Top Banner
Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
37

Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acid-Base Equilibria andSolubility Equilibria

Chapter 17

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

Page 2: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

산 - 염기 평형과 용해도 평형

1. 균일 대 불균일 용액 평형2. 완충용액3. 산 - 염기 적정 - 당량점4. 산 - 염기 지시약 - 종말점5. 용해도 평형6. 공통이온 효과와 용해도7. 착이온 평형과 용해도8. 정성분석에 대한 용해도곱 원리의 응용

Page 3: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

The presence of a common ion suppresses the ionization of a weak acid or a weak base.

Consider mixture of CH3COONa (strong electrolyte) and CH3COOH (weak acid).

CH3COONa (s) Na+ (aq) + CH3COO- (aq)

CH3COOH (aq) H+ (aq) + CH3COO- (aq)

common ion

Page 4: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Consider mixture of salt NaA and weak acid HA.

HA (aq) H+ (aq) + A- (aq)

NaA (s) Na+ (aq) + A- (aq)Ka =

[H+][A-][HA]

[H+] =Ka [HA]

[A-]

-log [H+] = -log Ka - log[HA]

[A-]

-log [H+] = -log Ka + log [A-][HA]

pH = pKa + log [A-][HA]

pKa = -log Ka

Henderson-Hasselbalch equation

pH = pKa + log[conjugate base]

[acid]

Page 5: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What is the pH of a solution containing 0.30 M HCOOH and 0.52 M HCOOK?

Common ion effect

0.30 – x 0.30

0.52 + x 0.52

pH = pKa + log [HCOO-][HCOOH]

HCOOH pKa = 3.77

pH = 3.77 + log[0.52][0.30]

= 4.01

HCOOH (aq) H+ (aq) + HCOO- (aq)

Initial (M)

Change (M)

Equilibrium (M)

0.30 0.00

-x +x

0.30 - x

0.52

+x

x 0.52 + x

Mixture of weak acid and conjugate base!

Page 6: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A buffer solution ( 완충용액 ) is a solution of:

1. A weak acid or a weak base and

2. The salt of the weak acid or weak base

Both must be present!

A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base.

Add strong acid

H+ (aq) + CH3COO- (aq) CH3COOH (aq)

Add strong base

OH- (aq) + CH3COOH (aq) CH3COO- (aq) + H2O (l)

Consider an equal molar mixture of CH3COOH and CH3COONa

Page 7: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pure water

0.005/0.005 AcH/Ac buffer

20 mL acetic acid/acetate(5/5 mM) buffer and water,With 0.1M HCl or 0.1 M NaOH

With 0.1M HCl 0.1 M NaOH

Page 8: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Which of the following are buffer systems? (a) KF/HF (b) KBr/HBr, (c) Na2CO3/NaHCO3

(a) KF is a weak acid and F- is its conjugate base buffer solution

(b) HBr is a strong acidnot a buffer solution

(c) CO32- is a weak base and HCO3

- is it conjugate acidbuffer solution

Page 9: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Calculate the pH of the 0.30 M NH3/0.36 M NH4Cl buffer system. What is the pH after the addition of 20.0 mL of 0.050 M NaOH to 80.0 mL of the buffer solution?

NH4+ (aq) H+ (aq) + NH3 (aq)

= 9.20

pH = pKa + log[NH3][NH4

+]pKa = 9.25 pH = 9.25 + log

[0.30][0.36]

= 9.17

NH4+ (aq) + OH- (aq) H2O (l) + NH3 (aq)

start (moles)

end (moles)

0.029 0.001 0.024

0.028 0.0 0.025

pH = 9.25 + log[0.25][0.28]

[NH4+] =

0.0280.10

final volume = 80.0 mL + 20.0 mL = 100 mL

[NH3] = 0.0250.10

Page 10: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemistry In Action: Maintaining the pH of Blood

Page 11: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Titrations( 적정 , 滴定 )

Equivalence point( 당량점 ) – the point at which the reaction is complete

Indicator – substance that changes color at (or near) the equivalence point

Slowly add known titrant to unknown solution(titrand)UNTIL

the indicator changes color

물방울목적 : 당량점을 찾아내는 것

방법 : 종말점을 이용한다

End point( 종말점 ) – the point at which the indicator changes color

Page 12: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Strong Acid-Strong Base Titrations

NaOH (aq) + HCl (aq) H2O (l) + NaCl (aq)

OH- (aq) + H+ (aq) H2O (l)equivalence point

phenolphthalein

phenolphthalein

methyl orange

methyl orange

Page 13: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Weak Acid-Strong Base Titrations

CH3COOH (aq) + NaOH (aq) CH3COONa (aq) + H2O (l)

CH3COOH (aq) + OH- (aq) CH3COO- (aq) + H2O (l)

CH3COO- (aq) + H2O (l) OH- (aq) + CH3COOH (aq)

At equivalence point (pH > 7):

18.919 6.00019.297 6.19519.545 6.39019.707 6.58519.812 6.78019.880 6.97519.923 7.17019.951 7.36519.969 7.56019.980 7.75519.988 7.95019.992 8.14519.996 8.34019.998 8.53520.000 8.73020.002 8.92520.004 9.12020.008 9.31420.013 9.50920.020 9.70420.032 9.89920.050 10.09420.079 10.28920.123 10.48420.193 10.67920.304 10.87420.478 11.06920.754 11.264 equivalence point

phenolphthaleinphenolphthalein

methyl orange

methyl orange

Page 14: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Strong Acid-Weak Base Titrations

HCl (aq) + NH3 (aq) NH4Cl (aq)

NH4+ (aq) + H2O (l) NH3 (aq) + H+ (aq)

At equivalence point (pH < 7):

H+ (aq) + NH3 (aq) NH4+ (aq)

equivalence point

phenolphthalein

phenolphthalein

methyl orangemethyl orange

Page 15: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exactly 100 mL of 0.10 M HNO2 are titrated with a 0.10 M NaOH solution. What is the pH at the equivalence point ?

0.01

HNO2 (aq) + OH- (aq) NO2- (aq) + H2O (l)

start (moles)

end (moles)

0.01

0.0 0.0 0.01

NO2- (aq) + H2O (l) OH- (aq) + HNO2 (aq)

Initial (M)

Change (M)

Equilibrium (M)

0.05 0.00

-x +x

0.05 - x

0.00

+x

x x

[NO2-] =

0.010.200 = 0.05 MFinal volume = 200 mL

Kb =[OH-][HNO2]

[NO2-]

=x2

0.05-x= 2.2 x 10-11

0.05 – x 0.05 x 1.05 x 10-6 = [OH-]

pOH = 5.98

pH = 14 – pOH = 8.02

Page 16: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exactly 100 mL of 0.10 M HNO2 are titrated with a 0.10 M NaOH solution. What is the pH at the equivalence point ?

NO2- (aq) + H2O (l) OH- (aq) + HNO2

(aq)

Initial (M)

Change (M)

Eq (M)

0.05 0.00

-x +x+y

0.05 - x

0.00

+x

x+y x

Kb =[OH-][HNO2]

[NO2-]

=x(x+y)0.05-x

= 2.2 x 10-11

0.05 – x 0.05 x 1.05 x 10-6 = [OH-]

pOH = 5.98

pH = 14 – pOH = 8.02

H2O (l) OH- (aq) + H+(aq)

0.00

y

Kw = [OH-][H+] = y(x+y) = 1.0x 10-14

Page 17: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acid-Base Indicators

HIn (aq) H+ (aq) + In- (aq)

10[HIn]

[In-]Color of acid (HIn) predominates

10[HIn]

[In-]Color of conjugate base (In-) predominates

Red cabbage juice and pH

pH

Page 19: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Indicator Low pH colorTransition pH range

High pH color

Thymol blue (first transition) red 1.2–2.8 yellow

Thymol blue (second transition) yellow 8.0–9.6 blue

Methyl yellow red 2.9–4.0 yellow

Bromophenol blue yellow 3.0–4.6 purple

Congo red blue-violet 3.0–5.0 red

Methyl orange red 3.1–4.4 orange

Bromocresol green yellow 3.8–5.4 blue-green

Methyl red red 4.4–6.2 yellow

Bromocresol purple yellow 5.2–6.8 purple

Bromothymol blue yellow 6.0–7.6 blue

Phenol red yellow 6.8–8.4 red

Naphtholphthalein colorless to reddish 7.3–8.7 greenish to blue

Cresol Red yellow 7.2–8.8 reddish-purple

Phenolphthalein colorless 8.3–10.0 fuchsia

Thymolphthalein colorless 9.3–10.5 blue

Alizarine Yellow R yellow 10.2–12.0 red

Litmus red 4.5-8.3 blue

Page 20: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Which indicator(s) would you use for a titration of HNO2 with KOH ?

Weak acid titrated with strong base.

At equivalence point, will have conjugate base of weak acid.

At equivalence point, pH > 7

Use cresol red or phenolphthalein

Page 21: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solubility Equilibria

AgCl (s) Ag+ (aq) + Cl- (aq)

Ksp = [Ag+][Cl-] Ksp is the solubility product constant

MgF2 (s) Mg2+ (aq) + 2F- (aq) Ksp = [Mg2+][F-]2

Ag2CO3 (s) 2Ag+ (aq) + CO32- (aq) Ksp = [Ag+]2[CO3

2-]

Ca3(PO4)2 (s) 3Ca2+ (aq) + 2PO43- (aq) Ksp = [Ca2+]3[PO3

3-]2

Dissolution of an ionic solid in aqueous solution:

Q = Ksp Saturated solution

Q < Ksp Unsaturated solution No precipitate

Q > Ksp Supersaturated solution Precipitate will form

Page 22: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4.2

Page 23: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Na+ K+ NH4+ Al3+ H+ Mg2+ Ca2+ Sr2+ Ba2+ Cr3+ Fe3+ Fe2+ Co2+ Ni2+ Cu2+ Zn2+ Cd2+ Hg2+ Hg2

2+ Ag+ Pb2+ As3+ Sb3+ Bi3+

CH3CO2- S S S S S S S S S S U S S S S S S S I I S U U I

Br- S S S S S S S S S S S S S S S S S I Ia Ib I D D D

Cl- S S S S S S S S S S S S S S S S S S Ib Ib I D S D

I- S S S S S S S S S I U S S S U S S Ia Ia I Ia S D I

ClO3- S S S S S S S S S U U U S I S S S S S S S U U U

NO3- S S S S S S S S S S S S S S S S S S D S S U U D

CrO42- S S S U S S S Ia Ia U S I I U S Ia I Ia Ia Ia Ia U U U

SO42- S S S S S S Ia I Ib S S S S S S S S D I I I U D D

SO32- S S S U S S I I I I U I I I U I I U U I I U U U

C2O42- S S I I S I I I I S S I I I I I I I I I I U I D

PO43- S S S Ia S Ia Ia Ia Ia I Ia Ia I I Ia Ia I U U Ia Ia U U I

CO32- S S S U S Ia I Ia I U U I I I I Ia I I Ia Ia Ia U U U

SiO32- S S U I I Ia Ia Ia S U U I I U U Ia I U U U Ia U U I

O2- D D U Ib H2O Ia I I S I Ia Ia I I Ia I I I Ia I I I I I

OH- S S U Ia H2O Ia Ia I S I Ia Ia I I Ia Ia I U U U Ia U U D

S2- S S S D S D Ia I D I I Ia I I Ia Ia I I I Ia Ia I D I

Ia Soluble in AcidsIb Slightly Soluble in Acids

H2O Produces water

S Soluble I InsolubleD=Decomposes in

waterU=Compound does not exist or is

unstable

Solubility of Ionic Compounds in Water

Page 24: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Salt Ksp Salt Ksp Salt Ksp

Bromides Carbonates Oxalates

PbBr2 6.6 x 10-6 MgCO3 6.8 x 10-6 MgC2O4 4.8 x 10-6

CuBr 6.3 x 10-9 NiCO3 1.3 x 10-7 FeC2O4 2 x 10-7

AgBr 5.4 x 10-13 CaCO3 5.0 x 10-9 NiC2O4 1 x 10-7

Hg2Br2 6.4 x 10-23 SrCO3 5.6 x 10-10 SrC2O4 5 x 10-8

Chlorides MnCO3 2.2 x 10-11 CuC2O4 3 x 10-8

PbCl2 1.2 x 10-5 CuCO3 2.5 x 10-10 BaC2O4 1.6 x 10-7

CuCl 1.7 x 10-7 CoCO3 1.0 x 10-10 CdC2O4 1.4 x 10-8

AgCl 1.8 x 10-10 FeCO3 2.1 x 10-11 ZnC2O4 1.4 x 10-9

Hg2Cl2 1.4 x 10-18 ZnCO3 1.2 x 10-10 CaC2O4 2.3 x 10-9

Fluorides Ag2CO3 8.1 x 10-12 Ag2C2O4 3.5 x 10-11

BaF2 1.8 x 10-7 CdCO3 6.2 x 10-12 PbC2O4 4.8 x 10-12

MgF2 7.4 x 10-11 PbCO3 7.4 x 10-14 Hg2C2O4 1.8 x 10-13

SrF2 2.5 x 10-9 Hydroxides MnC2O4 1 x 10-15

CaF2 1.5 x 10-10 Ba(OH)2 5.0 x 10-3 Phosphates

Iodides Sr(OH)2 6.4 x 10-3 Ag3PO4 8.9 x 10-17

PbI2 8.5 x 10-9 Ca(OH)2 4.7 x 10-6 AlPO4 9.8 x 10-21

CuI 1.1 x 10-12 Mg(OH)2 5.6 x 10-12 Mn3(PO4)2 1 x 10-22

AgI 8.5 x 10-17 Mn(OH)2 2.1 x 10-13 Ba3(PO4)2 3 x 10-23

Hg2I2 4.5 x 10-29 Cd(OH)2 5.3 x 10-15 BiPO4 1.3 x 10-23

Sulfates Pb(OH)2 1.2 x 10-15 Sr3(PO4)2 4 x 10-28

CaSO4 7.1 x 10-5 Fe(OH)2 4.9 x 10-17 Pb3(PO4)2 7.9 x 10-43

Ag2SO4 1.2 x 10-5 Ni(OH)2 5.5 x 10-16 Chromates

Hg2SO4 6.8 x 10-7 Co(OH)2 1.1 x 10-15 CaCrO4 7.1 x 10-4

SrSO4 3.5 x 10-7 Zn(OH)2 4.1 x 10-17 SrCrO4 2.2 x 10-5

PbSO4 1.8 x 10-8 Cu(OH)2 1.6 x 10-19 Hg2CrO4 2.0 x 10-9

BaSO4 1.1 x 10-10 Hg(OH)2 3.1 x 10-26 BaCrO4 1.2 x 10-10

Acetates Sn(OH)2 5.4 x 10-27 Ag2CrO4 2.0 x 10-12

Ag(CH3COO) 4.4 x 10-3 Cr(OH)3 6.7 x 10-31 PbCrO4 2.8 x 10-13

Hg2(CH3COO)2 4 x 10-10 Al(OH)3 1.9 x 10-33

Fe(OH)3 2.6 x 10-39

So

lub

ilit

y P

rod

uct

Co

nst

ant

(Ksp

) V

alu

es a

t 25

oC

Page 25: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Molar solubility (mol/L) is the number of moles of solute dissolved in 1 L of a saturated solution.

Solubility (g/L) is the number of grams of solute dissolved in 1 L of a saturated solution.

Page 26: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What is the solubility of silver chloride in g/L ?Ksp = 1.6x10-10, M(AgCl) = 143.35

0.00AgCl (s) Ag+ (aq) + Cl- (aq)

Ksp = [Ag+][Cl-]Initial (M)

Change (M)

Equilibrium (M)

+s

0.00

+s

s s

Ksp = s2

s = Ksps = 1.3 x 10-5

[Ag+] = 1.3 x 10-5 M [Cl-] = 1.3 x 10-5 M

Solubility of AgCl = 1.3 x 10-5 mol AgCl

1 L soln143.35 g AgCl

1 mol AgClx = 1.9 x 10-3 g/L

Ksp = 1.6 x 10-10

Page 27: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Page 28: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

If 2.00 mL of 0.200 M NaOH are added to 1.00 L of 0.100 M CaCl2, will a precipitate form? Ksp = 8.0x10-6

The ions present in solution are Na+, OH-, Ca2+, Cl-.

Only possible precipitate is Ca(OH)2 (solubility rules).

Is Q > Ksp for Ca(OH)2?

[Ca2+]0 = 0.100 M [OH-]0 = 4.0 x 10-4 M

Ksp = [Ca2+][OH-]2 = 8.0 x 10-6

Q = [Ca2+]0[OH-]02 = 0.10 x (4.0 x 10-4)2 = 1.6 x 10-8

Q < Ksp No precipitate will form

Page 29: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What concentration of Ag is required to precipitate ONLY AgBr in a solution that contains both Br- and Cl- at a concentration of 0.02 M? Ksp = 7.7x10-13

AgCl (s) Ag+ (aq) + Cl- (aq)

Ksp = [Ag+][Cl-]

Ksp = 1.6 x 10-10

AgBr (s) Ag+ (aq) + Br- (aq) Ksp = 7.7 x 10-13

Ksp = [Ag+][Br-]

[Ag+] = Ksp

[Br-]7.7 x 10-13

0.020= = 3.9 x 10-11 M

[Ag+] = Ksp

[Br-]1.6 x 10-10

0.020= = 8.0 x 10-9 M

3.9 x 10-11 M < [Ag+] < 8.0 x 10-9 M

Page 30: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Common Ion Effect and Solubility

The presence of a common ion decreases the solubility of the salt.

What is the molar solubility of AgBr in (a) pure water and (b) 0.0010 M NaBr? Ksp = 7.7x10-13

AgBr (s) Ag+ (aq) + Br- (aq)

Ksp = 7.7 x 10-13

s2 = Ksp

s = 8.8 x 10-7

NaBr (s) Na+ (aq) + Br- (aq)

[Br-] = 0.0010 M

AgBr (s) Ag+ (aq) + Br- (aq)

[Ag+] = s

[Br-] = 0.0010 + s 0.0010

Ksp = 0.0010 x s

s = 7.7 x 10-10

16.8

Page 31: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

pH and Solubility

• The presence of a common ion decreases the solubility.• Insoluble bases dissolve in acidic solutions• Insoluble acids dissolve in basic solutions

Mg(OH)2 (s) Mg2+ (aq) + 2OH- (aq)

Ksp = [Mg2+][OH-]2 = 1.2 x 10-11

Ksp = (s)(2s)2 = 4s3

4s3 = 1.2 x 10-11

s = 1.4 x 10-4 M

[OH-] = 2s = 2.8 x 10-4 M

pOH = 3.55 pH = 10.45

At pH less than 10.45

Lower [OH-]

OH- (aq) + H+ (aq) H2O (l)

Increase solubility of Mg(OH)2

At pH greater than 10.45

Raise [OH-]

Decrease solubility of Mg(OH)2

Page 32: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Complex Ion Equilibria and Solubility

A complex ion is an ion containing a central metal cation bonded to one or more molecules or ions.

Co2+ (aq) + 4Cl- (aq) CoCl4 (aq)2-

Kf =[CoCl4 ]

[Co2+][Cl-]4

2-

The formation constant or stability constant (Kf) is the equilibrium constant for the complex ion formation.

Co(H2O)62+ CoCl4

2-

Kf

stability of complex

Page 33: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Page 34: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Page 35: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Qualitative Analysis of

Cations

Page 36: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Flame Test for Cations

lithium sodium potassium copper

Page 37: Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemistry In Action: How an Eggshell is Formed

Ca2+ (aq) + CO32- (aq) CaCO3 (s)

H2CO3 (aq) H+ (aq) + HCO3- (aq)

HCO3- (aq) H+ (aq) + CO3

2- (aq)

CO2 (g) + H2O (l) H2CO3 (aq)carbonic

anhydrase