Top Banner
696
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Advance Design

    Validation Guide

  • INTRODUCTION Before being officially released, each version of GRAITEC software, including Advance Design, undergoes a series of validation tests. This validation is performed in parallel and in addition to manual testing and beta testing, in order to obtain the "operational version" status. This document contains a description of the automatic tests, highlighting the theoretical background and the results we have obtained using the current software release.

    Usually, a test is made of a reference (independent from the specific software version tested), a transformation (a calculation or a data processing scenario), a result (given by the specific software version tested) and a difference usually measured in percentage as a drift from a set of reference values. Depending on the cases, the used reference is either a theoretical calculation done manually, a sample taken from the technical literature, or the result of a previous version considered as good by experience.

    Starting with version 2012, Graitec Advance has made significant steps forward in term of quality management by extending the scope and automating the testing process. While in previous versions, the tests were always about the calculation results which were compared to a reference set, starting with version 2012, tests have been extended to user interface behavior, import/export procedures, etc. The next major improvement is the capacity to pass the tests automatically. These current tests have obviously been passed on the operational version, but they are actually passed on a daily basis during the development process, which helps improve the daily quality by solving potential issues, immediately after they have been introduced in the code.

    In the field of structural analysis and design, software users must keep in mind that the results highly depend on the modeling (especially when dealing with finite elements) and on the settings of the numerous assumptions and options available in the software. A software package cannot replace engineers experience and analysis. Despite all our efforts in term of quality management, we cannot guaranty the correct behavior and the validity of the results issued by Advance Design in any situation. With this validation guide, we are providing a set of concrete test cases showing the behavior of Advance Design in various areas and various conditions. The tests cover a wide field of expertise: modeling, climatic load generation according to Eurocode 1, combinations management, meshing, finite element calculation, reinforced concrete design according to Eurocode 2, steel member design according to Eurocode 3, steel connection design according to Eurocode 3, timber member design according to Eurocode 5, seismic analysis according to Eurocode 8, report generation, import / export procedures and user interface behavior.

    We hope that this guide will highly contribute to the knowledge and the confidence you are placing in Advance Design.

    Manuel LIEDOT

    Chief Product Officer

  • ADVANCE DESIGN VALIDATION GUIDE

    7

    CONTENTS

    1 FINITE ELEMENTS ANALYSIS ..........................................................................................................21 1.1 System of two bars with three hinges (01-0002SSLLB_FEM)......................................................................................22 1.2 Slender beam with variable section (fixed-free) (01-0004SDLLB_FEM) ......................................................................25 1.3 Thin lozenge-shaped plate fixed on one side (alpha = 15 ) (01-0008SDLSB_FEM)...................................................28 1.4 Thin circular ring fixed in two points (01-0006SDLLB_FEM) ........................................................................................31 1.5 Thin lozenge-shaped plate fixed on one side (alpha = 45 ) (01-0010SDLSB_FEM)...................................................35 1.6 Vibration mode of a thin piping elbow in plane (case 2) (01-0012SDLLB_FEM)..........................................................38 1.7 Thin circular ring hanged on an elastic element (01-0014SDLLB_FEM)......................................................................41 1.8 Tied (sub-tensioned) beam (01-0005SSLLB_FEM) .....................................................................................................45 1.9 Circular plate under uniform load (01-0003SSLSB_FEM)............................................................................................50 1.10 Double fixed beam (01-0016SDLLB_FEM) ..................................................................................................................53 1.11 Short beam on simple supports (eccentric) (01-0018SDLLB_FEM).............................................................................57 1.12 Thin lozenge-shaped plate fixed on one side (alpha = 30 ) (01-0009SDLSB_FEM)...................................................61 1.13 Vibration mode of a thin piping elbow in plane (case 3) (01-0013SDLLB_FEM)..........................................................64 1.14 Short beam on simple supports (on the neutral axis) (01-0017SDLLB_FEM)..............................................................67 1.15 Thin lozenge-shaped plate fixed on one side (alpha = 0 ) (01-0007SDLSB_FEM).....................................................71 1.16 Vibration mode of a thin piping elbow in plane (case 1) (01-0011SDLLB_FEM)..........................................................74 1.17 Double fixed beam with a spring at mid span (01-0015SSLLB_FEM)..........................................................................77 1.18 Rectangular thin plate simply supported on its perimeter (01-0020SDLSB_FEM) .......................................................80 1.19 Slender beam on two fixed supports (01-0024SSLLB_FEM) .......................................................................................84 1.20 Annular thin plate fixed on a hub (repetitive circular structure) (01-0022SDLSB_FEM) ...............................................89 1.21 Bimetallic: Fixed beams connected to a stiff element (01-0026SSLLB_FEM)..............................................................91 1.22 Cantilever beam in Eulerian buckling (01-0021SFLLB_FEM) ......................................................................................94 1.23 Slender beam on three supports (01-0025SSLLB_FEM) .............................................................................................96 1.24 Fixed thin arc in out of plane bending (01-0028SSLLB_FEM) ...................................................................................100 1.25 Portal frame with lateral connections (01-0030SSLLB_FEM) ....................................................................................103 1.26 Double hinged thin arc in planar bending (01-0029SSLLB_FEM)..............................................................................106 1.27 Thin square plate fixed on one side (01-0019SDLSB_FEM)......................................................................................109 1.28 Bending effects of a symmetrical portal frame (01-0023SDLLB_FEM) ......................................................................113 1.29 Fixed thin arc in planar bending (01-0027SSLLB_FEM) ............................................................................................116 1.30 Beam on elastic soil, hinged ends (01-0034SSLLB_FEM).........................................................................................119 1.31 Square plate under planar stresses (01-0039SSLSB_FEM) ......................................................................................123 1.32 Beam on elastic soil, free ends (01-0032SSLLB_FEM) .............................................................................................126 1.33 EDF Pylon (01-0033SFLLA_FEM) .............................................................................................................................129 1.34 Thin cylinder under a uniform radial pressure (01-0038SSLSB_FEM).......................................................................133

  • ADVANCE DESIGN VALIDATION GUIDE

    8

    1.35 Caisson beam in torsion (01-0037SSLSB_FEM)....................................................................................................... 135 1.36 Beam on two supports considering the shear force (01-0041SSLLB_FEM) .............................................................. 138 1.37 Thin cylinder under a hydrostatic pressure (01-0043SSLSB_FEM)........................................................................... 141 1.38 Thin cylinder under a uniform axial load (01-0042SSLSB_FEM)............................................................................... 144 1.39 Truss with hinged bars under a punctual load (01-0031SSLLB_FEM) ...................................................................... 147 1.40 Simply supported square plate (01-0036SSLSB_FEM) ............................................................................................. 150 1.41 Stiffen membrane (01-0040SSLSB_FEM) ................................................................................................................. 153 1.42 Torus with uniform internal pressure (01-0045SSLSB_FEM) .................................................................................... 156 1.43 Spherical dome under a uniform external pressure (01-0050SSLSB_FEM).............................................................. 159 1.44 Pinch cylindrical shell (01-0048SSLSB_FEM) ........................................................................................................... 162 1.45 Simply supported rectangular plate under a uniform load (01-0052SSLSB_FEM) .................................................... 164 1.46 Spherical shell under internal pressure (01-0046SSLSB_FEM) ................................................................................ 166 1.47 Simply supported square plate under a uniform load (01-0051SSLSB_FEM) ........................................................... 169 1.48 Simply supported rectangular plate loaded with punctual force and moments (01-0054SSLSB_FEM)..................... 171 1.49 Triangulated system with hinged bars (01-0056SSLLB_FEM) .................................................................................. 173 1.50 Shear plate perpendicular to the medium surface (01-0055SSLSB_FEM) ................................................................ 176 1.51 Thin cylinder under its self weight (01-0044SSLSB_MEF) ........................................................................................ 178 1.52 Spherical shell with holes (01-0049SSLSB_FEM) ..................................................................................................... 180 1.53 Simply supported rectangular plate under a uniform load (01-0053SSLSB_FEM) .................................................... 183 1.54 A plate (0.01333 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0058SSLSB_FEM)................ 185 1.55 A plate (0.05 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0060SSLSB_FEM)...................... 187 1.56 A plate (0.02 m thick), fixed on its perimeter, loaded with a punctual force (01-0064SSLSB_FEM).......................... 189 1.57 A plate (0.01 m thick), fixed on its perimeter, loaded with a punctual force (01-0062SSLSB_FEM).......................... 191 1.58 A plate (0.02 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0059SSLSB_FEM)...................... 194 1.59 A plate (0.01333 m thick), fixed on its perimeter, loaded with a punctual force (01-0063SSLSB_FEM).................... 196 1.60 A plate (0.1 m thick), fixed on its perimeter, loaded with a punctual force (01-0066SSLSB_FEM)............................ 199 1.61 Vibration mode of a thin piping elbow in space (case 2) (01-0068SDLLB_FEM)....................................................... 201 1.62 Vibration mode of a thin piping elbow in space (case 1) (01-0067SDLLB_FEM)....................................................... 204 1.63 A plate (0.01 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0057SSLSB_FEM)...................... 207 1.64 A plate (0.1 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0061SSLSB_FEM)........................ 209 1.65 A plate (0.05 m thick), fixed on its perimeter, loaded with a punctual force (01-0065SSLSB_FEM).......................... 211 1.66 Reactions on supports and bending moments on a 2D portal frame (Rafters) (01-0077SSLPB_FEM) ..................... 213 1.67 Slender beam of variable rectangular section (fixed-fixed) (01-0086SDLLB_FEM)................................................... 215 1.68 Short beam on two hinged supports (01-0084SSLLB_FEM) ..................................................................................... 218 1.69 Double fixed beam in Eulerian buckling with a thermal load (01-0091HFLLB_FEM)................................................. 220 1.70 Reactions on supports and bending moments on a 2D portal frame (Columns) (01-0078SSLPB_FEM) .................. 222 1.71 Plane portal frame with hinged supports (01-0089SSLLB_FEM)............................................................................... 224 1.72 A 3D bar structure with elastic support (01-0094SSLLB_FEM) ................................................................................. 226

  • ADVANCE DESIGN VALIDATION GUIDE

    9

    1.73 Fixed/free slender beam with eccentric mass or inertia (01-0096SDLLB_FEM) ........................................................233 1.74 Fixed/free slender beam with centered mass (01-0095SDLLB_FEM)........................................................................237 1.75 Vibration mode of a thin piping elbow in space (case 3) (01-0069SDLLB_FEM) .......................................................242 1.76 Slender beam of variable rectangular section with fixed-free ends (=5) (01-0085SDLLB_FEM) .............................245 1.77 Cantilever beam in Eulerian buckling with thermal load (01-0092HFLLB_FEM) ........................................................250 1.78 Simple supported beam in free vibration (01-0098SDLLB_FEM)...............................................................................252 1.79 Membrane with hot point (01-0099HSLSB_FEM) ......................................................................................................255 1.80 Beam on 3 supports with T/C (k = -10000 N/m) (01-0102SSNLB_FEM) ...................................................................258 1.81 Beam on 3 supports with T/C (k = 0) (01-0100SSNLB_FEM) ....................................................................................261 1.82 Non linear system of truss beams (01-0104SSNLB_FEM) ........................................................................................264 1.83 Linear system of truss beams (01-0103SSLLB_FEM) ...............................................................................................267 1.84 Linear element in combined bending/tension - without compressed reinforcements - Partially tensioned section

    (02-0158SSLLB_B91) ................................................................................................................................................270 1.85 Design of a Steel Structure according to CM66 (03-0206SSLLG_CM66) ..................................................................275 1.86 Linear element in simple bending - without compressed reinforcement (02-0162SSLLB_B91) .................................284 1.87 Double cross with hinged ends (01-0097SDLLB_FEM) .............................................................................................288 1.88 Beam on 3 supports with T/C (k -> infinite) (01-0101SSNLB_FEM)...........................................................................291 1.89 Study of a mast subjected to an earthquake (02-0112SMLLB_P92)..........................................................................294 1.90 Design of a concrete floor with an opening (03-0208SSLLG_BAEL91) .....................................................................300 1.91 Design of a 2D portal frame (03-0207SSLLG_CM66) ................................................................................................308 1.92 Cantilever rectangular plate (01-0001SSLSB_FEM)..................................................................................................315 1.93 Calculating torsors using different mesh sizes for a concrete wall subjected to a horizontal force (TTAD #13175) ...318 1.94 Verifying torsors on a single story coupled walls subjected to horizontal forces ........................................................318 1.95 Verifying diagrams for Mf Torsors on divided walls (TTAD #11557)...........................................................................318 1.96 Verifying the level mass center (TTAD #11573, TTAD #12315).................................................................................318 1.97 Generating results for Torsors NZ/Group (TTAD #11633) .........................................................................................318 1.98 Verifying Sxx results on beams (TTAD #11599).........................................................................................................319 1.99 Verifying forces results on concrete linear elements (TTAD #11647).........................................................................319 1.100 Verifying diagrams after changing the view from standard (top, left,...) to user view (TTAD #11854) ........................319 1.101 Verifying stresses in beam with "extend into wall" property (TTAD #11680) ..............................................................319 1.102 Verifying constraints for triangular mesh on planar elements (TTAD #11447) ...........................................................319 1.103 Verifying the displacement results on linear elements for vertical seism (TTAD #11756) ..........................................320 1.104 Verifying forces for triangular meshing on planar element (TTAD #11723)................................................................320 1.105 Generating planar efforts before and after selecting a saved view (TTAD #11849) ...................................................320 1.106 Verifying tension/compression supports on nonlinear analysis (TTAD #11518).........................................................320 1.107 Verifying tension/compression supports on nonlinear analysis (TTAD #11518).........................................................321 1.108 Verifying the display of the forces results on planar supports (TTAD #11728)...........................................................321 1.109 Verifying results on punctual supports (TTAD #11489) ..............................................................................................321 1.110 Generating a report with torsors per level (TTAD #11421).........................................................................................321

  • ADVANCE DESIGN VALIDATION GUIDE

    10

    1.111 Verifying nonlinear analysis results for frames with semi-rigid joints and rigid joints (TTAD #11495) ........................ 322 1.112 Verifying forces on a linear elastic support which is defined in a user workplane (TTAD #11929) ............................ 322 1.113 Verifying the internal forces results for a simple supported steel beam ..................................................................... 322 1.114 Verifying the main axes results on a planar element (TTAD #11725) ........................................................................ 322

    2 CAD, RENDERING AND VISUALIZATION ...................................................................................... 323 2.1 Verifying annotation on selection (TTAD #12700)...................................................................................................... 324 2.2 Verifying rotation for steel beam with joint (TTAD #12592)........................................................................................ 324 2.3 Verifying hide/show elements command (TTAD #11753) .......................................................................................... 324 2.4 System stability during section cut results verification (TTAD #11752)...................................................................... 324 2.5 Verifying the grid text position (TTAD #11704) .......................................................................................................... 324 2.6 Verifying the grid text position (TTAD #11657) .......................................................................................................... 324 2.7 Generating combinations (TTAD #11721) ................................................................................................................. 325 2.8 Verifying the coordinates system symbol (TTAD #11611) ......................................................................................... 325 2.9 Verifying descriptive actors after creating analysis (TTAD #11589)........................................................................... 325 2.10 Creating a circle (TTAD #11525) ............................................................................................................................... 325 2.11 Creating a camera (TTAD #11526)............................................................................................................................ 325 2.12 Verifying the local axes of a section cut (TTAD #11681) ........................................................................................... 326 2.13 Verifying the snap points behavior during modeling (TTAD #11458) ......................................................................... 326 2.14 Verifying the representation of elements with HEA cross section (TTAD #11328)..................................................... 326 2.15 Verifying the descriptive model display after post processing results in analysis mode (TTAD #11475) ................... 326 2.16 Verifying holes in horizontal planar elements after changing the level height (TTAD #11490) .................................. 326 2.17 Verifying the display of elements with compound cross sections (TTAD #11486) ..................................................... 327 2.18 Modeling using the tracking snap mode (TTAD #10979) ........................................................................................... 327 2.19 Turning on/off the "ghost" rendering mode (TTAD #11999) ....................................................................................... 327 2.20 Moving a linear element along with the support (TTAD #12110) ............................................................................... 327 2.21 Verifying the "ghost" display after changing the display colors (TTAD #12064)......................................................... 327 2.22 Verifying the "ghost display on selection" function for saved views (TTAD #12054).................................................. 327 2.23 Verifying the steel connections modeling (TTAD #11698) ......................................................................................... 328 2.24 Verifying the fixed load scale function (TTAD #12183). ............................................................................................. 328 2.25 Verifying the dividing of planar elements which contain openings (TTAD #12229).................................................... 328 2.26 Verifying the program behavior when trying to create lintel (TTAD #12062).............................................................. 328 2.27 Verifying the program behavior when launching the analysis on a model with overlapped loads (TTAD #11837) .... 328 2.28 Verifying the display of punctual loads after changing the load case number (TTAD #11958) .................................. 329 2.29 Verifying the display of a beam with haunches (TTAD #12299)................................................................................ 329 2.30 Creating base plate connections for non-vertical columns (TTAD #12170) ............................................................... 329 2.31 Verifying drawing of joints in y-z plan (TTAD #12453) ............................................................................................... 329

  • ADVANCE DESIGN VALIDATION GUIDE

    11

    3 CLIMATIC GENERATOR ..................................................................................................................331 3.1 EC1: generating snow loads on a 3 slopes 3D portal frame with parapets (NF EN 1991-1-3/NA) (TTAD #11111) ...332 3.2 EC1: generating wind loads on a 2 slopes 3D portal frame (NF EN 1991-1-4/NA) (VT : 3.3 - Wind - Example C) ....332 3.3 EC1: generating wind loads on a 3D portal frame with one slope roof (NF EN 1991-1-4/NA)

    (VT : 3.2 - Wind - Example B) ....................................................................................................................................332 3.4 EC1: generating wind loads on a triangular based lattice structure with compound profiles and automatic

    calculation of "n" (NF EN 1991-1-4/NA) (TTAD #12276)............................................................................................332 3.5 EC1: generating snow loads on a 2 slopes 3D portal frame (NF EN 1991-1-3/NA) (VT : 3.4 - Snow - Example A)...333 3.6 EC1: generating wind loads on a 2 slopes 3D portal frame (NF EN 1991-1-4/NA) (VT : 3.1 - Wind - Example A).....333 3.7 EC1: wind loads on a triangular based lattice structure with compound profiles and user defined "n"

    (NF EN 1991-1-4/NA) (TTAD #12276) .......................................................................................................................333 3.8 EC1: Verifying the geometry of wind loads on an irregular shed. (TTAD #12233) .....................................................333 3.9 EC1: Verifying the wind loads generated on a building with protruding roof (TTAD #12071, #12278) .......................333 3.10 EC1: generating wind loads on a 2 slopes 3D portal frame (TTAD #11531) ..............................................................334 3.11 EC1: generating snow loads on a 2 slopes 3D portal frame using the Romanian national annex (TTAD #11569) ....334 3.12 Generating the description of climatic loads report according to EC1 Romanian standards (TTAD #11688).............334 3.13 EC1: generating snow loads on a 2 slopes 3D portal frame with roof thickness greater than the parapet height

    (TTAD #11943)...........................................................................................................................................................334 3.14 EC1: generating wind loads on a 2 slopes 3D portal frame using the Romanian national annex (TTAD #11687) .....335 3.15 EC1: generating wind loads on a 2 slopes 3D portal frame (TTAD #11699) .............................................................335 3.16 EC1: generating snow loads on a 2 slopes 3D portal frame using the Romanian national annex (TTAD #11570) ....335 3.17 NV2009: generating wind loads and snow loads on a simple structure with planar support (TTAD #11380).............335 3.18 EC1: verifying the snow loads generated on a monopitch frame (TTAD #11302) ......................................................336 3.19 EC1: generating wind loads on a 2 slopes 3D portal frame with 2 fully opened windwalls (TTAD #11937) ...............336 3.20 EC1: generating snow loads on two side by side roofs with different heights, according to German standards

    (DIN EN 1991-1-3/NA) (DEV2012 #3.13)...................................................................................................................336 3.21 EC1: generating wind loads on a 55m high structure according to German standards (DIN EN 1991-1-4/NA)

    (DEV2012 #3.12)........................................................................................................................................................336 3.22 EC1: generating wind loads on double slope 3D portal frame according to Czech standards (CSN EN 1991-1-4)

    (DEV2012 #3.18)........................................................................................................................................................337 3.23 EC1: generating snow loads on duopitch multispan roofs according to German standards (DIN EN 1991-1-3/NA)

    (DEV2012 #3.13)........................................................................................................................................................337 3.24 EC1: generating snow loads on two close roofs with different heights according to Czech standards

    (CSN EN 1991-1-3) (DEV2012 #3.18) .......................................................................................................................337 3.25 EC1: generating snow loads on monopitch multispan roofs according to German standards (DIN EN 1991-1-3/NA)

    (DEV2012 #3.13)........................................................................................................................................................337 3.26 EC1: snow on a 3D portal frame with horizontal roof and parapet with height reduction (TTAD #11191) ..................338 3.27 EC1: generating snow loads on a 2 slopes 3D portal frame with gutter (TTAD #11113)............................................338 3.28 EC1: generating snow loads on a 3D portal frame with horizontal roof and gutter (TTAD #11113) ...........................338 3.29 EC1: generating snow loads on a 3D portal frame with a roof which has a small span (< 5m) and a parapet

    (TTAD #11735)...........................................................................................................................................................338 3.30 EC1: generating wind loads on double slope 3D portal frame with a fully opened face (DEV2012 #1.6)...................339 3.31 EC1: generating wind loads on an isolated roof with two slopes (TTAD #11695) ......................................................339

  • ADVANCE DESIGN VALIDATION GUIDE

    12

    3.32 EC1: generating wind loads on duopitch multispan roofs with pitch < 5 degrees (TTAD #11852) ............................. 339 3.33 EC1: wind load generation on a simple 3D structure with horizontal roof .................................................................. 339 3.34 EC1 NF: generating wind loads on a 3D portal frame with 2 slopes roof (TTAD #11932) ......................................... 340 3.35 EC1: wind load generation on simple 3D portal frame with 4 slopes roof (TTAD #11604)......................................... 340 3.36 EC1: wind load generation on a signboard ................................................................................................................ 340 3.37 EC1: wind load generation on a simple 3D portal frame with 2 slopes roof (TTAD #11602)...................................... 340 3.38 EC1: wind load generation on a building with multispan roofs ................................................................................... 341 3.39 EC1: wind load generation on a high building with horizontal roof ............................................................................. 341 3.40 EC1: Generating snow loads on a 4 slopes shed with gutters (TTAD #12528) ......................................................... 341 3.41 EC1: Generating snow loads on a single slope with lateral parapets (TTAD #12606) ............................................... 341 3.42 EC1: generating wind loads on a square based lattice structure with compound profiles and automatic

    calculation of "n" (NF EN 1991-1-4/NA) (TTAD #12744) ........................................................................................... 342 3.43 EC1: Generating snow loads on a 4 slopes shed with gutters (TTAD #12528) ......................................................... 342 3.44 EC1: Generating snow loads on two side by side buildings with gutters (TTAD #12806) .......................................... 342 3.45 EC1: Generating wind loads on a square based structure according to UK standards (BS EN 1991-1-4:2005)

    (TTAD #12608) .......................................................................................................................................................... 342 3.46 EC1: Generating snow loads on a 4 slopes with gutters building. (TTAD #12719) .................................................... 342 3.47 EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12808)....................................................... 343 3.48 EC1: Generating snow loads on a 4 slopes with gutters building (TTAD #12716) ..................................................... 343 3.49 EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12835)....................................................... 343 3.50 EC1: Generating snow loads on a 2 slope building with gutters and parapets. (TTAD #12878)................................ 343 3.51 EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12841)....................................................... 343 3.52 NV2009: Verifying wind and snow reports for a protruding roof (TTAD #11318) ....................................................... 344 3.53 NV2009: Generating wind loads on a 2 slopes 3D portal frame at 15m height (TTAD #12604) ................................ 344

    4 COMBINATIONS............................................................................................................................... 345 4.1 Verifying combinations for CZ localization (TTAD #12542)........................................................................................ 346 4.2 Generating combinations (TTAD #11673) ................................................................................................................. 346 4.3 Defining concomitance rules for two case families (TTAD #11355) ........................................................................... 346 4.4 Generating load combinations with unfavorable and favorable/unfavorable predominant action (TTAD #11357) ..... 346 4.5 Generating combinations for NEWEC8.cbn (TTAD #11431) ..................................................................................... 346 4.6 Generating load combinations after changing the load case number (TTAD #11359)............................................... 347 4.7 Generating the concomitance matrix after adding a new dead load case (TTAD #11361) ........................................ 347 4.8 Generating a set of combinations with seismic group of loads (TTAD #11889) ......................................................... 347 4.9 Generating the concomitance matrix after switching back the effect for live load (TTAD #11806) ............................ 347 4.10 Performing the combinations concomitance standard test no. 5 (DEV2012 #1.7) ..................................................... 348 4.11 Performing the combinations concomitance standard test no.9 (DEV2012 #1.7) ...................................................... 348 4.12 Performing the combinations concomitance standard test no.4 (DEV2012 #1.7) ..................................................... 349 4.13 Performing the combinations concomitance standard test no.6 (DEV2012 #1.7) ...................................................... 349 4.14 Performing the combinations concomitance standard test no.8 (DEV2012 #1.7) ...................................................... 350

  • ADVANCE DESIGN VALIDATION GUIDE

    13

    4.15 Performing the combinations concomitance standard test no.10 (DEV2012 #1.7) ....................................................350 4.16 Performing the combinations concomitance standard test no.7 (DEV2012 #1.7) ......................................................351 4.17 Generating a set of combinations with Q group of loads (TTAD #11960) ..................................................................351 4.18 Performing the combinations concomitance standard test no.1 (DEV2010#1.7) .......................................................351 4.19 Generating a set of combinations with different Q "Base" types (TTAD #11806) .......................................................352 4.20 Performing the combinations concomitance standard test no.2 (DEV2012 #1.7) ......................................................352 4.21 Performing the combinations concomitance standard test no.3 (DEV2012 #1.7) ......................................................353

    5 CONCRETE DESIGN ........................................................................................................................355 5.1 EC2: Verifying the minimum reinforcement area for a simply supported beam..........................................................356 5.2 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load.....................................................356 5.3 EC2: Verifying the longitudinal reinforcement area for a beam subjected to point loads............................................356 5.4 Modifying the "Design experts" properties for concrete linear elements (TTAD #12498) ...........................................356 5.5 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - horizontal level behavior law.....356 5.6 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - bilinear stress-strain diagram....357 5.7 Verifying the longitudinal reinforcement for a horizontal concrete bar with rectangular cross section........................357 5.8 Verifying the reinforced concrete results on a structure with 375 load cases combinations (TTAD #11683) .............357 5.9 Verifying the longitudinal reinforcement bars for a filled circular column (TTAD #11678) ..........................................357 5.10 Verifying the reinforced concrete results on a fixed beam (TTAD #11836) ................................................................358 5.11 Verifying the longitudinal reinforcement for a fixed linear element (TTAD #11700)....................................................358 5.12 Verifying the longitudinal reinforcement for linear elements (TTAD #11636) .............................................................358 5.13 EC2 : calculation of a square column in traction (TTAD #11892)...............................................................................358 5.14 Verifying Aty and Atz for a fixed concrete beam (TTAD #11812) ...............................................................................359 5.15 Verifying concrete results for planar elements (TTAD #11583) ..................................................................................359 5.16 Verifying concrete results for linear elements (TTAD #11556) ...................................................................................359 5.17 Verifying the reinforcement of concrete columns (TTAD #11635) ..............................................................................359 5.18 Verifying the minimum transverse reinforcement area results for an articulated beam (TTAD #11342).....................360 5.19 Verifying the minimum transverse reinforcement area results for articulated beams (TTAD #11342)........................360 5.20 EC2: column design with Nominal Stiffness method square section (TTAD #11625) ..............................................360 5.21 EC2: Verifying the transverse reinforcement area for a beam subjected to linear loads ............................................360 5.22 EC2 Test 1: Verifying a rectangular cross section beam made from concrete C25/30 to resist simple bending

    - Bilinear stress-strain diagram...................................................................................................................................361 5.23 EC2 Test 5: Verifying a T concrete section, without compressed reinforcement - Bilinear stress-strain diagram ......362 5.24 EC2 Test 9: Verifying a rectangular concrete beam with compressed reinforcement

    - Inclined stress-strain diagram ..................................................................................................................................367 5.25 EC2 Test 10: Verifying a T concrete section, without compressed reinforcement - Inclined stress-strain diagram....377 5.26 EC2 Test 12: Verifying a rectangular concrete beam subjected to uniformly distributed load, without

    compressed reinforcement - Bilinear stress-strain diagram (Class XD3) ...................................................................383 5.27 EC2 Test 15: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram .....389 5.28 EC2 Test 16: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram .....395

  • ADVANCE DESIGN VALIDATION GUIDE

    14

    5.29 EC2 Test 11: Verifying a rectangular concrete beam subjected to a uniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram (Class XD1) ....................................................................................... 401

    5.30 EC2 Test 19: Verifying the crack openings for a rectangular concrete beam subjected to a uniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram (Class XD1) ...................................................... 401

    5.31 EC2 Test 20: Verifying the crack openings for a rectangular concrete beam subjected to a uniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram (Class XD1) ...................................................... 402

    5.32 EC2 Test 14: Verifying a rectangular concrete beam subjected to a uniformly distributed load, with compressed reinforcement- Bilinear stress-strain diagram (Class XD1) ........................................................................................ 409

    5.33 EC2 Test 18: Verifying a rectangular concrete beam subjected to a uniformly distributed load, with compressed reinforcement - Bilinear stress-strain diagram (Class XD1) ....................................................................................... 415

    5.34 EC2 Test 24: Verifying the shear resistance for a rectangular concrete beam with vertical transversal reinforcement - Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 420

    5.35 EC2 Test 25: Verifying the shear resistance for a rectangular concrete beam with inclined transversal reinforcement - Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 420

    5.36 EC2 Test 23: Verifying the shear resistance for a rectangular concrete - Bilinear stress-strain diagram (Class XC1)................................................................................................................................................................ 420

    5.37 EC2 Test 13: Verifying a rectangular concrete beam subjected to a uniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram (Class XD1) ....................................................................................... 420

    5.38 EC2 Test 17: Verifying a rectangular concrete beam subjected to a uniformly distributed load, without compressed reinforcement - Inclined stress-strain diagram (Class XD1)....................................................................................... 421

    5.39 EC2 Test28: Verifying the shear resistance for a T concrete beam with inclined transversal reinforcement - Bilinear stress-strain diagram (Class X0)................................................................................................................................ 427

    5.40 EC2 Test32: Verifying a square concrete column subjected to compression and rotation moment to the top Method based on nominal curvature- Bilinear stress-strain diagram (Class XC1) .................................................................. 431

    5.41 EC2 Test29: Verifying the shear resistance for a T concrete beam with inclined transversal reinforcement - Inclined stress-strain diagram (Class XC1) ............................................................................................................................. 441

    5.42 EC2 Test33: Verifying a square concrete column subjected to compression by nominal rigidity method- Bilinear stress-strain diagram (Class XC1) ............................................................................................................................. 445

    5.43 EC2 Test 27: Verifying the shear resistance for a rectangular concrete beam with vertical transversal reinforcement - Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 452

    5.44 EC2 Test31: Verifying a square concrete column subjected to compression and rotation moment to the top - Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 457

    5.45 EC2 Test35: Verifying a rectangular concrete column subjected to compression to top Based on nominal rigidity method - Bilinear stress-strain diagram (Class XC1) ........................................................ 471

    5.46 EC2 Test36: Verifying a rectangular concrete column using the method based on nominal curvature Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 481

    5.47 EC2 Test 37: Verifying a square concrete column using the simplified method Professional rules Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 482

    5.48 EC2 Test 26: Verifying the shear resistance for a rectangular concrete beam with vertical transversal reinforcement Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 485

    5.49 EC2 Test30: Verifying the shear resistance for a T concrete beam with inclined transversal reinforcement Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 489

    5.50 EC2 Test34: Verifying a rectangular concrete column subjected to compression on the top Method based on nominal curvature - Bilinear stress-strain diagram (Class XC1)................................................................................. 489

    5.51 EC2 Test 38: Verifying a rectangular concrete column using the simplified method Professional rules Bilinear stress-strain diagram (Class XC1) ................................................................................................................ 498

    5.52 EC2 Test 40: Verifying a square concrete column subjected to a small compression force and significant rotation moment to the top - Bilinear stress-strain diagram (Class XC1) ................................................................................ 501

  • ADVANCE DESIGN VALIDATION GUIDE

    15

    5.53 EC2 Test 41: Verifying a square concrete column subjected to a significant compression force and small rotation moment to the top - Bilinear stress-strain diagram (Class XC1).................................................................................508

    5.54 EC2 Test 44: Verifying a rectangular concrete beam subjected to eccentric loading - Bilinear stress-strain diagram (Class X0) ..................................................................................................................................................................520

    5.55 EC2 Test 45: Verifying a rectangular concrete beam supporting a balcony - Bilinear stress-strain diagram (Class XC1) ................................................................................................................................................................521

    5.56 EC2 Test 47: Verifying a rectangular concrete beam subjected to a tension distributed load - Bilinear stress-strain diagram (Class XD2) ..................................................................................................................................................528

    5.57 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load Inclined stress strain behavior law..............................................................................................................................528

    5.58 EC2 Test 3: Verifying a rectangular concrete beam subjected to uniformly distributed load, with compressed reinforcement- Bilinear stress-strain diagram.............................................................................................................529

    5.59 EC2 Test 2: Verifying a rectangular concrete beam subjected to a uniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram............................................................................................................538

    5.60 EC2 Test 6: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram .......539 5.61 EC2 Test 7: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram .......543 5.62 EC2 Test 8: Verifying a rectangular concrete beam without compressed reinforcement Inclined stress-strain

    diagram ......................................................................................................................................................................547 5.63 EC2 Test 4: Verifying a rectangular concrete beam subjected to Pivot A efforts Inclined stress-strain diagram.....554 5.64 EC2 Test 39: Verifying a circular concrete column using the simplified method Professional rules

    Bilinear stress-strain diagram (Class XC1).................................................................................................................555 5.65 EC2 Test 43: Verifying a square concrete column subjected to a small rotation moment and significant compression

    force to the top with Nominal Curvature Method - Bilinear stress-strain diagram (Class XC1)...................................559 5.66 EC2 Test 46 I: Verifying a square concrete beam subjected to a normal force of traction - Inclined stress-strain

    diagram (Class X0).....................................................................................................................................................568 5.67 EC2 Test 42: Verifying a square concrete column subjected to a significant rotation moment and small compression

    force to the top with Nominal Curvature Method - Bilinear stress-strain diagram (Class XC1)...................................571 5.68 EC2 Test 46 II: Verifying a square concrete beam subjected to a normal force of traction - Bilinear stress-strain

    diagram (Class X0).....................................................................................................................................................580

    6 GENERAL APPLICATION ................................................................................................................583 6.1 Verifying 2 joined vertical elements with the clipping option enabled (TTAD #12238)................................................584 6.2 Verifying the precision of linear and planar concrete covers (TTAD #12525).............................................................584 6.3 Defining the reinforced concrete design assumptions (TTAD #12354) ......................................................................584 6.4 Verifying the synthetic table by type of connection (TTAD #11422) ...........................................................................584 6.5 Importing a cross section from the Advance Steel profiles library (TTAD #11487) ....................................................584 6.6 Creating and updating model views and post-processing views (TTAD #11552).......................................................585 6.7 Creating system trees using the copy/paste commands (DEV2012 #1.5)..................................................................585 6.8 Creating system trees using the copy/paste commands (DEV2012 #1.5)..................................................................585 6.9 Creating a new Advance Design file using the "New" command from the "Standard" toolbar (TTAD #12102) ..........585 6.10 Verifying mesh, CAD and climatic forces - LPM meeting ...........................................................................................585 6.11 Generating liquid pressure on horizontal and vertical surfaces (TTAD #10724) ........................................................586 6.12 Changing the default material (TTAD #11870)...........................................................................................................586 6.13 Verifying the objects rename function (TTAD #12162)...............................................................................................586

  • ADVANCE DESIGN VALIDATION GUIDE

    16

    6.14 Launching the verification of a model containing steel connections (TTAD #12100) ................................................. 586 6.15 Verifying the appearance of the local x orientation legend (TTAD #11737) ............................................................... 586 6.16 Verifying geometry properties of elements with compound cross sections (TTAD #11601) ...................................... 587 6.17 Verifying material properties for C25/30 (TTAD #11617) ........................................................................................... 587 6.18 Verifying element creation using commas for coordinates (TTAD #11141) ............................................................... 587

    7 IMPORT / EXPORT ........................................................................................................................... 589 7.1 Verifying the export of a linear element to GTC (TTAD #10932, TTAD #11952) ....................................................... 590 7.2 Exporting an Advance Design model to DO4 format (DEV2012 #1.10) ..................................................................... 590 7.3 Exporting an analysis model to ADA (through GTC) (DEV2012 #1.3) ....................................................................... 590 7.4 Importing GTC files containing elements with haunches from SuperSTRESS (TTAD #12172)................................. 590 7.5 Exporting an analysis model to ADA (through GTC) (DEV2012 #1.3) ....................................................................... 590 7.6 Exporting linear elements to IFC format (TTAD #10561) ........................................................................................... 591 7.7 Importing IFC files containing continuous foundations (TTAD #12410) ..................................................................... 591 7.8 Importing GTC files containing "PH.RDC" system (TTAD #12055)............................................................................ 591 7.9 Exporting a meshed model to GTC (TTAD #12550) .................................................................................................. 591 7.10 Verifying the load case properties from models imported as GTC files (TTAD #12306) ............................................ 591 7.11 Verifying the releases option of the planar elements edges after the model was exported and imported via GTC

    format (TTAD #12137) ............................................................................................................................................... 592 7.12 System stability when importing AE files with invalid geometry (TTAD #12232)........................................................ 592 7.13 Verifying the GTC files exchange between Advance Design and SuperSTRESS (DEV2012 #1.9)........................... 592 7.14 Importing GTC files containing elements with circular hollow sections, from SuperSTRESS (TTAD #12197)........... 592 7.15 Importing GTC files containing elements with circular hollow sections, from SuperSTRESS (TTAD #12197)........... 592

    8 CONNECTION DESIGN .................................................................................................................... 593 8.1 Deleting a welded tube connection - 1 gusset bar (TTAD #12630)............................................................................ 594 8.2 Creating connections groups (TTAD #11797)............................................................................................................ 594

    9 MESH................................................................................................................................................. 595 9.1 Verifying the mesh for a model with generalized buckling (TTAD #11519)................................................................ 596 9.2 Verifying mesh points (TTAD #11748) ....................................................................................................................... 596 9.3 Creating triangular mesh for planar elements (TTAD #11727) .................................................................................. 596

    10 REPORTS GENERATOR.................................................................................................................. 597 10.1 Verifying the modal analysis report (TTAD #12718) .................................................................................................. 598 10.2 Verifying the shape sheet strings display (TTAD #12622) ......................................................................................... 598 10.3 Verifying the shape sheet for a steel beam (TTAD #12455) ...................................................................................... 598 10.4 Verifying the global envelope of linear elements stresses (on the start point of super element) (TTAD #12230) ...... 598 10.5 Verifying the Max row on the user table report (TTAD #12512) ................................................................................. 598 10.6 Verifying the steel shape sheet display (TTAD #12657) ............................................................................................ 599 10.7 Verifying the EC2 calculation assumptions report (TTAD #11838) ............................................................................ 599

  • ADVANCE DESIGN VALIDATION GUIDE

    17

    10.8 Verifying the shape sheet report (TTAD #12353) .......................................................................................................599 10.9 Verifying the model geometry report (TTAD #12201).................................................................................................599 10.10 Verifying the global envelope of linear elements forces result (on end points and middle of super element)

    (TTAD #12230)...........................................................................................................................................................599 10.11 Verifying the global envelope of linear elements forces result (on start and end of super element) (TTAD #12230) .600 10.12 Verifying the global envelope of linear elements stresses (on the end point of super element)

    (TTAD #12230, TTAD #12261) ..................................................................................................................................600 10.13 Verifying the global envelope of linear elements displacements (on each 1/4 of mesh element) (TTAD #12230) .....600 10.14 Verifying the global envelope of linear elements displacements (on all quarters of super element) (TTAD #12230) .600 10.15 Verifying the global envelope of linear elements forces result (on all quarters of super element) (TTAD #12230) ....601 10.16 Verifying the global envelope of linear elements displacements (on the start point of super element)

    (TTAD #12230)...........................................................................................................................................................601 10.17 Verifying the global envelope of linear elements displacements (on the end point of super element) (TTAD #12230,

    TTAD #12261)............................................................................................................................................................601 10.18 Verifying the global envelope of linear elements forces result (on the end point of super element)

    (TTAD #12230, #12261).............................................................................................................................................601 10.19 Verifying the global envelope of linear elements displacements (on start and end of super element)

    (TTAD #12230)...........................................................................................................................................................602 10.20 Verifying the global envelope of linear elements forces result (on each 1/4 of mesh element) (TTAD #12230).........602 10.21 Verifying the global envelope of linear elements forces result (on the start point of super element)

    (TTAD #12230)...........................................................................................................................................................602 10.22 Verifying the global envelope of linear elements displacements (on end points and middle of super element)

    (TTAD #12230)...........................................................................................................................................................602 10.23 Verifying the global envelope of linear elements stresses (on each 1/4 of mesh element) (TTAD #12230)...............603 10.24 Verifying the global envelope of linear elements stresses (on start and end of super element) (TTAD #12230) .......603 10.25 Verifying the global envelope of linear elements stresses (on end points and middle of super element)

    (TTAD #12230)...........................................................................................................................................................603 10.26 Verifying the Min/Max values from the user reports (TTAD# 12231)..........................................................................603 10.27 Verifying the global envelope of linear elements stresses (on all quarters of super element) (TTAD #12230)...........604 10.28 Creating the rules table (TTAD #11802).....................................................................................................................604 10.29 Creating the steel materials description report (TTAD #11954) .................................................................................604 10.30 System stability when the column releases interfere with support restraints (TTAD #10557) ....................................604 10.31 Generating the critical magnification factors report (TTAD #11379)...........................................................................605 10.32 Modal analysis: eigen modes results for a structure with one level ............................................................................605 10.33 Generating a report with modal analysis results (TTAD #10849) ...............................................................................605

    11 SEISMIC ANALYSIS .........................................................................................................................607 11.1 Verifying the spectrum results for EC8 seism (TTAD #11478) ...................................................................................608 11.2 Verifying the spectrum results for EC8 seism (TTAD #12472) ...................................................................................608 11.3 Verifying the combinations description report (TTAD #11632) ...................................................................................608 11.4 EC8 : Verifying the displacements results of a linear element according to Czech seismic standards (CSN EN 1998-1)

    (DEV2012 #3.18)........................................................................................................................................................608 11.5 Verifying signed concomitant linear elements envelopes on Fx report (TTAD #11517) .............................................608

  • ADVANCE DESIGN VALIDATION GUIDE

    18

    11.6 EC8 French Annex: verifying torsors on walls ........................................................................................................... 609 11.7 EC8 French Annex: verifying torsors on grouped walls from a multi-storey concrete structure ................................. 609 11.8 Verifying the damping correction influence over the efforts in supports (TTAD #13011). .......................................... 609 11.9 EC8 French Annex: verifying seismic results when a design spectrum is used (TTAD #13778) ............................... 609 11.10 EC8: verifying the sum of actions on supports and nodes restraints (TTAD #12706) ................................................ 609 11.11 Seismic norm PS92: verifying efforts and torsors on planar elements (TTAD #12974) ............................................. 609 11.12 EC8 Fr Annex: Generating forces results per modes on linear and planar elements (TTAD #13797) ....................... 610

    12 STEEL DESIGN................................................................................................................................. 611 12.1 EC3 Test 2: Class section classification and share verification of an IPE300 beam subjected to linear

    uniform loading .......................................................................................................................................................... 612 12.2 EC3 Test 6: Class section classification and combined biaxial bending verification of an IPE300 column................ 619 12.3 EC3 Test 3: Class section classification and share and bending moment verification of an IPE300 column............. 626 12.4 EC3 Test 5: Class section classification and combined axial force with bending moment verification of

    an IPE300 column...................................................................................................................................................... 633 12.5 EC3 test 4: Class section classification and bending moment verification of an IPE300 column............................... 639 12.6 EC3 Test 1: Class section classification and compression verification of an IPE300 column .................................... 645 12.7 Generating the shape sheet by system (TTAD #11471) ............................................................................................ 651 12.8 Verifying the calculation results for steel cables (TTAD #11623) ............................................................................... 651 12.9 Verifying the shape sheet results for a fixed horizontal beam (TTAD #11545) .......................................................... 651 12.10 Verifying the shape sheet results for a column (TTAD #11550)................................................................................. 651 12.11 Verifying the shape sheet results for the elements of a simple vault (TTAD #11522) ................................................ 651 12.12 Verifying the cross section optimization according to EC3 (TTAD #11516) ............................................................... 652 12.13 Verifying shape sheet on S275 beam (TTAD #11731)............................................................................................... 652 12.14 Verifying results on square hollowed beam 275H according to thickness (TTAD #11770) ........................................ 652 12.15 Verifying the shape sheet for a steel beam with circular cross-section (TTAD #12533) ............................................ 652 12.16 Changing the steel design template for a linear element (TTAD #12491).................................................................. 652 12.17 Verifying the "Shape sheet" command for elements which were excluded from the specialized calculation

    (TTAD #12389) .......................................................................................................................................................... 653 12.18 EC3: Verifying the buckling length results (TTAD #11550) ........................................................................................ 653 12.19 EC3 fire verification: Verifying the work ratios after performing an optimization for steel profiles (TTAD #11975)..... 653 12.20 CM66: Verifying the buckling length for a steel portal frame, using the roA roB method ........................................... 653 12.21 CM66: Verifying the buckling length for a steel portal frame, using the kA kB method .............................................. 653 12.22 EC3: Verifying the buckling length for a steel portal frame, using the kA kB method................................................. 654 12.23 Verifying the steel shape optimization when using sections from Advance Steel Profiles database

    (TTAD #11873) .......................................................................................................................................................... 654 12.24 Verifying the buckling coefficient Xy on a class 2 section .......................................................................................... 654

    13 TIMBER DESIGN .............................................................................................................................. 655 13.1 Modifying the "Design experts" properties for timber linear elements (TTAD #12259) .............................................. 656 13.2 Verifying the timber elements shape sheet (TTAD #12337) ...................................................................................... 656

  • ADVANCE DESIGN VALIDATION GUIDE

    19

    13.3 Verifying the units display in the timber shape sheet (TTAD #12445) ........................................................................656 13.4 EC5: Verifying the fire resistance of a timber purlin subjected to simple bending ......................................................656 13.5 EC5: Verifying a C24 timber beam subjected to shear force......................................................................................657 13.6 EC5: Verifying a timber column subjected to compression forces..............................................................................661 13.7 EC5: Verifying a timber beam subjected to combined bending and axial tension ......................................................665 13.8 EC5: Verifying a timber column subjected to tensile forces........................................................................................671 13.9 EC5: Shear verification for a simply supported timber beam......................................................................................674 13.10 EC5: Verifying a timber purlin subjected to oblique bending ......................................................................................675 13.11 EC5: Verifying lateral torsional stability of a timber beam subjected to combined bending and axial compression ...679 13.12 EC5: Verifying a timber beam subjected to simple bending .......................................................................................680 13.13 EC5: Verifying a timber purlin subjected to biaxial bending and axial compression ...................................................684 13.14 EC5: Verifying the residual section of a timber column exposed to fire for 60 minutes ..............................................689

    14 XML TEMPLATE FILES ....................................................................................................................693 14.1 Loading a template with the properties of a planar element (DEV2012 #1.4) ............................................................694 14.2 Loading a template with the properties of a linear element (DEV2012 #1.4)..............................................................694 14.3 Saving the properties of a planar element as a template (DEV2012 #1.4).................................................................694 14.4 Saving the properties of a linear element as a template (DEV2012 #1.4) ..................................................................694

  • 1 Finite Elements Analysis

  • ADVANCE DESIGN VALIDATION GUIDE

    22

    1.1 System of two bars with three hinges (01-0002SSLLB_FEM)

    Test ID: 2434

    Test status: Passed

    1.1.1 Description On a system of two bars (AC and BC) with three hinges, a punctual load in applied in point C. The vertical displacement in point C and the tensile stress on the bars are verified.

    1.1.2 Background

    1.1.2.1 Model description Reference: Structure Calculation Software Validation Guide, test SSLL 09/89; Analysis type: linear static; Element type: linear.

    System of two bars with three hinges Scale =1/33 0002SSLLB_FEM

    4.500 m

    30 30

    4.500

    m

    AA BB

    CC

    FF

    X

    Y

    Z X

    Y

    Z

    Units

    I. S.

    Geometry

    Bars angle relative to horizontal: = 30, Bars length: l = 4.5 m, Bar section: A = 3 x 10-4 m2.

    Materials properties

    Longitudinal elastic modulus: E = 2.1 x 1011 Pa.

    Boundary conditions

    Outer: Hinged in A and B, Inner: Hinge on C

  • ADVANCE DESIGN VALIDATION GUIDE

    23

    Loading

    External: Punctual load in C: F = -21 x 103 N. Internal: None.

    1.1.2.2 Displacement of the model in C

    Reference solution

    uc = -3 x 10-3 m

    Finite elements modeling

    Linear element: beam, imposed mesh, 21 nodes, 20 linear elements.

    Displacement shape

    System of two bars with three hinges Scale =1/33 Displacement in C 0002SSLLB_FEM

    1.1.2.3 Bars stresses

    Reference solutions

    AC bar = 70 MPa BC bar = 70 MPa Finite elements modeling

    Linear element: beam, imposed mesh, 21 nodes, 20 linear elements.

  • ADVANCE DESIGN VALIDATION GUIDE

    24

    1.1.2.4 Shape of the stress diagram

    System of two bars with three hinges Scale =1/34 Bars stresses 0002SSLLB_FEM

    1.1.2.5 Theoretical results

    Solver Result name Result description Reference value CM2 DZ Vertical displacement in point C [cm] -0.30 CM2 Sxx Tensile stress on AC bar [MPa] 70 CM2 Sxx Tensile stress on BC bar [MPa] 70

    1.1.3 Calculated results

    Result name Result description Value Error DZ Vertical displacement in point C [cm] -0.299954 cm 0.02% Sxx Tensile stress on AC bar [MPa] 69.9998 MPa 0.00% Sxx Tensile stress on BC bar [MPa] 69.9998 MPa 0.00%

  • ADVANCE DESIGN VALIDATION GUIDE

    25

    1.2 Slender beam with variable section (fixed-free) (01-0004SDLLB_FEM)

    Test ID: 2436

    Test status: Passed

    1.2.1 Description Verifies the first eigen mode frequencies for a slender beam with variable section, subjected to its own weight.

    1.2.2 Background

    1.2.2.1 Model description Reference: Structure Calculation Software Validation Guide, test SDLL 09/89; Analysis type: modal analysis; Element type: linear.

    Slender beam with variable section (fixed-free) Scale =1/4 01-0004SDLLB_FEM

    Units

    I. S.

    Geometry

    Beam length: l = 1 m, Initial section (in A):

    Height: h1 = 0.04 m, Width: b1 = 0.04 m, Section: A1 = 1.6 x 10-3 m2, Flexure moment of inertia relative to z-axis: Iz1 = 2.1333 x 10-7 m4,

  • ADVANCE DESIGN VALIDATION GUIDE

    26

    Final section (in B): Height: h2 = 0.01 m, Width: b2 = 0.01 m, Section: A2 = 10-4 m2, Flexure moment of inertia relative to z-axis: Iz2 = 8.3333 x 10-10 m4.

    Materials properties

    Longitudinal elastic modulus: E = 2 x 1011 Pa, Density: 7800 kg/m3.

    Boundary conditions

    Outer: Fixed in A, Inner: None.

    Loading

    External: None, Internal: None.

    1.2.2.2 Eigen mode frequencies

    Reference solutions

    Precise calculation by numerical integration of the differential equation of beams bending (Euler-Bernoulli theories):

    2x2 (EIz

    2vx2 ) = -A

    2vx2 where Iz and A vary with the abscissa.

    The result is: fi = 12 i

    h2l2

    E12

    1 2 3 4 5 23.289 73.9 165.23 299.7 478.1

    Finite elements modeling

    Linear element: variable beam, imposed mesh, 31 nodes, 30 linear elements.

  • ADVANCE DESIGN VALIDATION GUIDE

    27

    Eigen mode shapes

    1.2.2.3 Theoretical results

    Solver Result name Result description Reference value CM2 Eigen mode Eigen mode 1 frequency [Hz] 54.18 CM2 Eigen mode Eigen mode 2 frequency [Hz] 171.94 CM2 Eigen mode Eigen mode 3 frequency [Hz] 384.4 CM2 Eigen mode Eigen mode 4 frequency [Hz] 697.24 CM2 Eigen mode Eigen mode 5 frequency [Hz] 1112.28

    1.2.3 Calculated results

    Result name

    Result description Value Error

    Eigen mode 1 frequency [Hz] 54.01 Hz -0.31% Eigen mode 2 frequency [Hz] 170.58 Hz -0.79% Eigen mode 3 frequency [Hz] 378.87 Hz -1.44% Eigen mode 4 frequency [Hz] 681.31 Hz -2.28% Eigen mode 5 frequency [Hz] 1075.7 Hz -3.29%

  • ADVANCE DESIGN VALIDATION GUIDE

    28

    1.3 Thin lozenge-shaped plate fixed on one side (alpha = 15 ) (01-0008SDLSB_FEM)

    Test ID: 2440

    Test status: Passed

    1.3.1 Description Verifies the eigen modes frequencies for a 10 mm thick lozenge-shaped plate fixed on one side, subjected to its own weight only.

    1.3.2 Background

    1.3.2.1 Model description Reference: Structure Calculation Software Validation Guide, test SDLS 02/89; Analysis type: modal analysis; Element type: planar.

    Thin lozenge-shaped plate fixed on one side Scale =1/10 01-0008SDLSB_FEM

    Units

    I. S.

    Geometry

    Thickness: t = 0.01 m, Side: a = 1 m, = 15 Points coordinates:

    A ( 0 ; 0 ; 0 ) B ( a ; 0 ; 0 ) C ( 0.259a ; 0.966a ; 0 ) D ( 1.259a ; 0.966a ; 0 )

  • ADVANCE DESIGN VALIDATION GUIDE

    29

    Materials properties

    Longitudinal elastic modulus: E = 2.1 x 1011 Pa, Poisson's ratio: = 0.3, Density: = 7800 kg/m3. Boundary conditions

    Outer: AB side fixed, Inner: None.

    Loading

    External: None, Internal: None.

    1.3.2.2 Eigen modes frequencies function by angle Reference solution

    M. V. Barton formula for a lozenge of side "a" leads to the frequencies:

    fj = 2a21 i2

    )1(12Et

    2

    2

    where i = 1,2, or i2 = g().

    = 15 12 3.601 22 8.872

    M. V. Barton noted the sensitivity of the result relative to the mode and the angle. He acknowledged that the i values were determined with a limited development of an insufficient order, which led to consider a reference value that is based on an experimental result, verified by an average of seven software that use the finite elements calculation method.

    Finite elements modeling

    Planar element: plate, imposed mesh, 961 nodes, 900 surface quadrangles.

    Eigen mode shapes

    1.3.2.3 Theoretical results

    Solver Result name Result description Reference value CM2 Eigen mode Eigen mode 1 frequency [Hz] 8.999 CM2 Eigen mode Eigen mode 2 frequency [Hz] 22.1714

  • ADVANCE DESIGN VALIDATION GUIDE

    30

    1.3.3 Calculated results

    Result name

    Result description Value Error

    Eigen mode 1 frequency [Hz] 8.95 Hz -0.54% Eigen mode 2 frequency [Hz] 21.69 Hz -2.17%

  • ADVANCE DESIGN VALIDATION GUIDE

    31

    1.4 Thin circular ring fixed in two points (01-0006SDLLB_FEM)

    Test ID: 2438

    Test status: Passed

    1.4.1 Description Verifies the first eigen modes frequencies for a thin circular ring fixed in two points, subjected to its own weight only.

    1.4.2 Background

    1.4.2.1 Model description Reference: Structure Calculation Software Validation Guide, test SDLL 12/89; Analysis type: modal analysis, plane problem; Element type: linear.

    Thin circular ring fixed in two points Scale =1/2 01-0006SDLLB_FEM

    Units

    I. S.

    Geometry

    Average radius of curvature: OA = OB = R = 0.1 m, Angular spacing between points A and B: 120 ; Rectangular straight section:

    Thickness: h = 0.005 m, Width: b = 0.010 m, Section: A = 5 x 10-5 m2, Flexure moment of inertia relative to the vertical axis: I = 1.042 x 10-10 m4,

  • ADVANCE DESIGN VALIDATION GUIDE

    32

    Point coordinates: O (0 ;0),

    A (-0.05 3 ; -0.05),

    B (0.05 3 ; -0.05).

    Materials properties

    Longitudinal elastic modulus: E = 7.2 x 1010 Pa Poisson's ratio: = 0.3, Density: = 2700 kg/m3. Boundary conditions

    Outer: Fixed at A and B, Inner: None.

    Loading

    External: None, Internal: None.

    1.4.2.2 Eigen mode frequencies

    Reference solutions

    The deformation of the fixed ring is calculated from the deformations of the free-free thin ring

    Symmetrical mode: ui = i cos(i) vi = sin (i) i = 1-i

    2

    R sin (i) Antisymmetrical mode:

    ui = i sin(i) vi = -cos (i) i = 1-i

    2

    R cos (i) From Greens method results:

    fj = 21 j

    2Rh

    12E

    with a support angle of 120.

    i 1 2 3 4 Symmetrical mode 4.8497 14.7614 23.6157

    Antisymmetrical mode 1.9832 9.3204 11.8490 21.5545

    Finite elements modeling

    Linear element: beam, without meshing, 32 nodes, 32 linear elements.

  • ADVANCE DESIGN VALIDATION GUIDE

    33

    Eigen mode shapes

  • ADVANCE DESIGN VALIDATION GUIDE

    34

    1.4.2.3 Theoretic results

    Solver Result name Result description Reference value CM2 Eigen mode Eigen mode 1 frequency - 1 antisymmetric 1 [Hz] 235.3 CM2 Eigen mode Eigen mode 2 frequency - 2 symmetric 1 [Hz] 575.3 CM2 Eigen mode Eigen mode 3 frequency - 3 antisymmetric 2 [Hz] 1105.7 CM2 Eigen mode Eigen mode 4 frequency - 4 antisymmetric 3 [Hz] 1405.6 CM2 Eigen mode Eigen mode 5 frequency - 5 symmetric 2 [Hz] 1751.1 CM2 Eigen mode Eigen mode 6 frequency - 6 antisymmetric 4 [Hz] 2557 CM2 Eigen mode Eigen mode 7 frequency - 7 symmetric 3 [Hz] 2801.5

    1.4.3 Calculated results

    Result name Result description Value Error Eigen mode 1 frequency - 1 antisymmetric 1 [Hz] 236.32 Hz 0.43% Eigen mode 2 frequency - 2 symmetric 1 [Hz] 578.52 Hz 0.56% Eigen mode 3 frequency - 3 antisymmetric 2 [Hz] 1112.54 Hz 0.62% Eigen mode 4 frequency - 4 antisymmetric 3 [Hz] 1414.22 Hz 0.61% Eigen mode 5 frequency - 5 symmetric 2 [Hz] 1760 Hz 0.51% Eigen mode 6 frequency - 6 antisymmetric 4 [Hz] 2569.97 Hz 0.51% Eigen mode 7 frequency - 7 symmetric 3 [Hz] 2777.43 Hz -0.86%

  • ADVANCE DESIGN VALIDATION GUIDE

    35

    1.5 Thin lozenge-shaped plate fixed on one side (alpha = 45 ) (01-0010SDLSB_FEM)

    Test ID: 2442

    Test status: Passed

    1.5.1 Description Verifies the eigen modes frequencies for a 10 mm thick lozenge-shaped plate fixed on one side, subjected to its own weight only.

    1.5.2 Background

    1.5.2.1 Model description Reference: Structure Calculation Software Validation Guide, test SDLS 02/89; Analysis type: modal analysis; Element type: planar.

    Thin lozenge-shaped plate fixed on one side Scale =1/10 01-0010SDLSB_FEM

    Units

    I. S.

    Geometry

    Thickness: t = 0.01 m, Side: a = 1 m, = 45

  • ADVANCE DESIGN VALIDATION GUIDE

    36

    Points coordinates: A ( 0 ; 0 ; 0 ) B ( a ; 0 ; 0 )

    C ( 22

    a ; 22

    a ; 0 )

    D (2

    22 +a ;

    22

    a ; 0 )

    Materials properties

    Longitudinal elastic modulus: E = 2.1 x 1011 Pa, Poisson's ratio: = 0.3, Density: = 7800 kg/m3. Boundary conditions

    Outer: AB side fixed, Inner: None.

    Loading

    External: None, Internal: None.

    1.5.2.2 Eigen mode frequencies relative to the angle Reference solution

    M. V. Barton formula for a lozenge of side "a" leads to the frequencies:

    fj = 2a21 i2

    )1(12Et

    2

    2

    where i = 1,2, or i2 = g().

    = 45 12 4.4502 22 10.56

    M. V. Barton noted the sensitivity of the result relative to the mode and the angle. He acknowledged that the i values were determined with a limited development of an insufficient order, which led to consider a reference value that is based on an experimental result, verified by an average of seven software that use the finite elements calculation method.

    Finite elements modeling

    Planar element: plate, imposed mesh, 961 nodes, 900 surface quadrangles.

  • ADVANCE DESIGN VALIDATION GUIDE

    37

    Eigen mode shapes

    1.5.2.3 Theoretical results

    Solver Result name Result description Reference value CM2 Eigen mode Eigen mode 1 frequency [Hz] 11.1212 CM2 Eigen mode Eigen mode 2 frequency [Hz] 26.3897

    1.5.3 Calculated results

    Result name Result description Value Error Eigen mode 1 frequency [Hz] 11.28 Hz 1.43% Eigen mode 2 frequency [Hz] 28.08 Hz 6.41%

  • ADVANCE DESIGN VALIDATION GUIDE

    38

    1.6 Vibration mode of a thin piping elbow in plane (case 2) (01-0012SDLLB_FEM)

    Test ID: 2444

    Test status: Passed

    1.6.1 Description Verifies the vibration modes of a thin piping elbow (1 m radius) extended by two straight elements of length L, subjected to its self weight only.

    1.6.2 Background

    1.6.2.1 Model description Reference: Structure Calculation Software Validation Guide, test SDLL 14/89; Analysis type: modal analysis (plane problem); Element type: linear.

    Vibration mode of a thin piping elbow Scale = 1/11 Case 2 01-0012SDLLB_FEM

    Units

    I. S.

    Geometry

    Average radius of curvature: OA = R = 1 m, L = 0.6 m, Straight circular hollow section: Outer diameter de = 0.020 m, Inner diameter di = 0.016 m, Section: A = 1.131 x 10-4 m2, Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10-9 m4, Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10-9 m4, Polar inertia: Ip = 9.274 x 10-9 m4.

  • ADVANCE DESIGN VALIDATION GUIDE

    39

    Points coordinates (in m): O ( 0 ; 0 ; 0 ) A ( 0 ; R ; 0 ) B ( R ; 0 ; 0 ) C ( -L ; R ; 0 ) D ( R ; -L ; 0 )

    Materials properties

    Longitudinal elastic modulus: E = 2.1 x 1011 Pa, Poisson's ratio: = 0.3, Density: = 7800 kg/m3. Boundary conditions

    Outer: Fixed at points C and D At A: translation restraint along y and z, At B: translation restraint along x and z,

    Inner: None.

    Loading

    External: None, Internal: None.

    1.6.2.2 Eigen mode frequencies

    Reference solution

    The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

    in plane bending:

    fj = 2

    2i

    R2

    A

    EIz where i = 1,2,

    Finite elements modeling

    Linear element: beam, 23 nodes, 22 linear elements.

  • ADVANCE DESIGN VALIDATION GUIDE

    40

    Eigen mode shapes

    1.6.2.3 Theoretical results

    Solver Result name Result description Reference value CM2 Eigen mode Eigen mode frequency in plane 1 [Hz] 94 CM2 Eigen mode Eigen mode frequency in plane 2 [Hz] 180

    1.6.3 Calculated results

    Result name Result description Value Error Eigen mode frequency in plane 1 [Hz] 94.62 Hz 0.66% Eigen mode frequency in plane 2 [Hz] 184.68 Hz 100%

  • ADVANCE DESIGN VALIDATION GUIDE

    41

    1.7 Thin circular ring hanged on an elastic element (01-0014SDLLB_FEM)

    Test ID: 2446

    Test status: Passed

    1.7.1 Description Verifies the first eigen modes frequencies of a circular ring hanged on an elastic element, subjected to its self weight only.