Top Banner
ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 Paul T. Durbin
81

ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

May 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

ACTIVIST PHILOSOPHY OF TECHNOLOGY:

ESSAYS 1989-1999

Paul T. Durbin

Page 2: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

1

ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999

Contents

Chapters

1. INTRODUCTION: A GENUINELY PRAGMATIC PHILOSOPHY OF

TECHNOLOGY

2. PHILOSOPHY OF TECHNOLOGY: RETROSPECT AND PROSPECT

3. HOW TO DEAL WITH TECHNOSOCIAL PROBLEMS

4. SOME POSITIVE EXAMPLES

5. BIOETHICS AS SOCIAL PROBLEM SOLVING

6. ENGINEERING ETHICS AND SOCIAL RESPONSIBILITY

7. COMPARATIVE PERSPECTIVES

8. PHILOSOPHY OF SCIENCE AND SOCIAL RESPONSIBILITY

EPILOGUE

Introduction

Many authors of collections of essays, often under the prodding of editors or publishers,

attempt to turn a set of essays into a coherent book. Unfortunately, judging from reviews of the

results, it is almost always clear to the reader where the seams are. No matter how much effort

to the contrary, it is always clear to an astute reader -- and especially to readers in a specialized

field who are already familiar with a good bit of the work in question -- where a particular essay

begins and ends, as well as how it does or doesn't mesh well with what precedes or follows.

So I am not even going to try that here. What I offer here and in three separate volumes is a

collection of essays, and I won't try to hide the fact. I think there is coherence, at least in overall

Page 3: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

2

point of view, but I don't claim more than that. I don't want, however, to ignore totally what it is

that those seeking a coherent volume are looking for; they want what they are publishing or

editing to be a real book. To solve the problem, I am going to try something that I haven't seen

done elsewhere.

I am going to treat this set of essays as if I were editing the essays of someone else. There are

examples to follow there; indeed, practically every famous author, after his or her death, is the

object of such a venture. A disciple, a family member, a literary executor or someone with

similar interests decides that the thoughts spread over time of that author merit publication in a

single volume or set. I'm not claiming that my writings deserve such treatment -- now before or

even after my death -- but it's a model to be followed.

What I have done for that purpose is to collect essays that were written over a period of twenty

years and put them together as a reflection of my developing point of view over that period. At

first I tried to combine everything in a single volume; now I treat three sets of essays as three

separate volumes.

I will leave it to the reader to decide whether my approach was a good choice or not. But

for me, it is the only honest option open to me, short of starting from the beginning and writing

three new books, beginning to end. And that admittedly more difficult chore, even if I were to

undertake it, would not actually reflect a developing point of view as well as I think these sets of

essays do.

Here is the way I have collected my essays, introducing each one as if I were introducing the

essays of someone else.

This volume is introductory throughout. It includes the essays that I first put together as

"Activist Essays in Philosophy of Technology: 1989-1999," and put on my Philosophy

Department website as far back as 2000. However, in this revision, I eliminate two of the essays

from that set, because they reappear in different versions later and because they fit better under

a later theme.

The separate second set of essays, “Activist Philosophy of Technology: Essays 1999-2009,

will take two steps forward:

Part One attempts to elaborate on and enlarge the first four chapters here, trying to develop

the original foundations in as clear a fashion as I can at this point in my life.

Part Two attempts to advance some central themes in this first set of essays, deepening my

insights about the need for a broader social responsibility perspective in a whole range of

professional fields. One way it does that is to add examples of new fields not covered here.

At one point, I thought about including a Part Three in that second set. Instead, I have now

created a third volume, which introduces the most topical part of my recent essays, with a focus

on the related themes of sustainable development and globalization.

Page 4: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

3

This first set of essays begins with an introduction with a history. A long time ago, in my

contribution to the conference I set up at the University of Delaware in 1975 (Durbin, 1978),

which would lead to the founding of the Society for Philosophy and Technology, I had argued

for an opening in the would-be field for an American Pragmatist approach. I based my version

more on the thought of George Herbert Mead than on the better-known John Dewey. It took

almost twenty years for me to produce a book along those lines: my Social Responsibility in

Science, Technology, and Medicine (1992). Then, a short time later, when Carl Mitcham, my

primary collaborator in establishing SPT, was editing -- along with Leonard Waks – a volume

of Research in Philosophy and Technology on the topic, "technology and social action," they

invited me to do a lead essay. What I wrote, "In Defense of a Social-Work Philosophy of

Technology," borrows shamelessly from early chapters of Social Responsibility. So the history of

the development of my thinking on what I see as the best approach to a philosophy of technology

-- an activist approach as legitimate philosophizing -- shows a continuity from the very

beginning in 1975 to almost the end of the century, in 1999.

This first chapter here appeared, as the leadoff essay, "In Defense of a Social-Work

Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology,

volume 16: Technology and Social Action (1999).

Chapter 1

INTRODUCTION: A GENUINELY PRAGMATIC PHILOSOPHY OF TECHNOLOGY

Without apology, in this chapter I espouse a piecemeal, public-interest-activism approach to

philosophy of technology. It is modeled after the social ethics of G. H. Mead (1934, 1936, 1964a,

1964b) and John Dewey (1929, 1935, 1948). As I have said elsewhere (Durbin, 1992), that may

not satisfy many philosophers, but the situation reminds me of the old saying of Winston

Churchill: A piecemeal approach to social problem solving may seem the worst sort of ethics

for our technological age -- except for all the rest.

"Professional ethics," in one form or another, has become something of a mainstream activity,

both in certain segments of academe and in certain circles within professional associations.

Conferences involving an amazing array of professional disciplines and associations have been

held at the University of Florida, and there is an Association for Practical and Professional

Ethics, based at Indiana University, that runs regular meetings -- equally well attended -- every

year.

Carl Mitcham (1998?) and Leonard Waks (Mitcham and Waks, 1997) have lamented the

fact (as they see it) that this growing body of literature includes all too few explicit references

to the centrality of technology in generating the problems that applied and professional ethics

practitioners address. Mitcham and Waks admit that biomedical ethics, engineering ethics, and

computer ethics often, perforce, address issues related to technology and particular technological

devices -- computers themselves, but also artificial intelligence, etc., in the case of computer

Page 5: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

4

ethics. But, Mitcham and Waks complain, "the technological" in these cases is all too often

subordinated to the ethical (often to very traditional ethics) rather than transforming ethics.

I believe there is something to be said for the Mitcham/Waks complaint. However one defines

technology -- whether in terms of new instrumentalities or devices or processes, or in terms of

so-called "technoscience" (that peculiar admixture of science and engineering and other technical

expertise with capitalism or modern goverance so common in our era) -- the phenomena

associated with contemporary technologies or technological systems ought to have a central

place in contemporary discourse. And that means they should have such a place in ethical and

legal discourse -- and therefore also in the discourse of those philosopher/ethicists concerned

with real-world issues in our technological society.

In this book, I take it for granted that academic ethicists have at least made a beginning in

taking note of technosocial problems. What I advocate is that they should take greater notice of

these issues. And I am urging them to do so in an activist fashion.

Some philosophers have claimed that academic ethicists have a special claim to contribute to

the solution of the sorts of technosocial problems I have in mind. I dispute that claim if it

assumes that philosophers can claim a special expertise in these areas. In my opinion, we are all

involved in technical decisions: the experts who are involved directly with them, those who hire

or otherwise deploy the experts, citizens directly or indirectly impacted by the decisions, and the

entire democratic citizenry who pay the taxes that support the ventures or benefit the

corporations involved in them in myriad ways or who must often pay (not only through taxation)

for the foulups so often associated with large technological undertakings (and not only with

technological disasters). Technical expertise is often central to the creation of technosocial

problems -- but also to their solution or at least remediation. Corporate or governmental

expertise is also involved. Citizens can become experts, but they continue to have a legitimate

democratic voice when they do not. Philosophers in general, and ethicists in particular, often

gain their own expertise -- most commonly in arriving at legal or political or social consensus on

technosocial issues. But no one -- none of the actors in these complicated issues -- has any more

expertise than he or she does in his or her own limited area of focus. We are all involved,

together, in the sorts of decisions (and often the lack of considered decisions) that I have in mind.

What I focus on in this book is the help that philosopher/ethicists can contribute in the search

for solutions to technosocial problems -- but especially to how they can do a better job of it than

they have done so far.

Ralph Sleeper (1986) has interpreted Dewey's philosophy as fundamentally meliorist. I like

that. Sleeper's contrast of Dewey with Martin Heidegger and Ludwig Wittgenstein seems to me

especially instructive. According to Sleeper (p. 206), Heidegger and Wittgenstein "have none of

Dewey's concern regarding the practice of philosophy in social and political criticism." Earlier

in his book (p. 7), Sleeper had noted how this "accounts for [Dewey's] . . . pervasive sense of

social hope. It accounts for . . . his dedication to the instruments of democratic reform; his

historicism and his commitment to education; his theological agnosticism and his lifelong

struggle to affirm the 'religious' qualities of everyday life." I suspect it is clear to anyone who

Page 6: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

5

has read Dewey carefully that the sorts of problems Dewey wanted to attack with his

transformed, meliorist philosophy are very similar to those dealt with by leading advocates of an

ethics of technology.

Mead did not live nearly as long as Dewey, and the social problems to which he addressed his

equally meliorist philosophy were those of just the first three decades of the twentieth century.

That was before the high-technology period of "post-industrialism" or the so-called "scientific-

technological revolution," as it was called in the pre-1989 Communist Bloc. But the spirit of

Mead's philosophy is the same as Dewey's. And, as seems to me often to have been the case,

Mead is clearer than Dewey was when it comes to stating the theoretical underpinnings of their

shared approach.

According to Mead (1964, p. 266):

"The order of the universe that we live in is the moral order. It has become the moral order by

becoming the self-conscious method of the members of a human society. . . . The world that

comes to us from the past possesses and controls us. We possess and control the world that we

discover and invent. . . . It is a splendid adventure if we can rise to it."

In other words, societies acting to solve their problems in a creative fashion are by definition

ethical.

Traditional definitions of ethics are inadequate, Mead thought, and he grounded his social-

action approach on this inadequacy. This is emphasized by Hans Joas (1985, p. 124) in a recent

reinterpretation of Mead: "[Mead] and Dewey developed the premises of their own ethics

through criticism of utilitarian and Kantian ethics." Specifically, according to Joas, "In Mead's

opinion, the deficiencies of utilitarian and Kantian ethics turn out to be complementary: 'The

Utilitarian cannot make morality connect with the motive, and Kant cannot connect morality

with the end.'" Utilitarians, who base their view on people's self-interest (according to Mead),

fail to provide an adequate grounding for altruistic social action. Kant, on the other hand (again

according to Mead), fails to see that the right way to do one's duty is not predetermined; it must

be worked out in a social dialogue or struggle of competing values.

In both Dewey and Mead, ethics is not a set of guidelines or a system but the community

attempting to solve its social problems in the most intelligent and creative way its members

know how. In a technological world, ethics is community action attempting to solve urgent

technosocial problems.

I believe one can make a positive defense of a social ethics of technology. What this means

for me is to demonstrate that there is some hope that some of the major social problems of our

technological age are in fact being solved.

A recent study of reform politics and public interest activism (McCann, 1986, p. 262) says

just that:

Page 7: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

6

"Throughout the [United States], myriad progressive groups have been mobilizing and acting

on behalf of crucial issues largely outside the glossy mainstream of media politics: the variety of

church, campus, and community organizations mobilized around issues of U.S. policy in South

Africa and Central America as well as nuclear arms policy; the increasingly effective women's

and gay-rights movements; the growing numbers of radical ecologists and advocates of "Green

Party" politics; the renewed efforts to mobilize blacks, ethnics, and the multitude of the poor by

Rev. Jesse Jackson and others; the diverse experiments of working people both in and out of

labor unions to reassert themselves; and the legions of intellectuals committed to progressive

economic and social policy formulation -- all have constituted elements of an increasingly

dynamic movement to build an eclectic base of progressive politics in the nation."

This puts the case for progressive reform generally. Here, I want to concentrate on the

contributions that contemporary philosophers, including academic philosophers, might make to

the solution of technosocial problems. In an earlier book (Durbin, 1992), I concentrated on the

kinds of reforms technically-trained professionals might be able to bring about. I took up

specific examples, focusing on seven of ten representative types of technosocial problems. Part

two of that book addressed general problems, such as education, health care, and politics. Part

three focused on problems specifically related to technology: biotechnology, computers, nuclear

weapons and nuclear power, and problems of the environment. In each case, I tried to show how

likely it is that no real reform will actually take place unless technical professionals are willing to

go beyond what is demanded by their professions to get involved with activist groups seeking to

bring about more fundamental change.

I made the same claim with respect to academic philosophers generally but also with respect

to philosophers of technology. What I do in this book is expand on this challenge to my fellow

philosophers. How philosophers of technology might contribute, within our intellectual climate

today, I do not take up again until chapter 7.

Before launching into a demonstration of how the approach might work out in practice, in my

earlier book, I felt a need to provide a sample case. What I chose for this purpose was the case

of professionals attempting to deal with problems of families in our technological world. There

we see clearly displayed the combined power (if they get involved in activist ways) and

weakness (if they do not) of that set of professionals most people would see as likely to get

involved in activism in our culture. What I hoped to show by this means was a pattern: trained

professionals -- in this case, social workers and other "helping" professionals -- who attempt to

deal with the problems they are trained to address are helpless to get their professional goals

accomplished if they do not go beyond mere professional work, if they do not get involved in

activist coalitions with people outside their professions. In the rest of that book, I tried to show

this same pattern with respect to technical professionals.

In this book I focus mainly on philosophers, assuming that the other activists are still active.

In a nutshell this is my claim here. There are a great many social problems in our

technological world. Many ethical solutions have been proposed. But in the end none of them

seems as likely to be a solution as an approach like that of Mead and Dewey that would urge

Page 8: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

7

philosophers to work alongside other activists in dealing with the real problems that face

us. Other ethics-of-technology approaches might also work, but in my view that can only happen

if their practitioners become as actively involved as Mead and Dewey were.

Why should anyone accept this social work model of philosophy of technology? Clearly they

should not do so on the authority of Dewey and Mead -- let alone on mine.

At this point, an early reviewer of the manuscript complained that I do not develop a detailed

theory or program of activist philosophy of technology. At first I was taken aback; why would

anyone call for a theory of what is basically an anti-theoretical approach? But a moment's

reflection made me sensitive to the complaint — though I still resist its thrust.

I claim here only to be following the lead of Dewey and Mead. In my opinion, Dewey has

already produced an excellent defense of activism in his Reconstruction in Philosophy (1920; 2d

ed., 1948) and even a program of sorts in Liberalism and Social Action (1935). The incredible

extent of Dewey's activism is documented in Bullert (1983).

Mead, for his part, felt no need to provide either a theory or a program; he simply viewed it as

an expected extension of his philosophical commitment to get deeply involved in a variety of

causes and political activities in and around Chicago. (See Feffer, 1993, chapters 9-13; note that

Feffer is highly critical with respect to the impact of Mead's interventions.)

I am not here claiming to update Dewey's defense of activism for our own time; the reader

who is interested enough can go back to Reconstruction in Philosophy and Liberalism and Social

Action — or, for that matter, to Dewey's The Quest for Certainty (1929) or A Common Faith

(1934). I actually prefer Mead's attitude, that activism simply follows from a commitment to

pragmatism.

But if people are not going to be persuaded on the basis of authority, they need an

argument. And a fully satisfying argument is difficult to come by.

No one could be persuaded on the basis of a rigorously compelling logical argument --

certainly not on the basis of a claim that it is contradictory, in the literal sense, to defend ivory

tower solutions for real-world problems. Dewey and Mead opposed the academicizing of

twentieth-century philosophy, but they did so precisely because they thought that philosophy has

almost always, down through the centuries, been linked to the attempt to solve real-life

problems. No more than that.

Neither is any factual argumentation likely to be totally compelling. There might be a social

philosophy or a political philosophy argument, but nothing of that sort is likely to be genuinely

decisive. Mead and Dewey offered historical arguments, but I doubt that they really expected

academic philosophers to be persuaded.

In the end, it seems to me that what it comes down to is a social responsibility argument -- a

demonstration of the urgency of social problems in our technological world combined with the

Page 9: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

8

opportunity that exists to do something about these urgent problems. In the list of (classes of)

problems I referred to as a touchstone in my earlier book, some of the issues have the urgency of

sheer survival -- e.g., nuclear proliferation or worldwide ecological collapse -- and others are

related to fears about the survival of human values in the face of genetic engineering or possible

new advances in applications of artificial intelligence or "smart" programming of computerized

systems that escape human control. But others are keyed to threats to the good life in a

democratic society: technoeconomic inequities or disparities between rich and poor (nations or

individuals); hazards of technological workplaces or extreme boredom in high-technology jobs

or widespread technological unemployment even among highly trained professionals; extreme

failures of schools -- including universities and professional schools -- to prepare their graduates

(or dropouts) for the jobs that need doing today, or for a satisfying and effective political/civic

life; the widely-recognized but also confusing health care crisis; even technological and

commercial threats to the arts and traditional high culture.

Such a list, as a generalized list of classes of contemporary problems, cannot even begin to

hint at the urgency I have in mind. It is genuinely felt problems, of numbers of people in local

communities everywhere throughout modern society, that will be compelling. People motivated

to do something about particular local problems do not look kindly on an academic retreat to the

ivory tower. But what I would stress is not people's disfavor; I would emphasize the opportunity

such issues represent for philosophers to get involved.

And some have gotten involved; that is the other half of my argument (or sermon). In my

earlier book, I offered several examples. The first was related to a very technical aspect of

contemporary philosophy of science -- as academic a field as there could possibly be -- and has

to do with philosophical interpretations of artificial intelligence. Quite a few philosophers of

science have simply jumped on the bandwagon in this field, defending even the most extreme

anti-humanistic claims of the artificial intelligence community. But some philosophers (e.g.,

Hubert Dreyfus, 1992, and John Searle, 1992) have gained a certain notoriety as opponents of

exaggerated claims for artificial intelligence. I do not address this kind of contribution at all in

this book. However, in chapter 8, I try to show that even those forbiddingly academic folks,

philosophers of science, can make at least limited social contributions.

While I find the work that academic philosophers have done on artificial intelligence

interesting, I am not overwhelmed by the contributions that others think that academic

philosophers can make. Thomas Perry (1986) claims that certain philosophers (Perry mentions

Judith Thomson, Thomas Scanlon, James Rachels, and Jeffrey Reiman) have thrown "increasing

light on the privacy problem" (p. xiii; presumably in discussions of issues such as abortion and

euthanasia). Certainly many applied ethicists have made contributions to public debate on such

issues, but my claim is that they do not necessarily thereby contribute to the solving of social

problems. To do that (as one example), they would have to join with others to bring about real

reform. I look at two examples here, bioethics (in chapter 5) and engineering ethics (chapter 6).

Returning to the possibility of direct contributions by academic philosophers to the solution of

social problems, I here add some other examples not included in the earlier book. (They include

Page 10: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

9

nuclear waste disposal, the regulation of toxic products more generally, and environmental ethics

broadly, among others. They are taken up in chapter 4.)

A second (still academic) example has to do with work on encyclopedias and other integrative

publishing ventures, as well as integrative teaching programs in colleges and universities. Here,

a small number of philosophers have exempted themselves from the normal promotion-ladder

process in academia -- often against extreme pressure not to get involved -- to devote themselves

to integration work. One example is the work of the editors of volumes such as the Encyclopedia

of Bioethics (1978 and 1995). Similar projects in other fields help solve our social problem of

intellectual fragmentation by bringing together, in a coherent whole, the work of specialist

scholars in a vast array of fields -- a task for which thousands of students, not to mention

physicians and other healthcare workers and their patients (in the bioethics example), ought to be

as grateful as for the original specialist scholarly expertise.

Similarly, a small but important band of interdisciplinarily-inclined philosophers have worked

with others to establish integrative programs that help otherwise bewildered, career-oriented

undergraduates to see some connections in the facts (and specialist hypotheses) they are so

pressured to absorb. (See Marsh, 1988; Klein, 1990; and Edwards, 1996.)

A third example has to do with philosophers who have ventured completely outside their

academic roles, joining with others in ethics committees, technology assessment commissions,

and so on. The best known example is the small group of bioethicists who worked with the two

U.S. national commissions which, in the 1970s and 1980s, studied the regulation of human

biomedical and behavioral research. By their own admission (see Beauchamp and Childress,

1989, pp. 13-14; Brock, 1987, and Weisbard, 1987), these philosophers discovered that their

abstract theories helped them very little toward reaching consensus on controversial issues; for

that they had to devise a set of principles of lesser generality that almost all the commissioners

could agree on. The resulting guidelines do not, strictly speaking, solve problems in the practice

of medicine and related areas of professional practices; only the participants in local

controversies can do that (and even then only partially and temporarily). But the influence of the

philosophers on the commissions, and of the resulting commission guidelines on practice, seems

to have had an overall social benefit. And this continues today, with (U.S.) Presidential

commissions on cloning and similar ventures.

A final example among possibilities for philosophical activism I take directly from the

conclusion of my earlier book.

The final way I have said (Durbin, 1992) that contemporary philosophers can contribute to the

modern world is as what I would call secular preachers -- advocates of vision in the solution of

social, political, and cultural problems. I had in mind philosophers like Albert Borgmann in

Technology and the Character of Contemporary Life (1984) and Crossing the Postmodern

Divide (1992). Bruce Kuklick, in The Rise of American Philosophy (1977), maintains that this

role has come largely to be scorned by academic philosophers after the rise of philosophical

professionalism. I believe Kuklick is, for the most part, correct; but I also believe that the small

Page 11: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

10

number of philosophers who still feel called upon to play this role are not necessarily out of the

philosophical mainstream.

Another recent American philosopher who has been perceived as playing this cultural role is

Richard Rorty (1979, 1982, 1989) -- though he tends to look to literary figures rather than

philosophers for such cultured vision. Presumably, in this dichotomy, he would think of himself

as more a literary figure, an essayist, rather than a philosopher -- at least in the narrow academic

sense. On the other hand, many critics -- and I include myself among them -- do not see Rorty as

sufficiently activist in the Mead/Dewey sense. Rorty would exercise his culture-criticism --

especially his criticism of the contemporary culture of academic philosophy -- exclusively at the

intellectual level. And even at that level, some critics have accused him of lacking the

conviction that a preacher, even a secular preacher, needs.

One of Rorty's defenders, Konstantin Kolenda (1990), attempts to address these criticisms --

of Rorty's lack of a "philosophically serious social activism" like that of Dewey (see Richard

Bernstein, 1980a, 1980b, 1987), or of lacking a democratic liberalism with specific content (see

Cornel West, 1985 and 1989). Kolenda appeals to the political credo that Rorty proposed in

response to West's goading. But, strangely, neither Kolenda nor Rorty relates this credo to

activist attempts to see it put into practice — though, very recently, Rorty (1998) has made

something of a move in that direction. (On Rorty, see also Saatkamp, 1995.)

I would not commend secular preaching, whether Borgmann's or Rorty's, if it were not

connected to activism. Intellectual discourse unrelated to specific solutions for real and urgent

problems is no better outside than inside the academy.

Some concluding notes: I would not want anyone to think that I have provided, here, anything

like a comprehensive list of all -- or even a representative sample -- of the philosophical work in

the United States in which philosophers have joined in activist crusades to solve urgent

technosocial problems. Even Michael McCann (1986), in his broader-ranging summary of

progressive activists, had to resort to generality when he referred to "legions of intellectuals

committed to progressive economic and social policy formulation." Perhaps "legions"

exaggerates, if one is applying the claim to philosopher/activists, but surely there are many more

of them than the "ivory tower" stereotype would suggest -- and surely there are more than I am

personally aware of, especially given that much activism is buried in group efforts on local

issues. These activists are, as often as not, the proverbial unsung heroes.

Moreover, I would not want anyone to think that I approve of any and all activism(s),

philosophical or other. Not all activism is good. All voices have the right to be heard in a

democracy, but voices of groups that work to undercut this very democratic freedom -- indeed,

voices of groups that are not positively committed to expanding democracy, to the removal of

power structures or social structures that keep some groups down -- seem to me to be abusing the

freedom they claim to be exercising. What I (along with Mead and Dewey) want is for

philosophers to join with progressive activists, with those who are consciously fighting for the

expansion of social justice and the elimination of unjust inequities.

Page 12: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

11

As I said earlier, it is going to be very difficult to offer an argument that will persuade very

many academic philosophers. So my appeal, in the end, is to the overwhelming urgency of

technosocial problems, large and small, local, national, and international. I am just happy that

some philosophers, recognizing this urgency, have joined with progressive groups in trying to

solve the problems. Here I argue that there should be more.

Chapter 2

PHILOSOPHY OF TECHNOLOGY: RETROSPECTIVE AND PROSPECTIVE VIEWS

I next turn to three additional foundational chapters: this first one invites Albert Borgmann --

in my opinion the best North American interpreter of Martin Heidegger, representing the earliest

dominant tradition in philosophy of technology -- to take his message about the importance of

"focal things and practices," sorely threatened in technological society, a step forward into

activism. The section begins with a history of the practical aims of many early philosophers of

technology, then turns to how these aims might best be implemented -- in Borgmann's case, by

activism to expand the impact of his favored small groups devoted to such "focal" practices.

The paper first appeared in a volume devoted to Borgmann's work, Technology and the Good

Life? (2000), edited by Eric Higgs, Andrew Light, and David Strong.

Philosophers have become interested in technology and technological problems only recently -

- though Karl Marx in the nineteenth century as well as Plato and Aristotle in the classical period

had paid some attention either to technical work or to its social implications. Within recent

decades, among North American philosophers paying significant attention to technology, Albert

Borgmann (1984, 1992) holds a special place because of the originality of his call to citizens of

technological society, urging them to rethink the way they live. What I want to argue, in my brief

historical remarks here, is that Borgmann's work might appear to be at least partially misguided -

- at least it might appear so to philosophers like myself who are primarily concerned with

technosocial problems -- unless it is interpreted in a special way.

A Retrospective:

The perspective I bring to these brief historical remarks reflects my practical (or "praxical"

would be better) bent. In that, I differ with others who have recently summarized the history of

philosophy of technology in the United States (Mitcham 1994; Ihde 1993). For me, the primary

concerns about technology that gave rise to philosophy of technology were practical -- even

political. Philosophers and social commentators were worried about negative impacts of nuclear

weapons systems, chemical production systems, the mass media and other (dis)information

systems (among others) on contemporary life in the Western world -- including negative impacts

on the environment and on democratic institutions. And typically they wanted to do something --

preferably politically -- about the situation.

Page 13: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

12

Among the first broadly philosophical works to say to those early philosophers of technology

(myself included) that this might be a difficult struggle was the translation into English, in 1964,

of Jacques Ellul's The Technological Society. There Ellul spelled out what he called the

"essentials" of a "sociological study of the problem of technology." (The word he actually uses is

"Technique" -- a hypostatizing term for the sum of all techniques, all means to unquestioned

ends.)

According to Ellul, Technique is the "new milieu" of contemporary society, replacing the old

milieu, nature; all social phenomena today are situated within it rather than the other way around;

all the beliefs and myths of contemporary society have been altered to the core by Technique;

individual techniques are ambivalent, intended to have good consequences but contributing at the

same time to the ensemble of Technique; so that, for instance, psychological or administrative

techniques are part of the larger Technique, and no particular utilization of them can compensate

for the bad effects of the whole.

All of this leads to Ellul's overall characterization: there can be no brake on the forward

movement of the artificial milieu, on Technique as a whole; values cannot change it, nor can the

state; means supplant ends; Technique develops autonomously.

This was the Ellul most of us knew in the 1960s when we first started reflecting

philosophically on technology. More knowledgeable students of Ellul, however, saw this as

merely Ellul's warning -- a warning about what Technique (technology?) demands if we do not

heed his warning and act decisively. But how can we act, given Ellul's pessimistic conclusions?

What these Ellulians say we missed was the dialectical nature of Ellul's thinking. Every

sociological warning was matched by a theological promise; more particularly, The

Technological Society was intended (they say) to be read in tandem with The Ethics of Freedom

(1976). According to one of these scholars:

"Ellul's intention is to attempt to make . . . [the absolute] freedom [of Christian revelation]

present to the technological world in which we live. In so doing, he hopes to introduce a breach

in the technical system. It is Ellul's view that in this way alone are we able to live out our

freedom in the deterministic technological world that we have created for ourselves" (Wenneman

1990, p. 188).

This reading of Ellul seems to have been, at that time, limited almost exclusively to a group of

Ellul's fellow conservative Christians (see Ellul 1972) -- a group already influenced by some of

Ellul's sources in Kierkegaard and so-called existential theology (Garrigou-Lagrange 1982).

Some of these same religious critics of technology were influenced, at the same time, by

translations of works of Martin Heidegger into English. But in the 1960s this did not, to any

great extent, reflect Heidegger's concerns about technological society.

At the opposite end of the political spectrum, we were influenced, in the late 1960s and early

1970s, by the writings of Herbert Marcuse (especially One-Dimensional Man, 1964) -- the

widely acclaimed "guru of the New Left." Where Marcuse's neo-Marxism seemed to differ from

the dire warnings of Ellul's pessimism about technology was in its offering of a possible solution

to technosocial problems.

Marcuse and other neo-Marxists were, in some ways, as pessimistic as Ellul. No amount of

liberal democratic politics, they said, could get at the roots of technosocial problems. But there

was a way out: to challenge the technoeconomic system as a whole. (Marcuse was explicit that

Page 14: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

13

this meant challenging, not only the capitalist technoeconomic system of the West, but also its

imitator, the "bureaucratic socialist" technoeconomic system of the Soviet Union and its

satellites.) Only a wholesale revolutionary challenge to the political power of technocapitalists

and quasi-capitalistic bureaucratic socialists could do the trick; it was (he thought) possible to

deal with technosocial problems, but all at once and not one at a time. The means was

revolutionary consciousness-raising -- and, at least for a time, Marcuse (1972) saw the vehicle as

the student uprisings, worldwide, in the late 1960s. (After the New Left faded, Marcuse found

hope in the radical feminist movement -- but in the end he seems to have lost all hope, matching

Ellul's pessimism of the right with a deep pessimism of the left; see Marcuse 1978.)

Between these extremes -- in our philosophical consciousness at the time -- loomed a liberal-

centrist hope. Daniel Bell, a sociologist (others would say a social commentator) rather than a

philosopher, had already announced The End of Ideology (1962) (presumably it was the end of

ideologies of the right as well as the left). Now he came forward to announce The Coming of

Post-Industrial Society (1973) -- a society in which experts, including technical experts, offered

the hope of solving technosocial problems.

Bell was not, however, an unalloyed optimist. As much as he believed that non-ideological

technocratic expertise could solve at least our major problems, just that much did he also worry

about the "rampant individualism" of our culture. One of his best known books (Bell 1976) --

which also influenced those of us trying to fashion a philosophical response to technosocial

problems at that time -- was an exhaustive documentation of the anarchy of cultural modernism

in the twentieth century. Bell did not, like Ellul, counsel a return to traditional religion as an

anchor for a world adrift, but he did maintain that technological managerialism could not save us

if there were no cultural standards -- if thinkers in the late twentieth century could not solve our

"spiritual crisis."

So the first philosophers of technology in the United States, in the late 1960s and early 1970s,

had a variety of approaches to turn to in the search for solutions to such technosocial problems as

nuclear war and environmental destruction--techno-philosophies of the right, left, and center.

In the next decade -- from the late 1970s until the mid-1980s -- the picture became more

complex, but a political spectrum remained a useful lens through which to view the fledgling

philosophy of technology scene.

Langdon Winner's influential Ellul-inspired book, Autonomous Technology (1977), might

suggest the contrary. Early in the book Winner says: "Ideological presuppositions in radical,

conservative, and liberal thought have tended to prevent discussion of . . . technics and politics."

About liberals, Winner says:

"[The] new breed of [liberal] public-interest scientists, engineers, lawyers, and white-collar

activists [represent] a therapy that treats only the symptoms [and] leaves the roots of the problem

untouched. . . ."

On what later came to be called neoconservatism, he has this to say:

"The solution [Don K.] Price offers the new polity is essentially a balancing mechanism,

which contains those enfranchised at a high level of knowledgeability and forces them to

cooperate with each other . . . [as] a virtuous elite . . . in the new chambers of power. . . ."

And about Marxist radicals of the time (before the fall of the Soviet Union):

Page 15: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

14

"The Marxist faith in the beneficence of unlimited technological development is betrayed. . . .

To the horror of its partisans, it is forced slavishly to obey [technocapitalist] imperatives left by a

system supposedly killed and buried."

And Winner (1977, 277) concludes: "It can be said that those who best serve the progress of

[an unexamined] technological politics are those who espouse more traditional political

ideologies but are no longer able to make them work."

But this is not the whole of Winner's story. He makes these points, in fact, in a book devoted

to a different sort of technological politics -- an "epistemological Luddism" that would set out,

explicitly, to examine the goals of large technological enterprises in advance, and would hold

them to lofty democratic standards. In subsequent books (1986, 1992), Winner has been even

more explicit about this, and -- though he is still generally viewed as a technological radical -- he

has come, more and more, to espouse participatory-democracy movements as the solution to

particular technosocial problems.

More devoted Ellulians of this period were not explicitly political, but their religious

philosophies were most compatible with a theological conservatism. (See Hanks 1984; Lovekin

1991; and Vanderburg 1981).

At the opposite end of the political spectrum from these conservative Christians, other neo-

Marxists carried on Marcuse's critique of technology even after the decline of the New Left.

Philosopher Bernard Gendron's Technology and the Human Condition and historian David

Noble's America by Design: Science, Technology, and the Rise of Corporate Capitalism both

appeared in 1977. Both echoed aspects of Marcuse's critique even when they did not explicitly

cite him. It would be over a decade before an explicitly neo-Marcusean philosophy of technology

would appear, in Andrew Feenberg's Critical Theory of Technology (1991). It makes explicit the

arguments that continued to predominate in neo-Marxist critiques of technology in the late 1970s

and 1980s -- right up to the demise of Soviet Communism. (See Gould 1988; Feenberg's book

actually appeared after the official disavowal of Communism in Russia.)

It was at this stage that Heideggerianism entered the philosophy of technology debate in the

United States. (See Heidegger 1977.) I will not deal with that influence here except in terms of

three avowed neo-Heideggerians.

Hans Jonas was, at the time, the best known of the three. His magnum opus, The Imperative of

Responsibility: In Search of an Ethics for the Technological Age was not translated from the

German in which he composed it (though he had been a professor at the New School for over

twenty years) until 1984. But he had already published an influential essay, "Toward a

Philosophy of Technology," in the Hastings Center Reports in 1979. And he was already well

known in the 1970s for his "heuristics of fear" in the face of such technological developments as

bioengineering: "Moral philosophy," he said, "must consult our fears prior to our wishes to learn

what we really cherish" in an age of unbridled technological possibilities.

Don Ihde (beginning with Technics and Praxis, 1979, and Existential Technics, 1983), with

his downplaying of some Heideggerian influences in favor of a Husserlian phenomenology, may

seem to be an exception to my political reading of this decade in philosophy of technology. But

in later works -- especially Technology and the Lifeworld (1990) -- Ihde has espoused an

environmental activism that could only be implemented politically.

At this point, while mentioning Ihde's later environmentalism, I want to digress for a moment.

Page 16: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

15

During the second decade of the development of philosophy of technology in the United States,

there developed a parallel tradition of reflection on technology. What I have in mind is

environmental ethics, since a significant portion of the literature in that field touches on negative

impacts on the environment of particular technological developments: the nuclear industry and

electric power companies; the chemical industry; agriculture using pesticides, herbicides, and

chemical fertilizers; the automobile; and so on. Without going into these issues -- and making no

claims about natural affinities between philosophy of technology and environmental ethics -- it

seems fair, here, to point out how strong the political dimension is in environmental ethics. And I

am not just thinking of radical environmentalism, eco-feminism, or similar approaches; almost

all of environmental ethics, it seems to me, is and ought to be political.

Finally, we come to Albert Borgmann and his 1984 neo-Heideggerian book, Technology and

the Character of Contemporary Life. I have argued elsewhere (and will not repeat those

arguments here; see Durbin 1988 and 1992) that Borgmann's proposals for the reform of our

technological culture -- his appeal to "focal things and practices" -- is an implicit appeal to

expand focal communities. That is, it presupposes at least educational activism and probably

political activism. Furthermore, the communitarian followers of Robert Bellah, who have found

in Borgmann's writings an eloquent statement of goals they are striving for in our bureaucratized

and technologized culture (see Bellah's comment on dust jacket of Borgmann 1992) are clearly

committed to a social movement. Many view that movement as neo-conservative, a charge that

has also been leveled at Borgmann; but accepting that assessment is not a necessary concomitant

of seeing Borgmann's work as having political implications.

In this retrospective, I have concentrated on two decades -- roughly the mid-sixties to the mid-

eighties -- and I have made a deliberate choice to emphasize contributions to philosophy of

technology that reflect a commitment to the solving of technosocial problems, typically by

political means of one sort or another. There were, of course, other contributions to the

development of the philosophy of technology in those years; I have myself, in fact, chronicled

those other developments elsewhere (Durbin 1994) under two headings that do not emphasize

the politics of technology, "The Nature of Technology in General," and "Philosophical Studies of

Particular Technological Developments." However, even in many of the books I mention in that

survey -- books that do not seem to have a political slant -- it is easy to perceive the political

orientations of their authors. In any case, it is the political thrust of philosophy of technology that

renders urgent the critical point I want to make in the second half of this chapter.

A Prospective View: The Future of Philosophy of Technology:

In Social Responsibility in Science, Technology, and Medicine (1992), I discuss several ways

in which philosophers might follow the lead of a number of activist technical professionals who

have, in recent decades, been working to achieve beneficial social change. Some of the ways I

list are academic: clarifying issues, or helping to move academic institutions in positive

directions. Some of the ways involve working outside academia -- for example, on ethics or

environmental or technology assessment committees. But, in addition, I join the lament of those

decrying the loss of "public intellectuals" or "secular preachers" -- a modern counterpart to the

scholar-preachers who provided moral leadership to earlier generations of American society on

issues such as slavery or child labor or injustices against workers. The example I mention in my

earlier book -- of a recent philosopher/secular preacher -- is Albert Borgmann. Especially in

Page 17: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

16

Crossing the Postmodern Divide (1992), he is explicit about playing the role of a public

intellectual.

I feel that the need for vision is so great in our culture of fragmented specialized knowledge

that it is time to welcome philosopher-preachers back into the mainstream. Their numbers have

been exceedingly small since the death of John Dewey, but we might hope for a resurgence now.

Bringing about such a happy eventuality, however, will not be easy. Public intellectuals,

visionaries, secular preachers, academic activists of any sort are going to have a very difficult

time in our technological culture.

The philosophers and social commentators I listed in my retrospective, above, did sometimes

make a public impression. Ellul was widely hailed as the first thinker to awaken American

intellectuals to the dangers of technology; Marcuse's critique of technology was widely

influential among student radicals and others in the New Left; and Bell served as the favorite

target of abuse for those same radicals. In the next decade, Winner and Ihde were (and are)

ubiquitous speakers and panelists, and both also have influenced graduate students. Ellulianism

has spread slowly and continues to be influential in much the same circles as in the late 1960s.

Jonas left few disciples, but his influence in biomedical circles -- in particular in the Hastings

Center, itself very influential -- was strong.

As I mentioned earlier, much attention has been paid to Albert Borgmann's contributions to

philosophy of technology. Whatever may be Borgmann's influence on others, whatever influence

he may have that extends into the future, there remain good reasons to question the lasting

influence of the other philosophers of technology that I have mentioned.

Some may think it quaint of me even to include Marcuse and Bell. Will that be the same fate,

in twenty years, of Winner and Ihde and Jonas? Though an Ellulian school has persisted for

twenty-five years, so far it has produced no other thinker of note.

Then there is the issue of impact -- of solutions for key technosocial problems. No one can

say that ideas of Ellul or Winner or Ihde or Jonas -- or, for that matter, of neo-Marxists -- have

not had some influence on activists who have had success on particular issues. I would think, in

particular, of Winner's influence on Richard Sclove, with his Loka Institute and FASTnet activist

electronic mail network. But probably, of all those mentioned, it is philosophers in the

environmental ethics community who have had the greatest and most direct impact on particular

solutions for major technosocial problems.

So, if I think back to why most of us early philosophers of technology got involved, in the

sixties, seventies, and eighties -- and if I am right that what motivated the great majority of us

were concerns over major technosocial disasters such as nuclear proliferation and widespread

environmental degradation -- then I believe I am not being unrealistic in saying that the field has

not had the impact that I personally hoped it would. For the most part, it has not even had a great

impact in academia.

What I want to talk about now is why this is so.

The key, it seems to me, is to be found in the phrase, "in our technological culture." I have

always had problems with Ellul's characterizations of "technological society" in the abstract. But

a description with much the same thrust -- and which is both more neutral and can be tied down

to specific observations in ways I find difficult with Ellul -- is available in the sociological work

Page 18: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

17

of Peter Berger (and colleagues)(especially 1966 and 1973).

Berger sometimes (1966) refers to his work as sociology of knowledge; at other times he

describes his basic method as phenomenological (1973, acknowledging a special debt to the

"phenomenology of everyday life" of Alfred Schutz 1962). He is also indebted to Karl Marx

(though not to doctrinaire Marxists), to George Herbert Mead (1934), and, in a special way, to

Max Weber.

What Berger proposes is that we describe our culture in terms of a spectrum of degrees of

"modernization," with no particular culture or society prototypically "modern." What (to Berger

and colleagues) makes any particular culture "modernized" is two things: its dependence on

technological production, and its administration by means of bureaucracy. (Nearly all of

Berger's ideas about bureaucracy seem to come from Weber -- see Gerth and Mills 1958 -- and

sociologists influenced by Weber.) Thus, the more technologized and bureaucratized a culture is,

the more it makes sense to call it "modernized." And this allows comparisons both over time --

historically -- and cross-culturally, as between more and less modernized societies even at the

present time. (Berger and colleagues do not like to refer to particular societies as

"underdeveloped," but they think it less offensive to refer to some as less modernized.)

With this characterization as his basis, Berger is able to identify key (he even says "essential")

characteristics of workers in technological production facilities (including agriculture), as well as

of citizens in a bureaucratized society -- which characteristics carry over into a rigidly

compartmentalized private life. For example, "modern" individuals play several roles in both

work and private life; they have many anonymous social relations; they see themselves as units

in very large systems; and so on. It extends as well into the "secondary carriers" of modern

consciousness -- the media in the broadest sense and mass education. The latter both prepare

young people for life in such a society and reinforce the "symbolic universe" that gives it

meaning -- and they do so in ways decidedly different from those in non-modernized societies.

Furthermore, many people in less modernized societies envy the lifestyles of those in more

modernized societies, though they often do not realize what a price -- in terms of values and

lifestyles -- living in a modernized society exacts.

I admit that there are many similarities between this account and Ellul's indictment of ours as a

society controlled by "Technique." (Both Berger and Ellul were influenced by Weber.) The

difference, for me, lies in the attitudes of the two. Ellul views technicized society as an

unmitigated disaster, inimical to human freedom. Berger simply sets out a framework to

understand our society -- and he remains open to various forms of resistance to modernization, in

both modernized and less modernized societies (though he does not think it realistic to expect

societies to return to a romanticized premodern past).

The way I see all of this impinging on the potential for philosophers of technology to have an

impact on society is that they (we) must do so within what Berger calls the "secondary carriers"

of modernization: that is, we must exert our influence either through the media or through

education. And these are, by definition, oriented toward fostering modernization, not criticizing

it.

Almost all the impacts I mentioned, above, with respect to the philosophers of technology I

listed, have been made through the media -- through book publishing, magazine articles, lectures

(mostly) on the academic circuit, occasionally in interviews on radio or television. And we all

Page 19: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

18

know both the audience limitations of academic media and the ephemeral character of the

impacts of the mass media. Today's "hot" book is tomorrow's remaindered book. The handful of

books by academics that have had or are likely to have any lasting impact are just that, a handful

-- in technology-related areas, probably no more than the works of Lewis Mumford (1934, 1967,

1970) and Rachel Carson (1962). For most of us, there is little hope that our writings will have

that kind of lasting impact -- even if we manage to make a momentary impression even in

intellectual circles.

Similarly for education. Any lasting impact via mass education must come through

influencing teachers and textbooks, and everyone knows by now how bureaucratized both

textbook publishing and the public schools are. If we think instead of teaching the teachers, of

influencing the next generation, then the impact will be by way of training graduate students; and

the regimentation of graduate education is hardly conducive to producing reformers, social

critics, activists who will change technological society for the better. It can happen. Some of the

most critical of our current crop of philosophers of technology have survived the worst evils of

contemporary graduate education in philosophy. But it is not easy, and the scholar who expects

to exert a lasting impact on society via that route is almost by definition not a person who is

thinking about real changes in society.

Conclusion:

What should we conclude from this retrospective and prospective? Abstractly, it would seem

there are four possibilities.

Some people will scoff. I had unrealistic hopes in the first place, they will say. Philosophy's

aims should be much more limited -- limited, for instance, to analyzing issues, leaving policy

changes to others (to the real wielders of power whose efforts might be enlightened by the right

kind of philosophical speculations); or limited to critiquing our culture (following Hegel) after its

outlines clearly appear and it fades into history, imperfect like all other mere human adventures.

Others will go to the opposite extreme. I set my sights too low, they will say. We must still

hold out for a total revolution. The injustices of our age, as well as its ever-increasing

depredations of planet Earth, demand this.

Still others are likely merely to lament the fate to which technological anti-culture has doomed

us; we must resign ourselves to the not-dishonorable role of being lonely prophetic voices crying

out against our fate.

Then there is my own conclusion, a hope -- following John Dewey (1929, 1935, 1948) -- that

we will actually do something about the technosocial evils that motivated us in the first place.

That, in simple terms, we will abandon any privileged place for philosophy, joining instead with

those activists who are doing something about today's problems --and, to some extent,

succeeding in limited ways in particular areas (see McCann, 1986, as well as Durbin, 1992).

Albert Borgmann might be read as endorsing any one of these options: limiting philosophy's

scope to analyses of technology (however large-scale, Hegel-like those analyses might be); or

offering radical, even revolutionary alternatives to a device-dominated culture, really hoping that

a revolution will come about; or merely lamenting our sad, commodity-driven fate, our culture's

wasting of its true democratic heritage.

Page 20: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

19

But I hope he would, with me, endorse the fourth option. We might, no matter how weak our

academic base, still manage to succeed in conquering particular technosocial evils one at a time.

And environmental ethicists, one of the positive examples I list in chapter 4, may be showing us

the best way -- precisely because they do not try to succeed alone, but join with other

environmental activists, fighting every inch of the way.

Chapter 3

HOW TO DEAL WITH TECHNOSOCIAL PROBLEMS

This chapter compares and contrasts my Meadian and Deweyan activist approach with

various approaches to an ethics of technology, claiming that if any of them is going to have any

impact, it must be by joining forces with real-world activists.

The paper was originally given as the vice-presidential keynote address at the 1997 Society

for Philosophy and Technology international conference in Dusseldorf, Germany.

In 1997, I participated in a conference on technology and the future of humankind. Some of

the concerns that make that issue topical have to do with possibilities of altering human nature,

either genetically or by substituting artificial for human intelligence. Stated another way, the

concerns have to do with whether or not we humans can control, or continue to control, the

dangerous technologies of genetic manipulation and artificial intelligence.

A third concern of many at that conference was another issue of control, controlling

technology's negative impacts on the environment.

One traditional way in which humans have attempted to control dangerous techniques and

technologies is by formulating ethical guidelines for the behavior of technical workers. From the

classical age of Greek philosophy through the Middle Ages, the primary way of doing this was to

define all technical workers as inferior, subordinating them to the supposedly wise leadership of

certain members of a leisure class with the breadth of vision to decide issues (especially issues of

justice) in a reasonable fashion (Medina, 1993). Martha Nussbaum, in her book, The Fragility of

Goodness (1986), has admirably summarized Greek debates about how best to do this — debates

pitting Plato against popular thinkers whose arguments he summarizes (and challenges) in the

Protagoras, and pitting Aristotle against Plato.

Nussbaum ends up siding with Aristotle, and her reasons for doing so can be helpful in

dealing with our concerns here. Much of her book focuses on Greek tragedies — of Aeschylus,

Sophocles, and Euripides — rather than on the arguments of the philosophers. And her favoring

of Aristotle's view of ethics, in the end, is at least partly motivated by a belief that his views

better capture what was best in the Greek culture of the classical period. The fundamental issue

is revealed in Nussbaum's subtitle, Luck and Ethics in Greek Tragedy and Philosophy, and here

is her opening summary:

Page 21: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

20

"It was evident to all the thinkers with whom we shall be concerned that the good life for a

human being must to some extent, and in some ways, be self-sufficient, immune to the incursions

of luck. . . .

"This book will be an examination of the aspiration to rational self-sufficiency in Greek

ethical thought: the aspiration to make the goodness of a good human life safe from luck

through the controlling power of reason."

And Nussbaum ends this way:

"Our own Aristotelian inquiry cannot claim to have answered our original questions [about luck

and ethics] once for all in favor of an Aristotelian ethical conception. . . .[But Euripedes'] Hecuba

leaves us with an appropriate image for [the] further work [that needs to be done]. In place of

the story of salvation through new arts [the Protagoras], in place of the stratagems of the hunter

and the solitary joy of the godlike philosopher [Plato], we are left with a new (but also very old),

picture of deliberation and of writing. We see a group of sailors, voyaging unsafely. They

consult with one another and take their bearings from that rock, which casts . . . its shadow on

the sea."

Nussbaum clearly thinks that an Aristotelian ethic, which does not try to escape from but

incorporates the uncertainties that luck brings into our lives, is still a useful guide in our modern

age, where we attempt to protect ourselves from bad luck (and natural forces) by technological

means. Were she asked, Nussbaum would probably go further, and say that an Aristotelian ethic

can also help us to deal with the untoward consequences of those very technological means,

when they escape from human control. (Nussbaum deals only glancingly with the "big two"

among modern ethical theories, Kant's theory of categorical imperatives, and Utilitarianism; but

she clearly believes that Aristotelianism is superior to those theories as well.)

One aspect of Nussbaum's discussion that links her reflections to contemporary technological

concerns is her discussion of techne (she often seems to prefer "craft" to "technique" or "art" as

her favored translation) as a means of dealing with tuche or luck. She heads her discussion of

Plato's Protagoras, "A Science of Practical Reasoning," with this quote:

"Every circumstance by which the condition of an individual can be influenced, being

remarked and inventoried, nothing . . . [is] left to chance, caprice, or unguided discretion,

everything being surveyed and set down in dimension, number, weight, and measure" (Jeremy

Bentham, Pauper Management Improved).

A short time later, Nussbaum summarizes the myth of Prometheus:

"These proto-humans (for their existence is so far more bestial than human) would soon have

died off, victims of starvation, overexposure, the attacks of stronger beasts. Then the kindness of

Prometheus (god named for the foresight and planning that his gifts make possible) granted to

these creatures, so exposed to tuche, the gift of the technai. House-building, farming, yoking and

taming, metal-working, shipbuilding, hunting; prophecy, dream-divination, weather-prediction,

Page 22: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

21

counting and calculating; articulate speech and writing; the practice of medicine . . . with all

these arts they preserved and improved their lives. Human existence became safer, more

predictable; there was a measure of control over contingency."

The connection with Bentham's modern faith in "dimension, number, weight, and measure" as

means of improving the human lot could not be clearer. Except that Nussbaum's project, in this

chapter and later, is to show that the ethics first of Plato and then of Aristotle offers a better,

more reasonable control of human misfortunes than scientific-technological means — including

Bentham's utilitarian reforms.

Nussbaum's focus is on tuche or (bad) luck in ancient Greece though she clearly thinks the

lessons to be learned there are relevant for the ages. What means, on the other hand, have recent

thinkers explicitly proposed for dealing with misfortunes associated with modern science and

technology? I think they can be summed up under four broad categories (as long as we are

willing to entertain the possibility of overlaps):

1. Technology Assessment:

This has been the technical experts' method of choice. It has a great many variations, both in

design and in execution, but a brief and generic summary is possible. One textbook, which

attempted to summarize the state of the art at the beginning of the popularity of the technology

assessment movement in the USA (in the 1970s), organizes the method around ten strategies: 1.

problem definition; 2. technology description; 3. technology forecast; 4. social description; 5.

social forecast; 6. impact identification; 7. impact analysis; 8. impact evaluation; 9. policy

analysis; and 10. communication of results (Porter, et al. 1980).

This bare-bones skeleton can easily mask the extraordinary difficulties involved. Any sort of

forecasting is difficult, and technological forecasting is no easier. One leader in the field, Joseph

Coates, is quoted as identifying not just first-order and second-order consequences of a new

technology (TV), but third-, fourth-, fifth-, and sixth-order consequences! And so the problems

or difficulties mount.

In actual assessments — for instance, by the Office of Technology Assessment of the U.S.

Congress, during the roughly twenty years of its official existence — impact analysis often

ended up being restricted to economic impact assessments using the economists' technique of

cost-benefit analysis (sometimes risk-cost-benefit analysis). Even aside from the obvious

difficulty of quantifying costs and benefits in monetary terms — along with the further difficulty

of quantifying people's values or choices in the same terms — this approach is fraught with other

difficulties. For example, deciding what count as internal or external costs (externalities); settling

on a discount rate for future costs; leaving ultimate decisions to officials who can ignore

everything said in the assessment; etc. And of course the obvious problem already mentioned,

that of reducing everything to economic choices and values, is absolutely fundamental.

Some authors have attempted to put an ethical coloring on the method, linking it or even

equating it with an ethical utilitarianism (usually with value assignments transcending the purely

Page 23: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

22

monetary). Others, worried about the limitations of utilitarianism as a defensible ethical system,

have attempted to maintain its broad outlines but correct its fundamental limitations by making

non-consequentialist assumptions, such as (especially) egalitarian rules of justice, which would

trump some consequentialist assessments (Shrader-Frechette, 1985 and 1991).

Other expertocrat assessors have attempted to make other compromises between

consequentialist assessments and ethical rules — and one of these will be described later.

Still others have eschewed any appeal to ethics, claiming to leave any alleged inequities

arising from expert assessors' judgments to the democratic political process for rectification

(Florman, 1981). This amounts to a compromise, not with ethical rules for the control of

technologies, but with politics as the preferred method.

2. Proposals for Ethical Rules as Limits on Technology (or Particular Technologies):

I have, before (Durbin, 1992), considered a short list of four or five ethical approaches to the

control of technological problems. In addition to Shrader-Frechette (just mentioned), I listed

Hans Jonas, some Heideggerians, and some Ellulians. To that list, I would now add Carl

Mitcham (who has recently added ethical concerns to his metaphysical concerns) and also Hans

Lenk.

Jonas is the best known (see especially his 1984) ethics-of-technology advocate, on the basis

of his avowedly post-Kantian "categorical imperative of fear or caution" in the face of such new

human powers as biotechnology.

Neo-Heideggerian (or post-Heideggerian) Albert Borgmann (1984, 1992); is less concerned

with new moral rules than he is with "focal things and practices" that offer a counter to the

consumerist Zeitgeist of our technological age. Others have seen similarities between this

approach and the new communitarianism in ethics (see Bellah, et al., 1986).

Ellulians, often conservative Christians but not necessarily so (see Hottois, 1984, 1988), offer

something akin to religious existentialism as a reply to the excesses of technology — a kind of

"just say no" resistant attitude (see Wenneman, 1990).

Mitcham, in his more metaphysical writings (see his 1994), has always seemed to favor a

humanistic/romantic resistance against the "engineering approach" to problem solving; this

resistance clearly borrows from Ellul and is similar to Borgmann's approach. But now that he has

explicitly taken it upon himself to produce a "high-tech ethics" (forthcoming), he is more willing

to preach a gospel of cooperation between engineers and technical experts, on one hand, and

humanistic and other critics — along with ordinary citizens concerned about controlling

technology's bad effects.

The common theme in all of these approaches is that what we need to depend on for the

control of technology is moral rules, or good moral character, or exemplary moral behavior

(perhaps especially on the part of technical experts).

Page 24: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

23

Hans Lenk (e.g., 1987 and 1991) carries this approach to an extreme with his proposal that we

acknowledge the multiple levels of individual and collective contributions to technological

activities and assign specific (kinds and levels of) responsibilities to each (to the extent

possible). In this venture, he has found willing listeners in the Verein Deutscher Ingenieure, the

main German engineering professional society (see Lenk, 1992 and 1997).

I want to pause a moment now to look at what our chances would be if we adopted this

approach to controlling biotechnology or expert systems — including such feared negative

consequences as cloned or otherwise genetically engineered superhumans.

The key here (as in chapter 2, above) is to be found in the fact that ours is a technological

culture (see Berger and colleagues, 1966 and 1973). "Modernized" cultures — in spite of claims

put forward by postmodern critics — continue to be dominated by the twin features of

technological production (often, today, supertechnologized in terms of computerization and

automation) and bureaucracy (also almost always computer-supported today). This leads to

consequences for individual and collective lifestyles in high-tech societies — separation of work

from private life, numerous scripted roles in both, etc. — but also to the fact that "modernized"

cultural values are transmitted by what Berger and colleagues call "secondary carriers." These

include, especially, education — typically for a long time and to a high level if one is to

contribute productively — and the mass media, including today the electronic media. So today, if

one wants new ethical rules to have an influence on large numbers of the expert citizens and

workers who might have some hope of controlling the computerized milieux in which they work

(and, often, play), as well as such dangerous new technologies as bioengineering, it must be in

one of two ways.

One way is to intervene in the technical education of experts in the appropriate fields — in our

sample cases, computers, biotechnology, and ecology. For the most part, reform proposals of this

kind have recommended ethics courses for future computer scientists and biotechnologists. (I am

not aware of very many cases where environmental ethics is a requirement for future ecologists

or environmental studies — though an environmental policy program I work in does strongly

recommend a course in environmental ethics.)

I have been involved, directly or indirectly, in at least two such programs, and I have enjoyed

working with future computer programmers and future biomedical scientists (who will, in fact,

be doing biomedical engineering). These are bright and eager students with extremely promising

careers. And an ethics course may have some impact on their professional work in the future —

but only if it is taught as an invitation to ongoing continuing education, to lifelong learning. If a

student does no more than learn a few rules now, those rules are almost certainly going to be too

general to help in the future in problematic situations; if, on the other hand, students practice now

for future problematic situations, and — when real problems arise — if they relearn again and

again, in ever more detail, how really applicable rules help in really controversial situations, then

an ethics course may help (some).

Similar problems arise with respect to the other way we might have an influence, through the

media: publishing books and articles, disseminating ethics case decisions to larger audiences in

Page 25: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

24

professional societies, occasionally getting ethics issues (and, implicitly, ethical guidelines) into

mass-media publications or broadcasts or even movies or TV shows, and so on. As philosophers,

we have been trained to believe strongly in the power of the word, written or spoken — or

broadcast (imaginatively as opposed to the banalty of most broadcasting).

But we should be very realistic here. If we consider our greatest preachers of ethical rules for

technology to have been philosophers like Hans Jonas, then we need to do our homework to find

out just how many people have actually read Jonas's writings, writings of others influenced by

him, and so on. And of course we need to go further and ask how many (of the crucial people we

want to reach) have actually heeded his rules of caution.

In my experience, the numbers here are even more discouraging than the numbers reached by

ethics education for technical experts; almost none of the young computer professionals or

biotechnologists I have known (even if they took one of my classes), and even fewer of their

coworkers and managers (when I have talked with them later) have ever so much as heard of

Hans Jonas — or Albert Borgmann, Carl Mitcham, etc. The philosophical voice today is a muted

voice, and most of the philosophers that I know are extremely wary of those popularizations of

ethical rules or ideas that occasionally find their way into broadcasts or media productions that

do reach larger audiences. Do we really want our deepest concerns about cloning to be dealt with

through "Jurassic Park"? On the other hand, do BBC-type considerations of these same issues

actually have an impact on the behavior of the biotechnology professionals we want to reach?

3. Radical Politics:

Worries about the inadequacy of preaching do-good rules — as well as an almost complete

assurance that, if left to their own risk/cost/benefit calculations, devotees of "virtual reality" or

cloning or further depradations of the environment in the name of "sustainable development,"

technical professionals will always favor more of the same rather than controls on their work —

have led others to the conclusion that the only effective way to control technological

developments that we consider undesirable must be political.

I have already mentioned Samuel Florman — who is, properly speaking, an advocate of

unfettered technological advance . . . until it generates public controversy, when the appropriate

way to deal with it (Florman says) is through public hearings and other administrative

mechanisms of the modern liberal-democratic polity. This, however, is a far cry from the views

I have in mind here.

Many advocates of political, as opposed to ethical, control of technology have been Marxists

or neo-Marxists. One of the best known is the historian, David Noble (especially 1977 and

1984). In America by Design (1977), Noble concentrates on documenting the rise of science-

based technocapitalism. The politics of control is muted there, mostly a short reference at the end

to the "labor trouble," "personnel problems," and "politics" that technocorporate managers and

their sympathizers fear as obstacles to the continuing advance of corporate capitalism.

Page 26: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

25

Forces of Production (1984) is a little more political, as it focuses on further developments of

technocapitalism fueled by automation; Noble says this at the end: "Certainly it is of the utmost

importance that working people — including engineers and scientists — have belatedly begun to

confront technology as a political phenomenon" (p. 350).

But it is in a series of articles (1983) that Noble is most explicit about a call to a neo-Luddism

on the part of workers displaced by automation and similar "advances"; they should, he says,

"seize control of their workplaces." Noble then expands on this idea:

"The real challenge posed by the current technological assault is for us to become able to put

technology not simply in perspective but aside, to make way for politics. The goal must not be a

human-centered technology but a human-centered society" (1983, p. 92).

A little more philosophical than Noble, and with a more cooperative approach to politics (but

still neo-Marxist) is Andrew Feenberg (1991 and 1995). He reinterprets Marxian thought in a

direction that plays down any determinism, economic or technological. He also claims that the

"unequal distribution of social influence over technological design" — keeping it in the hands of

experts for the advantage of the managerial classes — is an injustice (1995, p. 3). And his

fundamental proposal for reform is a democratization of the workplace, with workers

cooperating wherever possible with those enlightened managers who have paid attention to calls

for social responsibility and environmental concern (1991, pp. 190 and 195). If carried through

to its conclusion, this sort of reform might be every bit as radical as the one Noble proposes, but

in Feenberg's gentler phrasing, it sounds less confrontational. And it should be noted that

Feenberg is making his proposal consciously after and in light of the fall of Communism in the

old East Bloc.

(Since my purpose here is to talk about controls on technologies — or technological excess —

I see no need here to mention one other political philosophy. It would give a complete green light

to any and all technological developments, either on laissez-faire principles or on the capitalist

principle that the market should decide everything.)

4. Progressive Activism:

Conservatism, neo-conservatism, nineteenth-century liberalism, twentieth-century "moderate"

liberalism, socialism or radicalism — these do not exhaust the stops along the political spectrum,

even a spectrum of political attempts to control bad effects of technological development. More

than once I have argued that what we need — to bring particular technologies under control — is

a combination of radical unmasking of status quo myths together with progressive politics

(Durbin, 1995). But my most consistent stance has been to leave out the radical part and simply

advocate progressive activism (Durbin, 1992 and 1997).

And progressive activism is what I would advocate here as the most effective means of

controlling particular technologies, whether biotechnology or runaway computer technologies or

technological developments that threaten to undermine any progress that has been made toward

sustainability on environmental issues.

Page 27: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

26

Elsewhere I have argued that, because there are a number of activist groups already working to

avoid excesses in biotechnology developments, philosophers (along with other humanists or

critical academics of various sorts) ought to join forces with these activists in trying to bring

under control particular new biotechnologies, one at a time. Similarly for excesses in the

implementation and dissemination of computers — in overautomation, surveillance, databanks,

etc. — where activists are already at work and philosophers can do a great deal of good by

joining forces with them (Durbin, 1992, chapters 7 and 8).

On the environment, I have argued against both ecologists who refuse to become activists (on

alleged "pure science" grounds) and philosophers who would turn environmental ethics into an

academic game (Durbin, 1992, chapter 10). And I have gone further, to suggest that if there is to

be sustainable development, it can only come about if we focus on individual development

efforts in particular locales and, more important, if in those local efforts all the relevant parties

can be persuaded to get involved in an effort aimed at balanced compromise. Some of the

partisans will always favor development at the expense of other interests; others will demand a

cessation of all development efforts; and a whole range of voices in between will favor other

interests. Getting all of them to work together is seldom possible, but getting enough of them to

pull together and counter both extremes is at least occasionally possible. And where this

happens, there can be some approximation of sustainability — sometimes by slowing or even

stopping a particular development initiative, but sometimes also by allowing a particular

development to proceed with adequate concern for the local environment and adequate

consideration given to justice for those most often made to suffer in the name of development,

namely, poor workers and their families (Durbin, 1997).

In my opinion, these are the lessons to be learned from the philosophical school of American

Pragmatism — especially from William James, George Herbert Mead, and John Dewey, but also

from their recent disciples in philosophy of technology, such as Larry Hickman (1990).

Conclusion:

An astute reader of Dewey (or Hickman) might wonder, at this point, why I started this essay

with Martha Nussbaum defending Aristotelian ethics as the best means of dealing with bad luck,

including the ill effects of technological development. I might, on another occasion, make the

case that Dewey and Hickman have misread at least some parts of Aristotle — that an

Aristotelian practical politics and social ethic could be made compatible with Deweyan

activism. But that is not necessary here.

It is enough to note Nussbaum's main point in the passages I quoted at the beginning of this

chapter. The way to deal with the evils of the world, the mischances of ill fortune or the excesses

of blind advocates of technological advances, is not to escape to some Platonic heaven, hoping to

leave bad luck behind. Nor should we attempt to calculate and quantify all risks and costs,

hoping that some magical technology assessment will provide political and managerial decision

makers with all the "objective" facts and risk assessments they need to make wise decisions for

our technological society — as though that were ever the path to democratic control of

Page 28: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

27

technologies. No, like the sailors in Euripides' Hecuba whom Nussbaum describes, we need to

remain in our boat in the midst of the stream, trying the best way we can — philosophers, other

academics and experts of all kinds, and activist citizens — to steer a course that will most likely,

but never certainly, get us where we want to go.

We may, of course, capsize; but we are more likely to achieve our goals by steering an activist

middle course than by following some ideal ethical plan or some spuriously concrete risk

assessment. If other philosophers of technology insist on trying to devise the ethics of

technology, or if they attempt to perfect the ideal risk/cost/benefit assessment for each particular

technology under consideration — all I would insist on is that their efforts are not likely to lead

to any practical controls on particular technological developments unless they join with us

activists in the middle of the stream.

Chapter 4

SOME POSITIVE EXAMPLES

This chapter, which was written to introduce American Pragmatism (in a broader sense) to a

European audience, provides a half dozen positive examples -- beginning with Larry Hickman's

insertion of Dewey's thought into the very center of philosophy of technology controversies and

going all the way to practical politicking on technology issues in Internet bulletin boards

associated with Richard Sclove.

Under the title, "Pragmatismo y tecnologia,"it was originally written, by invitation, for the

Spanish journal, Isegoria: Revista de Filosofia Moral y Politica, in 1995.

When I was invited to produce this survey of recent work on "Pragmatism and Technology," I

decided (Durbin, 1995) to focus on a small handful of philosophical contributions that approach

the understanding and control of contemporary science-based technology pragmatically. I

further limited myself to contributions of North American philosophers. I here repeat that

survey, with the aim of expanding on what I said in chapter I; some philosophers have made

positive contributions to the solution of technosocial problems. However, as I said earlier

(1995), I think that lessons can be learned from contrasting the decidedly real-world pragmatism

of some North American philosophers with more abstract, theoretical, or foundational critiques

of modern technology by European philosophers.

Some European philosophers that I would propose for contrast are Gilbert Hottois (especially

in his Le paradigme bioéthique: Une éthique pour la technoscience [the bioethics paradigm: an

ethic for technoscience], 1990), Hans Jonas (especially Das Prinzip Verantwortung [the principle

of responsibility], 1979), and José Sanmartín (especially Los nuevos redentores: Reflexiones

sobre la ingeniería genética, la sociobiología y el mundo feliz que prometen [the new redeemers;

reflections on genetic engineering, sociobiology, and the happy world they promise], 1987).

Page 29: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

28

I do not summarize the work of these authors here. Each is well known generally (Jonas, of

course, did most of his philosophizing in his later years in the USA), and each is especially well

known in a particular European culture -- French, German, or Spanish, respectively. I do not

here make any explicit comparisons and contrasts. What I do offer is a summary of some key

North American contributions -- leaving the actual comparisons and contrasts to the reader.

It can be said, preliminarily, that Hottois, Jonas, and Sanmartín all subject recent technologies

-- and most especially genetic engineering -- to fundamental, even foundational, critiques.

Jonas's critique, the first and best known of the three, explicitly links his to a post-Kantian new

categorical imperative based on our fears of recent technology's unprecedented expansion of

human powers.

Hottois goes even further, appealing to an ethical impulse deeper than any particular

traditional ethical approach -- which ethical impulse (he argues) is fundamentally threatened by

"technoscientific" (especially genetic?) threats to what it means to be human (or ethical, at the

root level).

Sanmartín's views explicitly reject any appeal to such "deep" philosophical reflections, but he

still insists on fundamental transformations of social norms (making them more responsive, for

example, in the case of genetic testing, to the basic rights of those tested).

All of these philosophers are interested -- it is even fair to say, are passionately interested -- in

practical changes in our way of life in a technoscientific world. But, to the North American

philosophers to be discussed, none of their approaches, however practical, is pragmatic.

Here I need to pause to mention some meanings of "pragmatism" and "pragmatic." So far as I

know, Immanuel Kant was the first philosopher to use the adjective pragmatische; this was in

one of his titles, Anthropologie in pragmatischer Hinsicht, 1798 (and it may have been no more

than a stylistic variant on the praktischen of the Kritik der praktischen Vernunft, 1788).

In the two centuries since, "pragmatic" -- and, later, "pragmatism" -- have had many different

meanings in the philosophical literature. These range from "pragmatics," as the third subdivision

of formal semantics (syntax, semantics, and pragmatics), to the names of particular philosophical

traditions -- whether European (for example, Giovanni Papini in Italy and Edouard Le Roy in

France) or North American.

In addition to the variety of philosophical uses, the term "pragmatic" also has more than one

usage in ordinary, everyday language. Some people are said to be pragmatic in a good sense --

they manage to get a great many things done efficiently; while other usages are more pejorative:

"He is (merely) pragmatic, but she has a longer-range view of things." And so on.

Here, I reserve the term "pragmatism" for the school of American Pragmatists (especially John

Dewey and George Herbert Mead), including recent disciples. "Pragmatic" is the adjective I use

to describe the work of some philosophers who, without being Pragmatists in that sense,

Page 30: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

29

nonetheless follow Dewey's advice, pitching in and working directly with non-philosophers to

solve particular social problems -- here, problems of our high-technology contemporary society.

1. Larry Hickman's John Dewey's Pragmatic Technology (1990):

I begin my survey with this book for several reasons. The first and most obvious is that its

subject is John Dewey, the philosopher most people think of first when discussing American

Pragmatism. A second reason is that Larry Hickman successfully reintroduces Dewey's voice --

mostly neglected until now -- into recent debates, European and American, about contemporary

technology. Still another reason is that, of all Dewey disciples writing today, Hickman is most

sympathetic to the kinds of European approaches to problems of technology I have mentioned

for purposes of contrast.

Scholarship on Dewey in North American philosophical circles in recent decades has

mushroomed (see, for example, Morris and Shapiro, 1993; and Westbrook, 1991). Hickman

acknowledges this, leaning (for instance) very often on the fine intellectual biography of Dewey

by Ralph Sleeper, The Necessity of Pragmatism: John Dewey's Conception of Philosophy (1986)

-- where Sleeper concludes that the one consistent theme that unites all of Dewey's contributions

is meliorism: the claim, namely, that philosophy both ought to and does contribute to the

improvement of the human condition. What Hickman contributes to this flood of recent Dewey

studies is the claim that, for Dewey, philosophy (rightly understood) and technology (understood

as problem solving within the context of real-life conflicting social values) are identical.

Two quotes summarize Hickman's arguments. The first:

"Inquiry was reconstructed by Dewey as a productive skill whose artifact is knowing. He

argued that knowing is characterizable only relative to the situations in which specific instances

of inquiry take place, and that it is an artifact produced in order to effect or maintain control of a

region of experience. . . . Knowing is thus provisional . . . [and] the goal of inquiry is not

epistemic certainty, as it has been taken to be by most of the philosophical tradition since Plato"

(p. xii).

And the second:

"Of the three giants of twentieth-century philosophy -- Wittgenstein, Heidegger, and Dewey --

only Dewey took it as his responsibility to enter into the rough-and-tumble of public affairs, and

only Dewey was able to construct a responsible account of technology" (p. xv).

I would modify this last quote in only one way: Hickman does not mean to say that these

other major twentieth-century philosophers should not have taken on these responsibilities.

Hickman's book can stand up to philosophical criticisms on its own, but I want here,

parenthetically, to provide two argument sketches that show why the Dewey/Hickman model is a

particularly good one for philosophers of technology -- and philosophers generally.

Page 31: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

30

First, a social-scientific argument based on contributions of Dewey's collaborator, G. H.

Mead: There simply is no intellectually satisfying alternative to the Pragmatists' sociology-of-

knowledge challenge to all versions of epistemology (and their behavioral-psychology parallels).

As Mead argued with respect to scientific knowing (see 1964) -- and he and Dewey extended,

elsewhere, to all forms of human knowing, even behavioral scientists who may think they are

confirming individualistic stimulus-response models of knowing in their laboratories are and

must be involved in a group process (confirmation).

Similarly, all knowledge claims are group-specific and goal-directed -- not mere reactions to

external stimuli (whether ideas, sensations, or anything else of that sort, whether proposed by

philosophers or behavioral scientists) -- and the goals are always related to living meaningfully

within the relevant group.

The fullest elaboration of this argument is provided in Peter Berger and Thomas Luckmann's

The Social Construction of Reality (1966). That remarkable book is an excellent summary of

philosophical theories converging on the Pragmatist point of view (see the book's notes), but the

book's subtitle, A Treatise in the Sociology of Knowledge (together with explicit claims made by

the authors), indicates that their primary intent is to provide an empirically testable, sociological

account of how real knowing actually takes place in real life.

Second, a phenomenological argument: Since the social science argument is controversial, a

second, quasi-philosophical argument may be in order. It is best exemplified in another work of

Peter Berger, The Homeless Mind: Modernization and Consciousness (1973). There Berger and

co-authors defend a view that "the sociology of knowledge always deals with consciousness in

the context of a specific social situation" (p. 16).

Here is a summary of their phenomenological method:

"Although consciousness is a phenomenon of subjective experience, it can be objectively

described because its socially significant elements are constantly being shared with others. Thus

the sociology of knowledge, approaching a particular situation, will ask: What are the distinctive

elements of consciousness in this situation? How do they differ from the consciousness to be

found in other situations? Which elements of consciousness [i.e., of particular consciousnesses]

are essential or intrinsic, in the sense that they cannot be 'thought away'?" (p. 14).

To summarize, the point of these Mead-inspired arguments supporting the Dewey/Hickman

thesis is that all knowledge claims are made in specific social contexts, and these contexts cannot

be "thought away."

In much more elaborate form, the attacks of Hubert Dreyfus (1992) and John Searle (1992)

against artificial intelligence make the same sorts of assumptions.

Dewey maintains explicitly in Reconstruction in Philosophy (1948) that: "Philosophy grows

out of, and in intention is connected with, human affairs." And Dewey goes on:

Page 32: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

31

"[This] means more than that philosophy ought in the future to be connected with the crises

and the tensions in the conduct of human affairs. For it is held [here] that in effect, if not in

profession, the great systems of Western philosophy all have been thus motivated and occupied."

It would appear to be pure vanity if I were to list here, as a second example, my Social

Responsibility in Science, Technology, and Medicine (1992). But I do believe that my book

pushes Hickman's version of a Deweyan philosophy one step further than Hickman has explicitly

gone. I argue there -- and I am continuing my argument here -- that philosophers ought to follow

Dewey's maxim to the letter. They should, explicitly, "in profession," go beyond academic

professionalism and get involved ("progressively") in the crucial issues of the day.

My argument presupposes a degree of confidence that something in fact can be achieved --

and is being achieved -- through these activist efforts.

This approach has led me to describe mine (see chapter I, above) as a "social work model" of

good philosophizing -- a characterization I think Dewey and Mead might have approved. The

argument I offer in its favor is not philosophical in any academic sense. It assumes the urgency

of the social problems that have drawn most of my colleagues into philosophy of technology --

from environmental catastrophes, to major biotechnology threats, to widespread computer-based

invasions of privacy. Problems of this sort have always bothered philosophers of technology,

from Karl Marx and neo-Marxists to Martin Heidegger and neo-Heideggerians, plus a whole

range of younger philosophers in the Society for Philosophy and Technology and elsewhere --

including applied ethicists. Based on the urgency of the problems and the ineffectual character

of the ethical responses of most of these philosophers, my argument (such as it is) is simple:

only progressive social activism seems to offer any hope of solving any of these urgent problems,

even limitedly and temporarily.

Not all contemporary North American philosophers claiming to be followers of Dewey would

subscribe to this argument, but at least some would be sympathetic (see West, 1989).

I turn next to three philosophers who do not claim to be Deweyans but who have done what

Dewey proposes; that is, they have become activists, deeply involved with other activists in

dealing with major contemporary technosocial problems (in North America, for the most part).

2a. Kristin Shrader-Frechette's Burying Uncertainty: Risk and the Case against Geological

Disposal of Nuclear Waste (1993):

Almost since the beginning of her philosophical career, Kristin Shrader-Frechette has been

involved with a variety of technology assessment and environmental impact assessment

commissions, first at the state level and then at higher and higher levels up to the Federal level in

Washington, D.C. Indeed, I think it is a fair guess to say that no North American philosopher

has been involved in more such committees. In some ways this is strange, because, since the

appearance of Nuclear Power and Public Policy (1980; discussed below), Shrader-Frechette has

often been accused of being not only anti-nuclear but anti-technology in general -- a charge she

has repeatedly felt that she has to combat. But several characteristics -- the fairness of her

Page 33: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

32

arguments, the expertise that she brings to discussions, and the fact that she always tries to make

a positive contribution --keep getting her invited back again and again.

The latest book, Burying Uncertainty (in many ways the most detailed of her books), is a good

example of all of these qualities. Four-fifths of the book constitute her critique of the major plan

to bury nuclear wastes deep in a mountain in Nevada. The critique includes many by-now-

familiar features of her arguments: the risk assessments used to justify the plan are faulty

because they hide certain value judgments; the subjective risk assessments used are in fact

mistaken in many cases; faulty inferences are drawn from these faulty assessments; there are

fatal but unavoidable uncertainties in predictions of the geological suitability of the site; and the

entire venture violates an American sense of fair play and equity, especially with regard to the

people of the state of Nevada. These are her conclusions. The arguments in support of them are

meticulous, even-handed, and unemotional in every case.

This does not mean, of course, that they have been or will be viewed as such by Federal

officials, including scientists, especially bureaucrats in the Department of Energy with vested

interests in pushing the official project to completion; she has even been heckled when

presenting her arguments in their presence.

A second notable point is that Shrader-Frechette knows what she is talking about; indeed, her

knowledge of both geology and the risk assessment process is remarkable in a philosopher in

these days of academic specialization -- though her critics, naturally, maintain that some of her

geological claims are irrelevant and that her accounts of particular risk assessments are biased

against official government experts.

One bias Shrader-Frechette does not attempt to hide is in favor of equity; she has even given

one of her more general studies a subtitle that underscores this bias: Risk and Rationality:

Philosophical Foundations for Populist Reforms (1991). This might make her sympathetic

toward some aspects of Dewey's progressivism, but the social philosopher she invokes most

often is John Rawls and his contractarian, neo-Kantian theory of justice as fairness.

What typifies Shrader-Frechette's approach more than anything, however, and what clearly

makes her a welcome addition to any discussion (including the discussion, here, of how to deal

fairly with the urgent problem of finding a place to put highly toxic nuclear wastes), is her

insistence on being more than just a critic. She feels it necessary to make a positive contribution

to the discussion; as she says, one purpose of the book is "to provide another alternative to the

two current options of either permanently disposing of the waste or rendering it harmless" (p. 2).

Admittedly providing only a sketch (one-fifth of the book versus the four-fifths critiquing

current policy as epistemologically faulty and ethically unfair), what Shrader-Frechette argues

for, in place of permanent disposal, is placing "high-level radwastes in negotiated (with the host

community [or communities]), monitored, retrievable, storage facilities" for at least a hundred

years.

Page 34: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

33

It is too early to tell whether Shrader-Frechette's book will have any impact, whether on

blindered Department of Energy scientists and officials, or on public officials more generally --

or even on the educated public (except perhaps in Nevada). But one thing is clear now: if a

philosopher were to choose to follow Dewey's advice, to get involved actively in trying to solve

some urgent technosocial problem like the disposal of nuclear wastes, he or she would have to

search far and wide for a better model than Kristin Shrader-Frechette as she makes her case in

this book.

2b. Shrader-Frechette's Nuclear Power and Public Policy: The Social and Ethical Problems of

Fission Technology (1980):

This earlier venture into the epistemological/ methodological fallacies of nuclear policy, along

with its ethical inequities, is clearly more strident than Burying Uncertainty. There is already all

the care -- to get the facts right, to deal with risk assessors on their own terms (even when

pointing out their errors), and to argue carefully and meticulously -- that one finds later. Also, as

later, the ultimate aim is to make an equity-based ethical claim; but here it is reduced to little

more than a dozen pages. And, though Shrader-Frechette, when she wrote this book, already had

an exemplary record of working with assessment teams, this early venture does not show the

same degree of care as the later one when it comes to understanding and appreciating the motives

and feelings of her opponents.

2c. Shrader-Frechette's Science Policy, Ethics, and Economic Methodology (1985):

About midway between Nuclear Power and Burying Uncertainty, Shrader-Frechette

broadened the scope of her critique, taking on the fallacies and hidden assumptions of a whole

host of technology and environmental-impact assessments. Science Policy is an extended

critique of risk/cost/benefit analysis, the most widely used methodology in these various

assessments. In this book, Shrader-Frechette points out general and specific problems and she

makes an extended case for what she calls regional equity -- avoiding, where possible, imposing

risks or costs on people in particular geographical regions.

In this middle one of the three books mentioned here, Shrader-Frechette clearly moves toward

providing positive alternatives to the methodologies she has criticized. She offers two: an

ethically-weighted version of risk/cost/benefit analysis, and a technology tribunal -- a public

procedure for weighting equitably the competing values that different scientists bring to their

risk/benefit analyses. Shrader-Frechette is here, then, clearly moving toward the positively

collaborative attitude so much in evidence in Burying Uncertainty -- though perhaps the

generality of the argument, focusing on a variety of assessments, probably dooms the book to

have less of an impact than the later book. (Nuclear Power may have had more of an impact,

though it also gave more ammunition to opponents accusing her of being anti-technology.)

3. Carl Cranor's Regulating Toxic Substances: A Philosophy of Science and the Law (1993):

This is another exceedingly careful, fair, and open-minded critique of prevailing practice in

another area of risk-assessment: the legal control of human exposure to toxic substances. As

Page 35: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

34

Cranor says explicitly, his book is "not a wholesale evaluation or critique" of either the scientific

process of assessing risks of toxic substances or the legal procedures for lessening or controlling

the risks. What the book does offer is an argument for strengthening administrative -- as

opposed to tort/liability -- procedures for dealing with control of toxic substances; more

particularly:

"I argue that present assessment strategies, as well as some recommended by commentators,

both of which are temptingly inspired by the paradigm of research science -- the use of careful,

detailed, science-intensive, substance-by-substance risk assessments -- paralyze regulation" (p.

10).

Cranor's approach thus parallel's Shrader-Frechette's in applying both philosophy of science

and ethics (along with, in Cranor's case, philosophy of law) approaches to a major technosocial

problem. Cranor, however, comes across as much less critical, much more sympathetic toward

the risk assessment scientists and bureaucratic regulators than Shrader-Frechette.

Like Shrader-Frechette, Cranor has been deeply involved with actual practitioners. His

acknowledgments mention a University of California Toxic Substances Research and Training

Program, a University of California/Riverside Carcinogen Risk Assessment Project, the U.S.

Office of Technology Assessment, and the California Environmental Protection Agency -- not to

mention the office of U.S. Congressman George E. Brown, Jr., then chairman of the Committee

on Science, Space, and Technology. Cranor worked for a year as a Congressional Fellow in

Congressman Brown's office, and Brown supplies a warm endorsement in a preface to the book.

Here, then, is another excellent philosopher-model for anyone who would follow Dewey's get-

involved advice -- though Cranor's mode of philosophizing is even farther from Dewey's than is

Shrader-Frechette's.

4. Richard Sclove's "FASTnet" and "Scishops" Networks:

One more example of philosophical activism is the work of political philosopher and Internet

guru Richard Sclove, especially in his bulletin boards, "FASTnet" and "Scishops." In his

philosophical writings, Sclove (1997) has argued for populist technological design, attempting to

counter the near-universal claim in our culture that technical design is a matter exclusively for

experts. He has collected dozens of examples of citizens not only contributing to large-scale

technical design projects but initiating them and leading the experts throughout the design and

construction process. Sclove admits that these efforts have often been thwarted, and projects that

began democratically have ended up being as anti-democratic as other large-scale technological

developments. But his anti-expertism case is strong.

However, the part of Sclove's work I am emphasizing here is his electronic-mail networks,

FASTnet and Scishops. Many contributions in their early days added to Sclove-like examples of

scientific and engineering activism in "science shops" -- scientific/technical experts helping

activist groups unable otherwise to afford the scientific expertise needed to counter corporate and

governmental power -- and similar community science (and technology) projects.

Page 36: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

35

But as the newly-Republican U.S. Congress began in 1995 to threaten serious cutbacks in

science funding, funding for the Office of Technology Assessment and the Environmental

Protection Agency, and so on, FASTnetters and Scishoppers quickly joined the widespread

lobbying on the Internet (and elsewhere) against these cutbacks. Other e-mail networks, such as

Sci-Tech-Studies (otherwise dominated by fairly esoteric academic discussions of the nature and

role of the field of Science and Technology Studies), also provided opportunities for activist

philosophers (and other academics) to get involved. Not all of this electronic chatter added up to

significant political counter-power -- or even serious real-world activism -- but there seems little

doubt that some people in Congress did experience at least a small groundswell of citizen

pressure that might end up having some lasting influence.

Of course, the Republicans under the leadership of Newt Gingrich and his allies, had already

mastered electronic politicking; so perhaps the best one can say is that FASTnet, Scishops, Sci-

Tech-Studies, and similar efforts only amounted to a partially successful counterforce.

Nonetheless, this provides another example of a way in which academic philosophers could get

involved fruitfully in activist efforts to solve technosocial problems.

It seems to me that this is another excellent example of philosophical activism, one toward

which Dewey might have had much sympathy.

5. Another set of activist philosophers can be found among the ranks of environmental ethicists:

That new field has drawn a number of philosophers, though by no means all of them are

activists. There has even been a small controversy in the journal, Environmental Ethics (see

Hargrove, 1984, and Lemons 1985), about whether or not philosophical environmental ethicists

ought to be activists. In my opinion (Durbin, 1992b), a dichotomy separating philosophers

worrying about academic "professional standards" from those who venture outside academia to

work with activists on the solution of urgent environmental problems, would be a disaster.

In any case, a reasonably large number of environmental philosophers have chosen the activist

path. (See, for example, Naess, 1989; Paehlke, 1989; Marietta and Embree, 1995; and Light and

Katz, 1995.) Nor does this mean that they must give up on academic respectability -- provided

that that does not lead them to forget the urgency of particular local environmental crises. Not to

mention the overwhelming urgency of such global environmental issues as upper-atmosphere

ozone depletion, the threat of global warming, worsening industrial pollution in countries

committed to rapid industrial growth in previously unspoiled parts of the world, nuclear

proliferation with attendant problems of wide dispersion of nuclear wastes, and so on and on.

Conclusion: I have here surveyed only five philosophers or groups of philosophical activists,

but it seems to me that they represent a uniquely North American approach that is an interesting

subset of American philosophers of technology. Almost from the beginning of the United States,

North Americans have been accused of being peculiarly practical, even anti-theoretical. This can

hardly be a fair criticism anymore, if one observes standard contributions to the philosophical

literature on science and technology today. But at least some North American philosophers

would not have taken the claim as a criticism in the first place. They -- we -- would take it as a

Page 37: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

36

compliment. The world faces urgent social problems today, many of them linked to science and

technology. Why not at least try to get in there with other activists and help solve these

problems?

Chapter 5

BIOETHICS AS SOCIAL PROBLEM SOLVING

Chapters 5, BIOETHICS AS SOCIAL PROBLEM SOLVING and 6, ENGINEERING ETHICS

AND SOCIAL RESPONSIBILITY, are a matched set. Here in Chapter 5, I take the disarray of

contemporary bioethics theories as an invitation to see that the most important work of

philosophers doing bioethics is done in collaboration with medical experts and others on ethics

and research ethics committees, especially at the local level.

The paper was originally written, at the invitation of the editors, John Monagle and David

Thomasma, for Health Care Ethics: Critical Issues for the 21st Century (1998).

What I offer here are some philosophical reflections on work done roughly in the last quarter

of the twentieth century in bioethics. (See, among other texts, Arras and Rhoden, 1989;

Beauchamp and Childress, 1994; Beauchamp and McCullough, 1984; Beauchamp and Walters,

1989; Edwards and Graber, 1988; Jonsen, Siegler, and Winslade, 1998; Levine, 1991; Mappes

and Zembaty, 1986; Monagle and Thomasma, 1997; Munson, 1992.) I offer the reflections in the

spirit of American Pragmatism -- not as represented recently by Richard Rorty (1979, 1982,

1991), but in the older, progressive tradition of John Dewey (1929, 1934, 1948) and George

Herbert Mead (1964), with some reference to the still older views of William James (1897).

Bioethics Philosophically Construed:

Robert Veatch (1989) quotes a representative, Russell Roth, of the American Medical

Association as saying it is not up to philosophers but to the medical profession to set its moral

rules:

"So long as a preponderance of the providers of medical service -- particularly physicians -- feel

that the weight of the evidence favors the concept that the public may be better served -- that the

greatest good may be best accomplished -- by a profession exercising its own responsibility to

the state or to someone else, then the medical profession has an ethical responsibility to exert

itself in making apparent the superiorities of [this] system" (p. 155).

Page 38: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

37

Veatch cites this claim in a book that places it in a broader context, within a framework (p.

146) of "different systems or traditions of medical ethics . . . including the Hippocratic tradition,

various Western religions, ethical systems derived from secular philosophical thought, and ethics

grounded in philosophical and religious systems of non-Western cultures" -- e.g., China and

India, but also the old Soviet Union and Islamic countries. Nonetheless, Veatch takes it to be

obvious that any such profession-related or parochial or denominational system of medical or

health care ethics requires "critical thinking" about "how an ethic for medicine should be

grounded" (p. 146).

Far and away the most popular summation of this foundational approach is provided in Tom

Beauchamp's and James Childress's Principles of Biomedical Ethics (1994[and later editions]).

As a critic of the approach, Albert Jonsen (1990), puts the matter, the first edition of the

Beauchamp and Childress book filled a vacuum in the early years of the bioethics movement: it

"provided the emerging field of bioethics with a methodology" that was in line with "the [then]

currently accepted approaches of moral philosophy" and thus "could be readily taught and

employed by practitioners" (p. 32).

Jonsen goes on with a neat summary: "That method consisted of an exposition of the two

major 'ethical theories,' deontology and teleology, and a treatment of four principles, autonomy,

nonmaleficence, beneficence, and justice, in the light of those theories."

Jonsen then adds: "The four principles have become the mantra of bioethics, invoked

constantly in discussions of cases and analyses of issues" (p. 32).

While Jonsen is critical of the Beauchamp-Childress approach, he recognizes that it is

reflective of "currently accepted approaches in moral philosophy." As witness to this, two other

popular textbooks, addressed to wider ranges of applied or professional ethics, can be cited.

Michael Bayles, in Professional Ethics (1989), provides what was once probably the most

widely used single author textbook for professional ethics generally. Like Beauchamp, Bayles is

a utilitarian, but his approach can be adapted easily to any other ethical theory. Bayles endorses

a general rule: "When in doubt, the guide suggested here is to ask what norms reasonable

persons [generally, not just in the professions] would accept for a society in which they expected

to live (p. 28)."

He goes on, however, with this pithy summary of what comes next:

"There are several levels of justification. An ethical theory is used to justify social values.

These values can be used to justify norms. The norms can be either universal (applying to

everyone) or role related (applying only to persons in the roles). Roles are defined by norms

indicating the qualifications for persons occupying them and the type of acts they may do, such

as represent clients in court. Norms can then be used to justify conduct" (p. 28).

This exactly parallels the model used by Beauchamp and Childress.

Page 39: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

38

Joan Callahan's Ethical Issues in Professional Life (1988), while perhaps not as popular as

Bayles's textbook once was, is a popular anthology. It is perhaps most notable for its

dependence on the notion of "wide reflective equilibrium." As her sources, Callahan cites John

Rawls, Norman Daniels, and Kai Nielsen, but she could as easily have cited dozens of other

philosophers espousing one version or another of what Kurt Baier calls the "moral point of

view."

Here is how Callahan's somewhat wordy summary of the approach begins:

"Things are much the same in ethics [as in science]. We begin with our 'moral data' (i.e., our

strongest convictions of what is right or wrong in clear-cut cases) and move from here to

generate principles for behavior that we can use for decision making in cases where what should

be done is less clear" (p. 10).

This lays out the top-down, theory to decision approach. Then Callahan says:

"But, as in science, we sometimes have to reject our initial intuitions about what is right or

wrong since they violate moral principles we have come to believe are surely correct. Thus, we

realize we must dismiss the initial judgment as being the product of mere prejudice or

conditioning rather than a judgment that can be supported by morally acceptable principles."

This is the application part, but Callahan immediately adds the other pole in the dynamic

equilibrium: "On the other hand, sometimes we are so certain that a given action would be wrong

(or right) that we see we must modify our moral principles to accommodate that judgment."

This exactly reflects Beauchamp and Childress:

"Moral experience and moral theories are dialectically related: We develop theories to

illuminate experience and to determine what we ought to do, but we also use experience to test,

corroborate, and revise theories. If a theory yields conclusions at odds with our ordinary

judgments -- for example, if it allows human subjects to be used merely as means to the ends of

scientific research -- we have reason to be suspicious of the theory and to modify it or seek an

alternative theory" (1994, pp. 15-16).

Jonsen (1990, p. 34) believes that the term "theory" here is being used very loosely, but if we

employ different terms and talk simply about different approaches to ethics, it is clear that some

authors have opted for other approaches to bioethics that they think are more congruent with

their experiences.

A notable example is the team of Edmund Pellegrino and David Thomasma (1981, 1988), who

say they base their approach on Aristotle and phenomenology -- but mostly on good clinical

practice (1981, p. xi).

In one of their books devoted to the foundations of bioethics, Pellegrino and Thomasma

(1988) summarize their approach:

Page 40: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

39

"Our moral choices are more difficult, more subtle, and more controversial than those of [an

earlier] time. We must make them without the heritage of shared values that could unify the

medical ethics of [that] era. Our task is not to abandon hope in medical ethics, but to undertake

what [Albert] Camus called 'the most difficult task of all: to reconsider everything from the

ground up, so as to shape a living society inside a dying society.' That task is not the demolition

of the edifice of medical morality, but its reconstruction along three lines we have delineated:

(1) replacement of a monolithic with a modular structure for medical ethics, with special

emphasis on the ethics of making moral choices in clinical decisions; (2) clarification of what we

mean when we speak of the good of the patient, and setting some priority among the several

senses in which that term may be taken; and (3) refurbishing the ideal of a profession as a true

'consecration'"(p. 134).

The Pellegrino and Thomasma approach has much in common with the virtue ethic of

Alasdair MacIntyre (1981, 1988). And the more recent of the two Pellegrino and Thomasma

foundations books culminates in what they call "a physician's commitment to promoting the

patient's good." This updated version of a Hippocrates-like oath has an overarching principle --

devotion to the good of the patient -- and thirteen obligations that are said to flow from it.

These range from putting the patient's good above the physician's self-interest through

respecting colleagues in other health professions and accepting patients' beliefs and decisions to

"embody[ing] the principles" in professional life (1988, pp. 205-206).

While admitting that such an oath is not likely to meet with general acceptance "given the lack

of consensus on moral principles" today, Pellegrino and Thomasma end with this plea: "We

invite our readers to consider this amplification of our professional commitment as a means of

meriting the trust patients must place in us and as a recognition of the centrality of the patient in

all clinical decisions" (1988, p. 206).

The Pellegrino and Thomasma reference to the lack today of a consensus on moral principles

hints at a fundamental problem for bioethics. What are concrete decisionmakers to do if, as

seems almost inevitable, defenders of conflicting approaches to bioethics cannot reach

agreement? If those attempting to justify particular ethical decisions cannot themselves reach a

decision, are we unjustified in the meantime in the decisions that we do make?

Beauchamp and Childress (1994, p. 46) attempt to play down this issue, at least as regards

utilitarian and deontological theories: "The fact that no currently available theory, whether rule

utilitarian or rule deontological, adequately resolves all moral conflicts points to their

incompleteness." Admitting that there are many forms of consequentialism, utilitarianism, and

deontology, as well as approaches that emphasize virtues or rights, they conclude by defending a

process -- which they say "is consistent with both a rule-utilitarian and a rule-deontological

theory" -- rather than an absolute theoretical justification (p. 62).

Not all bioethicists are satisfied with this treatment of theoretical disagreement. H. Tristram

Engelhardt (1986, 1991), in particular, has devoted much time and energy to arriving at a more

satisfying solution. He begins his daunting effort to provide a true foundation for bioethics

Page 41: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

40

(1986, p. 39) with a framework: "Controversies regarding which lines of conduct are proper can

be resolved on the basis of (1) force, (2) conversion of one party to the other's viewpoint, (3)

sound argument, and (4) agreed-to procedures." Engelhardt then demolishes the first three as

legitimate foundations for the resolution of ethical disagreement, beginning with the easiest:

"Brute force is simply brute force. A goal of ethics is to determine when force can be justified.

Force by itself carries no moral authority" (p. 40).

Engelhardt then attacks any assumed religious foundation for the resolution of moral

controversy, calling "the failure of Christendom's hope" to provide such a foundation, either in

the Middle Ages or after the Reformation, a major failure. He then adds, "This [religious] failure

suggests that it is hopeless to suppose that a general moral consensus will develop regarding any

of the major issues in bioethics" (p. 40).

Engelhardt then turns to properly philosophical hopes: "The third possibility is that of

achieving moral authority through successful rational arguments to establish a particular view of

the good moral life." But he adds immediately: "This Enlightenment attempt to provide a

rationally justified, concrete view of the good life, and thus a secular surrogate for the moral

claims of Christianity, has not succeeded" (p. 40). The evidence for this Engelhardt had supplied

earlier -- and it parallels the obvious disagreements among schools of thought referred to by

Beauchamp and Childress.

This leaves only the fourth possibility: "The only mode of resolution is by agreement. . . .

One will need to discover an inescapable procedural basis for ethics" (p. 41). This may sound

like Beauchamp's and Childress's retreat to process, but Engelhardt wants to make more of it

than that. "This [procedural] basis, if it is to be found at all, will need to be disclosable in the

very nature of ethics itself."

"Such a basis appears to be available in the minimum notion of ethics. . . . If one is interested

in resolving moral controversies without recourse to force as the fundamental basis of agreement,

then one will have to accept peaceable negotiation among members of the controversy as the

process for attaining the resolution of concrete moral controversies" (p. 41).

This, Engelhardt says, should "be recognized as a disclosure, to borrow a Kantian metaphor,

of a transcendental condition . . . of the minimum grammar involved in speaking rationally of

blame and praise, and in establishing any particular set of moral commitments" (p. 42).

The generally poor reception that Engelhardt's foundational efforts have received (see Moreno,

1988, and Tranoy, 1992, among others) -- as opposed to the wide recognition he has received for

particular contributions to the discussion of concrete controversies --could suggest that there

might be something fundamentally wrong about the search for ultimate ethical justification in

bioethics.

This suggestion leads to the final group of authors to be mentioned in these reflections on

philosophical bioethics. Albert Jonsen (1990, p. 34) mentioned earlier as a critic of the

Beauchamp and Childress approach, says this: "In light of the diversity of views about the

Page 42: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

41

meaning and role of ethical theory in moral philosophy, we need not be surprised at the

confusion in that branch of moral philosophy called 'practical' or (with a bias toward one view of

theory) 'applied ethics.'"

Jonsen goes on: "Authors who begin their works with erudite expositions of teleology and

deontology hardly mention them again when they plunge into a case."

"It is this that the clinical ethicists notice and that leads some of them to answer the theory-

practice question by wondering whether it is the right question and whether the connection

between these classic antonyms is not just loose or tight, but even possible or relevant" (p. 34).

Two of the authors Jonsen is referring to are himself and Stephen Toulmin, in The Abuse of

Casuistry (1988), where (Jonsen says) they argue for an approach in which bioethicists should

"wrestle with cases of conscience . . . [where they will] find theory a clumsy and rather otiose

obstacle in the way of the prudential resolution of cases" (1990, p. 34). Jonsen likens this to

deconstructionism in literary studies and the critical legal studies approach in philosophy of law;

he is also explicit, in another place (1991), about the rhetorical nature of the casuistic approach.

Without saddling these other authors with casuistry as the approach, Jonsen (1990) also puts

his and Toulmin's critique of applied ethics within the recent tradition of anti-theorists headed by

Richard Rorty (1979, 1982, 1991) and Bernard Williams (1985). (In a review of The Abuse of

Casuistry, John Arras 1990, adds Stuart Hampshire 1986, and Annette Baier 1984.)

In short, recent bioethics, philosophically construed, is a confusing battleground, with

contributions from absolute foundationalists to case-focused rejectors of theory and a variety of

approaches in between (or all around).

Bioethics More Broadly Construed:

It should be remembered -- for purposes of this chapter but more generally -- that bioethics has

never been exclusively or even primarily a philosopher's affair. Indeed, it could be claimed that

philosophers are and ought to be outsiders to the real communities making the important

bioethical decisions (Churchill, 1978, pp. 14-15).

One of the earliest calls for the post-World War II medical research community to police itself

ethically came from a physician, Henry K. Beecher, writing in the Journal of the American

Medical Association (1966) and the New England Journal of Medicine (1966) -- both regular

sources of bioethics commentary right down to the present.

Beecher's calls for reform were followed up by sociologists: for example, Bernard Barber et

al., Research on Human Subjects: Problems of Social Control in Medical Experimentation

(1973), and Renée Fox, Experiment Perilous: Physicians Facing the Unknown (1974).

Page 43: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

42

Historians also became interested--see, for example, James Jones, Bad Blood: The Tuskegee

Syphilis Experiment (1993).

Celebrated cases also did a great deal to coalesce the field, from Karen Quinlan and Elizabeth

Bouvia to Jack Kevorkian, from Baby Doe to Baby M., from celebrated heart transplant cases to

proposals for mandatory testing for the AIDS virus (see Pence, 1994). What even the briefest

reflection on these cases reminds us is how bioethics involves patients, families, hospital

administrators, lawyers and judges, government officials, and even the public at large.

And public involvement reminds us, further, that significant numbers of commissions have

been involved, from the local level -- e.g., the New York State Task Force on Life and the Law --

to the national level -- the (U.S.) National Commission for the Protection of Human Subjects of

Biomedical and Behavioral Research, the President's Commission for the Study of Ethical

Problems in Medicine and Biomedical and Behavioral Research, or a Netherlands Government

Committee on Choices in Health Care -- to the international level, for example, the Draft Report

of the European Forum of Medical Associations.

Philosophers have, obviously, been involved in setting up prestigious bioethics institutes. But

the institutes themselves are important parts of the bioethics community, with impressive

numbers of non-philosophers on their mailing lists. And physicians (e.g., Willard Gaylin at the

Hastings Center, along with many others) and lay people (the Kennedy family supporting the

Kennedy Institute) have also played major roles.

For me, the most proper locus of bioethics decisionmaking is in typically small local groups of

physicians, nurses, administrators, lawyers, and local public officials -- all together with patients

and their families -- wrestling with specific cases and issues within their own communities.

This shows up already in one of the earliest bioethics textbooks, that of Samuel Gorovitz et al.

(1976, with six co-editors and at least another half dozen people directly involved). And this

small-group focus continues right down to the present, most notably in the incredible diversity of

ethics committees and other groups that have sprung up in hospitals and all sorts of health care

institutions since the promulgation of the Reagan Administration's Baby Doe regulations and the

enactment of the (U.S.) Patient Self-Determination Act in 1991. (On bioethics committees, see

McCarrick, 1992, pp. 285-305.)

Philosophical bioethicists, it seems to me, do some of their best work in these groups, as they

work collectively to solve local cases and issues and to formulate policies for their own

institutions.

Pragmatic Reflections on Philosophical Bioethics:

Page 44: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

43

William James (1897, see 1987, p. 520) -- faced at the end of the nineteenth century with

much the same sort of disagreement about the foundations of ethics that there is a hundred years

later about the foundations of bioethics -- summed up the situation this way:

"Various essences of good have thus been found and proposed as bases of the ethical system.

Thus, to be a mean between two extremes; to be recognized by a special intuitive faculty; to

make the agent happy for the moment; to make others as well as him happy in the long run; to

add to his perfection or dignity; to harm no one; to follow from reason or universal law; to be in

accordance with the will of God; to promote the survival of the human species."

But, James says, none of these has satisfied everyone. So what he thinks we must do is treat

them all as having some moral force and go about satisfying as many of the claims as we can

within the limit of knowing that we can never satisfy all of them at once. "The guiding principle

for ethical philosophy," James concludes, must be "simply to satisfy at all times as many

demands as we can." And, following this rule, society has, historically, striven from generation

to generation "to find the more and more inclusive [moral] order" -- and has, James thinks, done

so successfully, gradually eliminating slavery and other evils tolerated in earlier eras (p. 623).

In many ways this sounds like Engelhardt's condition of the possibility of ethical discourse,

but James would never accept Engelhardt's characterization of the approach as Kantian-

transcendental. It is simply a procedural rule for particular communities of ethical truth-seekers

attempting to find a satisfactory concrete solution for particular problems -- in a process that

must inevitably go on and on without end. Concrete ethical solutions are not dictated by an

abstract commitment to the conditions of ethics, but must be worked out arduously through

struggle and competing ideals.

John Dewey was as opposed to transcendental foundations as James. In the mood of The

Quest for Certainty (1929), Dewey would probably have been bemused -- and also angry -- at

the persistent academic search for an ultimate foundation for our practical decisions in bioethics.

But in the more open spirit of Reconstruction in Philosophy (1948) Dewey would have attempted

to see how the "principled" approach (e.g., of Beauchamp and Childress) is "in effect, if not in

profession" (in Dewey's words) "connected with human affairs." In that book, Dewey continues

his attack on "ethical theory" as "hypnotized by the notion that its business is to discover some . .

. ultimate and supreme law"; instead, he proposes that ethics be reconstructed so that we may

"advance to a belief in a plurality of changing, moving, individualized goods and ends, and to a

belief that principles, criteria, laws are intellectual instruments for analyzing individual or unique

situations" (pp. 162-163).

In A Common Faith, (1934) Dewey adds that community efforts to solve social problems

progressively can generate an attitude akin to religious faith that makes social problem solving a

meaningful venture.

And in Liberalism and Social Action (1935), Dewey tries to lead the way in applying his

approach to the "confusion, uncertainty, and conflict" that marked his times -- just as the

Page 45: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

44

bioethics community is attempting to do today with respect to confusions, uncertainties, and

conflicts that arise in health care today.

George Herbert Mead (1964, p. 266), an opponent of both utilitarian and Kantian approaches

to ethics, offers in place of those (he thinks) inadequate systems a positive formulation of what

ethics should mean:

"The order of the universe that we live in is the moral order. It has become the moral order by

becoming the self-conscious method of the members of a human society. . . . The world that

comes to us from the past possesses and controls us. We possess and control the world that we

discover and invent. And this is the world of the moral order."

Then Mead adds: "It is a splendid adventure if we can rise to it."

If we pay attention to these American Pragmatists, I think that what we can say about

bioethics in the last quarter of the twentieth century is that philosophers contribute most when

they contribute to the progressive social problem solving of particular communities. Some do

this, admittedly, at the national (President's Commission) or even international level (e.g.,

philosophical advisors to the World Health Organization), but even in those cases they do so as

members of groups made up of physicians, lawyers, and other concerned citizens. And most do

so at the local level -- where, in Mead's words, they are only being truly ethical if they are

contributing to the progressive social problem solving (case resolution, policy formulation, etc.)

of some particular group in which they represent only one voice, and a small one at that.

Some Lessons:

Does this self-awareness on the part of philosophers as to their limited role in bioethics

suggest any lessons for us?

The most obvious lesson is humility. Philosophers can and do help to clarify issues

(sometimes even answers), but the real moral decisions in bioethics, for the most part, are made

by others.

Another lesson has to do with the urgency of the real-world problems that bioethics faces --

which are, after all, what got philosophers involved in the first place. Medicine and the health

care system generally -- including those parts of it that operate in open or covert opposition to

the entrenched power of physicians and hospitals -- face enormous problems today, from

rampant inflation and calls for rationing to the questioning of the very legitimacy of high-

technology medicine. All the while, doctors and nurses, etc., must continue to face life and death

issues every day -- from calls for active euthanasia to the AIDS crisis -- not to mention the

daunting task of caring for ordinary ills of ordinary people who, with increasing frequency,

cannot pay for their medical care.

Page 46: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

45

It is probably inevitable, given the structure of philosophy today as an academic institution,

that philosophical bioethicists will continue narrow technical debates among themselves about

ultimate justifications of bioethical decisions. But academicism and careerism in bioethics

should be recognized for what they are -- distractions (however necessary, for some purposes)

from the real focus of bioethics.

Beyond these lessons for philosophers, does American Pragmatism have any lessons to

provide to the bioethics community more generally? Probably only this: that we should all heed

James's call for tolerance and openness to minority views.

Bioethics has come a long way in just twenty-five or so years. Significant consensus has been

achieved on issues from informed consent to be a research subject to the importance of asking

patients what they want done -- if anything, especially of a high-technology sort -- in their last

weeks and days and hours. But equally significant issues remain -- as they always will in a

society open to change. And all of us, from the smallest local bioethics group to the international

community, ought to remain open to change.

As William James (1877, see 1967, p. 625) said:

"Every now and then . . . someone is born with the right to be original, and his revolutionary

thought or action may bear prosperous fruit. He may replace old 'laws of nature' by better ones;

he may, by breaking old moral rules in a certain place, bring in a total condition of things more

ideal than would have followed had the rules been kept."

Chapter 6

ENGINEERING ETHICS AND SOCIAL RESPONSIBILITY

The essay that occupies this slot is a little different from the others here. It was an essay I

volunteered on my own initiative -- to the Bulletin of Science, Technology, and Society (1997). I

had ended ten years of teaching engineering ethics and was turning my attention fulltime to

teaching bioethics, including a stint at Jefferson Medical College in Philadelphia. Having done

the survey of bioethics -- Chapter 5, above -- I thought a similar survey of engineering ethics was

in order.

As in the previous section, I offer here philosophical reflections on roughly twenty- five years

of work on engineering ethics in the USA. (For other countries, see Lenk and Ropohl, 1987, and

Mitcham, 1992.) My comments fall into three parts. In the first I discuss efforts of philosophers

to contribute to the field. In the second, I focus on the contributions of engineers. And in the

third, where I focus on the social responsibility aspect, I consider possibilities for fruitful

collaboration.

Philosophers and Engineering Ethics:

Page 47: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

46

In the early 1970s, engineering ethics seemed to be a promising field for philosophers to enter

-- along with the new field of bioethics, that had recently supplanted the old field of medical

ethics, as well as business ethics and several other branches of what was coming to be called

applied or professional ethics. Technology was being widely criticized. There were a number of

scandalous cases or emerging issues associated with engineering and related areas of applied

science. Old codes of ethics were seen as in need of updating and better enforcement. And some

philosophers, perhaps especially those associated with technology and society programs in

academia, thought they saw interesting issues ripe for conceptual analysis. Besides, it was a time

of retrenchment in the graduate education of philosophers, so there seemed to be opportunities

for employment in engineering-related settings.

My view is based on some experience with these efforts, but in any case common sense should

tell us that there are several possible roles for philosophers to play when it comes to examining

ethics and engineering.

One can, for instance, play the role of external gadfly, where "external" refers to a position

entirely outside the engineering community (see Churchill, 1978).

This community, as I am defining it here, ought to include not only engineers in the strict

sense but engineering managers and technicians as well as many other related technical workers-

-from chemists and applied physicists to econometricians engaged in technological planning or

forecasting. (On the other side, to philosophical critics I would add quite a few critics who are

not professional philosophers--religious or other humanistic critics, literary critics, journalists

and other non-academics, including laypersons who have taken it upon themselves to learn

enough about engineering and technology to be responsible critics.)

I have argued throughout this book and elsewhere (Durbin, 1992) that progressive social

activism is the most likely solution for the major social problems facing our technological

world. I made my earlier appeal to technical professionals, urging them to join in with other

social activists in seeking such solutions. Here I acknowledge the leadership of the anti-

technology gadflies I would ask the technical professionals to work with.

It is also possible to play the role of internal gadfly, within engineering (or research-and-

development) institutions; some people consider this to be the proper role of the philosopher (or

humanist critic) with respect to the engineering or any other professional community (see Baum,

1980). According to this view, one can be part of an ethics case review panel, or of a technology

assessment team, or a philosopher/professor of engineering ethics in an engineering school and

play the role of gadfly every bit as effectively as--perhaps even more effectively than--someone

from the outside.

It is also possible, finally, to serve on one of these committees without thinking of oneself as a

stranger or gadfly. Philosophers, for example, have been asked to help revise codes of ethics.

Some also (and occasionally religious ethicists do this as well) serve as laypersons on ethics

review panels for engineering (and other) professional societies. Not to mention the efforts of

philosophers to elucidate concepts associated with engineering ethics (Baum, 1980, pp. 47-48

Page 48: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

47

and 61-72) or to write engineering ethics textbooks (see Johnson, 1991; Martin and Schinzinger,

1990, and Harris, Pritchard, and Rabins, 1999).

What can we conclude about these efforts of North American philosophers over the past

quarter century? I will try to summarize the results by looking at what happened at gatherings

associated with the most ambitious project to be undertaken in the United States--the National

Project on Philosophy and Engineering Ethics, directed by Robert J. Baum.

The first stages of the development of this project have been well described by one of Baum's

colleagues, Albert Flores (1977). He starts by pointing out conflicts that persist for individual

engineers even if they conscientiously follow their society's code of ethics; legal challenges to

professional societies' activities; and thorny ethical issues associated with doing engineering in

foreign cultures -- in short, he recognizes that there are "serious issues that challenge the

professional engineer's commitment to acting as a true professional." Then Flores asks himself

whether anything might be done to help solve these problems and says this: "One plausible

suggestion is that since these questions clearly raise moral and ethical issues, it seems reasonable

to expect some helpful guidance from scholars and academics with competence in ethical

theory." The National Endowment for the Humanities agreed and provided funding for a multi-

year project in which engineers would learn something about academic ethical theory,

philosophers would learn more about engineering, and philosopher-engineer teams would

develop ethics projects of various sorts. An outstanding example of one of these projects is the

textbook, Ethics in Engineering (1990), by philosopher Mike Martin and engineer Roland

Schinzinger.

Another feature of the National Project on Philosophy and Engineering Ethics was a series of

national conferences, beginning with one at Rensselaer Polytechnic Institute in 1979. Rachelle

Hollander, a philosopher who is also the program manager for the agency of the National

Science Foundation that funded the second and third national conferences, has described the

second conference, held at the Illinois Institute of Technology in 1982. Hollander (1983) focuses

on philosophical contributions:

"Philosophers . . . develop[ed] abstract principles on which engineering obligations could rest.

One presentation attempted to ground engineers' whistleblowing rights in more general moral

rights to behave responsibly, while yet another developed an argument that engineers are morally

required to act on the basis of a principle of due care, requiring those who are in a position to

produce harm to exercise greater care to avoid doing so."

But Hollander also points out how these abstract principles were challenged at the conference,

not only by engineers but by other philosophers. And she ends her report with a summary of

some other disagreements -- "There was, for example, considerable discussion about whether

whistleblowing is ever justified, about the [conflicting] loyalty that engineers owe the public,

their clients, [and] their employers," and so on -- along with recommendations for the future.

Among these, Hollander points out how important social (as opposed to but encompassing

individual) responsibility is; that risk assessment is a social problem; and that engineers,

Page 49: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

48

engineering educators, other educators, and a whole host of other actors must cooperate in

solving such social problems.

The third national conference (and so far the last) was held in Los Angeles in 1985, and it

picked up on Hollander's (and others') focus on the concrete problem of risk assessment. The

proceedings of the conference were edited by Albert Flores and published under the title, Ethics

and Risk Management in Engineering (1989). Almost half of the contributions, following the

earlier pattern, are by engineers. But philosophers and other critics outside the engineering

community have interesting things to say in the volume. Deborah Johnson argues on moral

grounds that government needs to have a role in dealing with the risks associated with toxic

wastes; Thomas Donaldson appeals to well known ethical theories to raise doubts about whether

international standards can be established to regulate such risks; and Kristin Shrader-Frechette

argues that all risk assessments necessarily involve value judgments. In addition, Sheila Jasanoff

discusses the differences between ethical and legal analyses of risk issues, while Carl Cranor

focuses on the legal mechanisms--the law of torts and regulatory law -- that currently control

social responses to exposures to toxic substances and similar technological risks.

These are worthy contributions to the literature, both of engineering ethics and of (applied)

philosophy, and these same authors have produced several books extending their contributions

(see Cranor, 1992; Jasonoff, 1986; and Shrader-Frechette, 1991). But if we look beyond the

three national conferences to the general body of philosophical literature in this period, one thing

is overwhelmingly clear. Nothing approximating the pronounced movement of philosophers into

the field of bioethics ever occurred; there simply was no groundswell of philosophers moving

into engineering ethics. A diligent perusal of The Philosopher's Index from 1975 right up to the

present reveals only a handful of articles and even fewer books on any aspect of ethics in relation

to engineers. In spite of early promise, (philosophical) engineering ethics remained stagnant

while bioethics boomed -- indeed, engineering ethics very nearly disappeared from the

philosophical literature.

No key concepts paralleling the so-called mantra of bioethics (see chapter V, above) --

autonomy, beneficence, non-maleficence, and justice -- have ever been put forward.

Philosophers have written introductory textbooks, and contributed articles or chapters to

anthologies (see, for example, the contributions to Johnson, 1991), but nothing even remotely

approximating the attempts of bioethicists to provide philosophical foundations for their field

(see Engelhardt, 1986 and 1991) has emerged. I know most of the philosophers involved in

engineering ethics, and, by these remarks, I mean no disparagement of their efforts. But I

believe all of us who had high hopes in the 1970s for the development of philosophical

engineering ethics have been deeply disappointed.

Engineers and Engineering Ethics:

Is the record any less disappointing on the other side of the fence -- among engineers,

scientists in government and industry, think-tank technical experts, etc.? Well, it happens that

Page 50: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

49

the American Association for the Advancement of Science -- about halfway through the period

under review here -- conducted a survey of engineers' and scientists' ethics activities and

published the results in a report (Chalk, Frankel, and Chafer, 1980).

The stated objectives of the report included documenting the ethics activities of the AAAS-

related societies surveyed; the codes of ethics and other formal principles adopted; significant

issues neglected; and recommendations for the future.

Four engineering societies reported on are the American Society of Civil Engineers

(approximately eighty thousand members), the American Society of Mechanical Engineers (with

roughly the same number), the National Association of Professional Engineers (about the same),

and the Institute of Electrical and Electronic Engineers (more than double the size of the others).

All have active ethics programs, with differing levels of staffing, based in part on a code of

ethics and enforcement procedures. Few allegations of ethics violations are reported as being

investigated and even fewer lead to sanctions -- though in a handful of cases members have been

expelled. The electrical engineers, shortly before the report was issued, had initiated a formal

program, with some funding, to support whistleblowing and similar activities. And NSPE

regularly publishes, in Professional Engineer, case reports and decisions of its judicial body.

The American Chemical Society, another large technical group whose members often work

with engineers in large technology-based corporations, is also reported on. It too has an active

ethics program, but one that seems most often to concentrate on allegations of unethical or unfair

employment practices.

Only a handful of the organizations discussed in the AAAS report replied that they spend

much time or effort on "philosophical" tasks -- defining and better organizing ethics codes or

principles. More work than before goes into education, increasing ethical sensitivity in the

workplace, and providing better enforcement procedures. The need for this last item, though it is

important (and might lead to more enforcement proceedings), would seem not to have a high

priority considering the small number of investigations the societies are actually conducting.

The recommendations of the AAAS report will be summarized below.

One can follow more recent developments in Professional Ethics Report (since 1988), another

venture of the American Association for the Advancement of Science -- this time, under the

auspices of its Committee on Scientific Freedom and Responsibility and Professional Society

Ethics Group. This quarterly newsletter provides regular updates on the activities of member

societies -- including all the major and some minor engineering societies and numerous other

scientific and technical societies.

In general, the activities reported -- including new or updated codes of ethics, more rigorous

enforcement and/or more equitable investigation procedures -- are simply an extension, with

modest increases, of the activities discussed in the earlier report. There are regular reports on

new legislation and court decisions, and there is even an occasional review of a book that

contributes to the advancement of thinking about professional ethics.

Page 51: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

50

Activity on the enforcement front is best followed in the continuing series of case

presentations, and quasi-judicial decisions, that appear regularly in Professional Engineer.

Even if the incremental improvements reported in Professional Ethics Report, and the greater

sensitivity to ethics issues displayed in Professional Engineer (and similar sources), continue

into the future, we cannot expect a great deal from these efforts. The recommendations of the

1980 AAAS report (mentioned earlier) included the following. In addition to heightened

sensitivity and more enforceable rules, as well as better and more frequently utilized

investigational procedures, the other recommendations were: better definition of principles and

rules; recognition of the inevitable conflict between employee efforts to protect the public and

employer demands; more publicity for sanctions imposed; coordination of ethics efforts of the

various professional societies and inclusion of ethics efforts of such other institutions as

corporations and government agencies; benchmarks for judging when ethics efforts have

succeeded; and full-scale studies, including full and complete histories of cases. Very few of

these laudable ventures seem yet even to be contemplated, and there is little to suggest that very

many of the recommendations will be carried out.

In general, the ethics activities of the professional societies have been more successful than the

efforts of philosophers to help out in the process, but there are still glaring weaknesses. As one

example, the ethics activities of the professional societies -- however much publicity they

sometimes receive -- still represent a small, almost infinitesimal part of the activities of

engineering and other technical societies. Meanwhile, allegations of unethical or negligent

behavior on the part of technical professionals seem to be increasing dramatically.

Possibilities for Engineer-Philosopher Cooperation:

If we turn from limited successes in the enforcement of ethics violations within the

professional technical communities to broader concerns of social responsibility, there may be

some hope for improvements -- but only if there can be greater cooperation between engineers,

other technical professionals, and non-engineers (including applied ethicists) interested in

improving the situation.

Among critics of engineering, there are several well known philosophers, historians, and other

critics who harp on the shortcomings in the system of professional sanctioning of unethical,

negligent, or incompetent engineers (and other technical professionals).

Langdon Winner (1990), while criticizing the case approach to education in engineering

ethics, says this:

"Ethical responsibility now involves more than leading a decent, honest, truthful life, as

important as such lives certainly remain. And it involves something much more than making

wise choices when such choices suddenly, unexpectedly present themselves. Our moral

obligations must now include a willingness to engage others in the difficult work of defining the

Page 52: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

51

crucial choices that confront technological society. . . . Any effort to define and teach

engineering ethics which does not produce a vital, practical, and continuing involvement in

public life must be counted not just a failure, but a betrayal as well" (p. 64).

With respect to some of the earliest efforts of the engineering professional societies to adopt

codes of ethics, the historian Edwin Layton has -- in The Revolt of the Engineers: Social

Responsibility and the American Engineering Profession (1971) -- amply demonstrated that,

while individual engineers were genuinely motivated to improve engineers' behavior, their

activities were quickly co-opted by powerful leaders and turned into defensive rhetoric to

enhance the public image of the newly-developing large corporations -- and their allies, the

newly powerful engineering professional societies.

In a similar vein, Layton's fellow historian, David Noble, in America by Design: Science,

Technology and the Rise of Corporate Capitalism (1977), argues that these same powerful

engineering leaders throughout the twentieth century have worked hand-in- hand with other

governmental, educational, and social leaders -- in the name of "progressivism" -- to shore up a

threatened capitalism, using not only codes of ethics but the promise of "neutral" science and

technology, to keep nascent workers' movements in check.

Finally (among these social critics), Carl Mitcham (1991) maintains that engineering in the

modern sense is driven by an ideal of efficiency, and any external values that might be said to

influence it -- political or legal, social, cultural, even economic values -- must, if they are to be

really influential, be stated in input-output terms or must be translatable into other sorts of

quantitative formulations. In Mitcham's view, this almost necessarily sets up a tension between

engineering values and such non-technical ideals as living in harmony with nature, following

otherworldly or transcendental ideals, or even making deontological ethical judgments about

limits on human activities (including engineered systems but also almost any other type of social

organization or group activity in a technological world).

On the other side of the fence, even Samuel Florman (1976, 1981) -- as staunch a defender of

the "existential pleasures of engineering" against the profession's antitechnology critics as there

is -- admits that current-day engineering education plus a number of recent historical and cultural

trends have conspired to produce a fairly conservative and non-imaginative engineering

community today. In Florman's words, "The unpleasant truth is that today's engineers appear to

be a drab lot. It is difficult to think of them as the heirs of the zealous, proud, often cultured, and

occasionally eloquent engineers of the profession's Golden Age" (1976, p. 92).

These criticisms, even if they are taken to be indicative of real problems, should not preclude

discussion of potential areas of collaboration between engineers and critics in order to improve

the situation.

With respect to possible contributions from the side of philosophers and critics, we can

anticipate that some philosopher/engineering ethicists will continue to contribute to the ongoing

reform efforts of the engineering and other technical professions. Engineers seem still to want

the help of philosophers (along with lawyers) in rethinking, revising, and coordinating their

Page 53: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

52

codes of ethics. Ethicists (some from academia, others religious ethicists) continue to be invited

to be members of ethics review panels, technology assessment teams, and similar committees

and commissions. And engineering ethicists are often members of business and professional

ethics organizations attempting to improve the climate in corporations, government agencies, and

other large, bureaucratic institutions.

In addition, it seems clear that the handful of philosophers writing books on ethical concepts

related to engineering -- as well as the somewhat larger number writing about risk assessment

and environmental ethics -- will continue their efforts.

On the other hand, among those drawn to the more critical, gadfly approach, I think there are

even greater opportunities and challenges -- but only under certain conditions.

First, among engineers and other technical professionals, it must be recognized that with

increasing technical advances come greater social responsibilities. In an earlier book (Durbin,

1992), I have mentioned several specific areas of technological activity that have direct bearing

on society -- for example, biotechnology, computers, nuclear power (nowadays often concerns

over nuclear wastes), and technological developments with a negative impact on the

environment. In these and other areas, I believe that engineers and other technical professionals

(e.g., computer experts, environmental engineers) have a duty to society to deal effectively with

any problems that are directly related to their work. At the very least, they have an obligation to

cooperate with government regulatory agencies legally mandated to solve these problems. Too

often, technical professionals view regulators as a nuisance and a bother rather than as

collaborators in a joint effort to deal with what the public, and their elected representatives,

perceive as social problems -- even, in some cases, as catastrophes.

To these specific areas of technological concern, I would add (again see Durbin, 1992) three

others that are at least indirectly related to technical expertise -- cries for educational reform

(including cries for technological literacy on the part of the public) and for health reform (where

at least some of the myriad problems are related to the continual introduction of new drugs and

technologies -- and the large number of technical personnel required to make them effective), as

well as problems associated with the mass media. In this last area, again, technical professionals

often seem readier to complain about alarmism than to cooperate in getting out technically

accurate news about new technical ventures, including the social problems that too often

accompany them.

In my opinion, all seven of these areas of social concern -- and I would include under those

broad headings a great many local instantiations of the problems -- demand social responsibility

on the part of individual technical professionals, on the part of their professional societies, and

(often especially) on the part of the organizations in which they work.

As for the philosophers and other humanistic and lay critics of science and technology, I see

their principal obligation -- in this context -- as one of displaying a much greater spirit of

cooperation, rather than confrontation, than is normally the case. If the social critics of

Page 54: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

53

technology really want to do something about technosocial problems, it behooves them to work

cooperatively with technical experts -- not to mention with corporate and government officials.

Conclusion:

To sum up, I believe that the recent history of engineering ethics in the USA is not a happy

one. Philosophical engineering ethics has turned out to have an extremely limited impact in

academia. And the efforts of engineers and their professional societies are too limited in both

scope and impact. With Robert Baum and Albert Flores -- in their original hopes for the

National Project on Philosophy and Engineering Ethics -- I believe that the way to go is through

collaborative efforts involving philosophers and engineers. But I would qualify my optimism

about the approach by saying that its success depends on significant behavioral changes. The

engineers and their professional societies need to broaden their outlook, moving beyond a focus

on individual misconduct to broader social responsibilities, and also to welcome a broader range

of people into the dialogue. On the other hand, philosophers, social critics, reporters and editors,

environmental activists (and so on) need to be less confrontational and more willing to dialogue.

Together, I am convinced, we can hope to solve some of the more pressing social issues facing

our technological society.

This seems to me a better definition of engineering ethics than a definition that focuses mainly

on individual engineers' and technical professionals' potential misconduct. And actions based on

the new focus might, in the next twenty-five years, see engineering ethics make a significantly

greater impact on society than has been the case in the last twenty-five years.

Chapter 7

COMPARING PHILOSOPHY OF TECHNOLOGY WITH OTHER SCIENCE AND TECHNOLOGY

FIELDS

This essay was prepared for a prestigious international conference, under the auspices of the

International Academy of the Philosophy of Science, held in Karlsruhe, Germany, in 1997. I had

been asked to talk about philosophy of technology, as represented in the Society for Philosophy

and Technology, to a skeptical audience. The title for the conference was "Advances in

Philosophy of Technology?" Note the question mark at the end. The essay fits here because I

ended it with a challenge to defenders of all the fields compared to get involved beyond

academia, to help improve our technosocial world, if they really wanted to make an advance.

Has philosophy of technology, in whatever sense, made any advances? This was the central

theme of a conference held in Karlsruhe in 1997. My contribution there addressed the narrower

Page 55: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

54

question of whether there had been any advances in North American philosophy of technology in

the previous fifteen years. Attempting to answer this question, I discovered -- and reported on --

quite a few recent books and a few journal articles. In spite of this seemingly-significant flood of

publications, however, critics question whether any significant advances are being made in these

admittedly numerous books and articles.

I begin my recapitulation of my contribution to that conference with Joseph Pitt, past president

of the Society for Philosophy and Technology. He quotes friends of his in the Society for

History of Technology as reacting with horror to a proposal for a joint meeting: "Oh, no! Those

SPT people hate technology. Further, they know nothing about technology" (Pitt, "Philosophy of

Technology, Past and Future," 1995). Philosophers of technology, in this view, have certainly

not been making any advances -- at least, not any advances that would mean anything to people

outside the would-be field.

This raises the obvious question: What counts as a genuine advance in technology

studies? And the view or thesis that I want to defend here is this:

In all respects except one, advances in the philosophy of technology are approximately equal,

in their progressiveness, to progress in the fields with which those advances have been

negatively contrasted -- namely, the philosophy of science and social studies of science and

technology. (The one exception is important, since I consider it the most important area of

advance.) In my conclusion, I make some comments about all of these fields, including

philosophy of technology, contrasting academic with real-world social progress (that one

exception).

Advances in North American Philosophy of Technology

I begin with the best evidence there is to support a claim that there have been advances in the

philosophy of technology in the USA and Canada. To support such a claim, I point to the work

of the North American philosophers who traveled to the first international conference of the

Society for Philosophy and Technology in Bad Homburg in 1981 and whose papers were printed

in the proceedings volumes, Technikphilosophie in der Diskussion (1982), and Philosophy and

Technology (1983) -- both edited by Friedrich Rapp and myself. At least six of the North

Americans invited to Bad Homburg can be cited in support of the claim that there are continuing

advances, right up to the present. I have in mind Stanley Carpenter, Don Ihde, Alex Michalos,

Carl Mitcham, Kristin Shrader-Frechette, and Langdon Winner. (I set aside my own case for

now, not out of modesty but because I want to make a separate point at the end.) To these six

can be added one other philosopher at Bad Homburg, Bernard Gendron -- not in terms of his own

later work but viewing his as a springboard to the later development of that part of the

environmental ethics movement that has a close relationship to technological issues -- and Albert

Borgmann, who was not at Bad Homburg, but whose thought has undergone development in

ways that have led people to say that his work represents the first real tradition in North

American philosophy of technology (see chapter II, above).

Page 56: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

55

Stanley Carpenter went to Bad Homburg at least partly on the basis of a book that he had co-

edited (with Alan Porter, Alan Roper, and Fred Rossini), A Guidebook for Technology

Assessment and Impact Analysis (1980). At the conference, Carpenter's contribution was listed

under the technology assessment heading, but his interests were already oriented toward

environmental concerns, and focused particularly on ways in which an "alternative" or

"appropriate" technology is necessary if the ecosystem is to be preserved. Carpenter has not so

far produced another book after Bad Homburg, but he has been a regular participant in the series

of Society for Philosophy and Technology international meetings that continues today. For

instance, at the 1993 SPT conference near Valencia, Spain, Carpenter presented a paper, "When

Are Technologies Sustainable?" Again, at the 1996 conference in Puebla, Mexico, his topic was

similar: "Toward Refined Indicators of Sustainable Development."

Don Ihde had also written a book on philosophy of technology before Bad Homburg, Technics

and Praxis: A Philosophy of Technology (1979), but his case differs from that of Carpenter in

two respects: he has written several more books, and he is the editor of a philosophy of

technology book series published by Indiana University Press. The first book published in that

series, Larry Hickman's John Dewey's Pragmatic Technology (1990), shows that Ihde was not

interested, in the series, in pushing his own phenomenological approach to philosophy of

technology, but is open to a variety of approaches. Ihde's own approach does show up in his

later books, Existential Technics (1983), Consequences of Phenomenology (1986), and

Technology and the Lifeworld: From Garden to Earth (1990) -- even in his Philosophy of

Technology: An Introduction (1993), though that textbook does present other views. In general,

one can say that Ihde's development is a matter of greater depth and clarity in his

phenomenological analysis, though Technology and the Lifeworld gives more than a passing nod

to the centrality of environmental concerns.

Alex Michalos talked about technology assessment at Bad Homburg, but he had been invited

at least in part because of his editing of the journal, Social Indicators Research, which is devoted

in large part to quality-of-life measurements in our technological culture. Michalos has

continued these efforts in a massive way, with his five-volume North American Social Report

(1980-1982) and his four-volume Global Report on Student Well-Being (1991-1993), and with

regular contributions to all sorts of conferences devoted to various aspects of measuring the

quality of life today.

Carl Mitcham's contribution to the Bad Homburg proceedings focused on what he called "the

properly philosophical origins" of modern technology, as opposed to the more commonly-

discussed social or economic or scientific origins. And this metaphysical/religious approach to

the understanding of technology both reflected Mitcham's earlier work -- in the two volumes he

compiled with Robert Mackey, Bibliography of the Philosophy of Technology (1973, which cites

other approaches but gives heavy emphasis to the metaphysical/religious), and Philosophy and

Technology: Readings in the Philosophical Problems of Technology (1972; reprinted with

revised bibliography, 1983) -- and presaged his later work, Thinking through Technology: The

Path between Engineering and Philosophy (1994). Many reviewers have applauded this as

Mitcham's masterpiece and as the first true summary of the development of the field.

Page 57: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

56

Kristin Shrader-Frechette's first major work, Nuclear Power and Public Policy, appeared in

1980. In later books, she has addressed Risk Analysis and Scientific Method (1985) and Risk and

Rationality (1991). These and others of her publications are always masterpieces of clarity and

precision -- no matter whether the risk analysts she attacks appreciate her criticisms or not. In

my opinion, Shrader-Frechette's most interesting book to date is Burying Uncertainty: Risk and

the Case against Geological Disposal of Nuclear Waste (1993). There all her skills as an analyst

and arguer are on display as much as ever; and the comprehensiveness of her survey of

arguments on all sides is admirable. But what makes me admire the book more than anything

else -- and more than her earlier contributions -- is her new-found awareness of how enormous

the pressure is in technical communities to ignore, and resist, the force of her arguments, no

matter how clear and convincing (see chapter IV, above).

Langdon Winner's contribution to the Bad Homburg conference, "Techne and Politeia: The

Technical Constitution of Society," follows up on his themes in Autonomous

Technology: Technics-out-of-Control as a Theme in Political Thought (1977). A typically

Winnerian gem of an essay, "Techne and Politeia" was used many times in many arenas, and

shows up in Winner's later collection of essays, The Whale and the Reactor: A Search for Limits

in an Age of High Technology (1986). It is probably Winner more than any other single author

whom historians and sociologists of technology love to hate, and he has returned the favor in,

"Upon Opening the Black Box and Finding It Empty: Social Constructivism and the Philosophy

of Technology" (1991), his presidential address at the 1991 SPT conference in Puerto Rico.

Bernard Gendron's Bad Homburg paper, "The Viability of Environmental Ethics," suggests

another progressive path in the history of the philosophy of technology in the last fifteen years.

In 1989 and 1992, Eric Katz published two excellent annotated bibliographies of environmental

ethics in Research in Philosophy and Technology (volumes 9 and 12), and the theme of volume

12 is Technology and the Environment. Many younger philosophers associated with SPT have

taken up this theme, notably David Rothenberg, in Hand's End: Technology and the Limits of

Nature (1993) -- where Rothenberg argues against setting up any opposition between human,

including technological, civilization and nature; David Strong, in Crazy Mountains: Learning

from Wilderness to Weigh Technology (1995; here Strong tries to heed Rothenberg's message but

ends up seeing many more positive features in natural wilderness than in today's consumer-

oriented technological society); and Eric Katz (again), in Nature as Subject: Human Obligation

and Natural Community (1997). There Katz argues against applications of traditional ethical

theories to environmental problems, as the right approach, and in favor of a more radical "moral

justification for the central policies of environmentalism" in terms of "the direct moral

consideration and respect for the evolutionary processes of nature" (p. xvi). Katz has also

teamed up with Andrew Light in the editing of Environmental Pragmatism (1996) -- a collection

dear to my heart because the essays collected generally argue that we should go beyond

theoretical debates to a discussion of real environmental issues and even more toward attempts to

work out (with others) solutions for real environmental problems.

Albert Borgmann was not at Bad Homburg, but his thought has been viewed by some as the

only contribution to philosophy of technology that has given rise to its own tradition or school

of thought. Borgmann published Technology and the Character of Contemporary Life, his neo-

Page 58: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

57

Heideggerian manifesto, in 1984. This was followed by Crossing the Postmodern Divide in

1992. David Strong's Crazy Mountains, mentioned earlier, is an explicit attempt to apply

Borgmann's theses in an effort to arrive at a philosophy of wilderness in the midst of -- and as

confronting -- technological culture. In 1995, a group of Borgmann disciples convened a

conference, "Workshop on Technology and the Character of Contemporary Life," in Jasper

National Park in Canada. Approximately twenty philosophers attended -- some disciples, some

critics -- and Borgmann concluded the meeting with a thoughtful reply to his critics and some

reflections on the future of philosophy of technology. The organizers still hope to publish a

volume based on the proceedings, but nothing has been decided yet.

Comparative Perspectives

Everything I have summarized so far in support of a claim that there have been advances in

North American philosophy of technology since Bad Homburg is, actually, preparatory to the

question I want to address in this paper. It should be obvious that there has been progress in the

field of philosophy of technology in some sense. But exactly what do we mean when we speak of

"advances," whether in the philosophy of technology or in any other similar field today? Is it

just a matter of a continuing stream of new books and new journal articles published? I want to

address this issue comparatively, by way of a comparison and contrast with developments in the

philosophy of science and the sociology of science and technology.

First, however, we need some definitions of what it may mean to speak of advancing or

making progress in any academic field.

Discussing the rise of analytical philosophy in the early twentieth century, Bertrand Russell

(1945, p. 834) once claimed that, using logical techniques, analytical philosophy is "able, in

regard to certain problems, to achieve definite answers" (in contrast with older philosophical

approaches); in this respect, Russell claimed, analytical philosophy's methods "resemble those of

science." Like scientific advance, Russell was assuming, there can be similar philosophical

progress, with one contribution building on others, and so on. In the United States at least, this

has become the ideal of academic progress, with one article in a "leading" journal in a "cutting-

edge" field worth more, in terms of merit and reward, than any other kind of publication --

except possibly a "major" book reviewed (favorably) in all those leading journals.

However, once this academic standard of progress was extended, by departmental committees

and deans, to almost every field of higher learning, it began to come under attack. An early and

vituperous version can be seen in Jacques Barzun's Science: The Glorious Entertainment

(1964). These critics maintain that, when the standard is applied in humanities fields such as

literature, history, and the arts -- and many of the critics lump philosophy together with other

humanistic disciplines -- it is totally inappropriate. The only measuring rod we can use in these

fields (and, as we will see below, later post-modern critics now say this is true even in the

sciences) is greater and greater originality, especially in terms of persuading whatever are

perceived to be the relevant audiences.

Page 59: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

58

A few transcendentalist metaphysicians and theologians object to both the strict (progressive)

academic standard and the much broader "originality" (postmodern?) standard as retrogressive

chasing after increasingly trivial minutiae. The only real progress moves in the opposite

direction, toward more and more comprehensive syntheses -- ever closer approaches to truth or

beauty or goodness (sometimes capitalized as Truth, Beauty, and Goodness). Such Hegel-like

synthesizers are, I admit, rare today; but there are "right-side-up" dialectical materialist neo-

Hegelians and others who insist on real social progress as the only appropriate standard. (I will

return to this at the end of the chapter.)

Finally, still others insist on what I would call an Aristotelian model, recognizing that

academic fields are divided along disciplinary lines, each with its own standards. At least some

of the sciences may meet the standard criterion of progress within limited domains, but most

intellectual endeavors can make only "intensive" or "qualitative" progress, providing no more

than a deeper appreciation of, or new insights into, old truths, traditional arts and crafts, and so

on.

We can now ask whether, in the past twenty years or so, there has been progress, in any of

these senses, in philosophy of technology or in such allegedly more progressive fields as the

philosophy of science and the sociology of science and technology.

Philosophy of Science

I take as my starting point for comparison here the (U.S.) Philosophy of Science Association's

collaborative volume, Current Research in Philosophy of Science (1979), edited by Peter

Asquith and Henry Kyburg. Two articles in the book are illustrative: Noretta Koertge's "The

Problem of Appraising Scientific Theories" (pp. 228-251) and Ronald Giere's "Foundations of

Probability and Statistical Inference" (pp. 503-533).

Koertge says, "Philosophers of science [especially Popperians] have made considerable

progress in providing clear accounts of how to appraise the content and the test record of a

theory" -- and the series of citations she lists may seem impressive to at least sympathetic

readers (though Koertge also adds immediately, "They have had much less success in explicating

complicated mixed appraisals" -- p. 246).

Giere says, "The development and consolidation of the 'subjective' Bayesian account of

statistical inference during the past twenty-five years has been a remarkable intellectual

achievement" (p. 508).This, however, must be balanced against Giere's claim less than a decade

later, in what can only be called a philosophical "conversion" to "naturalized epistemology":

"My skepticism [has] progressed to the point that I now believe there are no special

philosophical foundations to any science [or, in the example above, statistical inferences in

science]. There is only deep theory, which, however, is part of science itself. And there are no

Page 60: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

59

special philosophical methods for plumbing the theoretical depths of any science" (Explaining

Science: A Cognitive Approach, 1988, p. xvi).

As evidence of the current state of philosophy of science in the USA, I can cite two recent

books: Robert Klee's Introduction to the Philosophy of Science: Cutting Nature at Its Seams

(1997), and Joseph Rouse's Engaging Science: How to Understand Its Practices Philosophically

(1996).

Klee's exciting and challenging introductory survey of everything that has happened in the

philosophy of science since the 1930s ends with a chapter on the realism-antirealism debate. At

the end, Klee says, "I have never tried to hide from the reader my realist leanings" (p. 239), and

the main sources he appeals to are articles by Ian Hacking (1983), Richard Boyd (1984), and

Richard Schlagel (1991). Antirealists referred to are Bas van Fraassen, in his The Scientific

Image (1980), and Larry Laudan and Arthur Fine in articles included in Jarrett Leplin's Scientific

Realism (1984). Though Klee seems to be up-to-date in his sources, an attentive reader will note

that the articles cited are not much more recent than Current Research (1979); and the mere fact

that Klee ends with a debate as old as that on realism versus antirealism should give one pause.

Even when (in another chapter) Klee cites a clearly progressive claim -- in Wesley Salmon's

"Four Decades of Scientific Explanation" (1989) -- the reader can quickly check Joseph Hanna's

"An Interpretive Survey of Recent Research on Scientific Explanation" in Current Research and

see that Salmon has added little new in the intervening decade. And Hanna admits that there has

been only limited ("intra-paradigmatic") progress within several different and competing

approaches.

Rouse's book is, if anything, even more troublesome for anyone claiming that recent

philosophy of science has been progressive. Rouse mounts a detailed attack not only on realism

but also on its opponents -- he discusses in detail Larry Laudan (1984), Dudley Shapere (1984),

Richard Miller (1987), and Peter Galison (1987), not to mention Arthur Fine (1986), who is

analyzed and critiqued in chapter after chapter, and a whole raft of social constructionists, but

particularly Harry Collins (1992) -- all in the name of "cultural studies of science," with a heavy

dependence on such feminist critics of science as Donna Haraway. Though Rouse is extremely

careful about uses and misuses of the label "postmodernist," his book is intended to be a

contribution to the right kind of postmodernist critique of scientific progress claims.

Deans and promotion committees are likely to continue to accept publication in Philosophy of

Science and similar journals as unquestionable evidence of contributions to the advancement of

philosophy of science. But as soon as anyone actually reads the articles published there, he or

she will see that their authors have no illusions that the field is any longer even cohesive, much

less progressive in the narrow sense.

From Sociology of Science to Sociology of Scientific Knowledge (SSK)

Page 61: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

60

According to one source (Gaston, 1980), sociology of science as a subspecialty within

sociology only dates back to the 1950s. From the mid-fifties until 1980, the field was dominated

by one giant figure, Robert K. Merton -- though his On the Shoulders of Giants (1965) is an

eloquent defense of the claim that intellectual originators, no matter how creative they may seem,

always owe enormous debts to those who have gone before them. Between the 1950s and the late

1970s, almost all sociologists of science felt that they owed a major debt to Merton. His model of

objective science as requiring the sharing of information, mutual criticism, disinterestedness, and

universalism (disregarding social characteristics in the recognition of the importance of

contributions to science) became the basis of other sociologists' research. As Gaston summarizes

the situation: "The model of a social system of science in which scientists pursue knowledge in a

social environment, hoping and expecting to receive recognition for their original contributions,

provides a multitude of research questions -- what has come to be called 'Mertonian' sociology of

science" (Gaston, 1980, p. 475). This approach continues to have its followers -- most notably in

the various forms of the Science Citation Index and cognate series -- but hardly anyone today

thinks of this tradition when referring to advances in social approaches to the study of science.

In 1979, Bruno Latour and Steve Woolgar published Laboratory Life: The Construction of

Scientific Facts, and a new tradition was launched. One of its principal aims was to undercut the

Mertonian model and the positivist philosophy that was perceived to lie at its core. Since then,

the "sociology of scientific knowledge" -- as the field was renamed to emphasize its focus on the

actual doing of scientific work rather than on allegedly authoritative products of successful

scientific work -- has been perceived by almost everyone in science and technology studies as

one of the most prolific, rapidly advancing fields in all of academia. Joseph Rouse dates the

revolution from the so-called "Edinburgh Strong Programme," associated especially with the

names of Barry Barnes (1974) and David Bloor (1976), and he goes on to list the fragments of

later social constructivism as including "Bath relativism, ethnographic studies, discourse

analysis, actor/network theory, and constitutive reflexivity" (Rouse, 1996, p. 1). But he and

nearly every other commentator treats constructivism as an advancing -- if not monolithic --

field. Indeed, nearly everyone who is not unalterably opposed to it (see Gross and Levitt, 1994)

thinks of the constructivist school(s) as advancing at an amazing pace.

What I want to do here is contrast later with earlier stages of one of these strands, laboratory

studies. If we date this subspecialty in constructivist studies from Latour and Woolgar's

Laboratory Life (1979), it is fairly easy to demonstrate that there have been a large number of

later developments building on earlier ones. In Karin Knorr Cetina's summary in the Handbook

of STS (1995), the developments extend Latour and Woolgar's examples, from Eisenstein (1979)

on the printing press as a social agent of change, to Amann and Knorr Cetina (1990) on image

interpretations in molecular biology, to Henderson (1991) on computer graphics, to Hirschauer

(1991) on sex-change surgery -- to broader sets of examples in Lynch's Art and Artifact in

Laboratory Science (1985) and Latour's Science in Action (1987). (See Knorr Cetina, 1995, p.

155.) Indeed, it sometimes seems that any adequate list would be too long to summarize. (Knorr

Cetina tries, in her 1995.)

It would take a churlish critic to deny that there has been progress here -- and I have not even

referred to advances in actor/network theory and similar approaches.

Page 62: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

61

Nonetheless, even Knorr Cetina as the loyal chronicler of these advances admits that her

favored approach, laboratory studies, has its limits. The most important ones she lists have to do

with their microscopic focus on individual laboratories rather than on consensus building among

larger groups of scientists; and with their failure to account for larger societal contexts that

influence laboratory life (Knorr Cetina, 1995, pp. 161-162).

And of course this does not even mention criticisms by jealous defenders of science's

progressivism (Gross and Levitt, 1994), who view what is alleged to be progress here as no more

than an ever-broadening smear campaign against more and more hardworking scientists.

In concluding this section, it seems fair to say that advances in laboratory studies continue

right down to the present; but it is also fair to say that such studies have their limits and their

critics.

Social Constructivist Studies of Technology

Moving closer to a direct parallel to philosophy of technology, several sociologists (and

sociologically-oriented historians) in the mid-1980s extended their constructivist studies, in an

explicit way, to the study of technology -- usually, of particular technologies.

It was this group of scholars whom Winner was attacking in his paper, "Upon Opening the

Black Box and Finding It Empty" (1991). And representatives of this school have fought

back. (See Bijker, 1993, and Aibar, 1996.)

Wiebe Bijker, in his summary of developments in the field in the Handbook of STS (1995),

traces its roots to Thomas Hughes, the historian, in his masterly study, Networks of

Power: Electrification in Western Society, 1880-1930 (1983). Hughes then combined with

Bijker and Trevor Pinch to edit the book that others often list as the beginning of the new

tradition, The Social Construction of Technological Systems (1987). That does not leave much

time for a great deal of development between 1987 (or even 1983) and Bijker's summary

(1995). Nonetheless, people do perceive the constructivist study of technological systems as a

rapidly advancing field.

But what kind of advance has there been? Bijker and John Law, in Shaping

Technology/Building Society (1992), offer an answer. According to them, technology studies

had earlier been "fragmented":

"There are internalist historical studies; there are economists who are concerned with

technology as an exogenous variable; more productively, there are economists who wrestle with

evolutionary models of technical change; there are sociologists who are concerned with the

'social shaping' of technology; and there are social historians who follow the heterogeneous fate

of system builders" (p. 11).

Page 63: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

62

By the end of the book -- which summarizes the evidence in a somewhat heterogenous

collection of essays, though written by leading figures in the field -- Bijker and Law conclude

that a "first step" has been taken in understanding "that technical questions are never narrowly

technical, just as social problems are not narrowly social" (p. 306).

Back in the introduction, Bijker and Law had summarized the progress made so far:

"The last five years has seen the growth of an exciting new body of work by historians,

sociologists, and anthropologists, which starts from the position that social and technical change

come together, as a package, and that if we want to understand either, then we really have to try

to understand both" (p. 11).

In short, all that Bijker and Law are claiming as advances in the new field so far is that there

has been a "development of an empirically sensitive theoretical understanding of the processes

through which sociotechnologies are shaped and stabilized" (p. 13). But everyone knows that

theoretical arguments are never-ending, and if there is to be any progress in this new field it will

show up in detailed studies that confront theory with evidence. And Hughes had already

displayed that process admirably, in Networks of Power, in 1983.

So where do we stand at this point in our comparative survey?

The new sociology of scientific knowledge, especially laboratory studies, comes closest to the

ideal of science-like progress, with one article building on others in continuous

advance. Paradoxically, however, these studies are narrow and limited, and defenders of science

maintain that, cumulatively, they serve to undermine scientific progress and give comfort to the

enemies of science.

Studies in the new social contructionist approach to technology have so far seen only

theoretical advances -- and every new theoretical formulation is met with challenges, even within

the field.

Philosophy of science today is a battleground, fragmented and splintered not only into

subspecialties, but also setting modernists against postmodernists in seemingly endless

variations. So what started out as the most progressive of science studies fields, in the narrow

sense, now shows advances only in specialty areas and within particular paradigms.

Citation indices document all of these advances, along with advances in the sciences

themselves, but nearly everyone treats them as raw data awaiting a theoretical interpretation.

And what about philosophy of technology? I think the evidence I displayed (at the earlier

outset) supports the claim that this field is just about as progressive (or lacking in progress in the

narrow sense) as any of the comparator fields discussed here.

Conclusion

Page 64: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

63

Are there, then, no advances in science and technology studies -- or at least none that go

beyond qualitative change?

I believe that real though limited progress has been made during the years surveyed here, but it

is not in the academic sense implicit in the conference title, "Advances in the Philosophy of

Technology." To make this point, I can quote Bijker and Law at the end of Shaping

Technology/Building Society (1992):

"When things go wrong, it may not make much sense to blame technologies. Neither does it

necessarily make sense to blame people, nor even . . . economic systems. . . . If we want to make

sense of [technological] horrors -- and more important, do something about them -- . . . what we

urgently need is a tool kit . . . for going beyond the immediate scapegoats and starting to grapple

with and understand the characteristics of heterogeneous systems" (p. 306).

To which I would say amen, but especially to the phrase, "more important, do something

about them." Surely we do need theoretical advances, but even more surely we need to make

more progress in solving the real-world problems of our technological society.

In the very first volume of Research in Philosophy and Technology (1978), I argued for a

social action approach to philosophy of technology (following the lead of the American

Pragmatist philosophers, George Herbert Mead and John Dewey). I repeated that call to action

at the Bad Homburg meeting. And I made my most extensive appeal in Social Responsibility in

Science, Technology, and Medicine (1992). I believe that progressive activists have been making

progress in solving technosocial problems (see McCann, 1986), and there is no reason why

philosophers and other academics cannot join with them. At Bad Homburg, I quoted German

colleagues, Hans Lenk and Günter Ropohl:

"The multidisciplinary and systems-like interlocking of techn(ologi)cal problems requires . . .

the interdisciplinary cooperation of social science experts and generalists, . . . systems analysts

and systems planners. Philosophy has to accept the challenge of interdisciplinary effort. . . . It

has to step out of the ivory tower of restricted and strictly academic philosophy" (Durbin, 1983,

p. 2).

But we must take this plea quite literally, and cooperate not merely with other experts; we

must also cooperate with all sorts of citizens of good will who are seeking progressive solutions

for serious contemporary social problems.

And we must hope that philosophers of science and academic philosophers of technology and

sociologists of science and students of the social construction of technology will do likewise. It is

important to understand sociotechnologies, but it is more important to do something about the

social problems associated with them.

Page 65: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

64

Chapter 8

PHILOSOPHY OF SCIENCE AND SOCIAL RESPONSIBILITY

An astute reader will have noted that, unlike my Social Responsibility book, which was

addressed in large part to technical professionals other than philosophers, here I have been

primarily addressing my invitation to activism to fellow philosophers. As I came to the end of

this collection, I decided to include an essay I had done -- as a keynote address for a conference

labeled "Discovering New Worlds" in 1993 in Puerto Rico -- that was intended to take on the

most difficult of all tasks related to that invitation to philosophers.

In a book devoted to inviting philosophers to join in technosocial activism, academic

philosophers of science would seem to be a most unreceptive audience. It is not that

philosophers of science think that nothing they have to say is relevant to social responsibility.

Alex Michalos (1984), though intially reluctant, did end up — in a widely used summary of

philosophy of science — finding areas of social responsibility relevance. And many of the most

traditional positivist philosophers of science (as explicitly stated by Reichenbach, 1951) saw

their role as defenders of the objectivity of science, which they simply assumed was progressive

or socially beneficial.

I am aware of only one famous foray by a philosopher of science into social activism of a

sort: Michael Ruse's serving as an expert witness in the 1981-1982 "creation science" trial in

Arkansas; and most philosophers of science at the time thought of that foray into activism as a

disaster (see LaFollette, 1982, and Ruse, 1982).

In my experience, most philosophers of science today — even as the field has become

hopelessly fragmented (see the previous chapter and Durbin, 1994) — are satisfied to argue with

one another in about as inbred a fashion as the most academic of academicians. Even so, I want

here to issue a call to activism to them as much as any other philosophers.

One often hears, in philosophy of science as well as other intellectual circles, nasty put-downs

of opponents. Philosophers of science opposed to Thomas Kuhn do not simply object to what

they see as his relativism; they get angry about the matter. (See, for a humorous though serious

example, Laudan, 1990.) Similarly, Joseph Pitt (1990), reviewing the introductory textbook,

Philosophy of Technology, does not just object to Frederick Ferre's approach; he feels the need to

use "harsh words." And the same phenomenon occurs everywhere in scientific and technological

literature, with attacks on others as quacks or charlatans, as "just plain wrong," and so on. (See

Radner and Radner, 1982.)

I understand the passion for truth, the insistence on rooting out error, that motivates these

exchanges. I also understand the motives of recent skeptics who challenge the grounds on which

Page 66: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

65

people take their stand in making such judgments. The issue turns on whether one thinks it is or

is not possible to discover the truth or some warranted-assertability approximation to the truth.

I want to sidestep that issue here. The key word in doing so is "discover." People often claim

to have discovered the truth or to have uncovered an error or a mistake. I do not want to focus on

such (alleged) discoveries, but on discovering, on the process of discovery, on the doing of

science (including biomedical science, science in an engineering context, and other areas of

technical work).

In that arena, it seems to me, there is much more room for a cooperative attitude, for working

together, for seeking commonalities. Focusing on this, with respect to science and technology

policy, emphasizes that these noble endeavors are, above all, human projects. They only work

well if the individuals involved share motives and knowledge bases, communicate, critique one

another's work constructively, and generally collaborate in a common enterprise. And if this is

done well — scientists have always assumed —society will benefit, at least in the long run. Here

I want to shorten that long run, and to focus on possible contributions of philosophers of science

rather than the scientists they study.

Some Samples from the Literature on Discovering

Given the general inclination of philosophers to concentrate on warranted assertions, it might

come as something of a surprise to discover how much has been written, in recent decades, on

the discovery process. There is, of course, the now-vast literature in what is sometimes called the

"sociology of scientific knowledge," and I will refer here to some authors in that tradition (those

traditions). But I refer to a variety of authors from other traditions as well. I have chosen just a

small sample, but I have tried to make it representative of the whole field of science, from

abstract mathematics through the physical and natural sciences to engineering.

a. Mathematics

The first major figure to emphasize the discovering process was the mathematician George

Polya, beginning with his popular and influential handbook, How to Solve It (1957 [1945]). In

1954, Polya published a two-volume study, Mathematics and Plausible Reasoning, where he

says:

"Mathematics is regarded as a demonstrative science. Yet this is only one of its

aspects. Finished mathematics presented in a finished form appears as purely demonstrative,

consisting of proofs only. Yet mathematics in the making resembles any other human knowledge

in the making. You have to guess a mathematical theorem before you prove it; you have to guess

the idea of the proof before you carry through the details. You have to combine observations and

follow analogies; you have to try and try again. The result of the mathematician's creative work

Page 67: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

66

is demonstrative reasoning, a proof; but the proof is discovered by plausible reasoning, by

guessing. If the learning of mathematics reflects to any degree the invention of mathematics, it

must have a place for guessing, for plausible inference" (p. vi).

This is the pattern I want to emphasize here: what Polya does not say explicitly is that the

plausibility/discovery feature is most often found in social collaboration.

b. High-Energy Physics

The sociological historian Andrew Pickering is well known as one of the most extreme

advocates of the so-called "strong programme" in sociology of science. He says (Pickering,

1984, p. 12) the key to his analysis of the dynamics of research traditions in high-energy physics

is a theme he calls "opportunism in context": "Research strategies," he says, "are structured in

terms of the relative opportunities presented by different contexts for the constructive

exploitation of the resources available to individual scientists." Some of the limited resources

that constrain practice are material, such as major pieces of equipment available only at certain

laboratories. But Pickering focuses even more on theoretical resources: "The most striking

feature of the conceptual development of HEP [high-energy physics] is that it proceeded through

a process of modelling or analogy."

Then Pickering points out:

"Two key analogies were crucial to the establishment of the quark-gauge theory picture. As far

as quarks themselves were concerned, the trick was for theorists to learn to see hadrons as quark

composites, just as they had already learned to see nuclei as composites of neutrons and protons,

and to see atoms as composites of nuclei and electrons. As far as the gauge theories of quark and

lepton interactions were concerned, these were explicitly modelled upon the already established

theory of electromagnetic interactions known as quantum electrodynamics."

Pickering then recognizes the role of educational background:

"The point to note here is that the analysis of composite systems was, and is, part of the

training and research experience of all theoretical physicists. Similarly, in the period we will be

considering, the methods and techniques of quantum electrodynamics were part of the common

theoretical culture of HEP."

And he concludes with a reference to analogy as a crucial part of the story:

"Thus expertise in the analysis of composite systems and, albeit to a lesser extent, quantum

electrodynamics constituted a set of shared resources for particle physicists. And, as we shall

see, the establishment of the quark and gauge-theory traditions of theoretical research depended

crucially upon the analogical recycling of those resources into the analysis of various

experimentally accessible phenomena" (Pickering, 1984, p. 12).

Page 68: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

67

Even physics, that most "objective" of fields (according to the traditional view), Pickering is

saying, is determined or at least constrained by numerous background educational and social

pressures.

c. The Plate-Tectonics Revolution in Geology

Ronald Giere has been recognized for two decades as a leader in philosophy of science

focusing on the foundations of probability and statistical inference. Giere (1988, p. xvi) now

thinks his earlier approach was mistaken:

"My skepticism [has] progressed to the point that I now believe there are no special

philosophical foundations to any science. There is only deep theory, which, however, is part of

science itself. And there are no special philosophical methods for plumbing the theoretical

depths of any science. There are only the methods of the sciences themselves."

It was at least partly Giere's study of the fairly recent revolution in geology that led him to this

point. In a series of articles in the early 1980s (e.g., Giere, 1984), and more particularly in his

book, Explaining Science: A Cognitive Approach (1988), Giere has focused on the plate-

tectonics revolution in geology to illustrate his new Quine-inspired "naturalized epistemology"

of science. He concludes his account in Explaining Science (1988, p. 277) this way:

"An evolutionary model of science grounded on natural, cognitive mechanisms removes any

need to feel apologetic in the face of the obvious fact that the approach to a scientific issue

adopted by individual scientists often seems more determined by the accidents of training and

experience than by an objective assessment of the available evidence."

Giere then makes an explicit reference to common sense:

"This is just what one should expect of normal cognitive agents. What sorts of models any

individual will regard as most promising or appropriate will of course be strongly influenced by

which sorts of models have been learned first and used most."

And he denies that there is anything wrong with this:

"This is not irrationality or anything of the sort. It is normal human behavior, and scientists are

normal human beings. Nor does this imply a relativist view of science. The right kinds of

interactions among scientists favoring different approaches, together with extensive interactions

with nature (mediated by appropriate technology), can produce widespread agreement on the

best available approach."

According to Giere (1988, p. 277), "That is the lesson of the 'revolution' in geology for those

who would seek to understand how science works."

Page 69: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

68

d. Genetics

Under this heading, I want to cite two examples. The first is the obvious place to start, with

James Watson's story in The Double Helix (1968). Watson begins that famous account with a

preface:

"Here I relate my version of how the structure of DNA was discovered. In doing so I have

tried to catch the atmosphere of the early postwar years in England, where most of the important

events occurred. As I hope this book will show, science seldom proceeds in the straightforward

logical manner imagined by outsiders" (Watson, 1968, p. ix).

Watson proceeds to illustrate his point:

"Instead, its steps forward (and sometimes backward) are often very human events in which

personalities and cultural traditions play major roles. To this end I have attempted to re-create

my first impressions of the relevant events and personalities rather than present an assessment

which takes into account the many facts I have learned since the structure was found. Although

the latter approach might be more objective, it would fail to convey the spirit of an adventure

characterized both by youthful arrogance and by the belief that the truth, once found, would be

simple as well as pretty."

Watson even points out how pettiness can be involved, while making an allusion to common

sense:

"Thus many of the comments may seem one-sided and unfair, but this is often the case in the

incomplete and hurried way in which human beings frequently decide to like or dislike a new

idea or acquaintance" (Watson, 1968, p. ix).

Watson's account, which caused a stir among interpreters of science at the time, is now over

twenty years old. But others have continued to pursue the path that he sketched out in

historiography as well as in molecular biology.

Recently Karin Knorr-Cetina, a leader among the new breed of sociologists of science, has

(together with Klaus Amann) carried out a fascinating series of studies on image analysis, one of

the keys to the discovery of the structure of DNA by Watson and Francis Crick, and especially

Rosalind Franklin. Knorr-Cetina and Amann (1990, p. 259) begin one report of their recent

studies with the observation that, "Philosophers, historians, and sociologists of science have long

considered writing to be a central part of scientific activities." They admit this is as it should be

but add: "Yet from within scientific inquiry, the focus of many laboratory activities is not texts,

but images and displays."

Knorr-Cetina and Amann then concentrate on talk about images in the laboratory related to

four environments: laboratory practice, invisible physical reactions, the image as it will appear in

future publications, and case precedents in the field.

Page 70: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

69

Knorr-Cetina and Amann (1990, p. 281) conclude:

"Image surface calculations, reconstructions of events in the test tubes of the lab, and remedial

actions designed to transform badly turned-out pictures into showcases of data exemplify the

type of work performed when technical images are inspected in the laboratory. Suffice it to add

that many autoradiographs or other images are not just inspected once, but give rise to several

image-related conversations, and many images are internally related by being predecessors or

successors of others. Thus, instead of looking more or less directly at the laboratory and glossing

the invisible processes therein, participants looked first at other pictures and let themselves be

guided to these processes by the appearance of the pictures."

Knorr-Cetina and Amann make their point explicitly: "The example illustrates that there are

variations on the procedures that participants combine in image dissection" (p. 281). And it is

clear that they think this process is at work in all sorts of image analyses in biomedical research.

e. The Life Sciences Generally

My example here may be less appropriate than others in this listing. David Hull's Science as a

Process: An Evolutionary Account of the Social and Conceptual Development of Science (1988)

reinforces fairly traditional sociological accounts of science as a reward system (see Gaston,

1984), and it claims to describe natural science as a whole rather than just the life sciences. But

the marvelously detailed accounts of competition that Hull includes focus on biologists as the

communities of scientists he knows best. As his title indicates Hull's book concentrates on the

real-life process of science, not some philosopher's abstraction.

Hull ends with the claim that his book was intended as the fulfillment of Thomas Kuhn's and

Stephen Toulmin's earlier projects. Here is a sample of Hull's rhetoric (1988, p. 7) on the way

scientists compete:

"In science, 'weasel words' serve an important positive function. They buy time while the

scientists develop their positions. It would help, one might think, if scientists waited until they

had their views fully developed before they publish, but this is not how the process of knowledge

development in science works. Science is a conversation with nature, but it is also a

conversation with other scientists. Not until scientists publish their views and discover the

reactions of other scientists can they possibly appreciate what they have actually said."

Hull concludes this paragraph with an almost astounding concession, coming from a fairly

traditional philosopher of science:

"No matter how much one might write and rewrite one's work in anticipation of possible

responses, it is impossible to avoid all possible misunderstandings, and not all such

misunderstandings are plainly 'misunderstandings.' Frequently scientists do not know what they

Page 71: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

70

intended to say until they discover what it is that other scientists have taken them to be saying.

Scientists show great facility in retrospective meaning-change" (Hull, 1988, p. 7).

f. Natural Science Generally

Under this heading, I cite three authors.

i) The first, Daniel Rothbart, does not depart much from traditional approaches in philosophy

of science; the article I quote from (Rothbart, 1984) is filled with references to reference,

meaning, and "semantic field theory." But Rothbart's conclusion -- that metaphor is "an essential

aspect of scientific reasoning" -- even he says is at odds with one of the deepest prejudices

positivistically inclined philosophers of science have held, namely, that metaphors, though

indispensable in science, are always ultimately explicable in literal terms.

Rothbart's conclusion (p. 611) is based on the treatment of several examples using this model:

"The function of metaphoric projection is to reorganize the semantic field by introducing new

saliencies into the field by highlighting some features and eliminating others. New attributes are

formed and can be directly beneficial when a conventional field of concepts fails to permit

certain desirable features to emerge. . . .

"If metaphor forms the basis of concept formation, then conceptual problem solving is in

many cases fundamentally metaphoric. Assuming that a conceptual problem is some weakness

within the system of concepts, the gain from metaphor is expansion of the range of possible

features attributable to the subject. This range was apparently too limited with the subject's own

semantic field. When the primary subject is juxtaposed with prototypes from an alternative field,

the metaphoric projection causes a reformulation of the network of similarities and differences."

Rothbart then makes his own explicit contrast with standard philosophy of science:

"Although metaphoric projection would not by itself validate a given hypothesis, it becomes a

matter of rational preference for scientists to reformulate problematic concepts through

metaphor. Its epistemic value arises from expansion of available similarity features" (Rothbart,

1984, p. 611).

ii) My second example here is the well known physicist, physics educator, and historian of

physics, Gerald Holton (see Holton, 1978, 1988). He has introduced into the history of science

literature a tool he calls thematic analysis. Holton claims that a small number of themata —

typically antithetical dyads such as atomicity/continuum or analysis/synthesis, but also an

occasional triad such as constancy/evolution/ catastrophic change — play an extraordinarily

large role in explaining major discoveries in the history of science.

Holton prefaces one of his studies (1978, p. vii) this way:

Page 72: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

71

"Considering the progress made in the sciences themselves over the past three centuries, it is

remarkable how little consensus has developed on how the scientific imagination

functions. Speculations concerning the processes by which the mind gathers truths about nature

are among the oldest and still most prolific and controversial cognitive productions. Unless the

inevitable distortion of near perspective is misleading me, it appears that only in the relatively

recent period have proposals been made that have long-range promise.

"The chief aim of this book is to contribute concepts and methods that will increase our

understanding of the imagination of scientists engaged in the act of doing science."

Later Holton says:

"A finding of thematic analysis that appears to be related to the dialectic nature of science as a

public, consensus-seeking activity is the frequent coupling of two themata in antithetical mode,

as when a proponent of the thema of atomism finds himself faced with the proponent of the

thema of the continuum. . . . The persistence in time, and the spread in the community at a given

time, of these relatively few themata may be what endows science, despite all its growth and

change, with what constant identity it has. The interdisciplinary sharing of themes among

various fields in science tells us something about both the meaning of the enterprise as a whole

and the commonality of the ground of imagination that must be at work" (1978, pp. 10-11).

This imaginative constancy—of competing themes or paradigms—is very different from any

positivist continuity of ever-better theories to account for theory-independent data, new or old.

iii) It is the philosopher Nicholas Rescher, however, who has gone farthest along these lines in

his interpretation of the nature of science. I have in mind especially Rescher's book, Dialectics: A

Controversy-Oriented Approach to the Theory of Knowledge (1977).

Rescher makes a complex case for his view. I cite here only a few short passages from his

concluding chapter:

"This final chapter will explore the prospects of devising a disputational model for scientific

inquiry. The basic idea of such a model is to cast the innovating scientist in the role of an

advocate who sets out to propound and defend a certain thesis" (p. 110).

Rescher contrasts this with progressive claims about scientific evidence, while at the same

time denying any claim that his view would ignore the role of evidence:

"Such an approach to scientific inquiry by no means denies the crucially important role of the

standard considerations regarding the nature of scientific evidence. . . .

"Experimentation plays a central role in this probative process. The devising of experiments to

probe a theory at its weakest points, experiments which might — if their eventuation is suitably

negative — throw serious doubt upon its claims, comes to be an objective that proponent and

opponent share in common. This is so because counter-indicative experimental findings are a

Page 73: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

72

powerful, indeed virtually decisive weapon in the opponent's armory. And on the other hand, the

favorable issue of such an experimental test is a strong asset to the proponent's case" (Rescher,

1977, p. 112).

Finally, Rescher relates his view to claims that Thomas Kuhn and others have made about

historical controversies over scientific evidence:

"Such a dialectical-disputational model of the process of scientific inquiry has many attractive

features in accounting for the actual phenomenology of scientific work. Not only does it explain

the element of competition that all too plainly characterizes the actual modus operandi of the

scientific community. It accounts also for the 'Planck phenomenon' . . . which envisages an old

school of stubborn resistance to scientific innovation that is never conquered in the course of

progress but simply bypassed" (Rescher, 1977, p. 113).

g. Engineering

Billy Koen, an engineer, is one of the few authors of any kind — including historians,

philosophers, and social scientists (for others, see Downey, Donovan, and Elliot, 1989) — who

has discussed the thinking processes involved in actual engineering practice. He starts his little

book on the subject, Definition of the Engineering Method (1985), with an acknowledgement

that almost nothing has been written about engineering method, in contrast to scientific method.

But a major theme throughout Koen's book, and his final conclusion, is that everyone is an

engineer in the sense that he or she must "develop, learn, discover, create and invent the most

effective and beneficial heuristics" or problem-solving techniques to deal with life. Engineers

are just very important examples of social problem solvers in a world dominated by technology.

With respect to engineers, Koen finds that their practice revolves around two things: heuristic

problem solving techniques, and, under this heading, an insistence on using only what is state-of-

the-art. After defining the engineering method in these terms, Koen (1985, p. 41) feels he must

take one final step:

"Defining a method does not tell how it is to be used. We now seek a rule to implement the

engineering method. Since every specific implementation of the engineering method is

completely defined by the heuristic it uses, this quest is reduced to finding a heuristic that will

tell the individual engineer what to do and when to do it."

In a controversial conclusion, Koen seems to reduce engineering to something close to

personal whim: "My Rule of Engineering is in every instance to choose the heuristic for use

from what my personal [state of the art] takes to be the [state of the art] representing the best

engineering practice at the time I am required to choose" (Koen, 1985, p. 42).

Page 74: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

73

But Koen does not mean anything subjective when he says this; he thinks this sort of

engineering state of the art is as common, in a group of engineers at a given time, as the parallel

"common practice" in medicine.

h. Technology Assessment

Arriving at satisfactory engineering solutions — even the best solutions under the

circumstances, given a particular state of the art — does not complete the picture when it

comes to technological practice, however. Too often, as we know sadly enough, technological

developments turn out to have unexpected environmental, social, or political consequences. In

order to deal with these in an orderly, and hopefully in an anticipatory fashion, another technique

has been developed — technology assessment — to aid in the formulation of technology policy

or, more generally, policies for our technological world. Technology assessment, along with its

most common feature, risk/cost/benefit analysis, can be seen as a way of providing decision

makers in government or industry with reasonably objective grounds for their decisions. This is

the final arena I want to refer to in which actual practice differs significantly from idealized

models.

Helen Longino, who has recently gained recognition for her novel social approach to scientific

knowledge (Longino, 1990), had earlier looked at how a real-life technology assessment

works. The specific case she reviews is the workings of the National Research Council's

Committee on Biological Effects of Ionizing Radiation [BEIR], relative to the nuclear generation

of electricity.

Longino (1985, p. 184) concludes that, "The pressure from regulatory and other agencies to

have an answer to questions about radiation hazards may force scientists to compromise even in

the absence of adequate grounds for consensus."

And she contrasts this with the alleged aims of such commissions to provide objective grounds

for decision makers:

"I used to think of this debate as a nice illustration of a view I have developed elsewhere --

that scientific objectivity is a function of the social character of science -- just because the debate

is focused on the background or auxiliary assumptions (the risk models) mediating between

hypotheses and data. I am less sanguine about this today. Certainly the behavior of the National

Academy's panel does not meet conditions for objectivity, such as openness to criticism and

alternate views. Not only does it attempt to impose consensus where there clearly is none, but

the debate is skewed by the exclusion of points of view such as [John] Gofman's [anti-nuclear

views] (Longino, 1985, p. 184).

Postmodern Interpretations

Page 75: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

74

What is going on here? Some people have taken the appearance of these discussions of real-

life scientific and technological practice to signal a wholesale rejection of objectivity in science.

One of the strongest statements of this point of view is to be found in Gayle Ormiston and

Raphael Sassower's Narrative Experiments: The Discursive Authority of Science and Technology

(1989).

Tracing their sources to W.V. Quine, Thomas Kuhn, Paul Feyerabend, Richard Rorty, Michel

Foucault, Jacques Derrida, and Jean-Francois Lyotard (along with Ludwig Wittgenstein and John

Austin), Ormiston and Sassower (1989, pp. 16-17) say that:

"Instead of locating authority in a particular genre or discursive mode, our identification of

discursive displacement attempts to show how the fabrication and deployment of rules is

pertinent to any interpretive experiment. In order to talk about the dissemination of authority, we

have used two rules — 'use creates' and 'all learning is recollection' — rules legitimated by their

use alone. The use of these rules demonstrates the impossibility of fixing in any permanent

fashion the boundaries and limits that constitute cultural matrices."

This claim is made in the context of a still stronger one:

"The metadisciplinary perspective of this text offers a critically comprehensive overview of

the cultural and humanistic context of science and technology. Such an account is not concerned

to provide a hierarchical ordering of science, technology, and the humanities. Instead, it attempts

to undermine any such ordering by demonstrating how science, technology, and the humanities

develop in concert with one another; they are mutually constitutive of one another and their

culture. Science, technology, and traditional humanistic studies, then, are modes of one another"

(Ormiston and Sassower, 1989, p. 14).

Few authors have gone as far as this in claiming that science and technology are humanistic

enterprises (just as, for Ormiston and Sassower, the reverse is true), with all that that entails. But

their sources, especially Feyerabend, Derrida, Lyotard, and Rorty, have clearly tried to

undermine the authority of science in our culture.

Does this imply relativism? In a delightful recent attack on relativism, Larry Laudan (1990)

constructs a dialogue involving a relativist in debate with a positivist (who makes many

references to writings of Carl Hempel), a realist (whose favorite author seems to be Hilary

Putnam, in some of his writings), and a pragmatist (Laudan himself). Laudan (p. xi) says he had

to work hard to make his relativist "clever and argumentatively adept," and he notes how two of

his chief sources for the position, Quine and Kuhn, try to resist the relativist label. But Laudan is

convinced that all these authors — and he would probably now add Ormiston and Sassower to

his list — are relativists, if not explicitly then by implication.

One recent philosopher who is explicitly relativist — as well as being as clever and

argumentatively adept as Laudan could want — is Joseph Margolis in Pragmatism without

Foundations: Reconciling Realism and Relativism (1988).

Page 76: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

75

Margolis first selects out of all the meanings of relativism one that he can defend. It is a

relativism that rejects foundationalism in all fields, including science, as incompatible with what

we know about the limits of human knowing. With foundationalism also goes

transcendentalism, though Margolis is careful to defend the human possibility of deriving certain

transcendent truths within historical contexts.

Enough of that for now, however. As I said earlier, I do not want to get into the relativism

debate here. My message is a much less ambitious one than that.

A More Modest Interpretation: The Art of Doing Science

All the talk, among the authors I have quoted, about the discovery process in science (and

engineering) reminds me of the work I did in an earlier book, Logic and Scientific Inquiry

(Durbin, 1968). What I focused on there, influenced by Norwood Russell Hanson's Patterns of

Discovery (1958; and other writings, e.g., 1961), was a "logic" of discovery.

Nonetheless, I ended with a non-logical characterization of the scientific discovery process

as a loose set of patterns for the resolution of conflict within research communities that in some

ways anticipated the formulations of Ronald Giere, David Hull, and especially Nicholas

Rescher.

I believe I was on the right track in that book (based on my doctoral dissertation) even though

my motivation at the time may seem surprising; it was to follow up on leads in Aristotle and the

Aristotelian tradition in order to arrive at a better understanding of the processes of modern

scientific discovery.

I would like here to return to the Aristotelian tradition once again for some commonsense

hints about how to interpret what the authors quoted here so extensively are saying about the

discovery process in science (and engineering).

In an obscure and seldom-noted passage buried in his systematization of Aristotle's thoughts

on art (Summa theologiae I-II, q. 57, art. 3), Thomas Aquinas points out that even deductive

reasoning requires art or artfulness or craftiness. And this is exactly what we have seen George

Polya claim, hundreds of years later. Although Aquinas has many other things to say about art,

some of which may be helpful in interpreting technology — even modern technology (see

Durbin, 1981) — his treatment of the subject is vague and abstract.

However, there is another obscure and seldom-noted sentence in Aquinas (in the article cited

above) that may suggest how we can be more concrete in interpreting the practice of science (and

engineering). What I have in mind is a passage in which Aquinas equates art with prudence in

two areas, ship navigation and military tactics.

Page 77: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

76

Aquinas is generally quite concrete about what prudence entails (see Summa II-II, qq. 47-56),

though I will not here go into all the details. Among other things, he says that intellectual

practice (in any field) requires the obvious: a good memory, quick wit, good reasoning skills, and

so on. He adds that a lack of good judgment is a fault, along with lack of hard work,

precipitation, lack of foresight and circumspection, failure to consult with and learn from the

experience of others, and especially changing data and failing to bring the process to a timely

conclusion. (Some of these points are already made in Aristotle's Nicomachean Ethics, book VI,

but Aquinas is also systematizing a great many authors, including Cicero.)

I would not want to be misunderstood here. In this matter, I am not treating these classical

authors as authorities. They are simply codifying common sense. It should be obvious to

anyone who reflects on any sort of intellectual practice in any intellectual community that such

virtues are to be encouraged and such bad habits avoided. I refer to Aristotle and Aquinas only

because I first noticed these commonsense hints in their works; others could just as easily infer

them from any of the authors quoted above — from George Polya, fifty years ago, to the most

recent sociologists of science doing anthropology-like studies of laboratory life.

Furthermore, there is an aspect of the matter that is not adequately emphasized by Aristotle

and Aquinas. It is the fact that intellectual activity, especially of a scientific sort, almost always

takes place in communities of scientists, or engineers, and other technical workers. And they

have elaborate sets of beliefs, values, procedures, and techniques.

One of my favorite philosophers, the American Pragmatist George Herbert Mead, is as clear

as anyone on what this implies. Attacking all sorts of individualist epistemologies, from David

Hume to Immanuel Kant to G. W. F. Hegel to Bertrand Russell, Mead uses Russell's sense data

theory to argue that science could never be built up by the accumulation of individual scientists'

experiences. Instead, these experiences must arise within a world taken for granted by the

scientist's community — a world filled with particular meanings, assuming certain laws to be

true and to have been arrived at using certain methods, and so on (see Mead, 1964 [1917]; see

also Kuhn, 1970, pp. 176 and 182-185).

Conclusion

The conclusion I would draw from all of this is that discovery, the process of discovery in

science and other technical fields, is as much a matter of discourse, of intellectual give-and-take,

of cooperation (as well as competitiveness), as in other intellectual communities. There are

differences, of course, but I am here focusing on commonalities.

Furthermore, the communities of scientific and technological researchers exist within broader

intellectual communities; for instance, within universities and interrelated professional societies,

not to mention publishing houses, the media, and so on.

In my view, we should take advantage of these commonalities and foster the awareness, not

only among students but among administrators of all kinds, public officials, and the public at

large that science and technology are above all collaborative enterprises.

Page 78: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

77

In short, competitiveness surely has a place in science and technology, and it can be easily

understood how such competition often gets out of hand. But a focus on discovering, on the

process of discovery, on the day-to-day life of practicing scientists shows how much of the

scientific and technological enterprise is a matter of intellectual teamwork -- at its best

undertaken out of a sense of social responsibility and for the benefit of humankind.

When I first wrote that last qualifier (Durbin, 1994 [actually written in 1993]), about social

responsibility, I was not thinking explicitly about this book and its appeal to philosophers to get

involved in activism on technosocial issues. But the connection between the social-melioration

rhetoric of scientists and my appeal here — for philosophers of science to follow scientists'

example — seems appropriate in the present context.

What I have emphasized throughout the book is that philosophers — and perhaps especially

my fellow philosophers of technology — ought to profess the same noble goals, of serving

humankind, as scientists do. And this seems to me all the more urgent, for both scientists and

philosophers, in our "age of technology," with its myriad social problems.

EPILOGUE

Throughout this book-length set of essays, I have discussed how some philosophers in the

applied philosophy community have gotten involved in activism, and others — perhaps the

larger percentage — have not. In the two chapters where this issue is most directly engaged —

chapter 5 on bioethics and chapter 6 on engineering ethics — I noted a significant difference.

Philosophical bioethicists, as a group, often seem to want to make an impression on fellow

philosophers in academia. Some get more respect for this than others. But where nearly all

philosophers who write about bioethical issues get more respect than anywhere else is in their

socially responsible work on ethics committees or commissions in a great variety of institutional

settings. Some of the best work has been done on national and international commissions, but all

except the most resolutely academic of us who do work in bioethics belong to some sort of

health or healthcare committee in a hospital or similar setting. And what I maintain is that that is

where the best and most socially responsible work is being done.

Philosophers involved with engineering ethics (next) — and such kindred areas as computer

ethics or the ethics of biotechnology — are a different story. The vast majority of real-world

engineering ethics is done by engineers — and especially by a relatively small group of

engineers who have a special concern to uphold the good name of the profession. Some work

with sanctioning committees of technical professional organizations; others with licensing

boards; and so on. Only occasionally do such agencies and groups call upon philosophers for

help. When they do, it is true, they may be referred to those few philosophers in the USA who

have gained renown as contributors to academic engineering ethics; but, in those cases, what

they are often looking for is what one might call legal advice, advice on how to improve codes

of ethics or similar matters. Except for technology assessment boards (where these still exist)

or environmental impact assessment boards, few of these group activities wrestle directly with

Page 79: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

78

the kinds of thorny cases that healthcare ethics committees do. So the activism of academic

philosophers involved in engineering ethics is less direct than that of bioethicists — or so I

have argued in chapter 6.

With respect to the ethics of technology more broadly, the story is different once again —

and the record much more diverse. As I argued in chapter 3, there is a great diversity here

among scholars explicitly identifying themselves as philosophers of technology. Some explicitly

join the engineering ethicists or computer ethicists and attempt to provide better codes of ethics

for practitioners — or, in a slight move toward activism, try to teach future engineers (for

example) who enroll in engineering ethics classes, some of which are required courses in

engineering (or computer science, or biotechnology, etc.) programs. Others eschew ethical

preaching — as they perceive the matter — and are only willing to contribute by serving as

fellow experts in such ventures as technology assessment or environmental impact assessment

teams. Still others think that real change in the ethos of engineering and other technical

professions can only be brought about by political means — ranging from moderate to

progressive to radical. Finally, there are the secular preachers on the "technology question" —

philosophers like Martin Heidegger or Jacques Ellul or Langdon Winner or Albert Borgmann —

who attempt to deal, in one fashion or another, with technological culture as a whole. In my

opinion, all too few of these avowed ethicists of technology have any chance of impacting our

technological society (or particular high-technology societies, such as the United States or the

European Community, or the nations of the Pacific Rim) unless — following the guidance of the

American Pragmatists G. H. Mead and John Dewey — they get involved with progressive

activists attempting to deal with particular technosocial evils in particular locales. (Even if, as

one example, they wish to have an impact on, say, global warming, real reform work must

begin with particular industrial or governmental agencies, usually starting in particular

countries.)

In short, what I have argued here is that philosophers of technology, of whatever stripe,

will need to become activists if they expect to have any impact on the real-world technosocial

problems that they say they are concerned about.

But what about the academic philosophy community more generally?

A careful reader of chapter 8 might conclude that, in spite of my examples there, I really do

not have much hope that academic philosophers of science are likely to become activists in large

numbers. It is too easy to read the ones cited there as exceptions. And in any case they are not

talking about activism on the part of the scientists they describe — only about the human, social,

and collaborative aspects of the scientific discovery process itself. In fact, such a careful reader

would be right; I do not expect to persuade many philosophers of science. Nor do I have much

hope for the academic epistemologists with whom philosophers of science have so much in

common.

Because of perceived links between applied ethics and academic ethics more generally,

some people tell me I ought to expect more from the academic ethics community. After all,

ethics is, by definition, other-directed. If we have moral obligations (no matter how abstractly

Page 80: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

79

rationalized), surely they are obligations to other persons — or, in deference to social

responsibilities, some would add today, to animals or to the biosphere.

All of this is surely true, but what critics of academic ethics in the twentieth century — and

John Dewey was among the earliest — have been most concerned about is academic ethicists'

resolutely theoretical stance. Richard Rorty (1998, pp. 130-131) has caught the spirit of this

critique in his lament about graduate education in analytical philosophy in the last several

decades:

"As philosophy became analytic, the reading habits changed. . . . Fewer old books were

read, and more recent articles. . . . Romance, genius, charisma . . . have been out of style in

anglophone philosophy for several generations. I doubt that they will ever come back into

fashion, just as I doubt that American sociology departments will ever again be . . . centers of

social activism."

But, some will say, countering Rorty, that philosophy in the USA has become amazingly

diverse in the last decade or so (see Mandt, 1986).

What, say, of philosophers of artificial intelligence, of Continental philosophers, of

philosophers of art, social and political philosophers, and so on and on. Are all of those good

people — or all of them who are not activists in the best tradition of American Pragmatism —

are they too to be branded with a charge of anti-activism? Surely not, or I would never have

written this book. Among all these philosophers — well-intentioned for the most part even

when their focus seems mostly to be on their next academic promotion — are to be found the

philosophers who are already doing progressive work with activists outside the academy or

whom I would like to enlist in the adventure.

My only complaint, in that respect, has to do with any academicism — any needless worry

about doing "real philosophy" — that would keep more of them from venturing outside the walls

of academe to get involved in the pressing social ills that vex our technological world. It may be

that we face no more urgent problems today than citizens have in any earlier age, but surely our

world does have problems, very serious problems; and surely those involved in trying to solve

them have a right to expect us philosophers to play our part.

What I hope is that, in the twenty-first century, more philosophers will heed this call than have

in the twentieth century.

Sources:

1. Ludus Vitalis, volume XV, number 27, 2007, pp. 195-197.

Page 81: ACTIVIST PHILOSOPHY OF TECHNOLOGY: ESSAYS 1989-1999 … Bios CVs... · Philosophy of Technology," in Carl Mitcham, ed., Research in Philosophy and Technology, volume 16: Technology

80

2. "Paul Durbin," chapter 5 in Philosophy of Technology: 5 Questions, ed. Jan-Kyrre Berg Olsen

and Evan Selinger (Automatic Press, 2007), pp. 45-54

3. Status unknown; sent 15 July 2008; written in response to invitation for new Ludus Vitalis

forum.

4. This review essay was not written specifically for publication, but I did hope it might lead to a

panel at the SPT 2009 conference in Twente, the Netherlands.

5. "Ethics and New Technologies." In F. Adams, ed., Ethical Issues for the Twenty-First

Century. Charlottesville, VA: Philosophy Documentation Center. Pp. 37-56.

6. Note sent to Ludus Vitalis editor at [email protected]:

This paper has a complex history. I prepared it first for a World Congress of Philosophy panel in

2003, but that panel was later cancelled. I then presented a small portion of the paper at the

Society for Philosophy and Technology international conference in Delft, Holland, in 2005, but

the brief version was turned down for inclusion in the proceedings volume of that conference.

Next I included significant parts within a chapter in my Philosophy of Technology: In Search of

Discourse Synthesis (2007, in Techne: see spt.org). But I still think the whole paper, as originally

conceived and exploratory as it is, has merit; and I also think Ludus Vitalis might be a good place

for it.

7. To appear in D. Goldberg and I. van de Poel, eds., Proceedings Volume from Workshop,

"Engineering Meets Philosophy." London: Springer.

8. To appear in International Science Reviews 33:3 (2008): 225-235?

9. ACM Ubiquity, Vol.8, Issue 45 November 13 – November 19, 2007.

10. To appear in special number guest-edited by Arun Tripathi (general editor is Karamjit Singh

Gill), as "Ethics and Aesthetics of Technologies," in "AI & Society" journal; see details about

"AI & Soc" journal at http://www.springerlink.com/content/102816.

11. To appear in book from Universidad Politecnica de Madrid, "Estudios de la ciencia,

tecnologia y sociedad en la investigacion y la formacion."

12. This appeared in Problemy Ekorozwoju (Problems of Sustainable Development), 3:2, 2008;

in both English and Polish. Note: This essay appeared originally in Jorge Martinez Contreras,

Raul Gutierrez Lombardo, and Paul T. Durbin, eds., Tecnologia, Desarrollo Economico y

Sustentabilidad (special number of Ludus Vitalis, Mexico City, 1997), and only minor cosmetic

changes have been made here.

13. This paper was prepared, by request, for publication in the next issue of Problemy

Eskorzwoju, 4:1, to appear in October.

14. I gave a talk on this theme at the University of Barcelona in May of 2008. It probably came

as close as anything I had done up to that point in putting all the pieces of my approach together.

Unfortunately, in doing so, it became more than a little unwieldy. So, to do a better job, I decided

to build a "globalization" essay around the skeleton of that talk. Then I decided to put together

this new set of my activist essays, with the result that there are here a great many repetitions of

earlier essays; in one case, the wholesale incorporation of essay 12, above, within this one. Still,

I keep it here as a coherent piece. Anyone worried about too much repetition can just skip a

repeat -- possibly checking off in his or her head the earlier essay repeated here.