Top Banner
2681 Parleys Way Suite 201 Salt Lake City, UT 84109 8017467888 www.seertechnology.com AccuSense ® Chemical Recognition System Sep 2010
36

AccuSense Chemical Recognition System

Sep 12, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: AccuSense Chemical Recognition System

 

 

2681 Parleys Way 

Suite 201 

Salt Lake City, UT 84109 

801‐746‐7888 

www.seertechnology.com 

 

 

 

 

AccuSense® Chemical Recognition System 

 

 

 

Sep 2010 

Page 2: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  2 

 

 

 

 

 

Table of Contents

AccuSense Overview 3

SEER AccuSense Origins and Background 10

AccuSense® Chemical Detection Capabilities 13

AccuSense Value Proposition / Competitive Information 18

AccuSense Features / Functions / Specifications 23

AccuSense Chemical Signature Database(s) 30

AccuSense Frequently Asked Questions (FAQs) 34

Page 3: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  3 

 

AccuSense Overview 

The AccuSense Chemical Recognition System (AccuSense) by SEER Technology, Inc. (SEER) was developed to satisfy first responder requirements for a small, reliable, and portable chemical detection system.  AccuSense will detect, identify, monitor, and accurately display concentration levels of multiple Toxic Industrial Chemicals (TICs) simultaneously on a user‐friendly interface.  The detection capabilities and interface are designed to alert the user when an Immediately Dangerous to Life and Health (IDLH) situation arises.  AccuSense provides quick results (3‐min analysis cycle) and requires no consumables, which limits human interaction with the device during monitoring, response, and/or cleanup.  AccuSense provides more detailed information than ever before about a chemical release situation, making it the ideal solution for first responders in diverse deployment scenarios. 

 

Chemical detection today is typically conducted in one of two ways:  in a laboratory or in the field.  Laboratory instruments usually consist of large, bench‐top devices that often combine two or more detection technologies.  While very accurate, these lab instruments have several drawbacks.  First, they are too large and cumbersome for use in field applications.  Secondly, if one wished to obtain information about a chemical release or hazardous situation, a sample would need to be collected at the area of concern, preserved, transported to the laboratory, and subjected to the analysis process.  As such, no real‐time monitoring information is provided and the potential for improper response actions at the site are heightened.  Furthermore, laboratory‐environment instruments are expensive due to the cost of procurement and assembly and often require personnel with highly technical backgrounds to operate the equipment properly. 

Chemical detection in the field is currently performed through the use of various technologies that are often very specialized in their detection capabilities. The most common technology currently utilized in field instruments is Ion Mobility Spectrometry (IMS), a detection technology that has been in existence for approximately 20‐30 years.  Although widely used, IMS has serious flaws that make it less than ideal for real‐world deployments in the field.  For instance, if multiple chemicals are present in an air stream, say chlorine and sulfur dioxide, an IMS‐based detector in a chlorine and sulfur dioxide environment will not be able to detect both.  The reason is the sulfur dioxide would acquire the charge on the chlorine gas thus rendering it invisible.  This is not a mis‐identification of the chlorine but rather a masking of the chlorine by the sulfur dioxide.  This is a basic limitation of the IMS technology.   The result of this technology limitation is that the detection capabilities of current IMS detectors are very specialized.  Often times, the user is required to switch to a certain detection mode based upon the suspected chemical(s) of interest, leading to a dependency on the user for proper mode of collection.  

Page 4: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  4 

 

Furthermore, IMS‐based detectors often do not have the capability to display concentrations levels of the chemicals present and are poor at distinguishing between chemical mixtures.  The limitations in current field detection technology have led to first responders arriving on a scene needing to know precisely what they are looking for.  Assuming they know the chemical that has been released, they then utilize detectors to determine if that chemical is still present.  But how do they know what concentration of the chemical is present and whether or not exposure to IDLH levels of that chemical has occurred?  What if additional chemicals are present at the release site?  How do they respond when a detector does not have the ability to identify multiple chemicals simultaneously? 

The answers to these questions can be found with the deployment of AccuSense.  The goal in designing AccuSense was to engineer a solution that quickly provided the accuracy of a lab instrument, was field portable, and had the ability to detect multiple chemicals simultaneously.  In addition, the system needed to be easy for an everyday operator to use and interpret the given data without any previous knowledge about chemical detection.  An additional feature that separates the AccuSense system from its competition is the elimination of consumables.  In competitive GC systems there is a need for a reference gas to accompany the design.  This reference channel is compared to the analytical channel.  Typically, canisters of helium, argon, or some other inert gas are used for the reference side of the system.  This requires the necessary change‐out of air canisters during continuous operations in the field and hence additional human interaction in the potential “hot zone.”  Additionally, there is the added cost of continually replacing the reference gas canisters during operations time and time again.  

AccuSense is no different from other GC systems in that a reference channel is needed for its operation; the SEER way around the use of consumables comes in the implementation of conditioned ambient air as the elute gas source.  The use of ambient air as the elute gas removes the need for gas canisters or other consumable materials that add weight, logistic complexity, and cost to the system. 

The AccuSense Chemical Recognition System from SEER performs chemical signature identification based on a database comparison schema – similar to a fingerprint identification process.  SEER uses a Cray™ supercomputer to process a series of very complex algorithms that provide the capability to distinctly separate multiple chemicals – unique chemical signatures that overlay each other in less strenuous analyses.  The chemical signatures created by the Cray are loaded into a software database package that is installed on a SEER‐provided laptop PC and delivered to the customer.  During operation, a complex chemical signature is acquired by the AccuSense, matched to the chemical signature database and displayed via an intuitive user interface on the computer screen. 

AccuSense has the capability to ignore or disregard signatures presented by environmental confusers (dust, diesel fumes, etc.), which therefore enables AccuSense not to be confused when identifying and quantifying the various chemicals found in samples.  Confusers in this case are generally those items that will cause an IMS to malfunction and provide erroneous results.  AccuSense was designed to eliminate these confusers from masking the true results. This makes the AccuSense more useful and effective in dirty or tainted environments and leads to a chemical signature database comparison schema backbone with extremely low levels of false positives.  

Additionally, SEER has developed a proprietary AccuSense Membrane Front End Filter. The goal of the front end filter is to transfer chemicals from a dirty gas stream to a clean gas stream that can be sampled by the Accusense.  The dirty gas stream may contain particulates such as dust, dirt, liquid, fibers, etc.  The front end filter utilizes a silicone membrane to accomplish this task, while a high flow rate on the dirty side cleans the membrane surface. 

 

Page 5: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  5 

 

There are a few factors SEER addresses in the design that include removing or releasing chemicals from mixtures, especially mixtures of water. To accomplish this, SEER reduces the relative humidity at the membrane surface by heating the membrane. The silicone membrane has a variable chemical permeation.  The permeation is most directly affected by the temperature of the membrane.   

In the chemical detection business, it is very important to correctly identify the chemicals and their concentration levels and at the same time avoid any false positives.  A false positive would be a case where a device indicated a chemical was present when, in fact, it was not. 

SEER has created a unique state‐of‐the‐art chemical separation and classification algorithm based partly on an artificial neural network algorithm.  Because the neural network is trained only on known valid chemical signatures (and mixes) that are validated against an Agilent™ Mass Spectrometer, it is inherently robust with respect to false positives. 

An additional design goal for AccuSense was to develop a Graphical User Interface (GUI) that would enable operation and monitoring without the need for highly trained technical operators.  The AccuSense GUI presents a clear, understandable view of what the device is seeing.  It lists the chemicals identified along with their concentration levels on a color‐coded sliding bar scale with a GREEN, YELLOW, RED color scheme to indicate where the concentration levels fall in relationship to the NIOSH IDLH guidelines.  If the bar for a particular chemical identified is GREEN, then there is NO Immediate Danger to Life and Health, if it is YELLOW, the situation should be monitored more closely and if it is RED, there is an immediate problem and appropriate remediation efforts should be taken quickly. 

To provide timely information to the operator, portions of the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards can be accessed via the AccuSense GUI, where the operator can drill‐down into the manual for more information specific to the circumstances. 

 

Page 6: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  6 

 

The deployment scenarios for AccuSense are broad: anywhere there is the potential for a chemical release.  AccuSense will tell the user when there is a problem relative to IDLH and when it is safe to enter an area after cleanup. Whether it be for a HAZMAT first responder, an industrial setting where hazardous chemicals are stored, used, and/or manufactured, integration into an HVAC system for protecting a building or facility, or a variety of other situations where monitoring is necessary for the overall protection of people, AccuSense is the correct choice.  Its accuracy, portability, ease of use, and ability to detect multiple chemicals simultaneously and display their respective concentrations in an easy to use format are second‐to‐none in the world of chemical detection.   

AccuSense completed a field test and evaluation with the Department of Justice National Institute of Justice Center of Excellence for Sensors and Surveillance in late 2009. The NIJ COE report, of which we received a draft copy today, states things pretty well: 

Of  all  the  207  units  listed  in  the  guide  (“Guide  for  the  Selection  of  Chemical  Detection Equipment  for  Emergency  First  Responders”)  only  the  AccuSense  has  all  of  the  following important attributes: 

May be configured to detect all of the TICs listed 

Indicates detection and concentration levels of multiple TICs simultaneously 

o (16 from each air sample) 

The operator does not need to determine what chemical to test for 

Requires no consumables 

The only GC system to operate without a reference gas supplied 

Operates continuously without operator interaction 

o (Hours, days, weeks, months) 

Operates  as:  handheld‐portable,  handheld‐stationary,  vehicle‐mounted  or  fixed‐site system (configurable) 

Requires minimal training 

Detects at one‐tenth IDLH for all detectable chemicals 

Does not require operator calibration 

Measurements are validated against an Agilent™ Mass Spectrometer 

 

   

Page 7: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  7 

 

Specific AccuSense advantages over other detection technologies and products  

The AccuSense will identify up to 32 chemicals simultaneously with the concentration levels of those chemicals – from a single sample.  The probability of ever encountering up to 32 chemicals in a mix is near zero. SEER scientists say that they can think of no situations where more than 6‐8 chemicals would ever be found in a real‐life sample. 

Concentration levels can now be detected into the multiple parts per billion (ppb) range, although the specified sensitivity is 1 PPM.  

The first version of AccuSense is a Toxic industrial Chemicals (TICs) version. The first version of AccuSense will not do CWAs and Explosives and Drugs.  We will not operate at 180° F.  We will not detect 10,000 chemicals simultaneously, and we are not saying we can do these things. Claims like this are a problem that still occurs in the area of chemical detection.  It stems from a question that often comes up namely, what chemicals can AccuSense detect? 

It turns out this is a completely irrelevant question.  The reason is that AccuSense can detect chemicals and have no idea of what the chemicals are.  In fact, AccuSense can detect many chemicals, in that it sees a signature from all chemicals it detects, but unless they match up to a chemical signature in our AccuSense database, they are unknown and cannot be identified without a lot more follow‐on activity in the lab.  The real question is, can AccuSense identify what the chemical is?  This is a much more difficult problem, and AccuSense addresses this problem better than any portable device on the market.   

The AccuSense Dual Hyphenated GC technology gives AccuSense superior chemical footprint separation by running first through the polar GC and then running the output from the 1st GC through the 2d Non‐polar GC.  In addition to this clear separation, the Neural Net analysis of the 500+ data points gathered for each chemical signature looks at those data points in a two‐dimensional perspective, thus significantly decreasing the possibility of one chemical signature being the same as the 2d chemical.    

The combination of these two capabilities significantly reduces the likelihood that interferents (environmental confusers) will be able to hinder our capability to separate out different chemical signatures.  In the case of interferents (environmental confusers), AccuSense will recognize them for what they are, but since they are not everything we are looking for and able to separate, they do not hinder our ability to recognize the other chemicals in the mix.  This same double separation capability also leads to extremely low false positive and /or false negative findings.   

In addition there is an issue of masking with other systems ‐‐ specifically IMS systems.  These systems can see many chemicals.  The only problem is that in the presence of multiple chemicals, one chemical will almost always mask other chemicals present at the same time.  The AccuSense was designed to identify the different chemicals and perform this identification while several other chemicals are present at the same time. 

   

Page 8: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  8 

 

IMS solutions have been around for decades and the only new improvements involve doubling up IMS systems and adding other kinds of detectors to the same device, but which still do not ‘fix’ the basic problems of IMS‐based systems.   

They are easily confused by interferents  

They cannot distinguish between  high proton affinity elements and lower proton affinity elements, so they can completely miss deadly chemicals (like Cl2) that might be present in a sample – if they had lower proton affinity, while recognizing and identifying a relatively harmless chemical with a high proton affinity (like SO2). 

Often they cannot provide concentration levels of chemicals they can detect, so you don’t really know for sure if your situation is dangerous or not 

Because they cannot identify all chemicals present, what if there are deadly chemicals present that they miss?  How could you ever feel confident that you are safe using limited capability equipment like that?  

The first version of AccuSense can detect chemicals based primarily on the boiling points of the chemicals.  The range we have chosen to implement in the first version encompasses a significant number of TICs chemicals, thus we have designated it as the AccuSense TICs device. The AccuSense can be configured to deal with chemicals with other ranges of boiling points, and thus this core AccuSense technology can be modified in the future to focus on CWAs, Explosives, Drugs, etc. 

The AccuSense TICS unit ships with a core TICs library of 21 of the most deadly and easily obtainable TICs as identified on various lists composed by various companies and agencies.  That core 21 chemical signature database is customizable by customers with other TICs/TIMs within the range showed later in this document, that could be added to the chemical signature database before leaving the factory, or by field‐upgrade through a download from a secure Internet site. 

Chemical signature databases are available in increments of 32 signatures.  However, should the need arise; AccuSense has the capability of transparently to the user, serially searching multiple chemical signature databases.  So if a chemical is not identified from the first database searched, the AccuSense will continue searching through any other databases present looking for a match – all transparent to the user, so in effect, AccuSense has the capability of identifying hundreds of chemicals – with a single AccuSense.   

The AccuSense requires a couple of hours of training of a relatively non‐technical person to put it into effective operation.  After that training, there is very little human intervention required – turn the device on, let it warm up for 10 minutes and it will automatically capture new samples from the ambient air and provide analysis results in a very user‐friendly fashion, every three minutes – as long as it has power.  It requires no consumables, no calibration (although calibration kits can be ordered as an optional feature), no scientists, and will visually and audibly alert the user to any problems or dangerous situations – based on Immediate Danger to Life and Health guidelines ‐ that it detects. It will even provide guidance on what remediation activities to execute through its drilldown capability to the online version of the NIOSH Pocket Guide to Chemical Hazards, which is part of the AccuSense standard user interface. 

Another distinguishing feature of AccuSense is that it is truly a lab capability device offered in a hand‐held portable device.  It is both a fixed position continuous monitoring device – and a point detection device 

 

Page 9: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  9 

 

 

 

AccuSense Highlights 

Detection and identification of up to 32 chemicals simultaneously with one portable device 

Comprehensive field‐upgradeable chemical database of TICs 

Accuracy from 1 PPM into PPB range, chemical dependent  

Very low rate of false positives / false negatives 

Operates on a 3‐minute sample cycle with limited human interaction 

Continuous operation and/or point detection capabilities 

Does not require consumables  

User‐friendly GUI eliminates the need for highly technical operators 

Example Solution Requirements Favoring AccuSense Implementation 

Solution must provide identification and concentration levels of chemicals detected 

Solution must be able to simultaneously identify numerous chemicals and their concentration levels from a sample  

Solution must provide ability to add/update chemical signatures to the database  

Solution must run largely unattended (dependant on power availability)  

Solution must run continuously, with very little down time 

Solution must provide stand‐off (remote) operational monitoring and alarm capability with a user‐friendly interface that does not require highly technical operators 

Solution must operate 24x7 with no consumables, i.e., elute gas canisters or cartridges, sample bags, injectors, filter replacements, etc. 

 

Page 10: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  10 

 

SEER AccuSense Origins and Background 

“Having no detector is better than having a poor detector” 

Gary Bodily, SEER Technology, Chief Technology Officer 

 

This is the conclusion Gary Bodily reached after a fifteen year career at the U.S. Army Dugway Proving 

Ground where he was dedicated to the mission of conducting testing, training and operations 

assessments following the highest scientific and technical standards. 

Gary’s experience at Dugway proved to him that the state‐of‐technology chemical detectors available to 

him provided information that was incomplete to the point that decisions made based on this 

information ran a high probability of being wrong. To Gary this was unacceptable for key tools in a 

“keeping the population safe” mission. 

Gary’s experience was that detectors designed to detect a pre‐determined chemical set only provided 

decision makers with a binary data set – yes or no – a gas had been detected ‐ and even this data set 

had a high probability of being inaccurate. The key information of what had been detected and how 

much was in the atmosphere was not available to him. For Gary, “not providing information about all of 

the chemicals present is of little value and can potentially exacerbate a dangerous situation”.  

The paradigm needed to be shifted from asking the question:  “Is there X in the air?” to making the 

statement: “The air contains A, B, C … X, Y, Z at these concentrations.” To achieve this objective, Gary 

envisioned a broad spectrum detector that was designed to be a non‐biased estimator of chemical 

composition. With accurate identification of multiple chemicals and by providing the concentrations of 

those chemicals at low detection limits, a high value response decision could be made.  

In 2005, realizing that the private sector offered the best opportunity to achieve his vision, Gary left 

Dugway and teamed with fellow chemical detection and analysis expert Neil Arnold and businessman 

Lance King to found the company that would become SEER Technology in 2008. In 2008, Kurt Dobson, 

an IEEE Engineer of the Year in 1997/1998, and Dr. David Dobson, winner of the Felix Klein prize from 

the European Mathematical Society in 2000, joined SEER to develop the neural network algorithms for 

processing chemical spectra data that proved key to productizing the AccuSense Chemical Recognition 

System.  Fred Gallander, CEO, also joined the company in 2008, providing invaluable capital and the 

experienced business leadership acumen required to bringing products to market.     

Design parameters for AccuSense included: 

Un‐biased detection, identification and analysis capability across families of chemical compounds, i.e., Toxic Industrial Chemicals (TICs) 

Highly accurate analysis with results presented in a time frame and a context that maximized the value of information 

A portable form factor that could be deployed as a simple‐to‐use field utility device 

A flexible hardware and software architecture to respond to the differing requirements of the end‐user community 

Page 11: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  11 

 

 

 

 

AccuSense Chemical Recognition System 

Gas chromatography was identified as the only chemical analysis technology capable of meeting these 

parameters. The challenge was turning what was almost exclusively a laboratory device into a field 

utility device. To do this, the design team developed proprietary solutions in the following six key areas: 

Technology 

SEER solution:  Dual‐Hyphenated Gas Chromatography (DHGC) chemical separation technology that implements a patented GC winding methodology and provides 2‐Dimensional analysis of gases 

Benefit:  Maximizes chemical separation to minimize false positives and allows for implementation in a small, lightweight, low‐cost package  

GC Valves 

SEER solution:  Eliminate typical GC valves by designing a patented manifold that prepares samples for analysis without bulky and expensive valves and eliminates moving parts along the analytical path 

Benefit:  Major cost reduction with no performance impact 

Elute Gas 

SEER solution:  Eliminate the need for a consumable elute gas by enabling the use of ambient air for this function 

Benefit:  Remote fixed continuous monitoring without the need for human interaction with the device  

 

Page 12: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  12 

 

Sensors 

SEER solution:  A patented thermal sensor for chemical identification after separation portion has been completed 

Benefit:  Enables a broad spectrum of chemicals to be analyzed while maximizing the accuracy of the DHGC separation system 

Analysis Integrity 

SEER solution:  Proprietary algorithms implemented using neural network technology to de‐convolute detector response from input 

Benefit:  The mathematical characterization of chemical compositions as 3D pictures significantly reduces false positives and negatives and enables the creation of unique, high integrity chemical signatures for identification and quantification of detected compounds  

Context 

SEER Solution:  Integrated communications capability to transmit AccuSense data to a remote PC monitor hosting the AccuSense Graphical User Interface (GUI) that displays analysis results in a format that is of high value to the end user  

Benefit:  Availability of high value information in easy‐to‐read graphical format, separate from the detection process, enables remote monitoring and enhances usability (No PhD required) and deployment options  

 

The first release of AccuSense addresses Immediately Dangerous to Life and Health (IDLH) chemical 

detection applications and implements a chemical signature database based on the most readily 

available and hazardous to human health TICs. 

The chemical detection paradigm has shifted; no more does chemical detection mean linear observation 

against a predetermined data set. AccuSense brings end users high value decision information 

generated by multi‐dimensional analysis of chemical composition against a database of high‐integrity 

chemical signatures.  

 

   

Page 13: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  13 

 

AccuSense® Chemical Detection Capabilities 

The value of a detection event is determined by the capability to identify the detected compound(s), 

measure their concentration levels, and display this data in a context meaningful to the end‐user in a 

short time frame and with a high level of accuracy.  

 

AccuSense Detection Technology 

In the chemical detection world today, detectors can be classified into one of the following categories: 

0 Dimensional – A detector can detect if chemicals are present, but cannot identify which chemicals are present 

1 Dimensional – A detector can detect, identify and provide concentration information for a particular chemical 

2 Dimensional ‐ A detector can detect, identify and provide concentration information for multiple chemicals 

The following is a real‐world analogy of the problem at hand:   

In a room full of people you are tasked with finding Ted.  You are told that he is 6’3” tall.  You look around the room and you see that there are 3 people that you estimate are 6’3” tall, however, with this limited description information, you cannot tell with certainty which one is Ted.  You then receive another piece of information.  Ted has black hair.  You search again, but you find that 2 of the 6’3” gentlemen have black hair.  

It is easy to see that the more information that is provided about “Ted”, the easier it is to separate him from others in the room.  Additional information leads to better separation capability and therefore increased certainty in identifying the person (or chemical) of interest. 

The problem of separating different chemicals to obtain a unique signature, or graphical representation of those chemicals, with a maximum degree of certainty is similar: 

To identify 2 or more chemicals with 1 common nearly identical parameter is easy 

To identify 2 or more chemicals with 2 common nearly identical parameters is very difficult 

To identify 2 or more chemicals with 3 common nearly identical parameters is incredibly difficult 

 

 

 

 

Page 14: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  14 

 

AccuSense is a 2‐Dimensional Detector 

AccuSense utilizes Dual Hyphenated Gas Chromatography (DHGC) technology to obtain a more effective separation of chemicals and hence performs its data analysis on two independent parameters (Polar vs. Non‐Polar).  Additionally, a third parameter is currently in the research and development phase. 

Parameter 1 – Polarity  o While this is often a good initial separation technique, it is sometimes not enough, as, 

for example,  Acetone and Phosgene have very similar dipole moments of 2.91D and 1.17D, respectively 

Parameter 2 ‐ Boiling Point o By obtaining additional information from a second parameter (boiling point), Acetone 

(133°F) and Phosgene (47°F) are more easily separated  

Parameter 3 – Pre‐Concentrator Packing Material o Still in R&D, but very feasible with AccuSense architecture 

Upon gathering hundreds of data points related to the parameters listed above, proprietary neural network algorithms analyze matrices of these data points and develop unique chemical signatures for each chemical.  By taking the two independent variables and creating a third dependent variable, the AccuSense Signature is created.  The more unique the parameters for a particular chemical are, the easier it is for detection, identification, and quantification of that chemical.  The 3D mathematical representation of the chemical signature for Methyl Ethyl Ketone (MEK), which is done through the utilization of MATLAB® software on a Cray® supercomputer at SEER offices, is shown below:  

 

     

3D Representation of MEK 

 

Page 15: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  15 

 

These chemical “signatures” are collected with known chemicals at known concentrations at the SEER laboratory facility, run through the neural network training process, and are ultimately stored on the AccuSense PC in the chemical signature database. Chemical signature database updates will occur on a quarterly basis and will not require hardware updates.  

AccuSense Chemical Signature Database  There is a theoretical limit of 32 chemical signatures per AccuSense database, but multiple databases can be loaded and searched in a fashion that is transparent to the user.  There may be additional variables such as storage, processing, and communications limitations that could be a factor when running multiple units and searching multiple serial databases.  Note also that each version of the AccuSense is designed with internal hardware to detect and identify chemicals that fall within certain physical properties, i.e., within a range of boiling points.   

A single AccuSense device will never detect and identify ALL chemicals, rather a single AccuSense will detect and identify many chemicals with certain or similar properties and another version of AccuSense will detect and identify many chemicals with other differing characteristics.  Due to its ability to detect, identify, and quantify organic and inorganic chemicals, AccuSense is a broad‐spectrum Chemical Recognition System, but not a single solution for all chemicals.  

The initial production version of AccuSense is geared towards the detection of Toxic Industrial Chemicals (TICs).  SEER chose 21 of the most readily available and hazardous TICs, eight of which are included on the “High Hazard TICs” list according to the NATO International Task Force 25 (ITF‐25), which ranked chemicals according to their hazard index and potential use as chemical weapons.  Why did SEER choose only 21? We had to start somewhere. SEER has presented the AccuSense Chemical Recognition System in front of many diverse audiences across multiple applications, none of whom could identify the number or which specific list of chemicals that would satisfy their applications.  SEER is currently conducting a field survey of what chemicals, dangerous or otherwise, have been most typically encountered during HAZMAT responses over the past 3 years. Upon compilation of the list, signatures will be gathered for additional chemicals to be incorporated into the AccuSense chemical signature library.     

Chemicals that the AccuSense Architecture Cannot Detect The AccuSense gas columns (GCs) use conditioned ambient air as an elute gas source. This proprietary technology eliminates the need for consumables and enables AccuSense to be deployed in a fixed network where it can function without human intervention.  Since the surrounding atmosphere serves as the elute gas, however, this means that fixed gases such as nitrogen (N2), oxygen (O2), and carbon dioxide (CO2) will not be part of the universe of chemical gases detected by the AccuSense unit.  

Resistance to Typical Environmental Confusers 

Due to the separation capability inherent to the DHGC technology, environmental confusers that are typically a nuisance to users of competitive products using out‐of‐date technology are insignificant to AccuSense.  Often times, common household substances such as Windex or commonly introduced fumes such as diesel exhaust cause detectors to alarm with false positives.  The money spent on unnecessary response due to a false positive reading can be devastating.  With that in mind, SEER engineers devised a way to separate chemicals efficiently and only look at the chemicals of interest in the background neural network algorithms.  This way, if an environmental confuser is present along with chemical(s) of interest, the confuser signature is essentially thrown away and only the chemical(s) of interest are displayed to the user. 

Page 16: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  16 

 

The AccuSense Graphical User Interface (GUI) 

The AccuSense GUI is yet another differentiator that helps AccuSense stand out from other chemical detection systems.  AccuSense is a very sophisticated lab quality piece of equipment that just happens to be portable and field deployable.  This would not be very useful if you had to drag a Ph.D. around with the device to interpret the results.  A representation of the AccuSense GUI Unit Reports tab is shown below: 

 

 

AccuSense Graphical User Interface Unit Reports Tab 

 

   

Page 17: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  17 

 

AccuSense presents analysis information in a clear, concise, and understandable fashion.  Features of the software include: 

Unit Health Status – continually monitors variables of individual units and warns user if out of specification 

Chemical Concentration Display – displays chemical concentration levels and automatically ranks the chemicals detected based upon their hazard level 

Sliding Bar Scale – visually represents the concentrations of chemicals detected relative to published Immediately Dangerous to Life and Health (IDLH) values 

Color‐Coded Data Sets and Unit Names – allow the user to quickly identify when a device or particular data set is of concern 

NIOSH Pocket Guide Drill‐Down – automatically links the user to the Pocket Guide to Chemical Hazards and provides additional information related to personal protection equipment, chemical and physical properties, etc. 

Like the AccuSense hardware platform, the GUI software architecture is flexible and easy to modify to enhance its usefulness in other detection applications such as Time Weighted Average (TWA) or any other notification level of interest. 

The AccuSense was built with the end‐user field personnel in mind and the GUI was designed for that audience as well with accurate and useful information presented in a clear and concise manner.  

 

What can AccuSense do for me? 

AccuSense Signatures enable a chemical detection paradigm shift from “Is there X in the air?” to “The air contains A, B, C… …X, Y, Z at these concentrations.”    AccuSense brings end‐users high‐value decision information generated by multi‐dimensional analysis of chemical composition against a universal database of high‐integrity AccuSense Signatures.   

   

Page 18: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  18 

 

AccuSense Value Proposition / Competitive Information  What is valuable to the chemical detection mission? 

Time is valuable 

Information is valuable 

Making the right decision is valuable  

Providing high value information in real‐ time in a meaningful context that supports making the right 

decision is the value proposition presented by AccuSense.  

The present detection technology status quo does not provide timely, high value information.  

No matter the application, Hazmat, Occupational Industrial Hygiene, Environmental Health & Safety, 

military or civilian first responder, when the mission is “population safe” the need is for high value 

information. AccuSense technology removes the barriers to timely high‐value information enabling 

decisions that can save lives.  

The Low Information Environment  

The present linear detection model asks, “Is there chemical X‐Y‐Z in the air?” resulting in a low 

information environment for responding officer.  This model leaves unanswered questions such as: 

I see that X is in the air and no Y or Z ‐ are there chemicals A‐B‐C present that I do not see? 

When chemicals X and Y are similar in nature and I identify X, is there also Y present that I do not see due to masking? 

Are environmental confusers present so that I see nothing or make wrong chemical signature identification? 

Am I getting a false negative or a false positive? 

Am I certain about what I am seeing?   

Am I seeing this information in a time frame that enables a high value decision?   

These are the low information environments that many practitioners now work in when they are 

deployed. 

Moving To a High Information Environment 

How do we move to a high information environment? How does the gap between low and high 

information environments get filled?  One word: Separation 

The barrier to a detection model that says “The air contains A, B, C … X, Y, Z at these concentrations” is 

the separation of chemical spectra. 

 

Page 19: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  19 

 

With never before obtainable separation of chemical spectra we go from the world of fuzzy to the world 

of clear and we go from low confidence to high confidence. If we can be certain of what we are seeing, 

then we can: 

Create a methodology for defining chemical signature databases 

Be certain that we are seeing ALL the chemicals present that are included in the chemical signature database 

Eliminate any confusion from environmental confusers 

Be certain of what we are seeing, no false results 

Operate in real‐time sampling time frames (3 minute sample cycles) 

Detect – Identify – Quantify multiple chemicals from the same sample  

The AccuSense Solution to Separation  

AccuSense is a new generation of detection technology that breaks through the chemical separation 

barrier. The AccuSense architecture combines dual‐hyphenated gas chromatography (DHGC) hardware, 

thermal detection technology, and neural network software algorithms to build a 3 Dimensional view of 

a chemical signature, which is unlike any current field portable gas/vapor analyzer on the market today. 

Dimension #1:   o Polarized GC Colum #1 – What am I seeing? 

Dimension #2:   o Non‐Polarized Colum #2 – Confirm what I am seeing and show me what I might have 

missed from the polarized view Dimension #3:   

o A mathematical signature definition – Confirm what I am seeing  against a database of known signature definitions 

 

 

External Source

AccuSense Signature Acquisition

Confirm Chemical Spectra Mathematical Separation & Definition

AccuSense Signatures

AccuSense Signature DatabaseChemical Spectra

FTP

SEER Neural NetworkAgilent Mass Spectrometer

SEER Lab Source

FTP

Page 20: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  20 

 

The AccuSense Signature – The How for Identification and Measurement  

Transforming Gas Chromatography from a laboratory science to a field utility device is a remarkable 

technical accomplishment in itself. However, it is the creation of an artificial intelligence‐based 

methodology using neural network science to generate definitions of chemical spectra that enables the 

third dimension in the separation, faultless identification and accurate measurement of chemical 

concentrations. 

Upon gathering hundreds of data points related to the parameters listed above, proprietary neural 

network algorithms analyze matrices of these data points and develop unique chemical signatures for 

each chemical.  By taking the two independent variables and creating a third dependent variable, the 

AccuSense Signature is created.  The more unique the parameters for a particular chemical are, the 

easier it is for detection, identification, and quantification of that chemical.  The 3D mathematical 

representation of the chemical signature for Methyl Ethyl Ketone (MEK), which is done through the 

utilization of MATLAB® software on a Cray® supercomputer at SEER offices, is shown below:  

 

     

3D Representation of MEK 

To create this picture a baseline is established using an Agilent® mass spectrometer and applying 

dilution standards for samples. From this baseline the neural network is trained to create the 3D 

Signature (picture).  

 

Page 21: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  21 

 

The AccuSense Signature database resides on the AccuSense PC monitor.  Having completed the 2 

dimensional separation in the AccuSense instrument, chemical spectra are communicated to the PC 

monitor where they are compared against the AccuSense Signature database. A match equals 

identification and variations within this match represent quantification – a measurement of 

concentration.  

Gaseous Chemical Detection Information Gap Filled by AccuSense 

Information Type 

Is there a chemical gas in the atmosphere 

What is it 

What is the concentration level  

What harm may that concentration level cause to a human? 

Repeated for every chemical in the database in a single sample cycle 

Information Quality 

Complete 

Timely 

Certain 

Information Value 

High IDLH Context  Value 

High Confidence Value 

High Decision Value 

  Product Comparison Matrix based on Dimensionality:  

 

Technology ManufacturerProduct 

Example

# of 

Dimensions

PID Photovac, Inc 2020gasPRO 0

FP Proengin SA AP2C 0

IMS Smiths Detection LCD 3.3 1

PID/EC RAE Systems, Inc AreaRAE 1

FTIR Smiths Detection GasID 1

GC/MS Inficon HapSite ER 2

DHGC SEER Technology AccuSense 2

Page 22: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  22 

 

A different look at Chemical Detection Systems: 

 

 

SEER 

TechnologySmiths Inficon RAE Systems ICx MSA

AccuSense Gas ID HAPSITE ER AreaRae SteelChemSense

600SafeSite MTX

Detection TechnologyDHGC w/Thermal

DetectionFTIR

GC/MSPID and

Electrochemical Sensors

MS/MS

PID, Electro Chemical

Sensors, and SAW

Detector Dimensionality 2 1 2 1 2 1Displays Concentrations of Chemicals X X X X XDisplays Concentrations of Multiple Chemicals X X XOrganic AND Inorganic Chemicals Detected X X XResistant to Confuser Chemicals X X XNeural Network Data Analysis XNo Consumables XPoint Detection AND Fixed-Site X X X XUpgradeable Chemical Database XLight Training Burden X X XMinimal Maintenance Required X

Wireless Communications X X X X

Battery Life 16-Hrs X

Customers

Government, HAZMAT, Law Enforcement, Petrochemical, Domestic & International

HAZMAT, Law Enforcement, Military

Military, HAZMAT, Government

Petrochemical, HAZMAT, Government

Building and facility monitoring

HAZMAT, Government, Petrochemical

DHGC = Dual Hyphenated Gas Chromatography

FTIR = Fourier Transform Infrared

PID= Photoionization

MS = Mass Spectrometry

SAW = Surface Acoustic Wave

RDK = Rapid Deployment Kit

US

AB

ILIT

YO

PE

RA

TIO

NA

LA

NA

LY

TIC

AL

Chemical Detection System Comparison Matrix

Page 23: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  23 

 

 

AccuSense Features / Functions / Specifications 

 

   

Technology Dual-Hyphenated Gas Chromatography (DHGC)

Detection Sensitivity 1 PPM into PPB (chemical dependent)

Sample Collection Method Internal Oscillating Micropumps

Sampling/Analysis Time Results automatically displayed every 3 minutes

Elute Gas Internally Conditioned Ambient Air

External Power Supply 85 - 250 V (47 - 63 Hz)

Internal Battery Life 8 Hour (Rechargeable) + Spare 8 Hour Battery Option

Size 17" x 4.5" x 11" (L x W x H)

Weight 23 lbs (10.4 kg) Field-Portable

30 lbs (13.6 kg) Stationary w/AC Power

Operating Temperature -5° to 122° F (-20° to 50° C)

Ethernet (802.3) RJ45 10/100 Base-T

Serial RS232 / RS422 / RS485

Wireless Multiple Data Channel Radio Configurations

Chemical Databases Core 21 TICs Chemical Signature Database

Customized Chemical Signature Libraries

Power

Physical Properties (Not Including Required Laptop PC)

AccuSense® Specifications Summary

Optional Features

Communications

AccuSense Chemical Recognition System

Page 24: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  24 

 

COMMODITY:   AccuSense® Chemical Recognition System  

MODEL:    AC5‐TIC 

General Description and Features of Product o Perform chemical analysis on ambient air  o No solid, liquid or powder detection capability o Detect, identify, and provide quantitative concentration information for Toxic Industrial 

Chemicals (TICs)  o Provide the information in (b) without the outside or manual collection of samples by 

the operator  o Ability to present the information in (b) for multiple chemicals simultaneously o Ability to be deployed in a fixed‐position AND field‐portable format for diverse 

implementation scenarios o Ability to be powered‐on with the push of one button o Ability to run continuously without operator intervention o Does NOT require the use of consumables for continuous operation o Provide battery‐powered operation for a minimum of 8‐hours continuous operation o Provide wireless, Ethernet, and serial communication capabilities o Easily carried by hand by a user with large, cumbersome gloves o Constructed of a material that allows for easy decontamination after exposure to 

hazardous airborne chemicals o Stores data in a format that can be accessed at a later date and provide for the 

operational characteristics of the device to be validated o Up to five (5) years of warranty, maintenance, and support (fee‐based) available 

 

Components Included o AccuSense Chemical Recognition System module  o AccuSense power module w/location‐specific power cord o Panasonic CF‐52 Toughbook Controller w/power adaptor and pre‐loaded Chemical 

Recognition Software package o MicroHard® Master Radio w/antennas and power supply o Ethernet cables o Quick Start Guide o Operator’s Manual o Standard Warranty – 1 Year 

 

Product Specifications o Utilize Gas Chromatography technology o Perform a polar and a non‐polar state separation o Utilizes columns 3‐meters (m) in length o Regulates temperature over GC columns to 35°C o Utilizes a pre‐concentrator/desorber system o Ability to be warmed up, calibrated, and ready for operation within 10‐minutes of start 

in typical ambient conditions o Ability to auto‐calibrate and auto‐tune o Operates with an inlet flow rate of at least 175 mL/min o Analysis cycle time:  3‐minutes o Operational Temperature Requirements (ambient):  ‐5 to +122°F (‐20 to +50°C) 

Page 25: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  25 

 

o Physical Requirements:  Dimensions:  17” x 4.5” x 11” (L x W x H)  Weight:  Less than 30 lbs  Color:  Aluminum  Surface Treatment:  8625C Type II Class 1 Anodized   Material:  A356 Aluminum 

o Power Requirements:    85‐250 VAC included in bottom power module  Country specific power cords included in bottom power module  

o Battery Requirements  Primary battery included in top module  Internal rechargeable Li‐Ion Polymer   Minimum 8‐hours continuous operation capability  Backup 8 hour battery included in bottom power module 

o Detection Sensitivity Requirements:  Provide user with information pertinent to published Immediately Dangerous to 

Life and Health (IDLH) values  General chemical sensitivities to 1 part‐per‐million (ppm) 

o Chemical Database Requirements:  Contain a minimum of 21 TICs, at least 8 of which shall be listed on the 

International Task Force (ITF) 25 “High Priority” list  Contain organic and inorganic compounds  Database is field‐upgradeable with no hardware changes 

o Communications Requirements:  RJ45 10/100 Base‐T Ethernet capabilities  RS‐232, RS‐422, and RS‐485 Serial capabilities  900 MHz and 2.4 GHz wireless radio capabilities  Units are individually IP‐addressable  Up to 8 AccuSense devices may be controlled remotely by a single NAViSEER 

Controller (Panasonic Toughbook PC)   o Data Files: 

Data files are in .asw format, a SEER proprietary format, not accessible by the customer 

Each sample analysis data file is approximately 1MB in size  SEER will work directly with customers on a fee basis to develop central storage 

server schemas for offloading data from the AccuSense Controller to the central storage server 

All sample data files are time stamped and AccuSense serial number or name stamped to indicate which AccuSense received and processed the sample 

Metadata indicating the health of the AccuSense device while collecting the sample, in addition to the raw sample data associated with each specific sample is included in each sample data file  

o User‐Interface Requirements  Intuitive for operation by minimally trained users  Ability to operate up to 8 units simultaneously from one laptop PC  Display concentration levels of chemicals relative to published IDLH values and 

alert the user when approaching a potentially hazardous environment 

Page 26: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  26 

 

Ability to auto‐reference the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards 

Display battery life indicator for each unit monitored  Display communication connectivity information for each unit monitored  Provide sufficient data storage to allow for post‐incident validation of collected 

data Time Requirements 

Start‐Up Time:  10‐minutes from cold start within operational temperatures specified in other Sections of this document.   o Should the unit be stored in temperatures outside those of specified operational 

ambient, but within those listed in other Section of this document, start‐up time shall not exceed 30‐minutes.   

o Should the unit be stored in temperatures outside those listed in Section 8.3.2 of this document, no operational specifications are valid. 

Continuous Operation Time (AC Power):  30‐days (720 hrs) 

Continuous Operation Time (Battery Power):  8‐hours 

Data Analysis Cycle Time:  3‐minutes 

Data Transfer Time (Ethernet):  15‐seconds or less 

Data Transfer Time (Wireless):  30‐seconds or less  

Communications Requirements  o Serial:  RS‐232, RS‐422, and RS‐485 communications, however, should these 

communications platforms be necessary for a customer, the exterior housing must be altered to provide access to these ports.  

o Ethernet:  Direct Ethernet hookup on the exterior of the case using RJ45 10/100 Base‐T protocols.  

o Wireless:  900 MHz wireless communication ability for domestic applications and 2.4 GHz for applicable international markets.  The wireless communications platform chosen must address the market need for significant penetration capabilities in order to relay the information collected in the field back to a command center or centrally‐located PC.  

o Recommended Bandwidth: 19.2 Kbps or greater 

   

Page 27: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  27 

 

 Display Requirements On‐Unit Display Requirements:  On‐unit display of chemical information collected must consist of the following four (4) LEDs with the following conditions: 

 

LED ID Color Condition Description

Power Red On ‐ Solid On when power button turned on and power supplied to unit

None Off Off when power button turned off and no power supplied to unit

Battery Red On ‐ SolidOn and solid when Power On and battery power applied to unit 

and battery life remaining is between 100‐26%

Red On ‐ FlashOn and flashing when Power On and battery power applied to 

unit and battery life remaining is between 25‐11%

RedOn – Flash 

Fast

On and flashing fast when Power On and battery power applied 

to unit and battery life remaining is between 10‐1%

None OffOff when power button turned off and when battery life 

remaining is at 0%

Hazard 

Level LowGreen On ‐ Solid

On and solid when chemical concentrations detected are 

between 1‐49% of their respective IDLH concentrations 

None OffOff when no chemicals have been detected or chemicals have 

been detected in the 50‐100+% of IDLH range

Hazard 

Level 

Medium

Yellow On ‐ FlashOn and flashing when chemical concentrations detected are 

between 50‐99% of their respective IDLH concentrations

None OffOff when no chemicals have been detected or chemicals have 

been detected in the 1‐49% or 100+% IDLH range  

Hazard 

Level 

High

RedOn – Flash 

Fast

On and flashing fast when chemical concentrations detected are 

equal to or greater than 100% of their respective IDLH 

concentrations

None OffOff when no chemicals have been detected or chemicals have 

been detected in the 1‐99% of IDLH range

Page 28: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  28 

 

 

PC‐Level Display Requirements (GUI):  The display of the chemical concentration information detected must consist of the following at the GUI level: 

Initialization Time:  Must be fully loaded within 15‐seconds of user‐initialization 

Initialization Status:  Must contain a loading status bar indicating the progress of initialization 

Must provide an intuitive method for initializing available units and informing the user when operating to specifications  

Multiple Unit Operation:  Must have the ability to display chemical concentration information for up to 8 units simultaneously on one PC 

Battery/Wireless Gauge:  Must display the current operational charge and signal state of the battery and wireless 

Data Storage:  Must have the capability to store and access raw chemical data for multiple units  

Audible Alarm:  Must consist of audible alarms to alert the user of an approaching or existing IDLH condition  

 Shock, Drop, and Vibration Requirements 

Must pass drop test from a height of 3‐feet (36”) on solid concrete surface on all faces  

Calibration, Tuning, and Validation Requirements 

Must perform automatic internal calibration to ensure quality and consistency of chemical spectra 

Must give the user the ability to perform in‐the‐field validation using live chemicals of SEER’s choosing 

 Chemical Database Requirements:   

AccuSense Model AC5‐TIC must contain ALL of the following chemicals in its database.  These chemicals have been chosen based on their boiling points, reactivity, availability of published GC data, and overall ease of addition to the AccuSense Chemical Database Revision 1.0.  The AccuSense Model AC5‐TIC Chemical Database must be software‐upgradeable on a quarterly basis to include additional chemicals of interest, either through internet protocols or via CD shipped to the customer.  

 Performance Requirements  

Measurement Sensitivity:  Detect the above‐listed chemicals to an MDL of 1 part‐per‐million (ppm).  

Measurement Accuracy:  Detection of each specific chemical must be accurate within ±20%, which is verified and documented using the mass spectrometer. 

Quality Requirements 

Continuous Operation Time:  Burn‐in of all AccuSense Model AC5‐TIC units is required.   

Dead On Arrival:  Specifications will be maintained throughout the manufacturing process, resulting in less than 0.62% of AccuSense Model AC5‐TIC units that are determined to be Dead On Arrival (DOA). 

Returned for Repair:  Specifications will be maintained throughout the manufacturing process, resulting in less than 3% of AccuSense Model AC5‐TIC units that are returned for repair within 30‐60 days of customer delivery. 

 

Page 29: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  29 

 

Computer and Operating System Requirements:   AccuSense Model AC5‐TIC devices will be operated using a SEER‐provided Panasonic Toughbook Model CF‐52 or equivalent, which shall satisfy the following minimum requirements: 

Windows 7 Home Premium or higher OS 

2 GB RAM 

Intel/AMD Dual‐Core Processor  

Packaging Requirements Carrying Case:  All components of the AccuSense Model AC5‐TIC will be delivered to the customer in a single carrying case that is weather resistant.  The components included in this carrying case include the following: 

AccuSense Model AC5‐TIC base unit 

AccuSense Model AC5‐TIC power module with applicable power cord 

Panasonic Toughbook CF‐52 laptop PC with power supply 

External MicroHard Master Radio with power supply 

Radio Antennas applicable to radio frequency 

20‐foot Ethernet cable 

5‐foot Ethernet cable 

AccuSense Model AC5‐TIC Quick Start Guide 

AccuSense Model AC5‐TIC Operator’s Manual  

Regulatory Requirements Federal Communications Commission (FCC) Requirements:  

47 Code of Federal Regulations (CFR) Part 15 – Radio Frequency Devices 

47 CFR Part 22 – Paging and Radiotelephone Service  

   

Page 30: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  30 

 

AccuSense Chemical Signature Database(s) 

AccuSense detects and identifies the chemicals in its core signature database down to 1 part per million (PPM)

Acetone ‐ (CH3)2CO Ethyl Ether ‐ C2H5OC2H5  Methylene Chloride ‐ CH2Cl2

Acrolein ‐ C3H4O Ethylene Oxide ‐ C2H4O Nitroethane ‐ C2H5NO2

Acrylonitrile ‐ CH2CHCN Formaldehyde ‐ CH2O Phosgene ‐ COCl2

Benzene ‐ C6H6 Hydrogen Bromide ‐ HBr n‐Propanol ‐ C3H8O

n‐Butanol ‐ C4H9OH Hydrogen Chloride ‐ HCl Sulfur Dioxide ‐ SO2

Carbon Disulfide ‐ CS2 Isopropyl Alcohol ‐ C3H8O Toluene ‐ C7H8 

Chlorine ‐ Cl MEK ‐ CH3COCH2CH3 Trichloroethylene ‐ C2HCl3

AccuSense TICs Unit ‐ Core 21 Chemical Signature Database

Page 31: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  31 

 

AccuSense TICs Unit 21 Core Chemical List – Reasons for Concern

1. Acetone – More than 3 million tons produced annually, mainly as a precursor for polymer production.  The main hazard associated with acetone is its flammability due to its flash point of ‐4F. (IDLH = 2500 ppm) 

2. Acrolein – Used in production of many polymers.  Severe pulmonary agent and was used as a chemical weapon in World War I.  Extremely toxic at low concentrations. (IDLH = 2ppm). 

3. Acrylonitrile – Used in production of synthetic polymers.  Highly flammable and toxic, burning releases hydrogen cyanide fumes. (IDLH = 85 ppm) 

4. Benzene – Industrial solvent used as an intermediate in the production of plastics, rubber, and dyes.  Natural constituent of crude oil.  Known carcinogen.  Damages bone marrow and causes a decrease in red blood cells.  (IDLH = 500 ppm) 

5. Butanol (butyl alcohol) – Used as an industrial intermediate in the production of butyl acetate.  Present naturally in many food and beverages.  Toxicity is relatively low.  (IDLH = 1400 ppm) 

6. Carbon Disulfide (CS2) – Industrial use in the production of viscose rayon fibers.  Potential life‐threatening effects on the nervous system.  (IDLH = 500 ppm) 

7. Chlorine (Cl2) – As the chloride ion, abundant in nature (common salt).  In its elemental form, powerful oxidant used in the chemical industry.  Used as a chemical weapon in World War I and the Iraq War.  Irritates the respiratory system.  When inhaled at high concentrations, reacts with water and turns into hydrochloric and hypochlorous acid.  Heavier than air and tends to accumulate in poorly ventilated spaces.  (IDLH = 10 ppm) 

8. Ether – Important solvent used in the manufacture of cellulose plastics.  Starting fluid for gasoline and diesel engines.  Formerly used as an anesthetic.  Extremely flammable.  (IDLH = 1900 ppm) 

9. Ethylene Oxide (EtO) – Main precursor to ethylene glycol and other high‐volume manufactured chemicals.  Also used in sterilization of medical products.  Typically handled and shipped as a refrigerated liquid.  Precursor to mustard gas.  Inhalation hazard and known carcinogen.  (IDLH = 800 ppm) 

10. Formaldehyde – Important industrial chemical used in the production of paints, resins, and explosives (RDX).  Also used in embalming process.  Toxic, allergenic, and carcinogenic.  (IDLH = 20 ppm) 

11. Hydrogen Bromide (HBr) – a gas at standard conditions, NOT the same as hydrobromic acid.  Used in the manufacture of inorganic bromides for use in photography, pharmaceuticals, fire retardants, and other chemical processes.  Extreme eye, skin, and mucous membrane irritation may result from exposure.  (IDLH = 30 ppm). 

12. Hydrogen Chloride (HCl) – Refers to the gaseous state, not the liquid state hydrochloric acid.  Most often used in the production of hydrochloric acid, also an important reagent in hydrochlorination of rubber and production of vinyl chlorides.  Severe respiratory irritant and may cause permanent burns to the eyes.  (IDLH = 50 ppm) 

13. Isopropyl Alcohol (IPA) – Relatively non‐toxic solvent used primarily as a cleaning fluid.  Primary hazard is due to its flammable properties.  (IDLH = 2000 ppm) 

14. Methyl Ethyl Ketone (MEK, 2‐butanone) – Solvent used in the manufacture of plastics, textiles, and paraffin wax.  An irritant, but not extremely toxic. (IDLH = 3000 ppm) 

Page 32: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  32 

 

15. Methylene Chloride (MeCl2, dichloromethane) – Solvent used as a degreaser or paint stripper.  Acute inhalation hazard due to its volatility.  Potentially carcinogenic.  (IDLH = 2300 ppm) 

16. Nitroethane – Organic compound used in the chemical manufacturing industry.  Additional uses as a fuel additive and precursor to explosives.  Suspected to cause genetic damage and is harmful to the nervous system.  (IDLH = 1000 ppm) 

17. Phosgene (COCl2) – Used as a chemical weapon in World War I.  Used in production of isocyanates, which are in turn are used to manufacture polyurethanes.  Also used in production of polycarbonates.  Gaseous chemical spills of phosgene can be counteracted with ammonia.  Extremely toxic poison and choking agent.  (IDLH = 2 ppm) 

18. Propanol (n‐propanol) – Relatively non‐toxic solvent used in the pharmaceutical industry.  (IDLH = 800 ppm) 

19. Sulfur Dioxide (SO2) – Intermediate in the production of sulfuric acid.  Primarily released from the combustion of fossil fuels and volcanic emissions.  Strict environmental regulations due to its role in acid rain.  Eye, skin, and mucous membrane irritant.  (IDLH = 100 ppm) 

20. Toluene – Common solvent used in many chemical reactants, rubber, adhesives, and disinfectants.  Raw material used in production of TNT.  Can be used as an octane booster in gasoline fuels.  Toxicological effects on the nervous system.  (IDLH = 500 ppm) 

21. Trichloroethylene (TCE) – Dry cleaner solvent and degreaser for metal parts.  Exposure causes nervous system depression and anesthesia.  Can react with CO2 to form phosgene.  Prime groundwater/drinking water contaminant.  Nervous system irritant.  (IDLH = 1000 ppm)   

   

Page 33: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  33 

 

  

Chemical Name # Chemical Name #

Hydrogen Cyanide  1 Dichloroethane (1,2) 46

Hydrogen Fluoride  2 Dichloroethene (1,1) 47

Hydrogen Sulfide  3 Dichloropropane (1,2) 48

Nitric Acid  4 Iodomethane 49

Methyl Chloroformate 5 Isobutyl Alcohol (Isobutanol) 50

Nitrogen Dioxide 6 Methacrylonitrile 51

Bromomethane 7 Pentanone (2) 52

Allyl Alcohol 8 Propionitrile (ethyl cyanide) 53

Methyl Mercaptan 9 Butyl Alcohol (t) 54

Sulfuryl Fluoride 10 Dichloroethene (trans‐1,2) 55

Allyl Chloroformate 11 Trichloroethane (1,1,1) 56

Boron Tribromide 12 Trichlorofluoromethane (Freon 11) 57

Carbonyl Sulfide 13 Vinyl Acetate 58

Dimethylhydrazine (1,2) 14 Acetonitrile 59

Hydrogen Selenide 15 Ethanethiol 60

Selenium Hexafluoride 16 Difluoromethane 61

Tellurium Hexafluoride 17 Isobutane (2‐methylpropane) 62

Cyanogen Chloride 18 Isopropyl Chloride (2‐chloropropane) 63

Bromine 19 Dichloroethylene (1,2) 64

Bromine Pentafluoride 20 Difluoroethane (1,1) 65

Bromine Chloride 21 Chlorodifluoromethane 66

Hydrogen Iodide 22 Nitromethane 67

Methyl Alcohol (Methanol) 23 Propylene Oxide 68

Vinyl Chloride 24 Bromotrifluoromethane 69

Propane 25 Chloropicrin 70

Acetaldehyde 26 Cyclohexane 71

Trimethylamine 27 Ethyl Formate 72

Hexane 28 Methyl Acrylate 73

Dimethylamine 29 Pentane 74

Carbon Tetrachloride 30 Triethylamine 75

Ethanol 31 Butane 76

Isopropyl Alcohol (2‐propanol) 32 Butanedione (2,3) 77

Chloroform 33 Butylene Oxide (1,2) 78

Propanol (1) 34 Ethyl Acrylate 79

Chloromethane 35 Furan 80

Dibromomethane 36 Heptane 81

Bromochloromethane 37 HN‐2 (Nitrogen Mustard) 82

Chloroethane 38 Butyl Methyl Ether (tert) 83

Dichloroethane (1,1) 39 Tetrahydrofuran 84

Chloroprene 40 Trichlorotrifluoroethane (1,1,2; Freon 113) 85

Dichloropropene (1,3,cis) 41 Trimethylpentane (2,2,4) 86

Dichloropropene (1,3,trans) 42

Ethyl Acetate 43

Bromodichloromethane 44

Dichlorodifluoromethane 45

Chemicals that can be added to the AccuSense TICs Unit Chemical Signature Database ‐ beyond the Core 21 

Chemicals in the AccuSense TICs Unit standard signature database ‐ based on Customer request via AccuSense 

Purchase Order *

 * Upon customer request, chemicals of interest will be procured, analyzed and verified by SEER Technology. Depending 

upon the availability of the particular chemicals requested, fulfillment of Purchase Orders could be delayed.

Additional Chemicals Available for the AccuSense® Chemical Recognition System ‐ TICs Unit

Page 34: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  34 

 

AccuSense Frequently Asked Questions (FAQs) 

1. What is AccuSense?  AccuSense is a laboratory‐quality chemical recognition system that provides concentration levels of multiple chemicals simultaneously in a field‐portable or fixed‐position format. 

2. Who was AccuSense designed for?  AccuSense was designed for end users by end users. Every design element is implemented for a reason. The result is an accurate, field‐portable, easy‐to‐use detection device that can be used for point detection applications or for fixed network continuous monitoring applications.  

3. What types of deployment scenarios is AccuSense intended for?  AccuSense is intended to be deployed in a variety of scenarios, but the most common would be a multiple‐unit deployment in the area of a known chemical release.  The units would be set in and around the anticipated “hot zone,” allowed to run for any period of time, and the information would be transmitted wirelessly back to a command post.  The information gathered would be used to define the “hot” and “cold” zones and to set up a perimeter for public and worker safety.  In addition, multiple AccuSense units can be placed in an industrial setting and run continuously to monitor concentrations of chemicals and provide the user with the proper information to make decisions about worker safety. 

4. What type of technology is used?  Dual‐Hyphenated Gas Chromatography (DHGC) for separation of chemicals and a thermal detection system for chemical identification. 

5. What is DHGC?  DHGC is a unique form of Gas Chromatography that utilizes two columns to perform separation of polar and non‐polar chemicals. 

6. What chemicals does AccuSense detect?  AccuSense detects a wide variety of organic and inorganic Toxic Industrial Chemicals (TICs) such as hydrogen chloride, sulfur dioxide, ethylene oxide, phosgene, and many more. 

7. Does AccuSense detect explosive compounds?  Currently, AccuSense has the capability to detect, identify, and quantify chemical concentrations of explosive precursors in the gaseous state, such as hydrogen chloride.  The principles behind the detection of solid explosives such as RDX or TNT, however, involve the capture and vaporization of particulates.  The technology behind AccuSense can easily be modified to include the capture and vaporization of particulates, but is not included in the product line at this time. 

8. What database does AccuSense compare its results to for identification?  AccuSense does not utilize a published comparison database, such as the NIST Mass Spectral Library that may be used in a GC/MS device.  Instead, AccuSense utilizes proprietary neural network algorithms that operate similar to a fingerprint identification system. 

9. How long does it take for AccuSense to collect a sample, analyze it, and display the results?  AccuSense runs on a 3‐minute analysis cycle time that is not currently able to be modified by the user.  The “Auto‐Refresh” capability at the PC level allows the user to see new chemical concentration results every three minutes. 

10. What happens to results in the presence of environmental confusers such as diesel fumes, firefighting foam, etc.?  Due to the separation capabilities in the DHGC technology and the neural network algorithms that are the backbone of the identification process, AccuSense is essentially blind to environmental confusers and will hence not report false positives or false negatives in their presence. 

Page 35: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  35 

 

11. What are the detection limits of AccuSense?  The detection limits of the device will vary chemical to chemical, but in general the detection limits are in the low parts‐per‐million (ppm) range, with the ability to detect all chemicals within the database below its respective Immediately Dangerous to Life and Health (IDLH) level. 

12. What is the battery life of the device?  The upper field‐portable portion of the AccuSense device will run continuously in most operating environments for a minimum of 8‐hours.  If additional battery life is needed, the bottom power module can be added seamlessly in the field for an additional 8‐hours of battery life. 

13. What is the battery recharge time? AccuSense has a trickle charger that continuously recharges the main battery when the AccuSense is plugged into AC power.  Additionally, the battery charger will charge a depleted battery within a 6‐7 hour timeframe.  

14. Is there an A/C power option? Yes, when deploying a fixed AccuSense network or when AC power is available to support your application you can attach the AccuSense AC power brick to support continuous operations.  

15.  How does AccuSense respond in the presence of high humidity conditions?  Due to the way that the AccuSense device handles data, the presence of high humidity conditions does not affect the performance of the unit.  Essentially, the neural network identification algorithms treat water vapor as an additional chemical and its presence, whether in low or high quantities, is insignificant.    

16. How does AccuSense communicate results to the user?  AccuSense operates using either a direct plug‐in Ethernet cable that attaches from the device to a laptop PC or through a wireless network in which a master radio at the PC communicates to the units.  Currently, 900 MHz and 2.4 GHz installations are available.  

17. How does the software communicate results to the user?  At the laptop PC level, the user will be notified of chemicals that are detected and their concentration levels relative to IDLH.  A color‐coded representation on a sliding bar scale along with visual flashing will notify the user that a chemical concentration detected is dangerous.  At the unit itself, visual light‐emitting diodes (LEDs) will notify the user of the hazard level of the chemical(s) detected (High, Medium, Low). 

18. How many Accusense units can be monitored at one time from a single PC?  Currently, up to eight AccuSense devices can be monitored simultaneously from one PC. 

19. What is the exterior AccuSense case made of?  The housing of the AccuSense device is made out A356 aluminum, which allows for easy decontamination after operation in the “hot zone” and allows for operation in a wide variety of environments. 

20. How does AccuSense remove the requirement for consumables?  The lack of consumables on the AccuSense device is primarily due to the use of conditioned ambient air as an elute gas source.  Since ambient air is used, there is no need for inert gas canisters that would add weight to the device, would require human intervention in the “hot zone,’ and would hinder the ability of the device to run continuously for extended periods of time.   

21. What happens to the operation of the device in the presence of extremely corrosive chemicals?  AccuSense will detect, identify, and quantify chemical concentrations of corrosive chemicals such as hydrogen chloride, chlorine, etc. without problem due to extensive engineering work done in the material compatibility area.  If the device is placed in an atmosphere where 

Page 36: AccuSense Chemical Recognition System

SEER Technology  AccuSense Chemical Recognition System  36 

 

highly corrosive chemicals are present at extremely high concentrations for extended periods of time, however, there is a chance that these unique circumstances could cause mechanical failure within the device.  The important point to note is that the AccuSense device will appropriately warn the user of the hazards present prior to corrosive failure.