Top Banner
Achieving OPV Efficiency beyond 15% L. Dou, J. You, C-H. Chung, R. Zhu, Gang Li & Yang Yang NSF/ONR Workshop on OPV Arlington, VA - Sep. 20-21, 2012 Dept. of Materials Science and Engineering University of California Los Angeles Email: [email protected] & [email protected]
28

Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Apr 27, 2018

Download

Documents

duongtram
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Achieving OPV Efficiency beyond 15%

L. Dou, J. You, C-H. Chung, R. Zhu, Gang Li & Yang Yang

NSF/ONR Workshop on OPV – Arlington, VA - Sep. 20-21, 2012

Dept. of Materials Science and Engineering University of California Los Angeles

Email: [email protected] & [email protected]

Page 2: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Outline

• Review of OPV research status

• Recent OPV results in UCLA

– Single junction

– Solution process tandem OPV

• Perspective

– What do it take to get 15% OPV cell

– A proposal for 15% solution process solar cell

Page 3: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

I. Status of OPV: Excitements & Challenges

• Fast progress since 08-09

• Double digit era now • Three entities have

Double digit OPV efficiency

• Polymer & small molecule

• Single junction & tandem cell

• Thermal evaporation & solution process

Page 4: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Mitsubishi Chemical – 10.1% PCE Small molecule / Solution process

Closest Published Info. – 5.2%

J. Am. Chem. Soc., 2009, 131 (44), 16048

Page 5: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Heliatek – 10.7% PCE Small molecule/ Vacuum process / Tandem

Closest Published Info. – 6.1%

Adv. Funct. Mater. 2011, 21, 3019

Page 6: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

UCLA – 10.6% PCE Polymer / Solution process / Tandem

Closest Published Info. - 8.6%

a b

Nature Photon. 2012

Page 7: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

7

II.A. Single Junction OPV Materials & Morphology control

Voc Jsc P3HT - BG:1.9 eV Silicon - BG 1.1 eV Solar cell Voc – 0.7 V OPV - too much energy loss

400 600 800 1000 12000

400

800

1200

1600

Irra

dia

nc

e [

Wm

-2m

-1]

P3HT:PCBM

cell response

AM 1.5G Reference

Spectrum (IEC 60904)

Wavelength [nm]

Silicon

SS

SS

SS

SS

SS

SS (100)

(200)

(300) (010)

qxy (Å-1)

0.0 0.5 1.0 1.5 2.0

SS

SS

SS

SS

SS

SS

a-axis

Substrate

200nm

G. Li, Y. Yang et al., NM (2005); Adv. Funct. Mater. (2007).

Page 8: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

8

Examples – Co-polymer With Benzo [1,2-b:4,5-b′] dithiophene (BDT) unit

Mn: 27.4 kDa PDI: 1.8 Eg (Opt): 1.75 eV Voc = 0.92V / PCE = 5.7%

4,7-di-2-thienyl-2,1,3-benzothiadiazole

Thieno[3,4-b] thiophene

Yang Y. et al., Angew. Chem. Int. Ed. 49, 1500 (2010)

Y.Y. Liang et al. JACS. 131, 56 (2009)

400 600 800-10

0

10

20

30

40

50

60

70

EQ

E (

%)

Wavelength (nm)

PC61

BM

PC71

BM

D A

Voc Enhancement

LUMO

HOMO

LUMO

HOMO

Quinoid structure to lower bandgap

BDT unit to enhance planarity & mobility

Page 9: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

PCE: 7 - 8% / IQE > 90% (2010)

9

Page 10: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

II.B. Single Multi-junction Effective way for high efficiency

10

Single junction solar cell efficiency limit – 33% (J. Appl. Phys. 32, 510(1961))

Peter L M Phil. Trans. R. Soc. A

2011;369:1840-1856

Reducing thermalization loss!

R. King et al. Appl. Phys. Lett. 90, 183516 (2007 )

“40% efficient metamorphic GaInP/GaInAs/Ge

multijunction solar cells”

Page 11: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

11

Courtesy of R. King, Spectralab

Page 12: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Tandem Polymer Solar Cells

- +

ITO

300 600 900 1200

0

1x1021

2x1021

3x1021

4x1021

5x1021

0.0

0.5

1.0

Ab

so

rban

ce (a

.u.)

Ph

oto

n D

en

sit

y (

Nu

mb

er

/m2/n

m)

Wavelength (nm)

Solar Spectrum

60% of

solar spectrum

Green polymer absorption

Red polymer absorption

PV1 PV2 n+ p+

12

- + ITO

Regular

Inverted

• Two solar cells with complementary absorption range

• Reduce the “Quantum/Energy Loss” of high energy photons

• Transparent/conductive/robust interconnection layer (ICL)

• Multijunction solar cell compatible with Low-Cost Solution process

Page 13: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

UCLA Tandem research – a Long way Traditional/Regular Tandem Cell

• Absorption range from 300nm to 850nm.

Glass / ITO Substrate

PEDOT:PSS

PSBTBT:PC70BM

P3HT:PC70BMPEDOT:PSS

h

PEDOT:PSSTiO2

Metal Electrode

TiO2:Cs

-+

PSBTBT P3HT

Glass / ITO Substrate

PEDOT:PSS

PSBTBT:PC70BM

P3HT:PC70BMPEDOT:PSS

hh

PEDOT:PSSTiO2

Metal Electrode

TiO2:Cs

-+

-+

PSBTBT P3HTPSBTBT P3HT

13 Sista, S. et al Adv. Mater. 2010, 22, 380–383

1.25V

0.66V 0.60V

PCE(%) Voc (V) Jsc (mA/cm2) FF(%)

P3HT:PC70BM 3.77 0.60 9.27 66.6

PSBTBT:PC70BM 3.94 0.67 10.71 55.8

Tandem 5.90 1.25 7.44 63.2

Page 14: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

PBDTT-DPP based single junction cell

Low bandgap polymer (PBDTT-DPP, Eg=1. 44 eV)

High mobility (3.1×10-4cm2V-1s-1 )

Deep HOMO (-5.3 eV)

6.5 -7% power conversion efficiency (PCE) Nature Photonics, 6, 180 (2012)

Page 15: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Polymer / Solution process / Tandem

a

b

Dou et al. Nat. Photon. 2012

VOC (V) JSC

(mA/cm2)

FF (%) PCE

(%)

Front cell

(P3HT:ICBA)

0.85 9.56 70.2 5.7

Rear cell (PBDTT-

DPP:PC71BM)

0.74 13.5 65.1 6.5

Tandem (NREL) 1.56 8.26 66.8 8.6

Page 16: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

State-of-art Polymer PV

Single Junction

Efficiency = 8.13%

9.31%

Tandem

Efficiency = 10.61%

Page 17: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

III. Perspective on OPV going forward 1. Overcoming Jsc Deficit

17

10.6% polymer tandem OPV - ~60% IPCE

Science, 334, 629 (2011)

12.3% DSSC: 90+% IPCE

Page 18: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Approach: Light trapping Large EQE – IQE gap in OPV

Metal NP scattering @ interface

Excitation of localized surface plasmon

Excitation of surface plasmon polariton

Atwater et al. Nature Photonics (2011)

Page 19: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Approach 2: Interface Engineering

Hongbin Wu, Yong Cao et al. Nature Photonics (2012)

9.2% PCE & ~80% EQE

PTB-7 + PFN +

Inverted structure Glass

ITO ETL

Polymer blend

V2O5, MoO3, WO3

Electrode

Li, Yang et al. APL (2006)

Shrotriya, Yang et al., APL (2006)

Page 20: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Voltage loss in inorganic solar cell Typical: 0.4 – 0.5 eV, min: 0.32eV (GaAs)

R. King et al., Prog. Photovolt.: Res. Appl. 2011; 19:797

2. Overcoming Voc Deficit

Page 21: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Experimental: OPV Voc understanding & Status

Exciton dissociation Non-geminate

recombination

J. Nelson et al., JACS 134, 685 (2012)

Scharber, Brabec et al. Adv. Mater. 18, 789 (2006)

“Good” - EQE > 50 or 60%

Low bandgap

PBDTT-DPP:PCBM

BG = 1.44eV

Voc = 0.74V

Wide bandgap

(a) P3HT:ICBA

(b) PCDTBT:PBM

BG = 1.9eV

Voc = 0.85V / 0.90V

More work to do!

D. Veldmen et al., Adv. Funct. Mater.

19, 1939(2009)

Polymer Voc loss in OPV: >0.6 V

Brabec et al. Adv. Mater. (2009)

Page 22: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

15% is NOT just a dream (Double-junction tandem scenario)

22

15% module ? @ $50/m2 $0.3/Wp @ $75/m2 $0.5/Wp

Simple math:

Same bandgaps & FF as in current 2-junct. OPV

EQE enhancement from 60% to 90% +

Bandgap – Voc offset of 0.7eV

20% double-junction OPV

Page 23: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

3. Beyond Double Junction Tandem What’s the third junction? & Solution process!

Page 24: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

A Fully solution-processed CIS solar cell

•Replacement of sputtered i-ZnO/ITO and better power conversion efficiency than control devices

24

0.0 0.2 0.4 0.60

-10

-20

-30 AgNW/ITO-NP

PCE=10.3%

Sputtered i-ZnO/ITO

PCE=9.35%

Bare AgNW

PCE=1.1%

Cu

rre

nt

de

nsity (

mA

/cm

2)

Voltage (V)

Mo

CuInSe2

CdS

ITO-NPAgNW

CdS

Mo

ITO-NP

AgNW

100 nm

CuInSe2

C.H. Chung, Y. Yang et al Adv. Mater. DOI: 10.1002/adma.201201010 (2012)

Voc(V) Jsc(mA/cm2) Efficiency(%) FF(%)

AgNWs- ITO NPs 0.494 30.11 10.31 69.34

i-ZnO/ITO 0.496 27.42 9.36 68.82

Page 25: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

400 600 800 1000 1200

0

10

20

30

40

50

60

70

80

90

100

EQ

E (

%)

Wavelength (nm)

AgNWs-ITO NPs

Sputter i-ZnO/ITO1.9eV

1.4eV

I II III

Proposal: A Fully solution-processed Hybrid Triple Junction solar cell

Goal - High Efficiency & Low Cost

Page 26: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

26

Organic photovoltaic technology Exciting progress Multiple reports on over 10% Challenges

Multi-junction approach is expected to lead us to 20% cell / 15% module Efficiency

Transparent OPV - an enabling / disruptive technology

Big Challenges & opportunities

Summary

Page 27: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Acknowledgement

27

• UCLA • Jing Gao •Dr. Ziruo Hong (U. Yamagata)

• Solarmer Energy Inc. • Dr. Yue Wu • Dr. Jianhui Hou (ICCAS) • Christine Tsai

• U. Chicago • Dr. Luping Yu • Dr. Yongye Liang (Stanford)

Page 28: Achieving OPV Efficiency beyond 15%web.utk.edu/~opvwshop/files/Yang Yang-Gang Li.pdf · Outline •Review of OPV research status •Recent OPV results in UCLA –Single junction –Solution

Acknowledgement

Thank you!