Top Banner
FABRICATION OF IC ENGINE MODEL AIRCRAFT by ME - 01 Group 5 Team Guided by Prof. Sushmita Dash
52

ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Apr 16, 2017

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

FABRICATION OF IC ENGINEMODEL AIRCRAFT

byME - 01Group 5 Team

Guided byProf. Sushmita Dash

Page 2: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Outline

— Introduction—Literature Review—Forces on Aircraft—Aircraft parts and Function—Motion of Aircraft—Control Technique—Design of Aircraft—Working principle—Advantages and Disadvantages—Cost estimation—Conclusion—References

Page 3: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Introduction

—Our project is fully based upon a Radio Controlled air-craft model. This is nothing but a flying machinecontrolled by a hand held radio transmitter. Here in ourmodel air-craft the important parts to be considered are air-craft model and remote controller.

—Another important aspect in our project is servomechanism. Generally this mechanism is used for errorsensing purposes by transmitting proper signalcommunication chain between the joy stick as well astransmitter connected to the air-craft for a flexible fly.

Give Wings to UR DREAM

Page 4: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

3D layout of our Remote Controller

Page 5: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Different types of aircraftsLiterature Review

Page 6: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 7: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 8: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Mach number

—Mach Number is a speed ratio. 

—It has no unit and dimension.

—The Mach number is a ratio between the aircraft'sspeed (v) and the speed of sound (a).

— It is formulated as:

M = v/a

Give Wings to UR DREAM

Page 9: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Components of IC Engine Aeroplane

—Propulsion system

—Servomechanism

—Transmitter and receiver

—IC engine

—Wheel

—Battery

Page 10: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

What is propulsion?

—Propellere is derived from two Latin words: pro(before or forwards) and pellere (drive).

—A propulsion system comprises of a machine thatproduces thrust to push an object forward. Onairplanes, thrust is usually generated through someapplication of Newton's third law ( action andreaction).

Give Wings to UR DREAM

Page 11: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Servomechanism :

—A servomechanism(servo), is an automatic device thatuses error-sensing negative feedback to correct theperformance of a mechanism.

—They provide actuation for various mechanical

systems to control surfaces on a plane.

—A standard RC receiver sends pulse-width modulation(PWM) signals to the servo.

—When the servo is commanded to rotate, the motor ispowered until the potentiometer reaches the valuecorresponding to the commanded position.

Page 12: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Transmitter and Receiver :

—The transmitter is used to control the plane . Thereceiver receives the signal from the transmitterattached in the plane.

—Frequency determines the line of communicationbetween a receiver and a transmitter.

—Both the transmitter and receiver must be on samefrequency for the plane to be controlled.

—Here we planned for 2.4 Ghz frequency .

Page 13: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Nitro engine

•A nitro engine refers to an engine powered with afuel containing some portions of nitro methane(usually between 10% and 40%) mixed withmethanol .

•Nitromethane is a highly combustible substancegenerally used in very specifically designed enginesand is primarily used almost entirely by itself incertain high-performance classes of automotivedrag racing.

Give Wings to UR DREAM

Page 14: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Types of nitro engine

Give Wings to UR DREAM

Page 15: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Accessories of an Engine

•Glow Plug•Glow Booster•Fuel

Give Wings to UR DREAM

Page 16: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Glow Plug

The ignition is accomplished by heating from a glowplug and the catalytic effect of the platinum within theglow plug on the methanol within the fuel helps to fire.

Give Wings to UR DREAM

Page 17: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Glow Booster

It is used to heat glow plugs .

Give Wings to UR DREAM

Page 18: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Fuel

•Generally nitro fuel is used.

• It contains some portion of nitromethane (usually between10% and 40%) mixed with methanol, with some added castoroil for lubricating .

Page 19: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Use of Aspect ratio

—Aspect ration shows whether a plane is a glider or a

sport plane or a regular flight.

—For sport plane, Aspect ration should be= 5:1 to 6:1

—For glider plane AR= 10:1 to 13:1.

—For regular flight AR = 7:1 to 9:1.

—Aspect ratio is necessary to calculate ‘span and cord’

of a wing.

Give Wings to UR DREAM

Page 20: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 21: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 22: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 23: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 24: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 25: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 26: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Motion of Aircraft

Page 27: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

“Force is equal to the change in momentum (mV) per change intime. For a constant mass, force equals mass time acceleration.”

F= mass . accelerationFrom this relation we know that, if force remains constantacceleration is constant.F= Force =Thrust- drag

Page 28: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Newton Third law:“For every action , there is an equal and opposite re-action.”

Page 29: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 30: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Control Technique

Page 31: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Elevators are flight control surfaces, usually at the rear ofan aircraft, which control the aircraft's pitch, and thereforethe angle of attack and the lift of the wing. The elevatorsare usually hinged to the tail plane or horizontal stabilizer.

Page 32: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

An Aileron (French for 'little wing') is a hinged flight controlsurface usually forms a part of the trailing edge of each wing of afixed-wing aircraft. Ailerons are used in pairs to control the aircraftin roll which normally results in a change in flight path due to thetilting of the lift vector. Movement around this axis is called'rolling' or 'banking'.

Page 33: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

A rudder is a primary control surface used in aircraft that movesthrough a fluid medium (generally air or water). On an aircraft it isused to counter adverse yaw and p-factor(P-factor, known asasymmetric blade effect and asymmetric disc effect, is anaerodynamic phenomenon experienced by a moving propeller,responsible for asymmetrical relocation of the propeller's center ofthrust when aircraft is at a high angle of attack). It operates byredirecting the fluid past the hull or fuselage imparting a turning oryawing motion to the craft.

Page 34: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

A flap generally increase lift as well as drag. They areoften used to steepen the landing approach angle andlet the plane land at a slower touchdown speed. In bothcases, flaps enable using a shorter runway than wouldotherwise be required.

Page 35: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Design of Aircraft

• The body or our plane is made of Balsa Wood.

Why Balsa Wood is used???

•Balsa wood is very light weight.

•It is a low density and non breakable element.

PROPELLER DESIGN1. As we know, if we rotate the propeller once , the plane will

move in forward direction in inches as same as the pitch angle,but there is losses. In our cases it is 40% (manufacturer rating).

2. So, for our requirement we are using 8x6 rating propeller..3. Here, 8 is the diameter of propeller and 6 is it’s pitch angle.

Page 36: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Propeller Design Continue …

•So, by the definition of propeller size if it will rotate acomplete rotation then it will move forward 6”forward. But losses is 40% .

•So resultant displacement in complete revolution for6”(16 cm ) is .096m.

•Our Engine RPM is 17000.•In a minute our propeller also rotate in 17000 times

So resultant displacement done by propeller is17000 x .96 m/minute = 97.92km /hr.

•So in our engine our plane can get max 97.92(98 km/hr) km/hr velocity.

Page 37: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Battery

—Here we are using LiPo Battery .

—As Lipo battery is light weight and has high powerdensity. so we are using lipo battery to power upthe servo that has fitted inside the servo .

Page 38: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Cl = obtained from Aerofoil datasheet=0.9r = Air Density=1.414kg/m3

Vmin=50kmph(at this speed aircraft lift equal to weight)L= W= 2.5 kg (As per our design)

Wings design

Page 39: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Wings design cont.

• By putting all values, as per lift equation, the calculated

area = (A) = S.C = 2017 cm2

• Where, S= span of wings and C = chord of wings

• Aspect ratio (S/C) of our aircraft is = 5:1

• Then S=101cm(approx)

C=20cm

Page 40: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=
Page 41: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Aileron Design

• Aileron area = 0.12 X 2020= 240.4 cm2

• Length of aileron= a= ¼ x 101=25.25 cm• Width of aileron=b= ¼ x 20=5 cm

STABILIZER DESIGN

• Stabilizer Area=p.q= 0.3x2020cm=606 cm2

• Stabilizer aspect ratio = p/q = 3:1• Length of stabilizer = p= 42.63 cm• Width of stabilizer = q= 14.21 cm

Page 42: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

ELEVATOR DESIGN

• Area of elevator = 0.2x 606 = 121.2 cm2 = 122 cm2

• Elevator is fitted on the stabilizer in horizontal manner. Sothe length of elevator is same as the length of stabilizer =47 cm

• So, width of elevator = 122/47 = 2.59 cm• But due to the losses , we take 5 cm.

Page 43: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

VERTICAL FIN DESIGN

• Area of the vertical fin= 1/3 x606 = 202 cm2

• Vertical fin is fitted on the stabilizer in verticalmanner. So the width of the

• vertical fin is same as the width of thestabilizer = 16 cm

• So, length of vertical fin= 202/16 = 12.62 cm

Page 44: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

RUDDER DESIGN

• Rudder area = 1/3x202= 67.33 cm = 68 cm• Rudder is fitted on the vertical fin at last.• Here the width of vertical fin is same as the width of

rudder = 15 cm• So, rudder width = 68/15= 4.53 = 5 cm

Page 45: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

ENGINE AND FUEL

• As per market condition , we are using the 2 stroke Nitroengine .

• Here we are using the Nitro fuel. The Nitro fuel containssome portion of nitro methane (usually between 10 % to40 %) mixed with methanol with some added castor oilfor lubrication.

Page 46: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Working principle

—First we have to rotate the propeller by starter.—Whenever signal is given by RC-Transmitter ,

Receiver receives the signal .—By the help of glow plug , the nitro engine will be

start.—Engine is connected to the plane propulsion system

and the propeller will start rotate faster. So, it willgenerate Thrust and plane will move forward on therunway.—By the help of Flap and Slats , plane will lift up .

Page 47: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Advantages

—Low cost

—Fully automatic level control.

Disadvantages

—Some sorts of mis handling can destroy the aircraft.

—Flying time is low. Maximum 25-30 min.

Page 48: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

COSTESTIMATION

Page 49: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Conclusion

—This presentation describes the design process used by theGandhi Institute for Technological Advancement (GITA),Mechanical Dept., Me-1, Group 5 Team Concrete todevelop an aircraft .

—The goals of this project are to design a low cost poweredremote control model airplane capable of taking picturenamed the Aero-M1516 .

—These goals are achieved using:

• Aerospace fundamentals to design the vehicle .

• Design for Manufacturability to optimize the design for

minimal use of labor .

Page 50: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

References

1) Drela, Mark. “XFOIL Subsonic Airfoil Development System.”12 Feb 2008. p- 1-23

2) Raymer, Daniel. Aircraft Design: A Conceptual Approach 4 thEd . American Institute of Aeronautics and Astronautics. 2006.ch-4 , p- 127- 134

3) Simons, Martin. Model Aircraft Aerodynamics. HemelHempstead : Argus Books, Ltd., 1993, p. 13.

4) Paul K. Johnson (2009-01-21). "Engineering RC Aircraft forLight Weight, Strength & Rigidity". Airfield Models. Retrieved2012-09-06. ch-1,2, 5. p-1-17, 18- 42, 78-90

5) Boddington, David (2004). Radio-Controlled Model Aircraft.Crowood Press. ISBN 1-86126-679-0. Chapter 1. p-1-27

6) Abbott, Ira H. and von Doenhoff, Albert E. Theory of WingSections. New York : McGrawHill, 1959, p. 81-95

7) Katz, Joseph (1991). Low-speed aerodynamics: From wingtheory to panel methods. McGraw-Hill series in aeronauticaland aerospace engineering. New York: McGraw-Hill. P- 234-257

Page 51: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Any Queries???

Page 52: ACFrOgB134NSZV_BkAad18qWBgPqvTPrnGS6eRPsWjeXVHqmnsfy8OSP7T58yNPi01ty38pvQlaUZNYHnnA2kO2US4tJxdgiLVkNjez4Q-a7XRptNJ0NdCJammJScow=

Thank you