtained

Page 18: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Illustration

18

O D

C

5(=𝑑)

1

2

3

4

Incidence matrix 𝐋

0 1 1 0 0 00 0 0 0 0 10 0 0 1 1 00 0 0 0 0 10 0 0 0 0 10 0 0 0 0 0

0

𝑘

𝑎

Fasgerau et al. (2013)

Page 19: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

19

Vector of the expectedmaximum utility 𝐙 (𝜇 = 1)

𝑒𝑉(0) =

𝑎∈𝐴

𝐿0𝑎 ∙ 𝑒𝑣(𝑎|0)+𝑉(𝑎)

𝑒𝑉(1) =

𝑎∈𝐴

𝐿1𝑎 ∙ 𝑒𝑣(𝑎|1)+𝑉(𝑎)

𝑒𝑉(2) =

𝑎∈𝐴

𝐿2𝑎 ∙ 𝑒𝑣(𝑎|2)+𝑉(𝑎)

𝑒𝑉(3) =

𝑎∈𝐴

𝐿3𝑎 ∙ 𝑒𝑣(𝑎|3)+𝑉(𝑎)

𝑒𝑉(4) =

𝑎∈𝐴

𝐿4𝑎 ∙ 𝑒𝑣(𝑎|4)+𝑉(𝑎)

𝑒𝑉(𝑑) = 1

𝑘

1

Matrix defining instantaneous utility 𝐌 (𝜇 = 1)

0 𝑒𝑣 1|0 𝑒𝑣 2|0 0 0 00 0 0 0 0 𝑒0

0 0 0 𝑒𝑣 3|2 𝑒𝑣 4|2 00 0 0 0 0 𝑒0

0 0 0 0 0 𝑒0

0 0 0 0 0 0

𝑘

𝑎

Elements of 𝐳 and 𝐌:

𝑧𝑘 = 𝑒𝑉 𝑘 =

𝑎∈𝐴

𝐿𝑘𝑎 ∙ 𝑒𝑣(𝑎|𝑘)+𝑉(𝑎) ∀𝑘 ∈ 𝐴

1 𝑘 = 𝑑

𝑀𝑘𝑎 = 𝐿𝑘𝑎 ∙ 𝑒𝑣 𝑎 𝑘 𝑎 ∈ 𝐴 𝑘0 𝑘 = 𝑑

Fasgerau et al. (2013)

𝐳 = 𝐌𝐳 + 𝐛 𝐳 = 𝐈 −𝐌 −1𝐛 𝐛′ = 0 0 0 0 0 1

𝑉 𝑘 can be analytically obtained

Page 20: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Generalization of recursive logit

20

𝑢 𝑎|𝑘 = 𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎

𝑉 𝑘 = 𝐸 max𝑎∈𝐴 𝑘

𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎where

Recursive logit (Fosgerau et al., 2013)

𝑢 𝑎|𝑘 = 𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝑘𝜀 𝑎

𝑉 𝑘 = 𝐸 max𝑎∈𝐴 𝑘

𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝑘𝜀 𝑎where

Nested recursive logit (Mai et al., 2015)

𝑢 𝑎|𝑘 = 𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜇𝜀 𝑎

𝑉 𝑘 = 𝐸 max𝑎∈𝐴 𝑘

𝑣 𝑎|𝑘 + 𝑉 𝑎 + 𝜀 𝑎|𝑘 −𝛾

𝜇𝑘where

Generalized recursive logit (Mai, 2016)

Following the MEV distribution (expressed through G function)

Generalization leads to difficulties in model estimation (as usual)

Page 21: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

Highly recommended!• Kenneth E. Train• Discrete Choice Methods with Simulation• Cambridge University Press• Second edition, 2009

• https://eml.berkeley.edu/books/choice2.htmlChapter 1. IntroductionChapter 2. Properties of Discrete Choice ModelsChapter 3. LogitChapter 4. GEVChapter 5. ProbitChapter 6. Mixed LogitChapter 7. Variations on a ThemeChapter 8. Numerical MaximizationChapter 9. Drawing from DensitiesChapter 10. Simulation-Assisted EstimationChapter 11. Individual-Level ParametersChapter 12. Bayesian ProceduresChapter 13. EndogeneityChapter 14. EM Algorithms

21

Page 22: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

References• Ben-Akiva, M. (1973) Structure of passenger travel demand models. Ph.D. Thesis,

Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering (http://hdl.handle.net/1721.1/14790 ).

• Bhat, C.R. (1995) A heteroscedastic extreme value model of intercity travel mode choice. Transportation Research Part B 29, 471-483.

• Bierlaire, M. (2002) The Network GEV model. Proceedings of the 2nd Swiss Transportation Research Conference, Ascona, Switzerland.

• Cardell, N.S., Dunbar, F.C. (1980) Measuring the societal impacts of automobile downsizing. Transportation Research Part A: General 14, 423-434.

• Castillo, E., Menendez, J.M., Jimenez, P., Rivas, A. (2008) Closed form expressions for choice probabilities in the Weibull case. Transportation Research Part B 42, 373-380.

• Chikaraishi, M., Nakayama, S. (2016) Discrete choice models with q-product random utilities, Transportation Research Part B (forthcoming).

• Daly, A. (2001) Recursive nested EV model. ITS Working Paper 559, Institute for Transport Studies, University of Leeds.

• Daly, A., Bierlaire, M. (2006) A general and operational representation of Generalised Extreme Value models. Transportation Research Part B: Methodological 40, 285-305.

22

Page 23: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

References• Fosgerau, M., McFadden, D., Bierlaire, M. (2013) Choice probability generating

functions. Journal of Choice Modelling 8, 1-18.

• Fosgerau, M., Frejinger, E., Karlstrom, A., 2013. A link based network route choice model with unrestricted choice set. Transportation Research Part B: Methodological 56, 70-80.

• Hato, E. (2002) Behaviors in network, Infrastructure Planning Review, 19-1, 13-27 (in Japanese).

• Koppelman, F.S., Wen, C.-H. (2000) The paired combinatorial logit model: properties, estimation and application. Transportation Research Part B: Methodological 34, 75-89.

• Li, B. (2011) The multinomial logit model revisited: A semi-parametric approach in discrete choice analysis. Transportation Research Part B 45, 461-473.

• Luce, R. (1959) Individual Choice Beahviour. John Wiley, New York.

• Mai, T., Fosgerau, M., Frejinger, E., 2015. A nested recursive logit model for route choice analysis. Transportation Research Part B: Methodological 75, 100-112.

• Mai, T., 2016. A method of integrating correlation structures for a generalized recursive route choice model. Transportation Research Part B: Methodological 93, Part A, 146-161.

• Mattsson, L.-G., Weibull, J.W., Lindberg, P.O. (2014) Extreme values, invariance and choice probabilities. Transportation Research Part B: Methodological 59, 81-95.

23

Page 24: Advanced behavior models Recent development of …bin.t.u-tokyo.ac.jp/model17/lecture/Chikaraishi.pdfAdvanced behavior models Recent development of discrete choice models Makoto Chikaraishi

References• McFadden, D., (1978) Modelling the choice of residential location, in: Karlqvist, A.,

Lundqvist, L., Snickars, F., Weibull, J. (Eds.), Spatial Interaction Theory and Residential Location. North-Holland, Amsterdam.

• McFadden, D. (1989) A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration. Econometrica 57, 995-1026.

• Nakayama, S. (2013) q-generalized logit route choice and network equilibrium model. Proceedings of the 20th International Symposium on Transportation and Traffic Theory (Poster Session).

• Nakayama, S., Chikaraishi, M., 2015. Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment. Transportation Research Part B 81, 672-685.

• Thurstone, L.L. (1927) A law of comparative judgment. Psychological Review 34, 273-286.

• Train, K. (2009) Discrete Choice Methods with Simulation, 2nd Edition ed. Cambridge University Press.

• Vovsha, P. (1997) Cross-nested logit model: an application to mode choice in the Tel-Aviv metropolitan area. Transportation Research Board, Presented at the 76th Annual Meeting, Washington DC.

• Wen, C.-H., Koppelman, F.S. (2001) The generalized nested logit model. Transportation Research Part B 35, 627-641.

24