Top Banner

of 18

Actual Optical and Thermal Performance of PV Modules

Apr 07, 2018

Download

Documents

astroidclasses
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    1/18

    ELSEVIER Solar Energy Materials and Solar Cells 41 /4 2 (1996) 557-574

    A ctual op t ica l and therm al performance ofP V - m o d u l e s

    S. Krauter , R. H anitschUniversity o f Techno logy Berlin, Electrical Ma chines Institute, D-10587 Berlin, G erman y

    AbstractActual eff ic ien cy of photovolta ic generators is of ten lower than predicted by s tandard testcondit ions (STC) or s tandard operat ing condit ions (SOC). This is mainly caused by an underest i-mation o f ref lect ion losses and so lar cel l temperature in the mo dule . To get more ac curate resultsin predicting the actual perform ance of PV-m odules , the parameters inf luencing inco min g (opticalparameters) and outg oin g po w er flow (electrical and thermal parameters) were investigated by

    simulat ion and som e verifying experim ents a t the Un iversi ty of New South W ales and theAustralian desert.

    1 . O p t i c a l p a r a m e t e r sI n o r d e r t o p r e c i s e l y r e p r e s e n t t h e a c t u a l o p t i c a l c o n d i t i o n s i n t h e m o d u l e , a m o d e l f o r

    t h e e n c a p s u la t i o n o f t h e c e ll w a s d e v e l o p e d w h i c h d e t e r m i n e s t h e i n s o la t i on r e a c h i n g t h ec e l l f r o m s u n a n d s k y i r r a d i a n c e . T h i s w a s d o n e b y m o d e l l i n g t h e o p t i c a l p r o c e s s e so c c u r r i n g o u t s i d e a n d i n s i d e t h e e n c ~ / p s u l a t i o n ( d i r e c t a n d d i f f u s e i r r a d i a n c e , r e f l e c t i o n ,a b s o r p t i o n ) .1 .1 . M o d e l l i n g o f i r r a d i a n c e

    A s a n i n p u t f o r th e t h r e e s la b o p t i c a l s y s t e m o f t h e s o l a r m o d u l e e n c a p s u l a t i o n as o p h i s t i c a te d m o d e l l i n g o f th e i r r a d ia n c e o n t o t h e m o d u l e w a s c a r r i e d o u t . T h e r e f l e c t i o nl o s s e s a t a P V - m o d u l e w e r e m o d e l e d a s a f u n c t i o n o f i n c i d e n c e a n g l e , s t a t e o fp o l a r i z a t i o n , s p e c t r a l i r r a d ia n c e , a n d t h e o p t i c a l p r o p e r t i e s o f t h e e n c a p s u l a t i o n m a t e r i -a ls .0927-0248 /96/$15.00 1996 Elsevier Science B.V. All rights reservedSSDI 0 9 2 7 - 0 2 4 8 ( 9 5 ) 0 0 1 4 3 - 3

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    2/18

    5 5 8 S . K r a u te r , R . H a n i t s ch / S o l a r E n er g y Ma t e r i a l s a n d S o l a r C el ls 4 1 / 4 2 ( 19 9 6) 5 5 7 - 5 7 41 5 0 0 -o

    . ~ . . , 1 0 0 0 -

    ~ . , 5 0 0 -

    0

    J Ts = 90*= AM 1.00T = 70*= AM 1.06Ys = 50*= AM 1.317s = 30*= AM 2.00

    ~*= AM 5 .76

    5 0 0 1 0 0 0 ~ 5 0 C 2 0 0 0 2 5 0 0W a v e l e n g t h [ r i m ]

    F i g . 1 . I n t e r p o l a t e d b e a m s p e c t r a f o r v a r i o u s T s-

    1.1.1. Direct irradianceT h e d i r e c t i r r a d i a n c e i s u n p o l a r i z e d a n d t h e a n g l e o f i n c i d e n c e i s d e r i v e d f r o m t h e

    a s t r o n o m i c a l p a r a m e t e r s a t t h e ti m e o f d a y a n d d a y o f t h e y e a r a n d g e o g r a p h i c a l l o c a t i o n[1 ] . The ac tua l t e r r e s t r i a l spec t rum o f t he sun was i n t e rpo la t ed f rom the CIE- spec t r a [2 ] :T h e C I E - s p e c t r a a r e g i v e n fo r fo u r d is c r e t e a ir m a s s e s o n l y ( A M 1 , A M 1 .5 , A M 2 , A M5 .6 ) . I n te r m e d i a t e v a lu e s o f s u n e l e v a t i o n a n g l es % h a v e b e e n c o m p u t e d b y e x p o n e n t i a li n t e rpo la t i on . The ca l cu l a t ed r e su l t s a t Ts = 10 - 90 a r e show n in F ig . 1 .

    1.1.2. Diffuse irradianceT h e d i f f u s e i r r a d i a n c e w a s m o d e l e d a s a n o n - h o m o g e n o u s i l l u m i n a t e d h a l f - s p h e r e a t

    t h e s k y o v e r th e m o d u l e . T h e s p a t ia l d i s tr i b u ti o n o f t h e s k y s p h e r e w a s m o d e l l e da c c o r d i n g t o D I N 5 0 3 4 p a r t 2 [3 ]. A c o n t o u r p l o t o f t h e i r r a d ia n c e l e v e l s o f a p r o j e c t i o no f t h e s k y d o m e o n t h e h o r iz o n t a l a t a s u n e l e v a t i o n o f 3 0 is s h o w n i n F ig . 2 .

    B e c a u s e e a c h s c a t t e r i n g p r o c e s s c a u s e s a d i f f e r e n t s t a t e o f p o l a r i z a t i o n o f t h es c a t te r e d a s w e l l a s o f th e t r a n s m i t t e d c o m p o n e n t o f a r a y , t h e d i f f u s e i r r a d ia n c e i sp o l a r i z e d ( F i g . 3 ). B e c a u s e t h e r e f l e c ti o n l o s s e s a t th e P V - m o d u l e d e p e n d o n t h e s t at e o fp o l a r i z a ti o n t o w a r d s t h e p l a n e o f i n c i d e n c e ( s e e b e l o w ) , t h i s e f f e c t h a s a l s o b e e na c c o u n t e d f o r .

    E a c h w a v e l e n g t h - b a n d o f t h e s p e c t r u m [2 ] o f e a c h p o i n t a t t h e s k y - d o m e ( a t a s p at i a ld i s t ance o f 15 ) w a s r a y t r a c e d t h r o u g h t h e m o d u l e e n c a p s u l a t i o n a c c o r d i n g t o th e a n g l eo f i nc idence and s t a t e o f po l a r i za t i on .

    1.2. Optical parameters of the encapsulation1.2.1. Reflective losses under realistic conditions

    I n e a r l i e r w o r k , e s t i m a t i o n s o f r e f l e c t i v e l o s s e s a t t h e s u r f a c e o f P V - m o d u l e s h a v eb e e n b a s e d o n n o r m a l i n c id e n c e a n d a m o u n t t o 2 - 4 % o f t h e in s o l at io n . T h i s i s c o r r e c to n l y f o r t r a c k i n g s y s t e m s w i t h o u t a n y d i f f u s e i n s o l a t i o n ( a s i n s p a c e ) . F o r n o n - t r a c k i n gs y s t e m s d ir e c t i n so l a t io n i s p e r p e n d i c u l a r t o t h e m o d u l e o n l y t w i c e a y e a r . A t o t h e rt i m e s t h e r e f l e c t e d c o m p o n e n t i n c r e a s e s a c c o r d i n g t o t h e F R E S N E L e q u a t i o n s ( s e e

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    3/18

    S . K r a u t e r , R . H a n i t s c h / S o l a r E n e r g y M a t e r i al s a n d S o l a r C e l l s 4 1 / 4 2 ( 1 9 9 6 ) 5 5 7 - 5 7 4 559

    Nl

    , , i , ,

    Fi g . 2 . Non- i so t rop i c d i s tr i bu t i on o f d i f fu se i r r ad i ance ( acco rd i ng t o DIN 5034) fo r a sun e l ev a t i on o f 30 andc l e a r s k y in W m - 2 s r - I ( p r o j e c t io n f r o m s k y d o m e ) .

    b e l o w ) . T h e d i f f e r e n t e n c a p s u l a t i o n l a y e r s c a u s e m u l t i p l e r e f l e c t i o n s i n s i d e a n d a m o n gt h e s l a b s ( s e e a l s o s c h e m e i n F i g . 4 ) . D u e t o o p t i c a l d i s p e r s i o n o f t h e m a t e r i a l s t h etransmit tance a l so depends on the incoming spec trum.

    / i:~ ' x ,~~.' _..'.,'r ' k : ' " ' ", " i ~ k " . . . . . . . . . ... . . . . , ~ . . : . . . . ~ . . . . ~ , \ ~ ! \/ ~ ' ~ : .. . . . . . . , .. " . " . : . 'k ' .. " : ' ; - - - / . . ~ \ . . . . " \ ~ : . . . . . . . . . . . . . \; : ; I ~ . ' ~ - ~ " ~ " r ' ~ . ' - . . ' , ~ ' v . ~ , ~ . . . '

    w l _ x i _ ~ . - D L ,W ~ , ( , :k ~ ~ x ~ . .' ." .. '. f . 4 _ ~ " ~ ". -z - I[ - ~ - ~ - . . ' ~ . ' ~ 4 - , , , . ' - Z ~ . . . " ~ . -~ . .. .. ~ . .. .. .. - m ~ . .7i ~ / - - 0 ' , x ' . . . . .$ - '~ ] . . .. .. .. ...-> ........

    -

    F i g . 3 . D e g r e e o f p o l a r iz a t i o n ( in % ) a n d d i r e c t i o n s o f p l a n e s o f p o l a r i z a ti o n ( a r ro w s ) o f d i f f u s e i r ra d i a n c e a t as u n e l e v a t io n o f 3 0 * (p r o j e c t i o n f r o m t h e s k y d o m e ) .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    4/18

    560 S . K r a u te r , R . H a n i t s ch / S o l a r E n er g y Ma t e r i a l s a n d S o l a r C e l ls 4 1 / 4 2 ( 19 9 6) 5 5 7 - 5 7 4

    iF i g . 4 . R a y t r a c i n g t h r o u g h t h e m o d u l e l a y e r s .

    T h e a b b r e v i a t i o n A R C i n F ig . 4 s t a n d s f o r t h e a n t i - re f l e c t iv e - c o a t i n g o f t h e s o l a r c e l l,i t c o n s i s ts o f T i O 2 o r a n o t h e r o p t i c a l m a t e r i a l t o b r i d g e o v e r t h e r e f r a c t i v e in d i c e s o fs i li c o n a n d f r o n t c o v e r . E V A i s t h e p o t t a n t e t h y l e n e - v i n y l - a c e t a t e w h i c h s e r v e s a s am e c h a n i c a l , t h e r m a l a n d o p t i c a l i n t e r f a c e b e t w e e n t h e s o l a r c e l l s a n d t h e g l a s s c o v e r .

    1 . 2 . 2 . N o n - n o r m a l i n c i d e n c eI n g e n e r a l , i n c i d e n c e o f i n s o l a ti o n i s n o n - n o r m a l . T h e r e f l e c t a n c e c a n b e c a l c u l a t e db y t h e F R E S N E L e q u a t i o n s ( s e e , e . g . , B o r n a n d W o l f [ 4 ] ) a s a f u n c t i o n o f a n g l e o fi n c i d e n c e 0 in ( s e e F i g . 5 ) . T h e c o m p o n e n t s o f t h e d i r e c t io n o f p o l a r i z a ti o n p a r a l le l ( 1 1 ) o rp e r p e n d i c u l a r (_ 1_ ) t o t h e a n g l e o f i n c i d e n c e a r e c a l c u l a t e d s e p a r a t e l y f r o m e a c h o t h e r .N o r m a l i z e d r e f l e c t i o n ( R i p R . ) a n d t r a n s m i s s i o n (T I I, T ) a r e g i v e n as :

    t a n 2 ( 0 i n - - 0 o u t ) s in2 ( 0 i n - - 0 o u t )RII = tan2 (0in + 0ut A R s in2(0 in + 0ut , (1 )( T II = 1 - R I I ) A ( T = 1 - R ) . (2 )

    T h e a n g l e o f r e f r a c t i o n is g i v e n a s:

    Oout = ar cs in ( ~1 sin Oin ) ( 3 )

    F i g . 5 . I n c i d e n c e o n a s u r f a c e a t 0 m .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    5/18

    S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cel ls 41 /4 2 (1996) 55 7-5 74 56 1

    1 .2 .3 . Mo del l ing o f a p lane s labInc i den t i n so l a t i on has t o pas s t h rough t w o op t i ca l boundary l aye r s and sus t a i n

    a t t enua t ion by abso rp t i on i ns i de t he ma t e r i a l. Th e r e f l ec t i on a t t he l ow er bou ndary i s no tl os t compl e t e l y , bu t bounced up and fo rw ard t h rough t he s l ab a t dec r eas i ng i n t ens i t y(Fig . 6) .

    I n o r d e r to e st a b li s h a c o m m o n n o m e n c l a t u r e , e a c h l a y e r i s m a r k e d b y a n i n d e x " k " ,t he u p p e r m e d i u m b y t h e i n d ex " k - 1 " a n d t h e l o w e r m e d i u m b y " k + I " . T h e a n g leo f i n c i d e n c e a t t h e t ra n s it io n f r o m m e d i u m " k - 1 " t o t h e m e d i u m " k " i s m a r k e d b yO , the an gle o f ref rac t ion by Ok+ 1. Th e o pt ica l t rans i t ions are den oted b y the indices ofmed i a i n t he o rde r o f t he r ad i a t i on pas s i ng t h rough t hem " k , k + 1" ( e . g ., T01) . Th et r ansmi t ted pa r t s i o f t he ir r ad i ance on s lab k a r e ma rked a s Wk, , th e r e f l ec t ed ones a sPk,r A d i s t inc t i on be t w ee n t he p l anes o f po l a r i za t i on i s no t ma de any m ore i n t h i s o r thefo l l ow i ng sec t i ons i n o rde r t o keep t he fo rmul as s i mpl e . So fo r t he gene ra l l y usedva r i ab l e s R and T , t he spec i f i c com pon en t s R II , R and TII , T a r e t o be i nse r ted . Thei nc i den t i r r ad i ance i s a l so n o rma l i zed t o E = 1 . Th e a t t enua t ion o f a r ay E k a f t e r apas sage t h rough a s l ab k , i s de t e rm i ned by t he coe f f i c i en t o f abso rp t i on ak (A ) o f thema t e r i a l , i ts t h i cknes s d k and t he i nc i dence an g l e 0 k on t he c ons i de r ed s lab k :

    = e x p - k c o s 0 k ] - ( 4 )Th ere fo re , r e f l ec t i on l os ses R o t o ccu r a t t he i nc i den t bou nda ry su r f ace o f s l ab 1 and

    R t2 on i ts l ow e r su r f ace , w h i l e t he r em a i n i ng t r ansmi t t ed pa r t cons i st s o f :Tt , t = T0tTl2exp - a t . (5 )

    The i n t e rna l r e f l ec t i on R t2 i s com put ed t he s ame as R o t us i ng Eq . ( 1 ) , a s w e l l , t he newi nc i dence ang l e 0 2 f o r t he l ow er l aye r 2 ac cord i ng t o Eq . ( 2 ) . The i n t e rna l r e f l ec t i on att he boundary 1 -2 pas ses t h rough l aye r 1 aga i n , and i s a t t enua t ed accord i ng l y . A t t hebou ndary 0 -1 t h i s r ay i s r e f r ac t ed onc e more , w h i l e a com pon en t T~0 pas ses i n t om e d i u m 0 . T h e r e f l ec t e d c o m p o n e n t R t 0 r e a c h e s b o u n d a r y 1 - 2 a t te n u a t e d , w h e r eano t he r pa r t T t 2 pene t r a t e s l aye r 2.

    ( - 3 a t d t )T I ' 2 ~ " T l R t 2 R l T t 2 e x p cosO'----~ " ( 6 )

    n o

    T1z" Tl2"n 2 - * T I , 1 - - ~ ' T I , 2F i g . 6 . T r a n s m i s s i o n t h r o u g h a p l a n e s l a b .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    6/18

    5 6 2 S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41/42 (1996) 557-574S u m m i n g u p a l l tr a n s m i t t e d f r a c t io n s o f t h e l a y e r 1 :

    [ _ O t l d l ~ o [ [ ) ] i - IC O S O 1 ( 7 )

    T h i s i n f i n i t e s e r i e s i s a g e o m e t r i c a l o n e a n d c a n b e s u m m a r i z e d :[ - - l d lr o , r , 2 e x p ) ( 8 )

    1 - Rl2 Rl0 ex p cos01B e c a u s e r a d i a t io n i s b e i n g a b s o r b e d i n t h e s l a b , th e r e f l e c t i v i ty p o f a s l a b h a s t o b ec o m p u t e d e x p l i c i t l y , b e c a u s e O 1 - r . T h e r e f l e c t e d c o m p o n e n t s P l ,i o f a s la b 1 a r e t ob e c a l c u l a t e d ( f i r st o n e t r iv i a l O l , l R01) as:

    ( - 2 a ' d l )= , ( 9 )P l , 2 T m R t 2 T l o e x p cos01 ~

    1 o )l .3 = T o lR 2 2 R lo T lo e x p cos0-----~ '

    P I . i > I = TolRI21R{o2Tme x p c s 0 1 ( 1 1 )Thi s i n f in i t e s e r i e s i s a geom et r i ca l s e r i e s aga in :

    T m R l 2 T l 0 e x p ( --201dlcosOlp l = R o l + ( _ 2 a l d l ) ( 12 )

    1 - R l o R l 2 e x p c o s0 1

    1 . 2 .4 . I n t e r n a l tr a n s m is s io n a n d r e fle c t io nK n o w l e d g e o f t h e i n t e r n a l t r a n s m i s s i o n i s n e c e s s a r y t o d e t e r m i n e t h e t r a n s m i s s i o no f m u l t i p l e l a y e r s y s t e m s , f o r e x a m p l e Y j : t h e t r a n s m i t t a n c e o f s l a b 1 , w h e n i t i si l l u m i n a t e d f r o m r e f l e c t i o n s c o m i n g o u t o f s l a b 2 . T o d i s t i n g u i s h i n t e r n a l t r a n s m i t t a n c ea n d i n t e r n a l r e f l e c t a n c e f r o m t h e e x t e r n a l o n e s , a b a r o v e r t h e v a r i a b l e i s u s e d .

    [ - - a l d tT l ex p ~ c - - ~ 1 ) ( 1 3 )

    1 - R l o R l 2 e x p c o s0 1A t th e b o u n d a r y b e t w e e n s l a b 2 a n d s l a b 1 , T2~ i s n e g l e c t e d b e c a u s e i t h a s b e e n a l r e a d y

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    7/18

    S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41/42 (1996) 557-574 563

    acco unte d for by the ne t re f lec t iv i ty of the low er s labs. In te rna l re f lec t iv i ty ~ i s se t upt h e s a m e w a y :

    R lo T t2 ex p ( -cos012qdt )p l ~ - ( _ 2 C r l d l ) . ( 1 4 )

    1 - R l2 R ,0 ex p cos0"---~The t ransi t ion f rom slab 2 to s lab 1 (T21) i s a lso neglec ted .1 .2 . 5. T r a n s m i t t a n c e t h r o u g h t w o s la b s

    A n op t i c a l sy s t e m c ons i s t ing o f s l a b 1 a nd s l a b 2 n ow w i l l be e xa m ine d (F ig . 7 ). Inaddi t ion to the in te rna l re f lec t ions ins ide each s lab there a re a lso re f lec t ion s over 2 s labs(be tw e e n the uppe r bound a ry o f the o the r s l ab a nd the low e r bound a ry o f the low e r s la b )to be cons idered . In ord er to keep the p ic ture s im ple , the rays and the i r in f in i te se r ies a resum me d up a s s l a b t ra nsmi t t a nc e s z a nd s l a b re f l e c t a nc e s p . Th i s i s done in F ig . 7 a ndi s ma rke d by bo ld a r row s .The fo l low ing f ra c t ion ou t l ine s the m os t d i r e c t w a y in to s la b3:

    z ' r 2 (15)T12,1 "~- T I 2I t shou ld be me n t ione d tha t fo r t he c om bina t ion o f the s l a b t r a nsmi t t anc e s r l a nd r 2

    the r e f l e c tion a t t he bounda ry 1 - 2 ha s be e n t a ke n in to a c c oun t in r~ a s w e l l a s in r 2 . SoT~2 ha s to be c ompe nsa te d onc e in r , 2 . A c c o rd ing ly th i s ha s to be done fo r fu r the rcom bina t ions o f s labs rk+ i . The re f lec ted par t ~ l " ( P2 - R21)" T~-21 f rom inside layer 2e n te r s s l ab 1 a nd i s r e f le c t e d a t t he boun da ry 1 - 0 ba c k in to s l ab 1 by lo s ing 1. F romsla b 1 the f r a c t ion P l r e a c he s sl a b 2 .The f ra c t ion ~ c a n be t re a t e d in the same w a y a sthe d i rec t in com ing par t and , there fore , has the sam e a t tenua t ion z 2 . T~-2~ as tha t in s lab2 when i t en te rs s lab 3 . This resu l ts in :

    p 2 - R l 2 ) r2r12 ,2 = T122 ( 16 )

    n o

    n l ~ - R z ~

    n

    n 3 - r - r 2-r,2., =F i g . 7 . T r a n s m i s s i o n th r o u g h a t w o s l ab s y s t e m .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    8/18

    564 s. Krauter, R. Hanitsch Solar Energy Materials and Solar Cells 41/42 (1996) 557-574A g a i n a f r a c t i o n / 92 - R I 2 i s r e f l e c t e d f r o m s l a b 2 in t o s l a b 1 . S u m m a r i z e d , t h e t o t a l

    t r a n s m i t t a n c e i s :T I T 2 ~ [ ( D 2 - R 1 2 ) P 1 ] i - I

    " 2 " 1 2 T l 2 i=,[ ~ , ( 1 7 )T IT27"12 = T 12 - - ( P 2 - - R I 2 ) P l " ( 1 8 )

    T h e i n n e r r e f l e c t i v i t y P21 o f t h e s l a b s y s t e m i s:~ ' 2 7 2 P lP 21 = P 2 + ( 1 9 )T I2 - - P I ( P 2 - - R I 2 ) '

    w h i l e 2 c a n b e e x p r e s s e d a c c o r d i n g t o E q . ( 1 3 ).1.2.6. Transmittance through three slabs

    T h e m o d u l e e n c a p s u l a t i o n i s n o w c o n s i d e r e d a s th r e e s l a b s o f d i ff e r e n t o p ti c a lp r o p e r t i e s . T h e u p p e r t w o - s l a b - s y s t e m i s t r e a t e d b y i t s i n p u t a n d o u t p u t p r o p e r t i e s a s as i n g le s l a b s y s t e m a n d t h e r e fo r e t h e s a m e p r o c e d u r e a s d e s c r ib e d a b o v e i n c h a p t e r 1 .2 .5c o u l d b e u s e d r e c u r s i v e l y : z I i s s u b s t i t u t e d b y 7 -1 2, ~ '2 b y 7 -3 , T l 2 b y T E a , SO t h e f i r s tf r a c t i o n o f 7 -~ 23 c o u l d b e w r i t t e n a s :

    T I 2 T 3T 1 2 3 . 1 = T 2 3 (20)

    F o r t h e c o m b i n a t i o n o f th e s l a b t r a n s m i t t a n c e s 7 -12 a n d 7 -3 th e r e f l e c t i o n a t b o u n d a r y2 - 3 h a s b e e n t a k e n i n t o a c c o u n t i n 7 -12 a s w e l l a s i n r 3 . S o T 23 h a s t o b e c o m p e n s a t e do n c e i n 7 1 2 3 . T h e r e f l e c t e d p a r t 7 1 z . ( P 3 - R 2 3 ) " T2 31 f r o m i n s i d e l a y e r 3 e n t e r s s l a bs y s t e m I - 2 a n d i s r e f l e c te d a t t h e b o u n d a r y l - 0 b a c k i n t o s la b s y s t e m 1 2 b y l o s i n g 1 2.F r o m s l a b s y s t e m I - 2 t h e f r a c t i o n ~ 21 r e a c h e s s l a b 3 . T h e f r a c t i o n P 21 c a n b e t r e a t e di n th e s a m e w a y a s t h e d ir e c t i n c o m i n g p a r t a n d t h e r e f o r e h a s t h e s a m e a t t e n u a t io n7 -3 " T ~ I a s t h a t i n s l a b 3 w h e n i t e n t e r s s l a b 4 . T h i s r e s u l t s i n :

    r 1 2 ( P 3 - - R23) P 2 1 T 3T t 2 3 , 2 = T 2 3 ( 2 1 )

    n I

    n 2

    n 3

    n 4 TI23A 7"12a,Fig. 8. Transm ission through a three slab system .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    9/18

    S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41/42 (1996) 557-574 56 5Again a fraction P3-223 is reflected from slab 3 into slab system 1-2. Summarized,

    the total transmittance is:T I 2 T 3 pc ( P 3 - - R 2 3 ) P 2 1 ] i - I

    ] 1 -" 1 2 3 = T23 i= T2 3 ] ( 2 2 )T12T3: (23)3"123 T23 - - ( 03 - - R 2 3 ) P21

    This "1"12 consists of the components 1 - 1 2 3 1 1 and TI23 j_ which are to be multipl ied bythe components of the according directions of polarization.1 . 3 . O p t i c a l t r a n s m i t t a n c e

    1 .3 .1 . T r a n s m i t t a n c e o f a r e a l e n c a p s u l a t i o nUsing the model for an optical three-slab-system mentioned above, the transmittancesfor real modules and their dependence on the refractive indices of the two front slabshave been investigated. A plot of the transmittance as a function of incident angle for asimulation of a real module (PQ 40/50 supplied by ASE, former Telefunken Sys-temtechnik in Wedel, Germany) at a wavelength of 800 nm (max. spectral efficiency) isshown in Fig. 9.1.3.2. V a r i a t i o n o f n I a n d n 2

    The dependency of the transmittance on the refractive indices of the two front slabshas also been examined. The results for the simulations to determine the relativeirradiance reaching the cell as a function of the refractive indices nj and n 2 (n 3 = 2.30,n 4 = 3.69) at the top slabs are shown in Fig. l0 for 0 = 0 and unpolarized insolation.

    An increase of the angle of incidence shows a shift of the maximum transmittancetowards lower refractive indices, especially of the top slab. This is caused by theincreasing reflection losses at the air boundary layer (n o = 1.00) to the upper front layer

    10

    0 . 8 -8

    0 . 6 -.=_t - 0 . 4 -

    I - -0 . 2

    0 .00

    ] I . . . . . I [ ] q r

    . . . . . . . . . . . . . e ~ \ \ \a r a ll e l p o l a n z " ' ' " \. . . . . p e r p e n d i c u l a r p o l a ri z e d " ' - . ~ \- - u n p o l a r i z e d " ' . . ~ \ \a ir 2 \ \: n = l) / ~ " \ \ \ ~

    1 0 2 0 , 30 4 0 5 0 6 0 7 0 8 0 9 0a n g l e o f i n c i d e n c e i n d e g r e e s

    Fig. 9. Transmission of encapsulation (PQ 40/50).

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    10/18

    566 S. Krauter, R. Hanitsch Solar Energy Materials and Solar Cells 41 /42 (1996) 557-574/ , / / ' > ~ , , . ,

    2 . 2 0 : / / ~ / / ~ t ; 8 8~ / /2.1o-/> ~ / \2 . 0 0 - ~ ~ /

    x 1 9 o ' ~ %/ /l ) 1 . 7 0 -._ 1 . 5 o :--,.,o-. /mzAk.-4

    1 . 2 0 21 . 0 0 1 . 1 0 1 . 2 0 1 . 3 0 1 . 4 0 1 . 5 0 1 . 6 0 1 . 7 0 1 . 8 0 1 . 9 0

    r e f r a c t i v e i n d e x nFig. 10. Contour of transmittance as a function of the refractive indices o f the two top layers n I and n z(n 3 = 2.30, n o = 3.69). * : standard modules.

    n L, w h i l e t h e l o s s e s a t t h e l o w e r b o u n d a r i e s i n c r e a s e t o a m u c h s m a l l e r e x t e n d d u e t o t h er e d u c e d i n c i d e n c e a n g l e s r e s u lt in g f r o m t h e p r e v i o u s a n g l e o f r ef r a c t io n .

    1.3.3. Comparison o f different modelsA s s h o w n i n F i g . 1 1 , t h e u s u a l l y u s e d n o r m a l i n c i d e n c e g i v e s o n l y a p e a k v a l u e o f

    t h e re a l t r a n s m i t t a n c e o f t he e n c a p s u l a t i o n s y s t e m o n c e d u r i n g a d a y , e s p e c i a l l y i f o n l yt h e a i r / g l a s s t r a n s i t i o n is r e g a r d e d .

    1

    0 . ~ 5 ... ... ... ... - - ~ .~ - - - -. ~. '~ ..-- .- -- ..-~ ---= ~- . . . . . ...............

    0 . 9 . . . . . .. . . . . . . . . . . . . . J . . . . . . . . . . . . . . .8

    " ~ o . 6 . . . . . . . . . . , . .. . ~ . . ~ I ......I-"

    0. 75 .... ........l ' , ~

    o z r , , V ; , , , , . . . . , . . . . ~ . . . . . . ~ J . . . . ,4 6 1 0 1 2 1 4 1 6 1 8 2 0

    t i m e o f d a yFig. 11. Transmittance o f an encapsulat ion o f a standard PV module (PQ 4 0/ 50 ) ove r a day (March 21 at34S) calculated with different models.

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    11/18

    S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41/42 (1996) 557-574

    , 5 C ~ C

    ~ 4 C ~

    3 C

    r ~ r ~ r ~ h 9 0 r r ~ O O t J le o l O V U " ~Fi g . 12 . Ref l ec t i on l o sses a t d i r ec t i r r ad i ance (S ite : 34 .5N, Module : PQ 4 0/5 0, f i xed sou t hward ) .

    5 67

    1 . 3. 4 . A c c u m u l a t e d r e f l e c t i o n l o s s e s o v e r a d a yT h e m o d e l d e s c r i b e d a b o v e w a s a l s o u s e d f o r a s i m u l a t i o n o v e r o n e d a y f o r a

    s t anda rd modu l e r epea t i ng t he ca l cu l a t i on each 15 mi nu t es w i t h t he i r co r r e spond i ngi nc i den t ang l e s and spec t r a .

    The t o t a l r e f l ec t i on l os ses o f a t h r ee l aye r encapsu l a t i on o f a s t anda rd modu l e (PQ4 0 / 5 0 ) d u r i n g a d a y a r e 1 5 . 5 % o f th e i n c o m i n g g l o b a l r a d ia t io n f o r a n a d e q u at e m o d u l ee l eva t i on ang l e ( s ee F igs . 12 and 13) . Fo r h igh e l ev a t i on ang l e s ( 50 -90 ) , t he r e f l ec t i onl os ses i nc r ease up t o 42 . 5% fo r d i r ec t rad i a t ion . P o l a r i za t i on o f d i f fuse r ad ia t i on l ow er s

    5 0 i3 0 " ~

    2 0 " 6~ o ~

    " ' ) ~ ? h 9 o ~ / r f l o d u l e eFi g . 13 . Ref l ec t i on fo r d i f fu se i r r ad i ance (S ite : 34 .5N, Module : PQ 4 0/5 0, f i xed sou t hward ) .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    12/18

    568 S. Krauter, R. Hanitsch Solar Energy Materials and Solar Cells 41/42 (1996) 557-574the d i f fuse inc idence by 0 .5 - 5% [5] and the in f luence o f op t i ca l d i spe rs ion is a round 1%[6,7].

    2 . T h e r m a l p a r a m e t e r s

    PV mo dules sho w redu ced vo l t age and e f f i c iency a t e l eva ted ce l l t empera tu res (by0 .4 -0 .5 % K- ~ fo r c rys ta l line s il i con so la r ce l l s [8 ] ) . The ce l l t empera tu re a t a ce r t a inhea t f low d ens i ty t)heat A - l ( absorbed i r rad iance minu s gene ra ted PV pow er dens i ty ) isde te rmined by the hea t cond uc t iv i ty o f the encapsu la t ion and by the hea t t r ans fe r to theenv i ron me nt which cons i s t s o f convec t ive hea t t r ans fe r and the he a t rad ia t ion exchangea m o n g m o d u l e a n d s k y o r g r o u n d . A s k e tc h o f t h e i n c o m i n g a n d t h e o u t g o i n g en e r g yf lows o f a PV-m odule i s g iven in F ig . 14.2.1. Thermal proce ss inside the PV-mo dule

    Afte r absorp t ion o f the incom ing rad ia tion in the so la r ce l l a por t ion o f i t i s conve r tedin to e lec t r i c i ty and d ive r ted . The rema in ing hea t f low ge t s f rom the ce l l th rough theencapsu la t ion to the su r face o f the module ( s t eady s t a te hea t f low) o r inc reases thetempera tu re o f the module (non-s teady s t a te hea t f low) . A t conven t iona l s t anda rdmo dules the the rma l cap ac i ty i s re la t ive ly low , so a s imple s t eady s t a te hea t f low cou ldbe used .2.2. Heat dissipation by convection

    Convec t ive hea t f lows can no t be t rea ted in a c losed ma themat ica l mode l and ,the re fo re , have to be computed by i t e ra t ion o r approx ima t ion . The convec t ive hea tt rans fe r coe f f i c ien t h c i s a bu lky func t ion o f the ac tua l a i r (TA) and module su r facetempera tu re (TM) , a i r v i s cos i ty , the rma l conduc t iv i ty and hea t capac i ty , cha rac te r i s t i cl eng th and e leva t ion ang le o f the m odule and f ina l ly speed and d i rec t ion o f wind . Themode l s used have been based on the ex tens ive work by Mehl [9 ] .

    Q e a t r - t r a n s .

    q o o o w , : h o I T M - Q , o . o nFig. 14. Balance of energy f low s at a PV module

    %A

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    13/18

    S. Krauter, R. Hanitsch Solar Energy Materials and Solar Cells 4 1 /4 2 (1996) 557-574 5 6 9

    ,.)

    0 )t- -

    5 6 -

    5 2JQ)o . 5 0E

    [ I - E ] 2 0 0 W a t t . h o r i z o n t a l l y m o u n t e d4a ,n~.2,o0 wQt,. ve~!~.,,~..,~.~.t;d, . . . , . . . . . . . . . , . . . . ,0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

    m o d u l e e l e v o t io n i n d e g r e e sF i g . 1 5 . C e l l t e m p e r a t u r e a t a h e a t f l o w o f 2 0 0 W i n a M 5 5 m o d u l e ( 4 0 0 W m - 2 ) f o r T a m bie n = T sk y = 2 4 . 9 C ,n a t u r a l c o n v e c t i o n .

    R e s u l t s o f m e a s u r e m e n t s a r e p lo t t e d in F i g . 1 5. T h e e l e v a t i o n a n g l e o f t h e m o d u l e h a sl it tl e i n f lu e n c e o n t h e n a t u r a l c o n v e c t i v e h e a t t r a n s f e r c o e f f i c ie n t i n t h e 2 0 - 8 0 e l e v a t i o n a n g l e r a n g e ( < 0 . 2 % ) . H o w e v e r , a t a l m o s t h o r iz o n t a l p o s i t i o n ( 0 0 - 2 0 a n g le o fm o d u l e e l e v a t i o n ) t he e n e r g y o u t p u t o f th e m o d u l e d e c r e a s e s b y a p p r o x i m a t e l y 0 . 7 %d u e t o e l e v a t e d c e l l t e m p e r a t u r e . H o r i z o n t a l , i n s t e a d o f v e r t i c a l m o u n t i n g o f a s t a n d a r dm o d u l e i n c r e a s e s e f f i c i e n c y b y 0 . 3 % . H e a t i n g w a s d o n e b y f o r c i n g a n e l e c t r ic a l p o w e rd i s s ipa t ion in t he ce l l s (u s ing ce l l s a s d iodes i n fo rward d i r ec t ion ) . To min imizer a d i a t i o n e x c h a n g e t h e t e s t s w e r e c a r r i e d o u t i n a h u g e h a l l w i t h t h e w a l l t e m p e r a t u r e s(~ __ _A T s k y ) e q u a l t o a i r t e m p e r a t u r e TA .2.3. Heat radiation exchange

    T h e t o ta l r a d ia t i v e h e a t f lo w f r o m t h e m o d u l e 0 r~ d to t h e e n v i r o n m e n t c o n s i s ts o f t h ec o m p o n e n t s o f t h e r a d i a t i o n e x c h a n g e o f t h e f r o n t ( F ) a n d r e a r s i d e s ( R ) o f t h e m o d u l ewi th t he sky and the g round (G) : t)Fsky , ORsky , 0FC and 0 R e . Th ese co m po nen t s a r ef u n c t i o n s o f t h e t e m p e r a t u r e o f t h e m o d u l e s u r f a c e ( TF , TR) , t he t empera tu re o f t heg r o u n d Tc , t h e e q u i v a l e n t s k y t e m p e r a t u r e s T s k y [ 1 0 - 1 2 ] a n d t h e a c c o r d i n g e m i s s i v i t i e se . A l s o t h e s e c o m p o n e n t s a re d e t e r m i n e d b y t h e s o c a ll e d " r a d i a t i o n s h a p e f a c t o r " ( o r" v i e w f a c t o r " ) ~ 0;., t h e r a d i a ti v e su r f a c e a r e a A o f t h e m o d u l e a n d t h e S t e f a n - B o l t z -8m a n n c o n s t a n t t r ~ 5 . 6 7 - 1 0 - W m - 2 K - 4 ) [13].

    I n g e n e r a l t h i s c a n b e e x p r e s s e d a s f o l l o w s [ 13 ]:G r a d = E Q i j = E r ~ i E j A i~ i j (T i 4 - T j 4 ) ~ " E o r E i c ' j A i ~ i j ( T i 4 - T j 4 ) ( 2 4 )

    i j i j l : i j

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    14/18

    57 0 S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41/42 (1996) 557-574The appr oxim at ion abov e is exact fo r (1 - e /) (1 - e~)~u~ j i ,~ : 1 . App l ied on the

    e leva t ion ang le 7M of the mod ule [6] :

    a ra d = 1 0 " [ a F e F ( ' s k y ( T 4 - T s~ y)(1 + s in ( 9 0 - 7 M ) ,+ ' c ( T 4 - T d )( 1 - s in ( 9 0 - 7 M ) ) ,- I - aR ' R ( ' s k y ( Z R - T ~ a y ) ( 1 - C OS TM ),-t- e~ (T ~ - T ~) (1 -~t-COS')/M))]. (25)

    3 . S i m u l a t i o n

    For eve ry so la r pos i t ion dur ing a day , each po in t on the sky sphe re was desc r ibed byi t s spec i f i c spec t rum, po la r i za t ion and inc idence ang le towards the module su r face . A l lcomponen t s were ray - t raced s epa ra te ly un t i l the i r absorp t ion in the so la r ce l l . Af te rs u m m i n g o f a l l ab s o rb e d c o m p o n e n t s t h e b a la n c e o f e n e r g y f l o w s w a s c a r d e d o u t. T h e npower d i s s ipa t ion by e lec t r i ca l load , hea t t r ans fe r to the f ron t and back su r face o f themo dule , hea t d i s s ipa t ion by rad ia t ion exchange wi th the g roun d and the sky , and na tu ra land fo rced conv ec t ion was s imula ted [14]. The qu i t e in te re s t ing re su l t s f rom a s imula t ionof the m odule e f f i c i ency dur ing a da y a re sho wn in F ig . 16. Exp lana t ions fo r cha rac te r is -t ics of the shape are g iven in the f igure .3.1. Verification

    The mode l used fo r the de te rmina t ion o f the ce l l t empera tu re was ve r i f i ed bymeasurem ents at" the Ar id Z one Resea rch s t a tion o f the Unive rs i ty o f New Sou th W alesin the Aus t ra l i an dese r t [14] . For the s imula t ion a cons tan t wind speed o f 2 m / s was

    0 , 1 3

    0 .12> .ot -O~-~ o . 1EO

    o . l o ~" 00 o . o 9

    0 .08 4 ~

    i i i i i i i I i i id l f~ rod lo f lononly,low coi l tomporc~ures

    ~ ~ ~ ~ 1 ' o I ' ! 1 '2 1 ' ~ 1 ~ 1 ' 5 1 '6 1 '~ 1 8 1 ' 9 2 ot i m e o f d a y

    Fig. 16. PV m odule efficiencyduring a day (June 21 at 34.5N, PQ 40 /50 by AS E, r/STC= 0 .10).

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    15/18

    S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41 / 42 (1996) 557-574 5 7 1

    51)

    (.~ 40

    ~ 30

    c l.E~ 20

    10

    [ T _ c e l l , p r e d i c t e d. . .. . .. . .. i J T _ c e l l , m e a s u r e d! J T a m b i e n t i n s i m u l a t i o n/ o T - a m b i e n t , m e a s u r e d............. i

    6 7 8 9 10

    Fig. 17. M easured cell tem peratures versu s simulation atelevation: 30).

    11 12 13 14 15 16 17 18t ime of c l a y

    M a r c h 4 i n F o w l e r s G a p ( 3 1 5 ' S , 1 4 1 4 0 ' E , m o d u l e

    u s e d a s i n p u t a n d t h e a m b i e n t t e m p e r a t u r e a s s h o w n i n F i g . 1 7 . I t c a n b e s e e n t h a t t h ep r e d i c t e d c e l l t e m p e r a t u r e f o l l o w s a c c u r a t e l y t h e a c t u a l m e a s u r e d o n e w i t h a p e a kd e v i a t i o n o f 3 K , w h i c h o c c u r r e d o n l y w h e n t h e a c t u a l w i n d s p e e d w a s q u i t e d i f f e r e n tf ro m 2 m / s .

    T h e t i m e d e p e n d e n c e o f P V m o d u l e e f f i c i e n c y s h o w n i n F ig . 1 6 h a s b e e n v a l i d a t e db y V a n d e n B e r g e t a l . [ 1 5 ] f o r t i m e s f r o m 7 t o 1 7 h r s . T h e e f f i c i e n c y m e a s u r e m e n t sa r o u n d d a w n , w h i c h h a v e t h e g r e a t e s t u n c e r t a i n ty , r e q u i re m o r e s e n s i ti v e m e a s u r i n ge q u i p m e n t a n d a p r e c i se , m a x i m u m - p o w e r - p o i n t t r a c k e r d u e t o t h e l o w i n t e n s i ty l e v e ls .A d d i t i o n a l r e s u l t s w i ll b e p u b l i s h e d a f t e r b e t t e r m e a s u r e m e n t s a r e o b t a i n e d w i thi m p r o v e d e q u i p m e n t .3.2 . Opt ica l improvements

    T h e t o ta l r e f l e c ti o n l o s se s c a n b e l o w e r e d f r o m 1 5 . 5% t o 1 1 . 4 % f o r o p t i m a l m a t c h i n gof r e f r ac t ive i nd i ces (n I = 1 .32 a nd n 2 = 1 .75) ; w i th r ea l m a te r i a l s ( e . g . , l ow r e f r ac t iveg la s s a t n I = 1 .43 and po ly -ca rb ona te (PC ) a t n 2 = 1 .60 ) , an ach ieve m en t o f u p to12 .9% i s poss ib l e , wh ich m ean s a ga in in t he da i ly p roduc ed en e rgy o f 3% ( see [6 ,7 ]) .

    A n i m p r o v e m e n t o f tr a n s m i t t a n c e a n d c o r r e s p o n d i n g d a i l y g e n e r a t e d e le c t r ic a l e n e r g yi n t h e 5 % r a n g e c o u l d a l s o b e a c h i e v e d b y V - g r o o v e s t r u c tu r e d s u r f a c e s [ 1 6 - 1 8 ] .3.3. The rma l improve ments

    A t il t o f th e m o d u l e a z i m u t h t o w a r d s e a s t a ll o w s a b e t t e r p e r f o r m a n c e i n th e m o r n i n gw h e n l o w e r a m b i e n t t e m p e r a t u r e s o c c u r ( o p t i m u m a t 3 5 w i t h a g a i n in e n e r g y o u t p u t o f0 . 4 % ) .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    16/18

    5 7 2 S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41 / 42 (1996) 557-574

    7 0 -

    6 0 -

    0 C _ 5 0 _

    . . ~ 4 0 -

    " " 2 0o

    1 0 -

    0 0 ~ 0 0 0 " 0o o t he rm al e n h a n c e d P V - m od u l e

    conventional PV-Module, direct ounted' I ' ~ ' I ' I ' I ' I ' I ' I ' + ' I ' I ' I ' I ' I6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

    s o l a r t i m e o f c l a yF i g . 1 8. C e l l t e m p e r a t u re s o f a c o n ve c t io n a l P V m o d u l e c o m p a r e d t o T O E P V I S m o d u l e d u r in g a d a y f o r h o ta d d c o n d i ti o n s .

    A g a i n o f 2 . 6 % w a s a c h i e v e d b y a t t a c h in g a s m a l l w a t e r t an k ( 1 2 . 3 l it e r) to t h eb a c k s i d e o f a m o d u l e t o i n c r e a s e t h e t o t a l h e a t c a p a c i t y . D u r i n g a d a y t h e m i n i m u me f f i c i e n c y i s t h e n d e l a y e d t w o h o u r s f r o m t h e t i m e o f m a x i m u m i n s o l a t i o n a t l o w e r p e a kt e m p e r a tu r e s . A l a t en t h e a t s to r a g e f i lm i s u n d e r d e v e l o p m e n t a n d s h o u l d a l l o w a ni m p r o v e m e n t o f 8 - 1 0 % .

    3.4. New modules

    C o n t i n u o u s s t u d i e s l e d u s t o t h e T O E P V I S - m o d u l e ( T h e r m a l a n d O p t i c a l E n h a n c e dP V m o d u l e w i t h I n t e gr a t ed S t a n d ) . H e r e t h e t h er m a l c a p a c i t y ( a w a t e r t an k m a d e o u t o f

    0 . 1 0 -

    _.~ 0 .08-

    E o.08-

    " 0 . 0 4 .

    L u 0 . 0 2 .

    O @ . ~ . . o - , o .. + , . o . + . o + . o . .+ o. , 0 " - o , . + . . + . .

    O 0 t h e r m a l e n h o n c e d P V - m o d u l ec o n v e n f i o r ' ~ l P V - - m o O u l e ( I ~ 1 0 / 4 0 )

    0 . 0 0 , , - , . , , . , , , . , , , 6 7 8 il 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 18S o lo " t im e o f d a yF i g . 1 9. E f f ic i e n c y o f T O E P V I S m o d u l e c o m p a r e d t o a c o n v e n t i o n a l m o d u l e w i t h i n a h o t d ay .

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    17/18

  • 8/3/2019 Actual Optical and Thermal Performance of PV Modules

    18/18

    574 S. Krauter, R. Hanitsch / Solar Energy Materials and Solar Cells 41 / 42 (1996) 557-5744 . C o n c l u s i o n

    T h e m o d e l a n d t h e s i m u l a t io n p r o g r a m d e v e l o p e d a l l o w u s to p r e d i c t o p t i c a l a n dt h e r m a l p e r f o r m a n c e u n d e r r e a l is t ic o p e r a t i n g c o n d i t i o n s , a n d th e y a r e p r o m i s i n g t o o l sf o r e v a l u a t i n g n e w P V p o w e r p l a n t s w i th t h e a i m o f i n c re a s i n g e f f i c ie n c y .

    AcknowledgementsT h e a u t h o rs a r e g r a te f u l fo r th e s u p p o r t o f M a r t i n G r e e n , S m a r t W e n h a m a n d t h e ir

    t e a m f r o m t h e U N S W C e n t r e f o r P h o t o v o l t a i c D e v i c e s a n d S y s t e m s d u r i n g th e m e a s u r e -m e n t p h a s e i n A u s t r a l i a .

    References[1] The Astronomical Alman ac, 198 9 (U S Govt. Printing Office, W ashington, DC, 1988).[2] Commission Internationale d'F.clairage (CIE), Publication No. 85 (1990).[3] DIN 5034 Part 2, German Institute for Standardization (Beuth, Berlin, 1985).[4] M. Born and E. Wo lf, Principles of Optics, 5th ed. (Pergam on, O xford, 1976).[5] S. Krauter and R. Hanitsch, in: Proc. Cairo Int. Conf. on Renewable Energy Sources, Cairo, 1993.[6] S. Krauter, Betriebsmodell der optiscben, thermiscben und elektrischen Parameter van PV-Modulen

    (K/Sster Publications, B erlin, 1993).[7] S. Krauter, R. Hanitsch, P. Camp bell and S.R. Wenham , in: Proc. 12 th European P hotovoltaic So lar

    Energy Con f., Am sterdam, 19 94, pp. 1194-1197 .[8] S.R. Wenh am, M.A . Green and M.E. W att, Applied Photovoltaics (University o f New S outh Wales,Centre of Photovoltaic System s and Devices, Australia, 1994).

    [9] F. Mehl, Theoretische Untersuchung der WSxmetransportmechnismen von solarelektrischen Generatorenzur Bestimmung von Zelltemperaturen, Diploma Thesis at the Institute of Electrical Machines, Universityof Technology B erlin (1993).

    [10] W.C. Swinbank, Quarterly J. Royal Meteor. Soc. 89 (1963) 339.[11] A. Whiller, Design Factors Influencing So lar Collectors Lo w Temperature Eng ineering App lications fo r

    Solar Energy (ASHRAE, N ew York, 1967).[12] N. Ch. Abid, Contribution a l '6tude de la production de froid a l 'aide de capteurs a caloducs, Diploma

    Thesis at the Inst. of Physics, Un iversity o f Constantine, Algeria (1987).[13] V DI-W 'firmeatlas, 6th ed. (V DI Publications, D~sseldorf, 1991).[14] Ph. Strauss, K. Onneken, S. Krauter and R. Hanitsch, Proc. 12 th European Photovoltaic So lar EnergyConf., Amsterdam, 1994, pp. 1198-120 2.[15] R. van den Berg, M . BN inge n and F.W. Sch ulze, Proc. 12 th European P hotovoltaic Solar Energy Conf.,Am sterdam, 1994, pp. 1206-1209.[16] S. Krauter and R. Hanitsch, Proc. 6th Photovoltaic Science and Engineering Conf., Ne w Delhi, 1992, p.

    I I1 0 .[17] S. Krauter and R. Hanitsch, Proc. 1 th European P hotovoltaic So lar Energy C onf., Montreux, 1992, pp.

    1351-1354.[18] A. Scheydecker, A. Goetzberger and V. Wittwer, Solar Energy 53 (1994) 171-176.