Top Banner
ABSTRACT BOOK
65

ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Aug 16, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

 

 ABSTRACT BOOK

17:00-­‐19:00   Oral  Presentations  (Salle  des  Congrès)  

  Chair:    *  Rebecca  Campbell,  University  of  Otago,  New  Zealand    

Luis  Paiva  University  of  Edinburgh,  UK  Activation  of  oxytocin  neurons  following  systemic  Melanotan-­‐II  

administration  Zane  Andrews,  Monash  University,  Australia  Glucose  metabolism  affects  ghrelin-­‐induced  feeding  and  

motivation  Tina  Bake,  University  of  Gothenburg,  Sweden  Ghrelin  changes  food  preference  from  high  fat  diet  to  chow  in  schedule-­‐fed  rats  D’Agostino,  Giuseppe,  University  of  Aberdeen,  UK  Nucleus  of  the  solitary  tract  cholecystokinin-­‐expressing  neurons  control  appetite    Caroline  Decourt,  INRA,  University  of  Tours,  France  Design  of  a  selective  kisspeptin  analog  capable  of  synchronizing  

ovulation  Alexander  Tups,  University  of  Otago,  New  Zealand  Photoperiodic  regulation  of  Wnt  signalling  in  the  arcuate  nucleus  of  the  Djungarian  hamster,  Phodopus  sungorus  Helen  Christian,  University  of  Oxford,  UK  Photoperiod-­‐driven  remodelling  of  lactotroph,  gonadotroph  and  folliculostellate  cells  in  the  sheep  pituitary    Francesca  Spiga,  University  of  Bristol,  UK  Experimental  and  mathematical  studies  on  the  dynamics  of  adrenal  glucocorticoid  synthesis  suggest  an  intra-­‐adrenal  negative  feedback  mechanism  that  involves  activation  of  the  glucocorticoid  receptor  Lisa  Koorneef,  Leiden  University  Medical  Centre,  the  Netherlands  A  novel  mixed  glucocorticoid/mineralocorticoid  receptor  selective  modulator  reduces  obesity  and  adipose  tissue  and  liver  inflammation  Stefania  Maccari,  CNRS,  University  of  Lille,  France  Early  carbetocin  treatment  prevents  metabolic  aging  induced  by  early  stress  in  rats        

19:15   Welcome  Mixer     (Atrium)  

 

Page 2: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

    Local  Organizing  Committee    

Vincent Prévot, Chair

Bénédicte Dehouck, Deputy Chair

Ariane Sharif, Deputy Chair

Samuel Malone, Webmaster

By alphabetical order:

Jean-Claude Beauvillain

Emilie Caron

Konstantina Chachlaki

Irene Cimino

Manon Duquenne

Sarah Gallet

Paolo Giacobini

Anne Loyens

Stefania Maccari

Daniele Mazur

Giuliana Pellegrino

Charlotte Vanacker

Didier Vieau

 

Page 3: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

                                   

 

 

 

 

 

 

 

 

 

     

PROGRAM

 

19:30    Opening  Public  Lecture  in  French      

Olivier  Kah,  Inserm,    University  of  Rennes,  France  

L’environnement  perturbe  nos  hormones!  Salle  Quebec,  Le  Nouveau  Siècle,  Lille  Downtown    (Métro  Rihour)  

Chairs:  *Valerie  Simmoneaux,  CNRS,  University  of  Strasbourg,  France  *  Vincent  Prevot,  Inserm,  University  of  Lille,  France      

TUESDAY, SEPTEMBER 2 2  

Page 4: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

                         

                                                                                             

 12:00-­‐13:00    Arrival  –  Registration  (Name  Tags)  Reception  desk,  Salle  des  Congrès,  Pôle  Recherche,  Medical  School    13:00-­‐13:30    Welcome  Introduction  Salle  des  Congrès    Vincent  Prevot,  Inserm,  University  of  Lille,  France        13:30-­‐14:30      Mortyn  Jones  Memorial  Lecture    

Chair:    *  Kevin  O’Byrne,    King’s  College  London,  UK    

 

Allan  Herbison,  University  of  Otago,  New  Zealand    Generating  Hormone  Pulses  in  Neuroendocrine  Circuits  

   14:30-­‐17:00      Glucocorticoids,  Stress  and  memory                                                      process  Salle  des  Congrès  

Chairs:  *  Marie-­‐Pierre  Moisan,    INRA,  University  of  Bordeaux,  France  

*  Onno  C.  Meijer,    Leiden  University  Medical  Center    The  Netherlands  

 Onno  C.  Meijer,    Leiden  University  Medical  Centre,  the  Netherlands  Selective  activation  of  glucocorticoid  receptor    pathways:  linking  gene  transcription  to  cognition    Marie-­‐Pierre  Moisan,  INRA,  University  of  Bordeaux,  France  Corticosteroid  binding  globulin  role  in  memory  processes  

   

15:30-­‐16:00      Coffee  Break      Joyce  Yau,    University  of  Edinburgh,  UK  11β-­‐HSD1  and  age-­‐associated  memory  decline    Laurent  Givalois,    Inserm,  Montpellier,  France  Glucocorticoids'  role  in  the  hippocampus  function    impairment  associated  with  Alzheimer’s  disease  

 

 17:00-­‐19:00   Oral  Presentations  Salle  des  Congrès     Chair:  *  Rebecca  Campbell,    

University  of  Otago,  New  Zealand    Luis  Paiva,  University  of  Edinburgh,  UK  Activation   of   oxytocin   neurons   following   systemic   Melanotan-­‐II  administration    

Zane  Andrews,  Monash  University,  Australia  Glucose   metabolism   affects   ghrelin-­‐induced   feeding   and  motivation    

Tina  Bake,  University  of  Gothenburg,  Sweden  Ghrelin   changes   food   preference   from   high   fat   diet   to   chow   in  schedule-­‐fed  rats    

Giuseppe    D’Agostino,  University  of  Aberdeen,  UK  Nucleus   of   the   solitary   tract   cholecystokinin-­‐expressing   neurons  control  appetite      

Caroline  Decourt,  INRA,  University  of  Tours,  France  Design   of   a   selective  kisspeptin  analog   capable   of   synchronizing  ovulation    

Alexander  Tups,  University  of  Otago,  New  Zealand  Photoperiodic  regulation  of  Wnt  signalling  in  the  arcuate  nucleus  of  the  Djungarian  hamster,  Phodopus  sungorus    

Helen  Christian,  University  of  Oxford,  UK  Photoperiod-­‐driven   remodelling   of   lactotroph,   gonadotroph   and  folliculostellate  cells  in  the  sheep  pituitary      

Francesca  Spiga,  University  of  Bristol,  UK  Experimental   and   mathematical   studies   on   the   dynamics   of  adrenal   glucocorticoid   synthesis   suggest   an   intra-­‐adrenal  negative   feedback   mechanism   that   involves   activation   of   the  glucocorticoid  receptor    

Lisa  Koorneef,  Leiden  University  Medical  Centre,  the  Netherlands  A   novel   mixed   glucocorticoid/mineralocorticoid   receptor  selective  modulator  reduces  obesity  and  adipose  tissue  and  liver  inflammation    

Stefania  Maccari,  CNRS,  University  of  Lille,  France  Early   carbetocin   treatment  prevents  metabolic  aging   induced  by  early  stress  in  rats    

     

19:15   Welcome  Mixer  Atrium  

 

WEDNESDAY, SEPTEMBER 2 3  

Page 5: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

                         

           

08:00-­‐10:00      Prolactin  neuroendocrinology:  new                                              developments  in  an  old  system Salle  des  Congrès  

Chairs:  *  Dave  Grattan,                                    University  of  Otago,  New  Zealand  

           *  Paul  le  Tissier,                                                                                                                      University  of  Edinburgh,  UK  

 Julian  Davis,  University  of  Manchester,  UK  Imaging  gene  transcription  dynamics  in  living  cells  –  from  cells  to  tissue    

Nadine  Binart,  Inserm,  Le  Kremlin-­‐Bicêtre,  France  Mechanisms  for  prolactin  regulation  of  reproduction    

Rosemary  Brown,  University  of  Otago,  New  Zealand    Prolactin  actions  in  the  brain    

Agnes  Martin,  Inserm,  Montpellier,  France  Plasticity  in  the  neuroendocrine  regulation  of  prolactin  secretion  during  lactation  

 10:00-­‐10:15      Coffee  Break      10:15-­‐11:15      Annual  General  Meetings           -­‐  BSN  (Salle  des  Congrès)           -­‐  SNE  (Amphi  B)        11:15-­‐14:00      Poster  Session  1  Halls  &  Atrium  

13:00-­‐14:00      Lunch    14:00-­‐16:00      Hypothalamic  networks  controlling                                                    puberty  onset  Salle  des  Congrès  

Chairs:     *  Allan  Herbison,    University  of  Otago,  New  Zealand  

*  Vincent  Prevot,                  University  of  Lille,  France  

Jane  Robinson,  University  of  Glasgow,  UK    Neural  effects  of  blocking  puberty  with  a  long  term  GnRH  agonist    

Ariane  Sharif,  Inserm,  University  of  Lille,  France  Astrogenesis  in  the  postnatal  hypothalamus:  a  new  mechanism  involved  in  female  sexual  maturation    

Kevin  O’Byrne,  King’s  College  London,  UK  Puberty  timing:  is  the  hypothalamus  controlled  by  the  amygdala    

Valerie  Simonneaux,  CNRS,  University  of  Strasbourg,  France  Is  seasonal  reactivation  of  reproduction  a  yearly  puberty?  

16:00-­‐16:15        Coffee  Break    

16:15-­‐18:15      Symposium  Early  Stage  Researchers  (ESRs)      16:15-­‐16:45   Alison  Douglas  Lecture    Salle  des  Congrès  

Chairs:     *  Matei  Bolborea,                                                    University  of  Warwick,  UK  

*  Michelle  Bellingham,                                                                                                                                        University  of  Glasgow,  UK  Gareth  Leng,  University  of  Edinburgh,  UK      Oxytocin  in  the  brain:  some  misconceptions  

16:40-­‐18:00                              "Speed  Networking"  event    Salle  Phinaert  

Chairs:  *  Gisela  Helfer,                                    University  of  Aberdeen,  UK  

                                                                                                     *  Cristina  Sáenz  de  Miera,                                                                                                                University  of  Strasbourg,  France    

Short  debates  chaired  by  an  ESR  of  the  organising  committee  at  each  table.  Rotation  between  tables  every  10/15  minutes  

Table  1-­‐  EDITORS:      Julian  Mercer,  Journal  of  Neuroendocrinology,  UK    Tim  Geach,  Nature  Endocrinology  Reviews,  USA  

Table  2  –  PRIVATE  SECTOR:      Jean  A.  Boutin,  SERVIER,  France      Elena  Velarde,  Madrid,  Spain    

Tables  3  and  4  –  ESTABLISHED  RESEARCHERS:      Marian  Jöels,  UMC Utrecht, The Netherlands  Fran  Ebling,  University  of  Nottingham,  UK    Paula  Brunton,  University  of  Edinburgh,  UK            Neil  Evans,  University  of  Glasgow,  UK  

Tables  5  and  6  –  JUNIOR  RESEARCHERS:      Hugues  Dardente,  University  of  Tours,  France    Karolina  Skibicka,  University  of  Gothenburg,  Sweden  Gabi  Wagner,  University  of  Tromsø,  Norway  Alexander  Tups,  University  of  Otago,  New  Zealand    

18:30-­‐19:30   Jacques  Benoit  Memorial  Lecture    Chair:  *  Vincent  Prevot,                                  Inserm,  University  of  Lille,  France  

 Marian  Joels,  UMC  Utrecht,  The  Netherlands  Is  early  life  stress  always  bad  news?    

20:30   Gala  Diner  La  Halle  au  Sucre,  Vieux  Lille    

THURSDAY, SEPTEMBER 2 4  

Page 6: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

                         

                                                                                                   

FRI DAY, SEPTEMBER 2 5  

8:45-­‐11:00     Early  life  origins  of  obesity:  programming  of  hypothalamic  development  and  function  

Salle  des  Congrès  Chairs:     *  Laura  Dearden,  University  of  Cambridge,  UK  

*  Susan  E  Ozanne,  University  of  Cambridge,  UK  

Nina  Balthasar,  University  of  Bristol,  UK    The   paraventricular   hypothalamus   in   glucose-­‐sensing,   maternal   programming  and  over-­‐nutrition  

Sophie  Steculorum,  Max  Planck  Institute,  Cologne,  Germany  Novel  regulator  of  orexigenic  AgRP-­‐neurons  

Coffee  Break  (15  min)  

Patricia  Parnet,  INRA,  University  of  Nantes,  France  Early  life  nutrition  and  long  term  appetite  regulation    

Barry  Levin,  Rutgers  New  Jersey  Medical  School,  USA  Critical  Amylin-­‐Leptin  Interactions  Influencing  Hypothalamic  Development  

 11:00-­‐14:00   Poster  Session  2    13:00-­‐14:00   Lunch    14:00-­‐16:30   SNE  &  BSN  Young  Investigator  Awards    Salle  des  Congrès     SNE  Lecture  

Chair:  *  Vincent  Prevot,  Inserm,    University  of  Lille,  France  

Cristina  Saenz  de  Miera,  CNRS,  University  of  Strasbourg,  France  Maternal  photoperiod  programs  hypothalamic  thyroid  hormone  deiodinase  expression  and  seasonal  reproduction  in  Siberian  hamsters  

Mick  Harbuz  lecture  Chair:  *  Giles  Yeo,  University  of  Cambridge,  UK  

Bryn  Owen,  Imperial  College,  London,  UK  The  physiology  and  pharmacology  of  the  fasting  hormone  FGF21  

SERVIER  Symposium  Chairs:  *  Valerie  Simonneaux,  CNRS,    

 University  of  Strasbourg,  France    *  Jean  A  Boutin,  SERVIER,  France  

Céline  Cansell,  University  of  Aberdeen,  UK  Nutritional  triglycerides  act  on  mesolimbic  structures  to  regulate  the  rewarding  and  motivational  aspect  of  feeding    

Sarah  Geller,  University  of  Lausanne,  Switzerland  Hypothalamic  astrocytes  possess  a  higher  glycolytic  phenotype  compared  to  cortical  astrocytes:  A  potential  role  in  the  regulation  of  energy  balance  and  reproduction  function    

Irene  Cimino,  Inserm,  University  of  Lille,  France  Novel  Role  for  Anti-­‐Müllerian  Hormone  in  the  Regulation  of  GnRH  Neuron  Excitability  and  Hormone  Secretion    

 

Page 7: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

    Acknowledgments    

Thank you… …  to  Bruno  and  Sophie  Lesage  (Inserm,  Lille)  for  their  everyday  involvement  in  the  organization  of  this  meeting  and  for  handling  all  its  financial  aspects.  Their  dedication  and  diligence  made  this  conference  possible.  We  would  also  like  to  thank  Laeticia  Coudert  (SFR DN2M, Lille)  for  her  help  in  preparing  the  Public  Lecture  and  editing  the  program.    

Page 8: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Foundation  Obélsique  Scholarship    

Caroline Alfaïa, University of Tours, France

Amélie Borie, Inserm, University of Montpellier, France

Fernando Cazarez Marquez, CNRS, Institute of Cellular and Integrative Neuroscience, Strasbourg, France

Sophie Croizier, The Saban Research Institute, Children Hospital of Los Angeles, University of Southern California, USA

Lyes Derouiche, INRA, CNRS, University of Tours, France

Gabriela Ferreira de Medeiros, INRA, CNRS, University of Tours, France

Delphine Franssen, University of Liège, Belgium

Vincent Hellier, University of Liège, Belgium

Jerome Lannes, CNRS, Inserm, Paris Diderot University, France

OphéliaLe Thuc, CNRS, University of Nice Sophia Antipolis, France

Sébastien Milési, University of Strasbourg, France

Sarah Nicolas, CNRS, University of Nice Sophia Antipolis, France

Brooke Tata, Inserm, Paris Diderot University, France

Hadi Zarif, CNRS, Pierre and Marie Curie University, France

 

Page 9: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Mortyn  Jones  Memorial  Lecture—Wednesday,  September  23  

L0101:  Herbison  Generating  Hormone  Pulses  in  Neuroendocrine  Circuits  

Allan  E.  Herbison  

Centre  for  Neuroendocrinology,  University  of  Otago  School  of  Medical  Sciences,  Dunedin,  New  Zealand  

Neuroendocrine  hormones  are  released  from  the  pituitary  gland  into  the  circulation  in  an  episodic  manner.     The   mechanisms   through   which   neural   circuits   generate   these   pulsatile   patterns   of  hormone   release   are   variably   understood   amongst   the   different   neuroendocrine   axes.     For  example,   our   understanding   of   how   episodic   gonadotropin-­‐releasing   hormone   (GnRH)   release  occurs   remains  poor  despite  decades  of   investigation.     In   this  case,   the  scattered  distribution  of  the   GnRH   neuron   cell   bodies   within   the   basal   forebrain   has   made   it   particularly   difficult   to  investigate   these   neurons   as   a   functional   unit.   As   such,   several   theories   explaining  GnRH   pulse  generation   have   arisen   involving   intrinsic   and/or   extrinsic   mechanisms.     Recent   studies   have  highlighted   the   importance   of   kisspeptin   in   pulse   generation   in   addition   to   the   unusual  "dendronic"  nature  of  GnRH  neuron  projections   to  median  eminence.     Studies  using   a   range  of  approaches   including  GCaMP6-­‐based   calcium   imaging   and   in   vitro/in   vivo   optogenetics   are  now  providing  direct  evidence  than  an  arcuate  kisspeptin  neuron  projection  to  the  GnRH  neuron  distal  dendron   can   generate   pulses   of   GnRH   secretion.     Thus,   an   extrinsic   pattern   generator  may   be  necessary  for  the  generation  of  pulsatility  within  the  neuroendocrine  reproductive  axis.  

 

Page 10: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Alison  Douglas  Lecture—Thursday,  September  24  

L0201:  Leng  Oxytocin  in  the  brain:  some  misconceptions  

Gareth  Leng  

Centre  for  Integrative  Physiology  University  of  Edinburgh  EH9  8XD  

Oxytocin  in  the  brain  is  a  potent  appetite  regulating  peptide,  has  multiple  roles  in  reproductive  functions,  and   has   interesting   effects   on   social   behaviours.   In   these   actions   it   functions   as   an   autoregulator   of  oxytocin   cell   activity,   is   released  at  nerve  endings   in   the  caudal  brainstem  and  spinal   cord,  and  acts  as  a  “neurohormone”  within  the  hypothalamus  following  dendritic  secretion.  These  are  all  now  well  established  (1);  much  more  controversial  are  the  purported  effects  of  intranasal  oxytocin  administration  (2).  I  will  talk  about   the  gaps   in  our  understanding    of  apparently  established   roles,  as  well  as  about   the  much  greater  problems  in  interpreting  the  outcomes  of  behavioural  experiments  with  intranasal  oxytocin.  

1. Leng  G,  Pineda  Reyes  R,  Sabatier  N,  Ludwig  M.  (2015)  The  posterior  pituitary:  from  Geoffrey  Harris  to  our  present  understanding.  J  Endocrinol.  in  press  

2. Leng  G,  Ludwig  M.  (2015)  Intranasal  oxytocin:  myths  and  delusions.  Biol  Psychiatry  in  press  

 

Page 11: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Jacques  Benoit  Memorial  Lecture—Thursday,  September  24  

L0202:  Joels  Is  early  life  stress  always  bad  news?  

Marian  Joëls  

Dept.  Translational  Neuroscience,  Brain  Center  Rudolf  Magnus,  UMC  Utrecht,  The  Netherlands  

In   response   to   potential   threats,   the   body   initiates   a   stress   response,   involving   activation   of   the  hypothalamo-­‐pituitary-­‐adrenal  axis.  This  has  impact  on  both  peripheral  organs  and  the  brain.  Generally  the  stress  response  is  very  beneficial  because  it  promotes  adaptation.  This  certainly  holds  true  for  the  cognitive  domain.  Thus,  shortly  after  stress,  vigilance  and  emotional  responses  are  strongly  stimulated,  in  part  due  to  activation  of  the  amygdala  and  striatum;  this  allows  us  to  rapidly  respond  to  the  situation  at  hand.  Some  hours  later,  resources  are  redistributed  in  favor  of  higher  cognitive  regions,  such  as  the  dorsal  hippocampus  and   prefrontal   cortex,   which   collectively   help   to   rationalize   and   contextualize   stressful   events.   These  adaptive   responses  may  become  maladaptive  when  occurring   repetitively  or  at  a   young  age,  when  brain  circuits  are  fully   in  development.   In  accordance,  stress  experienced  early   in   life   is  a  well-­‐documented  risk  factor   for   vulnerability   to   both   psychiatric   and   neurological   disorders.  We   use   various   animal  models   to  delineate  the  sequential  changes   in  brain  structure  and  function  as  a  consequence  of  early   life  adversity,  and  to  unravel  critical  steps  and  mechanisms.  It  will  be  argued  that  the  long-­‐term  consequences  of  early  life  stress  are  not  invariably  bad  but  depend  on  the  conditions  in  which  individuals  have  to  perform  later  in  life.  Moreover,   pharmacological   or   environmental   intervention   applied   after   early   life   adversity   can   to   some  extent   lastingly   reverse  changes   in  brain   structure  and   function  due   to  early   life   stress.   Finally,  examples  will  be  given   that  variations   in  genetic  background  may  make   individuals  more  or   less   susceptible   to   the  effects  of  challenges  early  in  life.  

 

Page 12: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Young  Investigator  SNE  Lecture—Friday,  September  25  

L0301:  Saenz  de  Meira  Maternal  photoperiod  programs  hypothalamic  thyroid  hormone  deiodinase  expression  and  seasonal  reproduction  in  Siberian  hamsters  

Cristina  Sáenz  de  Miera  

Département  de  Neurobiologie  des  Rythmes,  Institut  des  Neurosciences  Cellulaires  et  Intégratives,  University  of  Strasbourg  France.  Department  of  Integrative  Environmental  Physiology,  School  of  Biological  Sciences,  University  of  Aberdeen,  UK  

Mammals   perceive   seasons   via   the   photoperiodic   changes   in   circulating   melatonin   and   adapt   their  biological   function   accordingly.   Melatonin   acts   through   a   hypothalamic   network   involving   thyroid  stimulating  hormone   subunit  β   (TSHβ)   in   the  pars   tuberalis,   type  2   (Dio2)   and  3   (Dio3)   thyroid  hormone  deiodinases  in  the  tanycytes.  Maternal  melatonin  reaches  the  fetus  via  the  placenta  and  is  known  to  affect  fetal   photoperiodic   responses.  We  used   pregnant   female   Siberian   hamsters   (Phodopus   sungorus)   placed  under   long   (LP:   16h   light   (L):8h   dark   (D))   or   short   (SP:   8L:16D)   photoperiod   until   pups’   weaning   to  investigate   the   programming   effect   of   maternal   melatonin   on   the   hypothalamic   mechanisms   regulating  seasonal  physiology.  At  weaning,  half  of  the  offspring  from  both  groups  were  transferred  to  intermediate  photoperiod   (IP;   14L:10D)   and   their   testicular   development   and   hypothalamic   genes   expression   was  studied   when   the   animals   were   50   days   old.   Offspring   gestated   in   SP   showed   increased   testicular  development  when   exposed   to   IP   as   compared   to   the   IP   exposed   animals   gestated   in   LP.   In   IP   exposed  animals,  TSH  expression  in  the  pars  tuberalis  was  identical  but  there  was  a  strong  change  in  the  expression  of  deiodinases  only  in  the  SP  gestated  animals  suggesting  a  profound  alteration  of  the  hypothalamic  thyroid  system  by  the  melatonin  signal  received  during  gestation.  This  alteration  appears  to  affect  the  expression  of   glial   and   proliferation   markers   and   thus   the   structural   plasticity   of   the   mediobasal   hypothalamus.  Therefore,   it   is   possible   that   hypothalamic   thyroid   hormone   levels  mediate   the   differential   reproductive  responses  observed   in   IP  via   tanycyte  and  glial   structural  changes   initiated  during  pregnancy.  Our   results  show   that   the   photoperiod   experienced   during   gestation   is   able   to   program   the   adult   offspring  hypothalamic  gene  expression  in  response  to  the  same  melatonin  input.    

Page 13: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Young  Investigator  Mick  Harbuz  Lecture—Friday,  September  25  

L0302:  Bryn  Owen  The  physiology  and  pharmacology  of  the  fasting  hormone  FGF21  

Bryn  Owen  

Department  of  Pharmacology,  University  of  Texas  Southwestern  Medical  Center,  Dallas,  TX,  USA  ;  Section  of  Investigative  Medicine,  Imperial  College,  London,  UK     Fibroblast   growth   factor   21   (FGF21)   is   a   fasting-­‐induced   hormone   that   regulates   the   adaptive   starvation  response  and  extends   lifespan   in  mice.  Analogs  of   FGF21  are   currently  undergoing   clinical   evaluation   for  the   treatment   of   obesity   and   type   2   diabetes.   Mechanistically,   FGF21   acts   on   the   brain   to   induce   the  hypothalamic-­‐pituitary-­‐adrenal  (HPA)  axis,  which  contributes  to  both  its  physiological  and  pharmacological  actions.   However,   chronic   activation   of   the  HPA   axis   is   associated  with   alterations   in   behavior.   Here  we  show   that   in   mice,   FGF21   reduces   sweet   preference   and   social   interaction,   both   measures   of   reward  behavior.   These   effects   require   the   FGF21   co-­‐receptor   beta-­‐Klotho   in   the   central   nervous   system   (CNS).  FGF21   also   reduces   sweet   preference   in   cynomolgus   monkeys.   These   findings   raise   the   possibility   that  FGF21  administration  could  affect  reward  behavior  in  humans.    

Page 14: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Wednesday,  September  23  

S0101:  Meijer  Selective  activation  of  glucocorticoid  receptor  pathways:  linking  gene  transcription  to  cognition  

Onno  C.  Meijer  

Dept.  Internal  Medicine/Endocrinology,  Leiden  University  Medical  Center,  PO  Box  9600,  Leiden,  the  Netherlands    

Glucocorticoid  hormones  affect  brain  function  in  a  cell-­‐  and  context  specific  manner  that  is  ill  understood.  Their  mineralo  and  glucocorticoid  receptors   (MRs  &  GRs)  act   in   large  measure  as   transcription   factors,   in  interaction  with  other  transcription  factors  and  with  nuclear  receptor  coregulator  proteins.  These  diverse  signalling  pathways  may  be  selectively  targeted  in  order  to  either  elucidate  mechanisms  of  glucocorticoid  signalling,   or   to   develop   drugs   in   stress-­‐related   psychopathology.   With   a   single   gene   approach,   we  manipulated   the  expression  of   Steroid  Receptor  Coactivator-­‐1   (SRC-­‐1),   and   tested   its   involvement   in  GR-­‐mediated  regulation  of  the  Crh  gene  in  mice.  SRC-­‐1  knockout  mice  showed  that  SRC-­‐1  is  necessary  for  both  up-­‐  and  downregulation  of  Crh  via  GR.  Using  local  manipulation  of  SRC-­‐1  splice  variants  using  exon  skipping  we   could   induce   resistance   for   the   (anxiogenic)  GR-­‐mediated  upregulation  Crh   in   the   amygdala.  A  wider  approach   for   selective   targeting   is   the  use  of  selective   receptor  modulators.  These   receptor   ligands  allow  interaction  with  only  a  part  of  all  downstream  coregulators.  We  compared  two  SGRMs  that  induce  largely  overlapping   yet   distinct   patterns   of   GR-­‐coregulator   intractions.   While   one   SRGM   acted   as   a   strong   GR  agonist   in   a   passive   avoidance   memory   task   (potentiating   memory),   the   other   acted   as   GR   antagonist.  Datasets   such   as   these   should   allow   to   link   GR   to   the   signaling   pathways   responsible   for   specific  glucocorticoid  effects.    

S0102:  Moisan  Corticosteroid  binding  globulin  role  in  memory  processes  

Marie-­‐Pierre  Moisan  

INRA,  Bordeaux,  France  

Corticosteroid  Binding  Globulin  (CBG)  is  a  glycoprotein  synthesized  in  liver  and  secreted  in  the  blood  where  it   binds   with   a   high   affinity   but   low   capacity   glucocorticoid   hormones,   cortisol   in   humans   and  corticosterone  in   laboratory  rodents.     In  mammals,  95%  of  circulating  glucocorticoids  are  bound  to  either  CBG  (80%)  or  albumin  (15%)  and  only  the  5%  free  fraction  is  able  to  enter  the  brain.  The  importance  of  CBG  in  glucocorticoid  biology  is  revisited  since  genetic  studies  in  pigs,  rats  and  humans  have  recently  highlighted  that  the  gene  encoding  CBG  is  the  major  factor  affecting  cortisol/corticosterone  variability  in  these  species.    We  generated  a  mouse   line   totally  devoid  of  CBG   (Cbg  k.o.)   to  better  understand   the   role  of  CBG   in   the  regulation   of   the   hypothalamic-­‐pituitary-­‐adrenal   axis   and   the   consequences   of   its   deficiency   on   brain  functions.  We  found  that  Cbg  k.o.  mice  display  a  reduced  pool  of  circulating  glucocorticoids  and  a  blunted  rise  of  these  hormones  after  stress.  We  showed  that  this  hyporesponse  is  caused  by  an  increased  clearance  of  blood  glucocorticoids   rather   than  a  differential  adrenal  sensitivity.  The  glucocorticoid  hyporesponse  of  the  Cbg  k.o.  mice  was  found  associated  with  altered  emotional  reactivity  and  memory  function.  We  have  reported  that  male  Cbg  ko  mice  display  more  despair-­‐like  behaviors   than  wt  mice,  what  was  observed   in  several   depression   models   such   as   the   forced   swim   test,   the   tail   suspension   test   and   the   learned  helplessness  paradigm.  These  results  were  confirmed  in  female  Cbg  ko  mice,  although  a  regulation  of  CBG  by  estrogens   introduces   a   layer  of   complexity.  We  have   also  demonstrated   that  CBG,   through   its   role   in  regulating  glucocorticoid  delivery  to  the  brain,  is  indirectly  involved  in  memory  processes.  Cbg  k.o.  mice  are  insensitive   to   the   impairment   in  memory   retrieval   induced   by   stress,   which   can   be   restored   by   infusing  glucocorticoids  directly  in  the  hippocampus.  In  this  context,  we  are  now  further  investigating  the  impact  of  GC   hyporesponse   to   stress   on   different   memory-­‐related   paradigms.   By   using   various   behavioral   tests  involving  different  brain  regions,  we  showed  that  CBG  deficiency  impacts  hippocampus-­‐dependent  but  not  amygdala-­‐dependent  memory  processes.    

Page 15: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Wednesday,  September  23  

S0103:  Yau  11β-­‐HSD1  and  age-­‐associated  memory  decline  

Joyce  Yau  

University  of  Edinburgh,  Edinburgh,  United  Kingdom  

Long-­‐term   exposure   to   elevated   circulating   glucocorticoid   (GC)   levels   correlates   with   impaired  hippocampal-­‐dependent   memory   in   a   subgroup   of   aged   individuals.   A   component   part   of   brain   GC  concentrations   is   derived   from   the   local   regeneration   of   active   GCs   from   their   inactive   forms   by   11β-­‐hydroxysteroid  dehydrogenase  type  1  (11β-­‐HSD1).  The  hippocampus,  an  area  with  abundant  glucocorticoid  receptors   (GRs)   and   11β-­‐HSD1,   is   particularly   vulnerable   to   the   effects   of   stress   and   ageing.  Our   studies  highlight  the  important  contribution  of  brain  11β-­‐HSD1  regenerated  GCs  in  age-­‐associated  memory  decline.  Thus,   life-­‐long  deficiency  of  11β-­‐HSD1  protects  against  spatial  memory   impairments   in  aged  mice  despite  elevated  plasma  corticosterone  (CORT)  levels.  Moreover,  11β-­‐HSD1-­‐deficiency  also  protects  against  stress-­‐induced  memory   deficits   in   adult  mice.   The   improved   cognition   in   aged   hsd11b1-­‐/-­‐  mice   associates  with  lower  intra-­‐hippocampal  CORT  levels  during  learning  and  memory,  a  switch  from  predominant  activation  of  ‘anti-­‐cognitive’   GRs   to   predominant   ‘pro-­‐cognitive’   MRs,   and   enhanced   hippocampal   long-­‐term  potentiation   (LTP).   Importantly,   short-­‐term   treatment  of   aged  cognitively   impaired  C57BL/6J  mice  with  a  CNS  active  11β-­‐HSD1   inhibitor   reverses   the   impaired   spatial  memory.  11β-­‐HSD1   is   therefore  a  promising  novel  target  for  the  treatment  of  age-­‐associated  cognitive  decline  in  humans.    

S0104:  Givalois  Glucocorticoids'   role   in   the   hippocampus   function   impairment   associated   with   Alzheimer's  disease  

Laurent  Givalois    

Inserm,  Montpellier,  France  

Alzheimer’s  disease   (AD)   is   the  most  common  cause  of  dementia   in   the  elderly  and   is   characterized  by  a  progressive   impairment   in   cognitive   functions,   resulting   from   synapse   and   nerve   cell   destruction   in   the  brain.   AD   symptoms   include   memory   loss,   alteration   of   the   individual’s   personality   and   failure   to  communicate   or   perform   routine   tasks.   It   was   shown   that   in   AD   patients,   cognitive   deficits   and  psychological  symptoms  were  associated  with  an  early  deregulation  of  the  hypothalamic-­‐pituitary-­‐adrenal  (HPA)   axis,   as  well   as   elevated   levels   of   glucocorticoids   in   plasma   and   cerebrospinal   fluid.   The  HPA   axis,  which  is  highly  involved  in  the  stress  response,  triggers  the  adrenal  cortex  to  release  glucocorticoids.  These  steroid  hormones  readily  cross  the  BBB  and  bind  to  glucocorticoid  receptors  (GR).  These  nuclear  receptors  are   necessary   for   normal   cellular   activity   and   crucial   for   many   CNS   functions,   including   learning   and  memory.  Both  stress  and  increased  glucocorticoids  exposure  were  shown  to  induce  cognitive  impairments,  trigger  amyloid  precursor  protein  (APP)  misprocessing,  reduce  amyloid-­‐β  peptide  (Aβ)  clearance,   increase  Aβ   levels   and   stimulate   tau   hyperphosphorylation   and   its   neuronal   accumulation.   These   observations  validate   a   key   role   of   glucocorticoids   in   the   etiology   of   AD,   especially   cognitive   decline   and   associated  psychological  symptoms.  In  an  acute  rodent  model  of  AD,  used  to  screen  the  therapeutic  potential  of  new  molecules,   we   evidenced   a   deregulation   of   the   HPA   axis   activity,   reinforcing   the   hypothesis   of   its  involvement  in  the  etiology  of  AD  and  providing  evidence  for  the  establishment  of  a  vicious  circle  whereby  the  pathology  increases  the  secretion  of  glucocorticoids,  which  further  increase  the  pathology.  Using  new  selective   modulators   of   GR   in   this   acute   model   of   AD   reverses   amyloid   toxicity,   thus   reinforcing   the  evidence  of  glucocorticoids  and  GR  involvement  in  AD  and  demonstrating  a  promising  therapeutic  potential  for  this  new  family  of  molecules.  

 

 

Page 16: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Thursday,  September  24  

S0201:  Davis  Imaging  gene  transcription  dynamics  in  living  cells  –  from  cells  to  tissue  

Julian  RE  Davis  

Faculty  of  Medical  &  Human  Sciences,  University  of  Manchester,  UK  

Production  of  prolactin  and  growth  hormone  by  the  pituitary  gland  displays  both  acute  and  long-­‐term  responses,  and  requires   flexibility   of   transcriptional   behaviour.   This   has   been   extensively   studied   in   the   past   using   standard  biochemical   measurements   of   RNA   and   protein   concentrations   in   large   populations   of   cells.   Luminescent   and  fluorescent  reporter  genes  have  recently  enabled  quantitative  microscopic  study  of  individual   living  cells,  and  reveal  dramatic  variability  in  the  level  of  gene  expression  between  different  individual  cells  and  across  tissues.  Using  pituitary  GH3  cells  expressing  either   luciferase  or  destabilised  EGFP  under  the  control  of  the  human  prolactin  gene  locus,  we  have   found   that   prolactin   promoter   activity   is   highly   pulsatile   in   individual   living   cells.   The  majority   of   cells   display  cyclical  promoter  activation  with  an  average  cycle  length  of  11  hours.  Using  binary  switch  modelling  we  determined  the   lengths  of  transcriptionally  active  and   inactive  periods,  and  found  a  minimum  ‘off’  period  of  3h,   implying  that  a  refractory   period   before   transcriptional   initiation   could   generate   the   transcriptional   cycles   seen.   In   order   to   assess  transcription  dynamics  in  normal  pituitary  cells,  we  generated  transgenic  rats  in  which  a  recombinant  BAC  comprising  the   entire   hPRL   locus   (160kbp)   controlled   Luc   or   dEGFP   expression.   Transgenic   pituitary   cells   that   had   been  enzymatically  dispersed  and  grown  in  primary  culture  displayed  similar  dynamic  transcription  patterns  to  those  seen  in  the  GH3  cell  line.  Similar  behaviour  was  found  in  intact  fetal  pituitary  tissue,  with  uncoordinated  pulsatile  patterns  of  gene   transcription,  but   in   the   intact  adult  pituitary  gland   there  was  more  coordinated  expression  between  cells,  probably   mediated   through   gap   junctional   communication.   In   summary,   hormone   gene   expression   in   isolated  pituitary  cells  is  highly  dynamic  and  cyclical.  The  patterns  change  during  pituitary  development,  and  are  modulated  by  the  hormonal  environment.  The  mechanisms  of   these  effects   remain  unclear  but  dynamic   transcriptional   responses  may   have   important   implications   for   physiological   control   and   possibly   in   pathological   states   such   as   pituitary  adenomas.  Statistical  modelling  of  these  dynamic  patterns  has  generated  new  hypotheses  about  the  control  of  gene  expression  in  vivo.  

S0202:  Binart  Mechanisms  for  prolactin  regulation  of  reproduction  

Nadine  Binart  

Inserm,  Le  Kremlin-­‐Bicêtre,  France  

Hyperprolactinemia   induced  hypogonadotropic   anovulation   (PRL-­‐HA)   is   a  major   cause   of   amenorrhea   secondary   to  hypothalamic   GnRH   deficiency   in   women.   This   gonadotropic   deficiency   has   been   proposed   to   result   from   direct  suppression  of  prolactin  (PRL)  on  GnRH  release  but  its  mechanism  remains  unknown.  Because  GnRH  neurons  do  not  express   unequivocally   the   PRL   receptor,   and   are   stimulated   by   kisspeptin   (Kp)   neurons   which   do   express   PRL  receptors,  we  hypothesized   that  GnRH  deficiency   in   this   condition   could  be  due   to   a  decrease   in  Kp   secretion.  We  developed  a  hyperprolactinemic  female  mouse  model  mimicking  the  human  pathology  and  analyzed  the  ability  of  Kp  administration   to   restore   gonadotropin   secretion   and   cyclicity.  We   demonstrated   that   hypothalamic   Kp   expression  was  diminished  and  that  Kp  administration  restored  hypothalamic  GnRH  release,  gonadotropin  secretion,  and  ovarian  cyclicity   suggesting   that  Kp  neurons  play  a  major   role   in  PRL-­‐HA.  Altogether  with   the   recent  demonstration   that  Kp  neurons  express  high  levels  of  PRL  receptor,  our  data  suggest  that  PRL  excess  acts  directly  on  Kp  neurons  to  suppress  Kp   secretion   and   downstream   GnRH   secretion.   Therefore,   Kp   neurons   appear   to   be   the   missing   link   between  hyperprolactinemia  and  GnRH  deficiency.  To  evaluate  the  effect  of  Kp  administration  on  human  gonadotropic-­‐ovarian  axis,   two   hyperprolactinemic   women   with   cabergoline   resistant   microadenomas   (<6   mm)   presenting   with   chronic  secondary   amenorrhea   were   studied.  Measurement   of   LH,   FSH   and   free   a-­‐subunit   pulsatility,   serum   estradiol   and  inhibin  B  levels  was  performed.  Infusion  of  Kp  induced  a  significant  increase  of  two  gonadotropins  pulsatile  secretion,  and  FAS  with  a  dramatic   rise   in   their  amplitude.  A   rapid  and  very   significant   increase,   in  mean  LH,  FSH,  but  also   in  ovarian   estradiol,   inhibin   B   circulating   levels   occurred.   Therefore,   we   demonstrate   that   Kp   administration   can  stimulate  short  term  gonadotropin  secretion  in  women  with  PRL-­‐HA.  This  exploratory  study  suggests  that  Kp  could  be  an   alternative   therapeutic   approach   to   restore   ovulation   and   fertility   in   hyperprolactinemic   women   resistant   to  dopamine   agonists.   Long-­‐term   clinical   trials  will   be  necessary   to   confirm   the   therapeutic   relevance  of   Kp   in   clinical  practice.  

Page 17: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Thursday,  September  24  

S0203:  Brown  Prolactin  actions  in  the  brain      Rosemary  Brown  

University  of  Otago,  New  Zealand  

Prolactin   is   an   anterior   pituitary   hormone   that   has   a   broad   range   of   physiological   functions,   including  several  mediated  through  actions  in  the  brain.  These  actions  are  mediated  through  the  prolactin  receptor,  which   is   widely   expressed   throughout   the   hypothalamus.   Prolactin   signaling   is   mediated   by   the  transcription   factor   signal   transducer   and   activator   of   transcription   (STAT)   5,   and   we   have   shown   that  immunohistochemical  labelling  of  phosphorylated  STAT5  (pSTAT5)  is  a  reliable  maker  of  activated  prolactin  receptors   in   the   brain.   pSTAT5   expression   in   the   brain   can   be   induced   by   peripherally   administered  prolactin,   demonstrating   that   prolactin   crosses   the   blood   brain   barrier   and   enters   the   brain,   but   the  mechanism  by  which  it  does  this  is  not  completely  understood.  It  has  been  hypothesised  that  the  prolactin  receptor   in   the   choroid   plexus,  where   extremely   high   levels   of   expression   are   observed,  may   serve   as   a  transporter   by   binding   prolactin   in   the   blood   and   releasing   it   in   the   cerebrospinal   fluid.   By   measuring  transport  of  125I-­‐labelled  prolactin  into  the  brain  in  mice  lacking  the  prolactin  receptor,  we  have  shown  that  the   prolactin   receptor   is   not   required   for   transport.  We   have   also   shown   that   lactation,   a   period  when  levels  of  prolactin  are  chronically  elevated,  is  accompanied  by  an  increase  in  the  rate  of  prolactin  transport  into  the  brain,  leading  to  an  increase  in  the  number  of  neurons  responding  to  prolactin.  During  pregnancy  and   lactation,   a   critical   adaptation   that   occurs   in   the  maternal   brain   is   the   establishment  of   appropriate  behaviour  to  enable  the  mother  to  feed  and  nurture  offspring.  We  have  shown  that  prolactin  plays  a  critical  role   in   the   initiation   of   these   behaviours,   by   removing   prolactin   receptors   specifically   from   the   medial  preoptic  nucleus,  a  region  known  to  be  important  in  maternal  behaviour.    

S0204:  Martin  Plasticity   in   the   neuroendocrine   regulation   of   prolactin   secretion    during  lactation  

Agnes  Martin  

Inserm,  Montpellier,  France  

The  PRL  secretion  in  the  blood  is  finely  tuned,  differently  depending  on  the  physiological  demand  in  order  to   assure   its   physiological   role.   We   begin   to   have   a   better   insight   into   the   mechanism   at   stake   in  modulating   both   the   timing   and   quantity   of   secreted   hormones.   It   involves   regulations   all   along   the  hypothalamo-­‐pituitary   axis.   One   of   the   main   regulators   of   PRL   secretion   are   the   Tuberoinfundibular  neurons  of  the  arcuate  nucleus  (TIDA).  TIDA  exert  a  negative  feedback  on  PRL  by  secretion  of  Dopamine  by  (TIDA)   at   the   median   eminence   (ME)   into   the   portal   blood.   We   will   discuss   their   role   in   converting  ultrashort   electrical   signal   based   information   from   neurons   into   long   lasting   hormonal   secretion   by  endocrine   cells.   We   show   a   robust   long-­‐term   organization   of   TIDA   neurons   electrical   activity   with   a  harmonization  of  their  firing  rates  converting  single  electrical  units  lasting  few  msec  (action  potential)  into  burst   of   co-­‐activation   lasting   several   minutes.   This   effect   of   “loose”   coordination   is   conveyed   to   the  physiological  output  of  the  TIDA  i.e  the  secretion  of  DA.  By  live  amperometry  both  in  vitro  and  in  vivo,  we  show  that  at  the  level  of  the  ME  DA  secretion  is  organised  in  hierarchically-­‐organized  buildings  blocks  which  recur  over  long  term  (weeks).  This  system  could  well  apply  to  most  of  the  physiological  PRL  pattern  except  lactation.  During  this  specific  state  of  chronic  hyperprolactinemia  we  showed  that  the  electrical  properties  of  the  TIDA  where  not  changed  and  that  TIDA  were  certainly  not  electrically  silenced.  To  allow  for  this  long  term   change,   TIDA  undergo   tremendous   phenotypical   plasticity,   switching   from  dopamine   to   enkephalin  secreting   neurons.   We   believe   because   of   their   anatomical   and   functional   properties,   they   provides   a  unique   model   allowing   to   study   the   plasticity   of   the   neurohemal   interface   between   the   brain   and   the  organism.  

Page 18: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Thursday,  September  24  

S0205:  Robinson  Neural  effects  of  blocking  puberty  with  a  long  term  Gonadotrophin  Releasing  Hormone  agonist  (GnRHa)  

Jane  Robinson  

Institute  of  Biodiversity,  Animal  Health  and  Comparative  Medicine,  The  University  of  Glasgow,  Glasgow,  UK  

GnRH  is  widely  recognised  as  a  peptide  hormone  that  controls  the  reproductive  axis.  Recent  publications  have  also  revealed  roles  for  GnRH  in  non-­‐reproductive  tissues  including  the  heart,  skin,  kidney  and  smooth  muscle  as  well  as  areas  of  the  brain  that  regulate  cognitive  function.  Long  term  treatments  with  GnRHa  are  employed   to   block   puberty   in   a   range   of  medical   abnormalities   in   children   including   central   precocious  puberty,   idiopathic   short   stature,   and   early   onset   Gender   Identity   Disorder.   However,   the   effects   of  delaying  puberty  with   long  term  agonist  exposure  on  behaviour  and  the  functioning  of  areas  of  the  brain  that  control  behavioural  like  the  amygdala  and  hippocampus,  are  largely  unexplored.  In  the  current  studies  we   have   used   an   ovine  model   in  which   sheep  were   exposed   to   a   GnRHa   from   just   prior   to   the   time   of  normal  puberty  until  one  year  of  age  to  determine  effects  on  risk  taking  behaviour,  spatial  orientation  and  emotional  regulation.  Male  and  female  same  sex  twins  were  included  in  the  studies;  one  as  a  control  and  one   given   monthly   GnRHa   implants   (Zoladex).   GnRHa   blocked   the   pubertal   process   in   both   sexes.   Post  mortem  brain  tissue  was  collected  at  11  months  of  age  and  functional  studies  conducted  to  explore  sex  and  treatment   differences   on   morphometric   measurements   of   global   and   regional   brain   volume   as   well   as  differential   gene  expression   and   synaptic   plasticity   in   the   amygdala   and  hippocampus.     Both   these  brain  regions  have  been  shown   to  contain   receptors   for  GnRH.  Our   studies  have  shown   that   long   term  GnRHa  treatment   that   blocks   puberty   in   both   sexes   alters   brain   development,   the   response   to   stress   and  important  cognitive  functions.    Supported  by  funding  from  the  BBSRC,  BSN,  Norwegian  Research  Council,  Norwegian  School  of  Veterinary  Medicine  and  a  gift  of  Zoladex  from  Astra  Zeneca.      

 

S0206:  Sharif  Astrogenesis   in   the   postnatal   hypothalamus:   a   new   mechanism   involved   in   female   sexual  maturation  

Ariane  Sharif  

Inserm,  University  of  Lille,  France  

The   initiation   of  mammalian   puberty   requires   an   increased   pulsatile   secretion   of   GnRH   from   specialized  neurons  of  the  hypothalamus.  This  increase  is  brought  about  by  coordinated  changes  in  both  transsynaptic  and   glial   inputs   to   GnRH   neurons.   Here,   we   show   that   the   timely   onset   of   puberty   in   female   rodents  involves   the   genesis   of   astrocytes   during   the   infantile   period   in   the   environment   of   GnRH   neurons.   Our  results  suggest  that  a  significant  fraction  of  GnRH  neurons  recruit  newly  generated  cells  born  on  postnatal  day  8  in  their  immediate  vicinity.  These  newborn  cells  differentiate  into  astrocytes  and  their  morphological  association  with  GnRH  neurons  remains  visible  in  adult  animals.  Local  inhibition  of  cell  proliferation  in  the  surroundings   of   GnRH   neuron   cell   bodies   during   the   infantile   period   by   stereotaxic   injection   of   beads  releasing  the  anti-­‐mitotic  paclitaxel  markedly  delayed  puberty.  Experiments  carried  out  in  mice  deficient  in  both   erbB1   and   erbB4   signaling   in   astrocytes,   which   exhibit   impaired   sexual   development   and   mature  reproductive   function,   showed   that   erbB   signalling   was   required   for   the   long-­‐term  maintenance   of   the  association  between  astrocytes  born  during  the  infantile  period  and  GnRH  neurons.  Altogether,  our  results  raise  the  exciting  possibility  that  the  birth  of  new  astrocytes  morphologically  and  functionally  connected  to  GnRH  neurons  is  a  key  maturational  event  required  to  initiate  GnRH  secretion  in  female  rodents.  

 

Page 19: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Thursday,  September  24  

S0207:  O’Byrne  Puberty  timing:  is  the  hypothalamus  controlled  by  the  amygdala?    

Kevin  T  O’Byrne  and  Xiao  Feng  Li  

Division   of  Women’s   Health,   Faculty   of   Life   Sciences   &  Medicine,   King’s   College   London,   Guy’s   Campus,  London  SE1  1UL,  UK    

Although  it  is  recognised  that  hypothalamic  kisspeptin  plays  an  integral  role  in  the  GnRH  pulse  generating  neural  network,  and   is  obligatory   for  puberty,   the  upstream  regulatory  mechanisms   that  drive   the  GnRH  pulse  generator  to  trigger  the  onset  of  puberty  have  remained  stubbornly  elusive,  as  have  those  underlying  its  advance  or  delay  by  stress.  The  amygdala,  a  key  limbic  brain  structure  commonly  known  for   its  role  in  higher-­‐order  emotional  processing,   is   implicated   in  pubertal   timing  and   stress-­‐induced   suppression  of   LH  pulse  frequency.  We  have  recently  shown  that  lesions  of  the  medial  amygdala  (MeA)  and  more  specifically  its   posterodorsal   subnucleus   (MePD),   dramatically   advances   puberty   via   mechanisms   independent   of  changes   in   body   weight,   but   involving   intrinsic   GABA   and   glutamate   receptor   signalling.   We   have   also  shown   that   kisspeptin   signalling   in   this   extra-­‐hypothalamic   structure   surprisingly   exerts   a   profound  influence  on  GnRH  pulse  generator  frequency  and  alters  pubertal  timing.  Additionally,  activation  of  MePD  corticotrophin-­‐releasing   factor   type   2   receptor   (CRF-­‐R2)   by   the   endogenous   ligand   urocortin   3   delays  puberty.   These   finding   might   suggest   that   amygdala   kisspeptin   interacting   with   local   GABA/glutamate  neural  circuits  form  a  higher-­‐order  regulator  of  the  hypothalamic  GnRH  pulse  generator  that  is  critical  for  triggering  puberty.  

S0208:  Simonneaux  Is  seasonal  reactivation  of  reproduction  a  yearly  puberty?    

Valérie  Simonneaux,  Cristina  Saenz  de  Miera,  David  Hazlerigg*  

Institut  des  Neurosciences  Cellulaires  et  Intégratives,  CNRS  UPR  3212,  Strasbourg,  France,  *Faculty  of  Biosciences,  Fisheries  and  Economy,  University  of  Tromsø,  Norway    

Puberty   in  youth   is   characterized  by  a   full   activation  of   the   reproductive   axis.  However,   throughout  adulthood   most   mammals   are   further   submitted   to   phases   of   activation   and   inactivation   of  reproduction  according  to  seasons.  It  has  been  proposed  that  central  mechanisms  involved  in  seasonal  reactivation  could  be  compared  to  a  recurrent  annual  puberty.  The  major  progresses  made  recently  in  our  understanding  of  the  neuroendocrine  control  of  seasonality  now  allow  revisiting  this  hypothesis.  The  annual  change  in  the  nocturnal  production  of  the  pineal  hormone  melatonin  is  the  main  driver  of  seasonal   reproduction.   Whether   mammals   are   long-­‐day   (like   hamsters)   or   short-­‐day   (like   sheep)  breeders,  the  large  production  of  melatonin  in  winter  leads  to  an  inhibition  of  TSH  production  in  the  pars   tuberalis.   TSH   has   been   shown   to   activate   deiodinase2   in   the   tanycytes   surrounding   the   basal  part   of   the   3rd   ventricle,   leading   to   an   increased   production   of   thyroid   hormone   (TH)   locally   in   the  basal  hypothalamus.  In  seasonal  hamsters,  the  spring  activation  of  the  TSH/TH  pathway  increases  the  synthesis  of  RFRP  and  kisspeptin,   two  hypothalamic  RF-­‐amide  peptides   critical   for   the   activation  of  GnRH   neuron   and   downstream   pituitary-­‐gonadal   axis.   In   new   born   (day   0)   and   young   (day   15)  Siberian  hamsters,  expression  of  TSH  in  the  pars  tuberalis  and  deiodinase2  in  the  tanycytes  is  elevated  and   remains   stable   until   adulthood.   The   developmental   timing   of   genes   coding   for   RFRP   and  kisspeptin  is  different:  Rfrp  mRNA  is  not  detected  at  birth  but  rises  constantly  until  adulthood  whereas  Kiss1  mRNA   is  detected  at  birth,   increases   strongly  when  gonadal  development  peaks   (day  24),   and  then   decreases   in   adults   as   a   consequence   of   the   negative   sex   steroid   feedback.   In   conclusion,   the  comparison   of   the   neuroendocrine   pathway   regulating   seasonal   and   pubertal   activation   of   central  reproduction   in   rodents   indicates   that   the   former   relies   mainly   on   the   TSH/TH/RFRP   pathway  whereas   the   later   relies  mainly  on   the  kisspeptin  neurons.   Interestingly  however,   the  kinetic  of   this  developmental   reproductive   pathway   is   modulated   by   the   photoperiod   perceived   by   the   gestating  female.  

Page 20: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Friday,  September  25  

S0301:  Balthasar  The  paraventricular  hypothalamus  in  glucose-­‐sensing,  maternal  programming  and  over-­‐nutrition  

Nina  Balthasar  

University  of  Bristol,  UK  

Within   the   hypothalamus,   the   paraventricular   hypothalamus   (PVH)   is   a   key   integrator   and  modulator   of  metabolic  and  cardiovascular   function,  mainly  due  to   its  anatomical  connectivity   to  both  neuroendocrine  and  autonomic  output.  The  PVH  is  thus  a   likely  CNS  structure  to  be  modulated  by  glucose  state,  diet  and  maternal  diet  and  a  probable  mediator  of  downstream  metabolic  and  cardiovascular  consequences  –  good  and   bad.   Here   we   will   discuss   our   data   identifying   significant   PVH   glucose-­‐sensitivity   both   in   terms   of  transcriptome   and   electrophysiological   changes   in   addition   to   offspring   PVH   transcriptome   alteration  downstream   of   early   life   high-­‐fat/high-­‐sugar   diet   exposure.   To   assess   mechanisms   underlying   these  transcriptomic   changes  we  have   furthermore   assessed  diet-­‐mediated   changes   to   the  PVH  epigenome.   In  summary,  we  will   demonstrate   significant   glucose-­‐,  diet-­‐   and  maternal  diet-­‐mediated  PVH   transcriptome  and  epigenome  plasticity.  

S0302:  Steculorum  Novel  regulator  of  orexigenic  AgRP-­‐neurons  

Sophie  Steculorum  

Max  Planck  Institute,  Cologne,  Germany  

Activation   of   orexigenic   AgRP-­‐expressing   neurons   in   the   arcuate   nucleus   of   the   hypothalamus   potently  promotes   feeding,   thus   defining   new   regulators   of   AgRP-­‐neuron   activity   could   uncover   potential   novel  targets   for   obesity   treatment.   We   demonstrate   that   AgRP-­‐neurons   express   the   purinergic   receptor   6  (P2Y6),   which   is   activated   by   uridine-­‐diphosphate   (UDP).   In   vivo,   UDP   induces   ERK-­‐phosphorylation   and  cFos-­‐expression   in   AgRP-­‐neurons   and   promotes   action   potential   firing   of   these   neurons   in   brain   slice  recordings.   Consequently,   central   application   of   UDP   promotes   feeding   and   this   response   is   abrogated  upon  pharmacological  or  genetic   inhibition  of  P2Y6  as  well   as  upon  pharmacogenetic   inhibition  of  AgRP-­‐neuron   activity.   In   obese   animals,   hypothalamic  UDP-­‐content   is   elevated   as   a   consequence   of   increased  circulating   uridine   concentrations.   Collectively,   we   revealed   a   regulatory   pathway   in   obesity,   where  peripheral   uridine   increases   hypothalamic   UDP-­‐concentrations,   which   in   turn   promote   feeding   via   PY6-­‐dependent  activation  of  AgRP-­‐neurons.  

 

 

 

 

 

Page 21: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Symposium  Speaker  Abstracts—Friday,  September  25  

S0303:  Parnet  Early  life  nutrition  and  long  term  appetite  regulation    

Patricia  Parnet  

UMR  1280  Physiologies  des  Adaptations  Nutritionnelles,  Université  de  Nantes,  France  

Feeding  behaviour  is  a  complex  character  whose  role  is  the  regulation  of  food  intake  in  order  to  meet  the  physiological  needs  of   the  body.  A  strict   regulation  at   the  physiological   level   is  maintained  by  the  central  nervous  system  which  controls  the  energy  homeostasis  and  peripheral  organs  involved  in  food  intake  and  energy   storage   and   expenditure.   But   eating   is   to   a   large   extent   influenced  by   social   and   emotional   cues  which   are   largely   depending   on   the   socio-­‐economic   context   and   the   familial   environment.   It   is   now  admitted  that  early  environment  plays  a  major  role  in  the  establishment  of  feeding  behaviour  both  at  the  physiological  and  psychological  level.  Among  environmental  parameters,  early  nutrition,  including  maternal  nutrition  before  and  during  pregnancy  and  during  lactation,  and  infant  nutrition  during  the  first  months  and  years   of   life   are   essential   for   a   normal   fetal   development   and   for   an   optimal   setting   up   of   the   complex  physiological   interactions  that  will  drive  food   intake  regulation  throughout  the   life  course.   In  the   last   few  decades,   evidence   has   been   accumulating   from   both   human   cohort   studies   and   experimental   animal  models   that   shed   a   light   on   several   biological   mechanisms   underlying   this   early   influence.   Some  physiological  and  molecular  mechanisms  by  which  early  experience,  as  early  as  during  fetal  life,  may  have  long   term   influence  have  been   identified.  Whether,   in  what   time-­‐window  and  how,   these  effects   can  be  reversed  in  under  investigations.  Knowledge  in  the  field  of  nutritional  programming  is  progressing  but  faces  the  difficulty  of   a   high   complexity   and   interaction  between  many  parameters  belonging   to   various   fields  spanning  physiology,  metabolism  but  also  psychology  and  sociology.  

S0304:  Levin  Critical  Amylin-­‐Leptin  Interactions  Influencing  Hypothalamic  Development  

Barry  E.  Levin  

Neurology  Service,  VA  Medical  Center,  E.  Orange,  NJ  and  Department  of  Neurology,  Rutgers,  New  Jersey  Medical  School,  Newark,  NJ,  USA  

Rats  selectively  bred  to  develop  diet-­‐induced  obesity  (DIO)  become  hyperphagic  and  obese  when  fed  a  high  fat  diet.  DIO  rats  have  an   inborn  reduction   in   leptin  receptor  signaling   in  the  ventromedial  hypothalamus  (VMH:  arcuate   (ARC)  +  ventromedial  nucleus   (VMN)).  This   includes   reduced  Lepr-­‐b  expression  and   leptin  receptor   binding   and   leptin-­‐induced   pSTAT3   expression,   anorexia   and   thermogenesis.   They   also   have  defective  development  of   leptin-­‐dependent  AgRP  and  aMSH  ARC  to  paraventricular  nucleus  (PVN)  axonal  outgrowth,  pathways  which  develop  during  the  first  two  postnatal  weeks.  Co-­‐administration  of  leptin  and  the  pancreatic  b-­‐cell-­‐derived  peptide,  amylin,  act  synergistically   to  produce  weight   loss   in  obese  DIO  rats  and  humans.  This  effect  is  mediated  by  amylin-­‐induced  increase  in  VMH  leptin  signaling.  Amylin  increases  leptin   signaling   by   stimulating   VMH   microglial   IL-­‐6   production   which   then   interacts   with   its   IL-­‐6/gp130  receptor  to  co-­‐activate  pSTAT3  downstream  of  the  Lepr-­‐b  receptor.  In  fact,  IL-­‐6  incubation  with  DIO  VMH  neurons  corrects  both  their  defective  Lepr-­‐b  expression  and   leptin-­‐induced  excitation.  To  assess  whether  amylin  might  correct  defective  DIO  VMH  leptin  signaling  and  ARC-­‐PVN  pathway  development,  we  treated  DIO  neonates  with  amylin   (300mg/kg)   twice  daily   from  P0-­‐16.  This   treatment   reduced  body  weight  gain,  increased  ARC  and  VMN   leptin-­‐induced  pSTAT3  expression  and  markedly  enhanced  PVN  AgRP  and  aMSH  fiber   density.   However,   amylin-­‐induced   IL-­‐6   production   and   enhanced   leptin   signaling   appear   to   be  required  only   for  enhanced  AgRP  ARC-­‐PVN  pathway  development   since   IL-­‐6   knockout  mice  have  a  >50%  decrease  in  density  of  PVN  AgRP  but  not  aMSH  fibers  compared  to  wildtype  mice.  Thus,  amylin  appears  to  increase   ARC-­‐PVN   pathway   development   by   an   IL-­‐6-­‐leptin-­‐dependent   (AgRP)   and   a   direct   neurotrophic  (aMSH)  process.  

 

Page 22: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Young  Investigator  SERVIER  Symposium—Friday,  September  25  

S0305:  Cansell  Nutritional  triglycerides  act  on  mesolimbic  structures  to  regulate  the  rewarding  and  motivational  aspect  of  feeding  

Céline  Cansell  

Central  control  of  feeding  behaviour  and  energy  expenditure  Research  Team,  CNRS,  Paris-­‐Diderot  University,  France  

Circulating   triglycerides   (TGs)   normally   increase   after   a   meal   but   are   altered   in   pathophysiological  conditions,  such  as  obesity.  Although  TG  metabolism  in  the  brain  remains  poorly  understood,  several  brain  structures   express   enzymes   that   process   TGenriched   particles,   including   mesolimbic   structures.   For   this  reason,  and  because  consumption  of  high-­‐fat  diet  alters  dopamine  signaling,  we  tested  the  hypothesis  that  TG  might  directly  target  mesolimbic  reward  circuits  to  control  reward-­‐seeking  behaviors.  We  found  that  the  delivery  of  small  amounts  of  TG  to  the  brain  through  the  carotid  artery  rapidly  reduced  both  spontaneous  and   amphetamine-­‐induced   locomotion,   abolished   preference   for   palatable   food   and   reduced   the  motivation   to   engage   in   food-­‐seeking   behavior.   Conversely,   targeted   disruption   of   the   TG-­‐hydrolyzing  enzyme  lipoprotein  lipase  specifically  in  the  nucleus  accumbensn  increased  palatable  food  preference  and  food-­‐seeking   behavior.   Finally,   prolonged   TG   perfusion   resulted   in   a   return   to   normal   palatable   food  preference  despite   continued   locomotor   suppression,   suggesting   that  adaptive  mechanisms  occur.   These  findings   reveal   new  mechanisms   by   which   dietary   fat  may   alter  mesolimbic   circuit   function   and   reward  seeking.  

S0306:  Geller  Hypothalamic  astrocytes  possess  a  higher  glycolytic  phenotype  compare  to  cortical  astrocytes:  A  potential  role  in  the  regulation  of  energy  balance  and  reproduction  function  

Sarah  Geller,  Luc  Pellerin  

Department  of  Physiology,  University  of  Lausanne,  Switzerland  

The  ability  of  the  hypothalamus  to  detect  changes  in  plasma  glucose  concentration  is  critical  for  the  regulation  of   energy   balance   and   impact   the   regulation   of   reproduction   function.   Among   the   mechanisms   involved   in  hypothalamic  glucosensing,  a  metabolic  interaction  between  glial  cells  and  neurons  via  lactate  transfer  has  been  proposed.   Unlike   for   cortex,   the   astrocyte-­‐neuron   lactate   shuttle   and   its   regulation   has   not   been   thoroughly  characterized   in   the  hypothalamus.  Knowing   that  hypothalamus  and  cortex  have  different   functions,  one  may  wonder  whether  the  degree  of  glycolytic  metabolism  and  the  metabolic  response  of  hypothalamic  glial  cells  are  the   same   than   cortical   astrocytes.   Indeed,   previous   studies   have   revealed   differences   for   other   metabolic  pathways   (e.g.   glutamate   metabolism,   long-­‐chain   fatty   acid   metabolism)   between   hypothalamic   and   cortical  astrocytes.   The   aim  of   this   project   is   to   characterize   and   compare   glycolytic  metabolism  and   its   regulation   in  hypothalamic  astrocytes   relative   to  cortical  astrocytes   in  mouse  primary  cultures.  By  biochemical  analysis,  we  highlighted   that,   over   time,   hypothalamic   astrocytes   consume   more   glucose   and   release   more   lactate   than  cortical  astrocytes  in  basal  condition.  Furthermore,  qPCR,  Western  blot  and  immunochemistry  analysis  showed  that   expression   of   key   actors   involved   in   cellular   metabolism   (such   as   transporters   isoform   of   glucose   and  monocarboxylates,  the  enzymes  isoform  of  hexokinase  and  pyruvate  kinase)  differs  between  hypothalamic  and  cortical   astrocytes.   Our   data   show   that   higher   glycolytic   phenotype   of   hypothalamic   astrocytes   would   be  pyruvate  kinase  (PKM2)  /monocarboxylate  transporter  MCT4  signaling  dependent.  Indeed,  our  results  revealed  that  PKM2  enzyme  translocated  more  in  hypothalamic  astrocytes  nuclei  as  compared  to  cortical  cells.  Thus,  this  enzyme   acts   as   a   transcriptional   factor  which   regulates   the   expression   of   glycolytic  metabolism   actors.   In   an  interesting   manner,   our   results   also   showed   that   the   regulation   of   the   metabolism   of   these   two   types   of  astrocytes  differs.   In  contrast  to  cortical  astrocytes,  exposure  to  glutamate  did  not  enhance  glucose  utilization  and   lactate  production   in  hypothalamic  astrocytes.  This  study  suggests  that  hypothalamic  astrocytes  possess  a  different  metabolic   phenotype   compared   to   cortical   astrocytes,   a   characteristic   which   could   take   part   in   the  specific  sensitivity  of  the  hypothalamus  to  fuel  sensing.    

Page 23: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Young  Investigator  SERVIER  Symposium—Friday,  September  25  

S0307:  Cimino  Novel  Role  for  Anti-­‐Müllerian  Hormone  in  the  Regulation  of  GnRH  Neuron  Excitability  and  Hormone  Secretion    

Irene  Cimino  

Inserm,  University  of  Lille,  France  

Anti-­‐Müllerian  hormone  (AMH)  plays  crucial  roles  in  sexual  differentiation  and  gonadal  functions.  However,  the  possible  extra-­‐gonadal  effects  of  AMH  on  the  hypothalamic-­‐pituitary-­‐gonadal  axis  remain  unexplored.    Here  we  demonstrate  that  a  significant  subset  of  GnRH  neurons  both  in  mice  and  humans  express  the  AMH  receptor,  and  that  AMH  potently  activates  the  GnRH  neuron  firing  in  mice.  Combining  in  vivo  and  in  vitro  experiments,  we  show  that  AMH  increases  GnRH-­‐dependent  LH  pulsatility  and  secretion,  strengthening  the  notion   of   a   central   action   of   AMH   on   GnRH   neurons.   Increased   LH   pulsatility   is   an   important  pathophysiological  feature  in  many  cases  of  Polycystic  Ovary  Syndrome  (PCOS),  the  most  common  cause  of  female   infertility,   in   which   circulating   AMH   levels   are   also   often   elevated.   However,   the   origin   of   this  dysregulation   remains   unknown.   Our   findings   suggest   that   AMH-­‐dependent   regulation   of   GnRH   release  could   be   critically   involved   in   the   pathophysiology   of   fertility   and   could   hold   therapeutic   potential   for  treating  PCOS.            

Page 24: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Oral  Presentation  Abstracts—Thursday,  September  24  

O1:  Paiva  Activation  of  oxytocin  neurons  following  systemic  Melanotan-­‐II  administration  seeking  

Luis  Paiva,  Mike  Ludwig    

University  of  Edinburgh,  UK  

Central  oxytocin  release  is   involved  in  social  behaviours  in  animals  and  humans.  Furthermore,  it  has  been  suggested  that  changes  in  central  oxytocin  levels  might  be  linked  to  mental  disorders  such  as  anxiety  and  depression.  Systemic  administration  of  oxytocin  has  been  proposed  as  a  potential  therapeutic  option,  but  oxytocin   does   not   cross   the   blood   brain   barrier   in   physiologically   significant   amounts.   An   alternative  approach   to   systemic   administration   of   oxytocin   is   to   stimulate   central   release   of   oxytocin.   It   has   been  shown  that  central   injections  of  alpha-­‐melanocyte  stimulating  hormone  (α-­‐MSH)  are  a  potent  stimulus  to  induce   central   (dendritic)   oxytocin   release   while   inhibiting   systemic   secretion.   Thus,   experiments   were  conducted   to   test   the   hypothesis   that   systemic   administration   of   a   synthetic   melanocortin   agonist  (Melanotan-­‐II,  MT-­‐II)  is  able  to  induce  oxytocin  neuron  activation  using  the  immediate  early  gene  product  c-­‐Fos   protein   as   a  marker   for   neuronal   activation.  We   analysed   Fos   expression   combined  with   oxytocin  immunohistochemistry   in   response   to   intravenous   and   intranasal   MT-­‐II.   Our   results   show   that   MT-­‐II  intravenously   administrated   (1mg/kg)   induces   Fos   expression   in   oxytocin   and   vasopressin   neurons   in  magnocellular  neurons  of   the  supraoptic   (SON)  and   in   the  paraventricular   (PVN)  nucleus;  however,   there  was   no   increase   in   Fos   expression   in   the   parvocellular   subdivisions   of   the   PVN,   and   circumventricular  organs  (OVLT,  SFO).  Fos  expression  induced  by  Melanotan-­‐II  was  reduced  by  central  administration  of  the  melanocortin  antagonist  SHU-­‐9119.  In  contrast,  there  were  no  significant  changes  in  Fos  expression  when  MT-­‐II  was  given  intranasally  (1µg/rat  and  30µg/rat).  These  results  suggest  that  intravenous  administration  of  Melanotan-­‐II  can  be  an  effective  pharmacological  tool  to  induce  central  activation  of  oxytocin  neurons.  Whether  Melanotan-­‐II  is  able  to  induce  central  oxytocin  release  however  is  still  to  be  determined.    

O2:  Andrews  Glucose  metabolism  affects  ghrelin-­‐induced  feeding  and  motivation  Sarah Lockie, Romana Stark, Sarah Ch’ng, Andrew Lawrence, Zane Andrews

Monash  University,  University  of  Melbourne,  Australia  

Neuroendocrine   studies   typically   examine   feedback   actions   of   single   exogenous   hormones   in   the   brain.  However,   feedback   information   is  more   than   a   rise   or   fall   of   a   single   hormone.  Metabolic   feedback   is   a  dynamic  physiologic  fluctuation  of  nutrients,  such  as  glucose  and  fatty  acids;  and  hormones  such  as  insulin,  leptin  and  ghrelin.  Thus,  we  tested  whether  glucose  metabolism  affects  ghrelin-­‐induced  feeding  behaviour.  To   modulate   endogenous   glucose   metabolism   we   injected   mice   (ip)   with   glucose   (2.25g/kg)   or   2-­‐deoxyglucose  (250mg/kg)  to  simulate  hyper  and  hypoglycaemia  respectively.  30  minutes  later  we  injected  ghrelin  in  different  experiments  ip,  ICV,  or  into  the  ventral  tegmental  area  (VTA)  and  measured  food  intake  after   2   hours.   In   all   experimental   paradigms,   glucose   suppressed   ghrelin-­‐induced   feeding   whereas   2-­‐deoxyglucose   potentiated   ghrelin-­‐induced   feeding.   Moreover,   we   examined   cfos   activation   in   NPY   GFP  neurons   after   ip   glucose   or   2-­‐deoxyglucose   combined   with   ICV   ghrelin   administration.   ICV   ghrelin  significantly   increased   cfos   in   identified   NPY   neurons   but   neither   glucose   nor   2-­‐deoxyglucose   affected  ghrelin-­‐induced   NPY/cfos   coexpression   despite   the   significant   effects   on   feeding   behaviour.   Finally   we  examined   if   ip  glucose  modulates  ghrelin-­‐induced  motivation.  Mice  were   trained  to   lever  press   to  obtain  sucrose   (10%   w/v)   in   operant   conditioning   chambers.   While   ICV   ghrelin   significantly   increased   lever-­‐pressing  for  sucrose,  this  was  significantly  attenuated  by  pretreatment  with  ip  glucose.  These  studies  show  that  the  neuroendocrine  actions  of  ghrelin  on  feeding  behaviour  depend  on  glucose  metabolism.  The  ability  of  glucose  metabolism  to  influence  food  intake  is  independent  from  ghrelin-­‐induced  cfos  expression.  These  results   highlight   that   metabolic   feedback   is   an   integration   of   multiple   nutrient   and   hormonal   cues,   an  observation  that  is  physiologically  relevant  to  multiple  neuroendocrine  feedback  systems.    

Page 25: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Oral  Presentation  Abstracts—Thursday,  September  24  

 

O3:  Bake  Ghrelin  changes  food  preference  from  high  fat  diet  to  chow  in  schedule-­‐fed  rats  

Tina  Bake,  Kim  T.  Hellgren,  Suzanne  L.  Dickson    

The  Sahlgrenska  Academy  at  the  University  of  Gothenburg,  Institute  of  Neuroscience  and  Physiology,  Department  of  Physiology/Endocrinology,  Sweden  

Ghrelin  is  a  gut  peptide  released  from  the  empty  stomach  that  increases  food  intake.  It  has  been  linked  to  food-­‐related  behaviours  such  as  food  motivation,  food  reward  and  food  anticipatory  activity.  Ghrelin  levels  in  the  blood  are  linked  to  meal  pattern,  increasing  prior  to  feeding.  To  mimic  human  meal  eating  behaviour  in   animals  we   used   a   scheduled   feeding   (SF)   paradigm   in  which   rodents   have   2h-­‐access   to   high   fat   diet  (HFD)   in  addition  to  ad   libitum  chow.  Previous  studies  with  this  paradigm  have  shown  that  both  rats  and  mice  will   rapidly  adapt   their   feeding  behaviour  and  binge-­‐eat  on  HFD.  Here  we  sought   to   investigate   the  role   of   ghrelin   during   binge-­‐like  meal   eating   induced   by   SF.  We   utilised   a   combination   of   two   different  animal  models:   pharmacologically  manipulated   rats   via   administration   of   ghrelin   or   genetically  modified  mice  lacking  GHS-­‐R1A.  For  acute  ICV  or  intra-­‐VTA  injections  of  either  ghrelin  or  vehicle,  rats  were  surgically  implanted  with  guide  cannulas  and  then  habituated  to  SF  for  at  least  2  weeks  prior  injections.  GHS-­‐R1A-­‐KO  mice   and  wildtype   (WT)   littermates  were   scheduled-­‐fed   for   4  weeks.   Remarkably   and   unexpectedly,  we  found  that  injecting  ghrelin  ICV  or  intra-­‐VTA  resulted  in  a  shift  in  food  preference  from  high  fat  diet  towards  chow  during  the  SF  period  without  altering  total  daily  energy  consumption.  However  an   increase  of  body  weight  was  observed  after  ICV  ghrelin.  A  fasting  challenge  also  led  to  an  increase  in  chow  intake  during  the  SF  session  but  HFD  intake  did  not  reduce.  GHS-­‐R1A-­‐KO  mice  were  able  to  adapt  and  maintain  large  meals  of  HFD   in   a   similar   fashion   as   WT   mice   suggesting   that   ghrelin   signalling   may   not   have   a   critical   role   in  acquisition   or  maintenance   in   this   kind   of   feeding   behaviour.   In   conclusion,   ghrelin   appears   to   act   as   a  modulating   factor   for   binge-­‐like   eating   behaviour   by   shifting   the   food   preference   towards   a   healthier  choice  (from  HFD  to  chow),  effects  that  were  divergent  from  fasting.    

Supported  by  EC  (Nudge-­‐it,  607310).  

O4:  D’Agostino  Nucleus of the solitary tract cholecystokinin-expressing neurons control appetite Giuseppe  D’Agostino,  David  J.  Lyons,  Lora  K.  Heisler  

Rowett  Institute  of  Nutrition  and  Health,  University  of  Aberdeen,  Aberdeen,  UK  

The   nucleus   of   the   solitary   tract   (NTS)   is   a   principal   gateway   for  meal-­‐related   signals   entering   the   brain  from  the  periphery  and  is  comprised  of  cells  with  diverse  neurochemical  identities.  We  identified  a  distinct  subset   of   NTS   neurons   that   express   cholecystokinin   (NTS-­‐CCK)   and   whose   function   was   previously   not  known.  We   observed   that   NTS-­‐CCK   neurons   are   responsive   to   nutritional   states   and   that   chemogenetic  manipulation   of   this   subset   of   neurons   produces   profound  metabolic   effects.   Specifically,   chemogenetic  activation   (hM3Dq-­‐mCherry)   of   NTS-­‐CCK   neurons   suppresses   appetite   and   rapidly   reduces   body   weight  with   a   mechanism   involving   downstream   activation   of   CCK   receptors.     Cell-­‐specific   anterograde   tracing  revealed   that   NTS-­‐CCK   neurons   innervate   discrete   hindbrain   and   hypothalamic   regions,   including   the  paraventricular  nucleus  of   the  hypothalamus   (PVH).  Moreover,   in  vivo  optogenetic  activation  of  NTS-­‐CCK  axon  terminals  reveal  the  satiating  function  NTS-­‐CCK  neurons  to  be  mediated  by  a  NTS-­‐CCK→PVH  pathway.  Optogenetic  activation  of  this  circuit  reduces  food  consumption  and  also  encodes  positive  valence.    Thus,  our   data   provide   an   evidence   base   for   a   novel   CCKergic   circuit   originating   from   the   NTS   that   transmit  satiating  and  appetitive  information  to  the  hypothalamus  to  regulate  appetite.    

   

 

Page 26: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Oral  Presentation  Abstracts—Thursday,  September  24  

O5:  Decourt  Design  of  a  selective  kisspeptin  analog  capable  of  synchronizing  ovulation  

Caroline  Decourt1,  Vincent  Robert1,  Didier  Lomet1,  Karine  Anger1,  Mathieu  Galibert2,  Jean-­‐Baptiste  Madinier2,  Philippe  Marceau2,  Agnès  Delmas2,  Alain  Caraty1,  Vincent    Aucagne2,  Massimiliano  Beltramo1    1UMR  Physiologie  de  la  Reproduction  et  des  Comportements  (INRA,  UMR85;  CNRS,  UMR7247;  Université  François  Rabelais  Tours;  IFCE)  F-­‐37380  Nouzilly,  France;  2Centre  de  Biophysique  Moléculaire  (CNRS  UPR  4301)  F-­‐45071  Orléans  cedex  2,  France.  

GnRH   secretion   is   central   to   reproduction   control   and   the   neuropeptide   kisspeptin   (Kp)   is   the  most   potent   GnRH  secretagogue.  Hence,   Kp   system   is   an   appealing   target   to  develop  new  methods   to  manage   reproduction  and  heal  related  pathologies.  Endogenous  Kp  isoforms  have  short  in  vivo  half-­‐life  and  continuous  administration  is  required  to  obtain  the  wanted  effects.  However,  in  livestock  management  and  in  human  therapy  a  single  injection  is  preferable  to  continuous  administration.  To  meet  this  need  we  designed  analogs  of  the  10  amino  acid  isoform  of  Kp  with  improved  pharmacokinetics   and   pharmacodynamics.   To   this   aim  we   combined   various  modifications   improving   resistance   to  degradation  and  reducing  renal  clearance.  Our  effort  produced  analogs  that  compared  to  Kp10  have  equal  efficacy,  similar  or  better  potency,  and  a  prolonged  half-­‐life  in  blood  serum.  Several  compounds  were  active  by  intramuscular  injection   at   very   low   doses   (5   to   15   nmoles/ewe)   and   LH   level  was   still   higher   than   basal   nine   hours   after   analog  injection.  When  injected  during  the  breeding  season,  in  ewes  pretreated  with  flugestone  acetate  (FA)  for  14  days,  the  best   Kp   analog   produced   a   superior   synchronization   of   LH   surge   compared   to   available   treatment   (pregnant  mare  serum  gonadotropin).  In  presence  of  a  ram  treated  ewes  showed  all  behavioral  signs  of  estrus.  Ovulations  triggered  by  Kp  analog  were  fertile  as   indicated  by  the  rate  of  pregnancy  (7  out  of  10)  obtained  after  servicing.  Experiments  are  ongoing  to  assess  if  analogs  could  also  induce  ovulation  during  the  non-­‐breeding  season.  In  conclusion  we  generated  a  Kp  analog  with  improved  pharmacokinetics  and  pharmacodynamics  capable  of   inducing,  after  a  single  intramuscular  injection,   synchronized   fertile   ovulations   in   ewes   pretreated   with   FA.   This   molecule   holds   a   strong   potential   to  improve  management  of   livestock  reproduction  and  possibly  to  treat  human  reproductive  disorders  due  to  reduced  GnRH  secretion.  

 

O6:  Tups  Photoperiodic  regulation  of  Wnt  signalling  in  the  arcuate  nucleus  of  the  Djungarian  hamster,  Phodopus  sungorus  

Alisa  Boucsein1,  Jonas  Benzler1,  Cindy  Hempp1,  Sigrid  Stöhr1,  Gisela  Helfer2,  Alexander  Tups1,3  1Department  of  Animal  Physiology,  Faculty  of  Biology,  Philipps  University  of  Marburg,  Marburg,  Germany  ;  2Rowett  Institute  of  Nutrition  and  Health,  University  of  Aberdeen,  Aberdeen,  Scotland,  UK  ;  3Department  of  Physiology,  Centre  of  Neuroendocrinology  and  Brain  Health  Research  Centre,  University  of  Otago,  Dunedin,  New  Zealand  

The  Wnt   pathway,   well   characterized   in   cellular   development,   was   shown   to   play   an   important   role   in   the   adult  central  nervous  system.  We  previously  identified  the  Wnt  pathway  as  a  novel  integration  site  of  the  adipokine  leptin  in  mediating  its  neuroendocrine  control  of  metabolism  in  obese  mice.  Here,  we  investigated  whether  Wnt  signalling  plays   an   important   role   on   seasonal   body   weight   regulation   and   in   the   hypothalamus   of   the   Djungarian   hamster  (Phodopus  sungorus),  a  seasonal  mammal  that  exhibits  profound  annual  changes  in  leptin  sensitivity.  We  furthermore  investigated  whether  crucial  components  of  the  Wnt  pathway  are  regulated  in  a  circadian  manner.  We  first  examined  mRNA  expression  of  key  components  of  the  Wnt  pathway  in  the  arcuate  nucleus  of  hamsters  acclimated  to  either  long  day  (LD)  or  short  day  (SD)  photoperiod  by  in  situ  hybridization.  We  detected  elevated  expression  of  the  genes  WNT-­‐4,  Axin-­‐2,  Cyclin-­‐D1  and  SFRP-­‐2  during  LD  compared  to  SD,  as  well  as  a  diurnal  regulation  of  the  genes  Axin-­‐2,  Cyclin-­‐D1  and  DKK-­‐3.  Next,  we  investigated  the  effect  of  photoperiod  as  well  as  leptin  on  the  activation  of  the  Wnt  co-­‐receptor  LRP-­‐6  by  immunohistochemistry.  The  number  of  phosphorylated  (activated)  LRP-­‐6-­‐(Ser1490)-­‐immunoreactive  cells  in  the  arcuate  nucleus  was  elevated  during  LD  relative   to  SD,  as  well  as   in  animals   from  both  photoperiods   that  were  treated  with  leptin  (2  mg/kg  bod  weight)  compared  to  controls.  These  findings  suggest  that  differential  Wnt  signalling  is  associated  with  seasonal  body  weight  regulation  and   is  partially   regulated   in  a  diurnal  manner   in   the  adult  brain.  Furthermore   they   provide   further   evidence   that   this   pathway  plays   a   key   role   in   the   neuroendocrine   regulation   of  body  weight  and  integration  of  the  leptin  signal.

 

Page 27: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Oral  Presentation  Abstracts—Thursday,  September  24  

O7:  Christian  Photoperiod-­‐driven  remodelling  of  lactotroph,  gonadotroph  and  folliculostellate  cells  in  the  sheep  pituitary  

Akriti  Nanda,  Katarzyna  Miedzinska,  Shona  Wood,  Alan  McNeilly,  Andrew  Loudon,  Helen  Christian    

Department  of  Physiology,  Anatomy  and  Genetics,  University  of  Oxford  

Sheep   exhibit   circannual   rhythms   in   circulating   concentrations   of   prolactin   which   regulate   lactation,  reproduction  and  seasonal  molts.  Chronic  hypersecretion  of  prolactin  during  long  photoperiod  is  controlled  by  an  intra-­‐pituitary  mechanism  regulated  by  melatonin,  which  acts  at  MT1  receptors  in  the  pars  tuberalis  to   stimulate   release   of   a   paracrine   prolactin-­‐releasing   factor.   The   present   study   examined   the   effects   of  short   and   long   photoperiod   on   the   ultrastructure   of   lactotroph,   gonadotroph   and   FS   cells   and   their  distribution.  Sheep  (n=4  per  group)  were  housed  in  artificial  light  dark  cycles,  either  8:16h  light⁄dark  cycle  for  short  photoperiod  (SP)  or  16:8h  light⁄dark  cycle  for  long  photoperiod  (LP)  for  4  weeks.  Pituitary  glands  were  collected  and  prepared  for  quantitative  electron  microscopy.  It  was  found  that  lactotrophs  in  LP  had  greater  cytoplasmic  area  (P<0.05),  with  more  dilated  rough  endoplasmic  reticulum  (rough  ER;  P<0.05)  and  showed   a   reduced   number   of   PRL   granules   per  micron   cytoplasmic   area   compared   to   lactotrophs   in   SP  suggesting  increased  PRL  synthesis  and  release.  In  LP,  secretory  granules  showed  a  polarisation  towards  a  neighbouring  capillary  and  lactotrophs  were  more  frequently  found  adjacent  to  a  capillary  compared  to  SP.  There   was   no   significant   difference   in   the   number   of   lactotrophs   adjacent   to   FS   cells   in   LP   vs   SP.  Gonadotrophs   in  SP  showed  greater  amounts  of  dilated   rough  ER  consistent  with  greater  amounts  of   LH  and  FSH  synthesis  and  release  in  SP  vs  LP.  FS  cells  in  SP  were  significantly  larger,  contained  more  rough  ER  and   a   higher   proportion   of   chromatin   was   pale   (transcriptionally   active)   in   contrast   to   FS   cells   in   LP  displaying   greater   amounts   of   dense   heterochromatin   (transcriptionally   inactive).   These   findings  demonstrate   plasticity   in   the   morphology   of   lactotrophs,   gonadotrophs   and   FS   cells   with   photoperiod  which  reflect  the  functional  changes  in  PRL  and  LH  secretion.    

O8:  Spiga  Experimental and mathematical studies on the dynamics of adrenal glucocorticoid synthesis suggest an intra-adrenal negative feedback mechanism that involves activation of the glucocorticoid receptor Francesca  Spiga1,  Zidong  Zhao1,  Lorna  Smith1,  Georgina  Hazel1,  Jamie  Walker2,  Rita  Gupta2,  John  Terry2  and  Stafford  L  Lightman1  1University  of  Bristol,  Henry  Wellcome  Laboratories  for  Integrative  Neuroscience  &  Endocrinology,  Bristol,  UK  ;  2University  of  Exeter,  Wellcome  Trust  Centre  for  Biomedical  Modelling  and  Analysis  &  College  of  Engineering,  Mathematics  and  Physical  Sciences,  Exeter,  UK  

The   activity   of   the   hypothalamic-­‐pituitary-­‐adrenal   (HPA)   axis   is   characterised   by   an   ultradian   (pulsatile)  pattern   of   glucocorticoid   secretion   that   is   critical   for   optimal   transcriptional,   neuroendocrine   and  behavioural  responses  to  glucocorticoids.  We  have  investigated  the  molecular  mechanisms  underlying  the  origin   of   glucocorticoid   ultradian   rhythm   within   the   rat   adrenal   gland   during   basal   conditions   and   in  response   to   an   immunological   stressor.   Here   we   show   that   basal   ultradian   rhythm   of   glucocorticoids  depends   on   highly   dynamic   processes   within   adrenocortical   steroidogenic   cells,   including   rapid  phosphorylation  of  hormone-­‐sensitive   lipase  (HSL),  a  proteins   involved   in  cholesterol  metabolism,  as  well  as  rapid  transcription  of  steroidogenic  genes,  including  StAR  and  MRAP,  and  activation  of  nuclear  receptors  that  regulate  steroidogenic  genes  expression,   including  TORC,  SF-­‐1,  Nur77  and  Dax-­‐1.  We  then  show  that  stress-­‐induced   disruption   of   these   dynamics   leads   to   abnormal   glucocorticoid   secretion,   as   observed   in  disease  and  critical   illness   in  both  human  and   the   rat.  Finally,  by  using  mathematical  modelling  we  show  that  activation  of  the  glucocorticoid  receptor  appears  to  be  an  important  factor  in  the  dynamic  regulation  of  these  processes  via  an  intra-­‐adrenal  negative  feedback  mechanism.    

Page 28: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Oral  Presentation  Abstracts—Thursday,  September  24  

O9:  Koorneef  A  novel  mixed  glucocorticoid/mineralocorticoid  receptor  selective  modulator  reduces  obesity  and  adipose  tissue  and  liver  inflammation    

L.L.  Koorneef1,2,  J.K.  van  den  Heuvel1,2,  M.R.  Boon1,2,  I.M.  Mol1,2,  N.  van  de  Velde1,2,  H.  Hunt3,  P.C.N.  Rensen1,2,  O.C.  Meijer1,2  1Department  of  Endocrinology  and  Metabolic  Diseases,  Leiden  University  Medical  Center,  Leiden,  The  Netherlands  ;  2Einthoven  Laboratory  for  Experimental  Vascular  Medicine,  Leiden  University  Medical  Center,  Leiden,  The  Netherlands  ;  3Corcept  Therapeutics,  Menlo  Park,  California,  USA  

Excessive   glucocorticoid   exposure   is   associated  with   obesity   and   related   disorders,   as   is   evidenced   by   the   extreme  case   of   Cushing’s   disease.   Accordingly,   antagonism   of   the   glucocorticoid   receptor   (GR)   by   means   of   mifepristone  (RU486)  markedly  lowers  obesity  in  men  and  mice,  yet  pure  antagonism  may  lead  to  side-­‐effects  (pro-­‐inflammation).  In   this   study   we   tested   the   efficacy   of   CORT   118335   (C118335),   a   selective   modulator   type   drug   (exerting   both  agonism  and  antagonism)  at  GR,  with  antagonistic  effects  via  mineralocorticoid  receptor  (MR).  10-­‐week  old  C57BL/6J  mice  were   fed   a   high-­‐fat   diet   for   3  weeks   and   treated  with   C118335,   RU486   or   vehicle.   Both   RU486   and   C118335  reduced  body  weight  gain  and  fat  mass.  C118335  reduced  liver  oil  red  O  staining  (-­‐84  %,  P<0,01),  indicating  reduced  lipid   content.  Moreover,   C118335   reduced  F4/80   staining   in   liver   (-­‐21%,  P<0,05)   and  white   adipose   tissue   (WAT)   (-­‐41%,  P<0,05)   indicating  reduced  macrophage   infiltration.  RU486  did  not  significantly  reduce   liver  and  WAT  fat  mass  and  macrophage  content.  Both  RU486  and  C118335  improved  glucose  tolerance,  tested  via  ivGTT,  and  lowered  basal  plasma  glucose  levels.  Thymus  weight  was  reduced  by  RU486  (-­‐48%)  and  C118335  (-­‐46%),  whereas  spleen  weight  was  only   reduced  by  C118335   (-­‐44%).  Moreover,   the  GR   target   gene   FKBP5  was   increased   in   liver   and  WAT,  but  not   in  brown  adipose  tissue,  further  indicating  tissue  specific  GR  modulation.  Both  C118335  and  RU486  reduce  diet-­‐induced  obesity  development  and  improve  glucose  metabolism.  C118335  reduces  hepatic  steatosis  and  inflammation  in  liver  and  WAT,  which  may  be  due  to  GR  agonism  and/or  MR  antagonism.  Selective  modulation  of  the  GR  combined  with  MR  may  be  a  promising  target  for  combating  obesity  and  related  disorders.    

O10:  Maccari  Early  carbetocin  treatment  prevents  metabolic  aging  induced  by  early  stress  in  rats  

S.  Maccari1,3,  E.  Gatta1,3,  H.  Bouwalerh1,3,  L.  Deruyter1,3,  G.  Vancamp1,3,  S.  Morley-­‐Fletcher1,3,  J.  Mairesse1,3  ,  F.  Nicoletti2,3  

1Glycobiology  of   Stress-­‐related  Diseases   team,  UMR  8576  University  of   Lille1/CNRS,  Villeneuve  d’Ascq,  France;   2IRCCS  Neuromed,  Pozzilli,  Italy  ;  3  International  Associated  Laboratory  “Prenatal  Stress  and  Neurodegenerative  Diseases”  France/Italy  (Glycobiology  of  Stress-­‐related   Diseases   team,   UMR   8576   University   of   Lille1/CNRS,   Villeneuve   d’Ascq,   France;   and   Sapienza   University   of   Rome,  Rome,  Italy)  

Oxytocin,   often   referred   to   as   the   “love   hormone",   has   a   central   anti-­‐stress   role   by   reducing   the   activation   of   the  hypothalamic–pituitary–adrenal  (HPA)  axis,  the  major  neuroendocrine  system  that  controls  response  and  resilience  to  stress.  The  animal  model  of  perinatal  stress  (PRS)  in  rat  programs  the  offspring  to  develop  an  anxious-­‐/depressive-­‐like  phenotype   characterized   by   a   prolonged   HPA   response   to   stress   during   adulthood.   Moreover,   PRS   rats   display  cognitive  decline  and  metabolic  dysfunction,  often  associated  with  anticipated  ageing.  This  pathological  programming  is   induced   in   PRS   rats   by   prenatal   overexposure   to   maternal   glucocorticoids   combined   with   reduced   maternal  behavior   during   the   early   postnatal   life.     We   wanted   to   assess   whether   the   involvement   of   the   mother   and   pup  oxytocin  systems   in   the  programming  of   the  PRS  phenotype   is  persistent  during  aging.  We  examined  the   long-­‐term  effects  of  a  subchronic  treatment  with  oxytocin  during  the  early  postpartum  period.  Stressed  and  control  unstressed  mothers   were   injected   with   an   oxytocin   receptor   agonist,   carbetocin   (1mg/kg,   i.p.),   during   the   first   week   of   the  postpartum  period.  In  PRS  aged  rats,  i.e  the  20  month-­‐old  offspring  of  dams  exposed  to  gestational  stress,  we  found  that  postpartum  carbetocin  treatment  prevented  anxiety-­‐like  behavior,  spatial  memory   impairments,  and  deficits   in  social  behavior.  Early  carbetocin  treatment  also  prevented  the  increase  in  plasmatic  glycaemia  in  aged  PRS  rats.  We  then  focused  on  a  post-­‐translation  modification,  O-­‐linked  N-­‐acetylglucosamine  (O-­‐GlcNAc),  which  directly  correlates  with  the  availability  of  extracellular  glucose.  Nuclear  O-­‐GlcNAc  dynamically  targets  key  transcriptional  and  epigenetic  regulators.   Interestingly,  hippocampal  nuclear  O-­‐GlcNAc  levels  were  affected  in  aged  offspring  of  dams  treated  with  carbetocin.  In  conclusion,  the  oxytocinergic  system  plays  a  crucial  role  in  early  life  by  shaping  emotional,  cognitive  and  metabolic  features.  Thus,  targeting  the  central  oxytocinergic  system  could  represent  a  new  potential  strategy  for  the  treatment  of  emotional  and  social  aspects  of  psychiatric  disorders.  

Page 29: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P1:  Electrophysiological  properties  of  tanycytes  from  the  mouse  hypothalamus    Clasadonte  Jerome  and  Prevot  Vincent  

Inserm,  Laboratory  of  Development  and  Plasticity  of  the  Neuroendocrine  Brain,  Jean-­‐Pierre  Aubert  Research  Centre,  U1172,  59045  Lille,  France.  Tanycytes   are   polarized   cells   which   occur   along   the   walls   and   floor   of   the   third   ventricle   in   the   hypothalamus,   with   one   side  contacting  the  cerebrospinal  fluid  and  the  other  sending  a  single  process  towards  the  brain  parenchyma.  Although  morphology  of  tanycytes   has   been   studied   extensively,   little   is   known   about   their   electrophysiological   properties.   Whole-­‐cell   patch-­‐clamp  recordings   and   injection   techniques   were   used   in   acute   hypothalamic   slices   from   mouse   to   study   tanycytes   located   near   the  arcuate  nucleus  of  the  hypothalamus  (ARH).  With  physiological  extracellular  concentrations  of  potassium  (3.2  mM),  tanycytes  had  a  very  negative  resting  membrane  potential  (–  84.00  ±  2.65  mV)  and  exhibited  a  near-­‐Nernstian  response  to  changes  in  extracellular  concentrations  of  potassium  (from  0  to  20  mM).  Their  membrane  responses  to  injection  of  square  current  pulses  (from  –  50  to  +  50  pA)  indicated  an  incredibly  low  input  resistance  (51.30  ±  18.01  MΩ)  and  a  lack  of  action  potential  firing.  Injection  of  Lucifer  Yellow  or  biocytin  in  a  single  tanycyte  via  the  patch-­‐clamp  pipette  revealed  that  these  cells  were  dye-­‐coupled  and  sent  a  single  and  long  process  towards  the  ARH.  Bath  application  or  focal  delivery  (via  a  puff  pipette)  of  the  two  neurotransmitters,  GABA  and  glutamate  (10  mM),   induced  a  strong  and  reversible  membrane  depolarization   (5-­‐15  mV),   suggesting   the  presence  of   functional  GABA  and  glutamate  receptors  in  these  cells.  Taken  together,  our  data  indicate  that  tanycytes  located  near  the  ARH  form  a  network  of  highly  interconnected  cells,  probably  via  gap   junctions,  and   share   similar  electrophysiological  properties  with   the  glial   cells,   astrocytes,  and   may   therefore   have   similar   functions   such   as   the   sensing   of   neuronal   activity   and   the   uptake   of   extracellular   potassium  released  from  neighboring  neurons.  

P2:  Antibody  mediated  inhibition  of  the  FGFR1c  isoform  induces  a  catabolic  lean  state  in  Siberian  hamsters  Samms,  Ricardo  J  1,2,Lewis,  Jo  E  1,  Lory,  Alex  1,  Fowler,  Maxine  J  1,  Cooper,  Scott  1,  Warner,  Amy  1,  Emmerson,  Paul  2,  Adams,  Andrew  C  2,  Luckett,  Jeni  C  3,  Perkins,  Alan  C  3,  Wilson,Dana  4,  Barrett,  Perry  4,  Tsintzas,  Kostas  1,  Ebling,  Francis  JP  1  1   School   of   Life   Sciences,   University   of   Nottingham  Medical   School,   Queen’s  Medical   Centre,   Nottingham   NG7   2UH,   UK.   2   Lilly  Research  Laboratories,  Indianapolis,  USA.  3  School  of  Medicine,  University  of  Nottingham  Medical  School,  Queen’s  Medical  Centre,  Nottingham  NG7  2UH,  UK.  4  Rowett   Institute   for  Nutrition  and  Health,  University  of  Aberdeen,  Greenburn  Road,  Aberdeen  AB21  9SB,  UK.  

Hypothalamic  tanycytes  are  considered  to  function  as  sensors  of  peripheral  metabolism.  To  facilitate  this  role  they  express  a  wide  range  of  receptors,  including  fibroblast  growth  factor  receptor  1  (FGFR1),  which  is  reported  to  play  a  central  role  in  the  regulation  of   glucose  and  energy  homeostasis.  Using  a  monoclonal   antibody   (IMC-­‐H7)   that   selectively  antagonizes   the  FGFR1c   isoform,  we  investigated  possible  actions  of  FGFR1c  in  a  natural  animal  model  of  adiposity,  the  Siberian  hamster.   Infusion  of  IMC-­‐H7  into  the  third   ventricle   suppressed   appetite   and   increased   energy   expenditure.   Likewise,   peripheral   treatment   with   IMC-­‐H7   dose-­‐dependently  decreased  appetite  and  body  weight,  and  increased  energy  expenditure  and  fat  oxidation.  A  greater  reduction  in  body  weight  and  caloric   intake  was  observed   in   response   to   IMC-­‐H7  during   the   long  day   fat   state  as   compared   to   the   short  day   lean  state.   This   enhanced   response   to   IMC-­‐H7   was   observed   in   calorically-­‐restricted   hamsters   suggesting   that   it   is   the   central  photoperiodic   state   rather   than   the   peripheral   adiposity   that   determines   the   response   to   FGFR1c   antagonism.   Hypothalamic  thyroid  hormone  availability  is  controlled  by  tanycytes  and  is  the  key  regulator  of  seasonal  cycles  of  energy  balance.  Therefore,  we  determined  the  effect  of  IMC-­‐H7  on  hypothalamic  expression  of  the  deiodinase  enzymes,  DIO2  and  DIO3,  which  are  local  regulators  of  thyroid  hormone  availability.  The  reductions  in  food  intake  and  body  weight  were  always  associated  with  decreased  expression  of  DIO2  in  the  hypothalamic  tanycyte  cell  layer.  These  data  provide  further  support  for  the  notion  the  tanycytes  are  an  important  component  of  the  mechanism  by  which  the  hypothalamus  integrates  central  and  peripheral  signals  to  regulate  energy  intake  and  expenditure  

P3:  Tanycyte-­‐neurones  communication  in  mice  hypothalamus  Bolborea  Matei  1,  Kasparov  Sergey  2  and  Dale  Nicholas  1  1-­‐  School  of  Life  Sciences  University  of  Warwick  Coventry,  UK;  2-­‐  School  of  Physiology  and  Pharmacology  University  of  Bristol  Bristol,  UK  Appetite  and  body  weight  is  finely  controlled  by  the  hypothalamus.  Tanycytes  are  specialised  glial  cells  lining  the  third  ventricle  of  mammalians’  brain.  These  cells  have  a  specific  cellular  morphology,  which  allows  them  to  have  a  key  role   into  the  hypothalamic  functions.   Their   cell   bodies   are   part   of   the   ependymal   layer   and   their   single   process   penetrate   deeply   into   the   hypothalamic  parenchyma   reaching   the   arcuate   nucleus,   the   ventromedial   hypothalamus   and   the   dorsomedial   hypothalamus.   Tanycytes   are  capable  to  sense  nutrients  such  as  glucose  and  amino  acids  from  the  cerebrospinal  fluid  (CSF).  This  leads  to  the  idea  that  these  glial  cells  are  important  for  the  regulation  of  body  weight  by  sensing  the  CSF  from  the  periphery  and  communicating  with  neurones  of  the  hypothalamus.  Tanycytes  respond  to  nutrients  using  specific  receptors  and  consequently  induce  an  influx  of  extracellular  Ca2+  in   the   cell.   This   Ca2+   influx   leads   to   release   of   ATP,   and   triggers   a   P2Y1   receptor-­‐mediated   Ca2+  wave,  which   travels   between  tanycytes.   Here,   we   propose   that   tanycytes   also   communicate   with   hypothalamic   neurones.   However,   how   tanycytes   rely   the  message  to  the  central  nuclei  of  feeding  is  not  yet  fully  understood.  We  propose  to  describe  this  new  neural  network  that  involves  tanycytes-­‐nutrient   sensing  and  neurones   regulating   the  appetite.  We  created   the   first   tanycytes  optogenetic   tools   to  be  able   to  finely   stimulate   these   cells   and   mime   its   responses   to   nutrients.   We   observed   that   optostimulation   of   tanycytes   in   acute  hypothalamic  slices  induces  depolarisation  of  neurones  of  the  arcuate  nucleus.  

 

Page 30: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P4:  Umami  taste  signalling  in  hypothalamic  tanycytes  Lazutkaite,  Greta;  Dale,  Nicholas  University  of  Warwick  Hypothalamic  tanycytes  are  glial  cells  that   line  the  wall  of  the  3rd  ventricle  and  send  processes   into  the  brain  parenchyma.  They  may  help  to  inform  the  arcuate  nucleus  and  ventromedial  hypothalamus  about  nutrient  availability  in  the  cerebrospinal  fluid  (CSF).  Tanycytes  can  sense  glucose,  most  likely  via  the  sweet  taste  receptor  (a  T1R2/T1R3  heterodimer)  originally  described  in  the  taste  buds  of  the  tongue.  A  receptor  for  another  taste  modality  –  umami  –  is  part  of  the  same  gene  family  as  the  sweet  taste  receptor  and  comprises  the  T1R1/T1R3  heterodimer.  We  have  therefore  studied  whether  tanycytes  might  be  able  to  detect  amino  acids  via  the  umami  taste  receptor.  We  used  Fura-­‐2  imaging  of  intracellular  Ca2+  to  assess  the  responses  of  tanycytes  in  acutely  prepared  brain  slices   to  L-­‐amino  acids  such  as  arginine,   lysine,  alanine,  serine  and  proline.  Tanycytes  responded  to  all  of   these  agonists   in  order  of  potency  (Arg>Lys>Ala>Ser>Pro).  We  found  that  the  responses  to  these  amino  acids  could  be  enhanced  by  prior  application  of   IMP,  a  known  allosteric  modulator  of   the  T1R1/T1R3   receptor.  The   responses   to  amino  acids   required  extracellular  Ca2+  and  could  also  be  blocked  if  the  internal  stores  of  Ca2+  were  depleted  by  cyclopiazonic  acid.  The  responses  to  amino  acids  were  also  blocked  by  a  combination  of  a  selective  P2Y1  receptor  antagonist  (MRS2500)  and  a  non-­‐selective  P2  antagonist  (PPADS).  The  ATP  release  appeared  to  come  via  connexin  hemichannels  as  it  was  blocked  by  high  doses  of  carbenoxolone  (100  µM)  and  the  mimetic  peptide  GAP26,  but  only  weakly  affected  by  the  relatively  selective  pannexin  blockers  (probenecid  and  10  µM  carbenoxolone).  Our  results   show   the   first   non-­‐neuronal  mechanism   for   amino   acid  detection   and   the   first   example  of   signaling  by   the  umami   taste  receptor  in  the  mammalian  brain.  Full  understanding  of  the  amino  acid  sensitivity  of  tanycytes  may  help  to  devise  new  strategies  for  countering  the  rising  tide  of  excessive  weight  gain  and  obesity.  

   P5:  The  TSH/T3  dependent  hypothalamic  pathway  in  seasonal  reproduction  Milesi  S,  Ciancia  M,  Beymer  M,  Laran-­‐Chich  MP,  Simmoneaux  V,  Klosen  P  Université  de  Strasbourg,  CNRS  In  mammals,  seasonal   reproduction   is   important  to  have  the  best  survival  of   the  progeny.  Melatonin   is  secreted  only  during  the  night,   thus   the   short   nights   of   summer   result   in   a   short   duration  melatonin   peak,  while   the   long  winter   nights   produce   a   long  melatonin  peak.  These  seasonal  changes  in  melatonin  secretion  link  the  photoperiod  to  physiological  regulations.  In  hamsters,  the  short  summer  melatonin  peak  relieves   the  melatonin   inhibition  of  TSH  production   in   the  pituitary  pars   tuberalis,   thus   increasing  TSH   production   and   release.   This   TSH   then   acts   on   tanycytes   to   stimulate   Deiodinase   2   (Dio2)   expression.   Dio2   converts  tetraiodothyronine  (T4)  to  its  active  form  triiodothyronine(  T3).  This  T3  appears  to  stimulate  kisspeptin  and  RFRP3  expression,  two  well   known   regulators   gonadotropic   activity.   Furthermore,   this   reactivates   the   gonadotropic   axis.   Studying   the   photoperiodic  reactivation  of  the  gonadotropic  axis,  we  noted  an  increase  of  FSH/LH  before  the  reactivation  of  RFRP3  and  Kisspeptin  expression.  Moreover,  acute  intracerebroventricular  injection  of  TSH  induces  an  increase  of  circulating  testosterone  levels  after  only  4  hours.  Both  of  these  observations  suggest  the  existence  of  a  short  activation  pathway  of  GnRH  secretion  not  involving  Kisspeptin  and/or  RFRP   neurons.   This   pathway   might   involve   direct   action   of   tanycytes   on   GnRH   terminals,   a   type   of   interaction   known   to   be  important  in  the  control  of  the  ovarian  cycle.  Our  future  goal  is  to  confirm  the  existence  of  a  short  TSH  dependent  control  of  the  gonadotropic  axis  involving  tanycytes  and  study  its  role  in  the  seasonal  activation  of  the  gonadotropic  axis.  

 P6:  It’s  all  in  the  timing:  Temporal  dynamics  of  hypothalamic  gene  expression  changes  over  one  year  in  the  Siberian  hamster  in  natural  photoperiod  1Barrett,  Perry;  #Petri,  Ines,  2Diedrich,  Victoria;  3Herwig,  Annika;  2Steinlechner  Stephan  1Rowett  Institute  for  Nutrition  and  Health,  Bucksburn  Aberdeen  AB21  9SB;  2University  of  Veterinary  Medicine  Hannover,  Buenteweg  17,  30559  Hannover,  Germany;  3Zoological  Institute  Martin-­‐Luther-­‐King  Platz  3  20146  Hamburg  ,Germany  The  Siberian  hamster  is  an  exemplar  for  the  pre-­‐emptive  physiological  adaptations  made  by  seasonal  mammals.  In  shortening  days  of   autumn   the   hamster   reduces   body   mass   and   regresses   reproductive   organs.   Following   the   winter   solstice   while   day   length  duration   is   still   less   than   a   critical   duration   to   signal   long   days,   hamsters   increase   body  mass   and   recrudesce   the   reproductive  organs  to  become  reproductively  competent  by  late  February.  This  reversal  of  physiology  ahead  of  stimulatory  long  days  is  known  as  the  photorefractory  response  and  is  evidence  of  a  circannual  timing  mechanism.  The  mechanism  underpinning  the  adaptation  to  seasons   is   thought   to   be   localised   changes   in   thyroid   hormone   from   hypothalamic   tanycytes   driving   seasonal   transcriptional  responses  in  the  hypothalamic-­‐neuroendocrine  system.  Using  in  situ  hybridization  we  have  investigated  gene  expression  changes  in  the   hypothalamus   over   1   year   of   hamsters   born   and   raised   in   natural   photoperiod.   The   data   reveal   a   remarkable   temporal   co-­‐ordination  of  gene  expression  changes.  The  most  notable  changes  are  in  components  of  the  hypothalamic  thyroid  hormone  system  which  show  a  temporally   restricted  peak  of  anabolic   thyroid  hormone  type  2  deiodinase   (Dio2)  expression   in   June  and  catabolic  thyroid   hormone   type  3   deiodinase   (Dio3)   expression   in  October.  Woven  between   these  peaks   is   an   ascendance  of   the   thyroid  hormone  transporter  MCT8  to  peak  in  September  followed  by  a  gradual  decline  during  winter  and  spring  of  the  following  year.  In  addition  to  these  changes,  Gpr50  expression  shows  a  temporally  restricted  peak  of  expression  in  July.  Other  genes,  such  as  Vgf  and  Srif   show  a  peak  and   trough  during   the  course  of   the  year.  Together   the   temporally   co-­‐ordinated  gene  expression  changes  may  help  to  explain  the  basis  of  the  circannual  timer,  but  also  raise  new  questions  about  the  seasonal  regulatory  mechanism  

Page 31: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P7:  Cell  neogenesis  in  the  hypothalamus:  a  new  mechanism  of  control  of  the  reproductive  function?  Pellegrino  Giuliana;  Vincent  Prevot;  Marc  Baroncini;  Ariane  Sharif  UMR-­‐S  1172,  JPARC,  Laboratoire  «  Développement  et  plasticité  du  cerveau  neuroendocrine  »,  Université  de  Lille  Adult   neurogenesis   in   mammals   has   been   well   documented   in   the   subventricular   zone   (SVZ)   of   the   lateral   ventricle   and   the  subgranular  zone  (SGZ)  of  the  hippocampal  dentate  gyrus  (DG).  However,  there  are  a  growing  number  of  studies  that  documented  neurogenesis  and  gliogenesis  in  the  postnatal  hypothalamus  and  most  of  these  studies  have  been  conducted  to  understand  its  role  in  the  regulation  of  energy  homeostasis.  However  this  is  not  the  only  function  regulated  by  the  hypothalamus,  neurogenesis  and  gliogenesis   have   been   described   also   in   the   hypothalamic   regions   controlling   GnRH   function   so   our   work   aims   to   explore   the  possibility   that   the   generation   of   new   cells   within   the   postnatal   hypothalamus   may   represent   a   new   mechanism   of   plasticity  involved   in   the   control   of   reproductive   function   through   modulation   of   GnRH   neuronal   function.   The   specific   aims   are:   to  determine  whether  hypothalamic  cell  neogenesis  is  implicated  in  the  physiological  modulation  of  the  activity  of  the  GnRH  system  during  key  stages  of  the  postnatal  life;  to  determine  whether  gonadal  hormones  are  the  physiological  determinants  that  modulate  the   activity   of   stem   cells  within   the  neuroendocrine  hypothalamus.  We  expect   this  work   to   provide   significant   insights   into   the  mechanisms  of  cerebral  plasticity  at  adult  age  and  their  possible  role  in  the  control  of  a  major  physiological  function:  reproduction.  

 

P8:  Photoperiod  effects  on  the  hypothalamic  neurogenic  niche  in  sheep.  Lucile  Butruille,  Martine  Batailler,  Daniele  Mazur,  Vincent  Prévot,  Martine  Migaud  UMR  PRC  INRA  -­‐  CNRS  -­‐  Université  de  Tours  -­‐  IFCE,  Equipe  «Microenvironment  and  Dynamic  of  Neuroendocrine  Network  »,  37380  NOUZILLY,  France  In  mammals  recent  studies  have  demonstrated  the  presence  of  an  adult  neurogenic  niche  in  the  hypothalamus,  a  key  region  that  controls   physiological   functions,   such   as   reproduction.   In   sheep,   a   long   lived  mammalian  model,   the   existence   of   a   neurogenic  niche  has  also  been  shown  in  the  hypothalamus  and  DCX+  cells  were  found  in  the  vicinity  of  this  hypothalamic  neurogenic  niche,  indicating  the  presence  of  numerous  adult-­‐born  neurons  in  this  structure.  In  this  seasonal  model,  reproduction  is  characterized  by  alternation  a  period  of   reproduction  during   short  days  and  a  period  of   sexual   rest  during   long  days.  We  have   recently   reported  seasonal   increases   in   both   proliferation   rates   and   DCX’s   expression   in   the   hypothalamus   during   short   days.   This   study   aims   at  evaluating   (i)   whether   the   markers   of   the   various   niche   cell   types   are   also   sensitive   to   the   photoperiod   by   comparing   their  expression   between   short   and   long   days   (ii)   the   migratory   potential   of   the   sheep   hypothalamic   neuroblasts.   Through   an  immunohistochemical  approach,  we  showed  a  variation  of  the  labeling  for  neural  stem  cells  and  basal  lamina  markers  according  to  the   photoperiod.   This   data   suggest   that   photoperiod   drives   cytoarchitectural   rearrangements   within   the   sheep   hypothalamic  neurogenic  niche.  Electron  microscopy  analysis  are  currently  performed  to  determine  to  which  extend  the  cytoarchitecture  of  the  cells   lining   the   third  ventricle   is  affected  by  photoperiod.  Next,  a  neuroimaging  approach  using  micron-­‐sized   iron  oxide  particles  (MPIOs)   injection   was   developed   to   explore   the  migratory   potential   of   the   hypothalamic   neuroblats.   In   a   pilot   experiment   we  showed  that  MPIOs  are  incorporated  by  cells  lining  the  third  ventricle  and  detected  by  RMI,  indicating  that  the  use  of  MPIOs  and  RMI  for  the  detection  of  a  possible  migration  route  in  the  hypothalamus  is  feasible  in  sheep.  Once  the  hypothalamic  migratory  path  determined  we  will  identify  the  phenotype  of  the  newly  born  neurons  by  immunohistochemistry  approach.  

 P9:  Seasonal  variation  in  the  expression  of  doublecortin  and  potential  migratory  features  of  neuroblasts  in  the  adult  sheep  hypothalamus  Batailler,  Martine;  Derouet,  Laura;  Butruille,  Lucile  ;  Migaud,  Martine  INRA,  UMR  85  Physiologie  de  la  Reproduction  et  des  Comportements,  F-­‐37380  Nouzilly,  France  ;  CNRS,  UMR7247,  F-­‐37380  Nouzilly,  France  ;  Université  de  Tours,  F-­‐37041  Tours,  France  ;  Institut  Français  du  Cheval  et  de  l’Equitation  (IFCE),  F-­‐37380  Nouzilly,  France  Adult  neurogenesis  is  a  process  consisting  in  the  generation  of  new  neurons  from  adult  neural  stem  cells  and  as  such  represents  a  remarkable   illustration   of   the   brain   structural   plasticity   abilities.   The   hypothalamus,   a   brain   region   that   plays   a   key   role   in   the  neuroendocrine  regulations  including  reproduction,  metabolism  or  food  intake,  homes  neural  stem  cells  within  a  specialized  zone  defined  as  the  hypothalamic  neurogenic  niche  located  in  the  arcuate  nucleus  and  the  median  eminence.  In  adult  sheep,  a  seasonal  species,   recent   studies   have   revealed   photoperiod-­‐dependent   changes   in   the   hypothalamic   cell   proliferation   rate.   In   addition,  doublecortin  (DCX),  a  microtubule  associated  protein  expressed  in  immature  migrating  neurons,  is  highly  present  in  the  vicinity  of  the   hypothalamic   neurogenic   niche.   With   the   aim   to   further   explore   the   mechanism   underlying   adult   sheep   hypothalamic  neurogenesis  we  show  changes  in  the  density  of  DCX-­‐positive  cells  according  to  the  photoperiodic  conditions  at  various  time  points  of   the  year,   further   suggesting   that  new  neuron  generation   is   seasonally   regulated.  We  also  demonstrate   that   cyclin-­‐dependant  kinase-­‐5  (Cdk5)  and  p35,  two  proteins  involved  in  DCX  phosphorylation,  are  co-­‐expressed  with  DCX  in  young  hypothalamic  neurons  and  are  capable  of   in  vivo   interaction.  Additionally,  we  reveal  the  rostro-­‐caudal  extend  of  DCX   labelling  on  hypothalamic  sagittal  planes   where   DCX-­‐positive   cells   are   found   within   the   most   rostral   nuclei   of   the   hypothalamus,   including   the   preoptic   area.  Altogether,  our  results  support  the  hypothesis  of  the  existence  of  a  migratory  route  taken  by  the  new  born  neurons   in  the  adult  hypothalamus  that  is  responsive  to  seasonal  stimuli  in  sheep  brain.  

   

Page 32: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P10:  The  interplay  between  social/reproductive  stimuli,  Adult  Neurogenesis  and  the  GnRH  system  Sara  Trova  (1,2,3),  Livio  Oboti  (5),  Giuliana  Pellegrino  (1,3),  Roberta  Schellino  (,2),  Paolo  Giacobini  (3,4),  Paolo  Peretto  (1,2)  1.Department   of   Life   Sciences   and   Systems   Biology,   University   of   Turin,   Via   Accademia   Albertina   13   ,10123   Torino,   Italy   2.  Neuroscience  Institute  Cavalieri  Ottolenghi  (NICO),  Regione  Gonzole  10,  Orbassano,  10043  Torino,   Italy;  3.   INSERM,  Laboratory  of  Development   and   Plasticity   of   the   Postnatal   Brain,   Jean-­‐Pierre   Aubert   Research   Center,   Unité   837,   Lille,   France;   4.   School   of  Medicine,  UDSL,  Lille,  France  5  Center  for  Neuroscience  Research.  Children's  National  Health  System.  Washington,  D.C.,  USA  

Multiple   experimental   evidences   have   shown   that   Adult   Neurogenesis   (AN)   plays   critical   roles   in   encoding   social/reproductive  stimuli   and   in   turn   in  modulating   a   fundamental   aspect   of   life   -­‐   the   propagation   of   the   species.   A   continuous   neurogenesis   is  required  for  sex-­‐specific  activities  both  in  male  and  female  mice  (Sakamoto  et  al.,  2011)  and  it  is  in  turn  modulated  by  gonadal  and  adenohypophyseal  hormones,  such  as  prolactin  (PRL)  and  luteinizing  hormone  (LH;  Larsen  et  al.,  C.M.,  2012).   In  these  processes,  the  functional  role  played  by  AN  in  integrating  external  and  internal  signals,  and  the  intrinsic  mechanisms  underlying  the  interplay  between   AN   and   hormones   are   still   poorly   understood.   Here,   by   investigating   the   responses   of   AN   in   female  mice   to   sexually  experienced  or  to  young  sexually  inexperienced  male  mice  odors,  we  found  that  pheromonal-­‐dependent  modulation  of  AN  starts  around  puberty,  a  developmental  critical  period  characterized  by  increased  activity  of  gonadotropin  releasing  hormone  secretion.  To   investigate  a  possible  direct   interplay  between  GnRH  activity   and  AN,  we   firstly  performed  quantitative  PCR  analyses  on   the  total  OB  of  mice  that  revealed  the  presence  of  mRNA  of  GnRH  receptor,  Estrogen  receptor  alpha  and  beta,  and  Androgen  receptor.  Secondly,  using  a  transgenic  mice  model  with  an  impaired  GnRH  function  (GnRH::Cre;  DicerloxP/loxP  mice)  we  show  that  a  dysfunction  in  GnRH  System  increases  the  number  of  newly-­‐born  neurons  integrated  in  the  Main  Olfactory  Bulb.  Our  results  suggest  that  the  intriguing   co-­‐modulation   between   brain   plasticity   and   the   endocrine   system,   necessary   for   adjusting   the   physiological  homodynamic   equilibrium   to   each   particular   life   event   (i.e.   reproduction),   could   be   in   part   mediated   by   a   direct/indirect   co-­‐regulation  between  AN  and  GnRH  System.  

P11:  Amygdala  kisspeptin  population:  non-­‐hypothalamic  control  of  the  gonadotropic  axis  and  olfactory  function.  Rafael  Pineda  Reyes1,  Robert  P.  Millar2  and  Mike  Ludwig1  

1Centre  for  Integrative  Physiology,  University  of  Edinburgh,  Hugh  Robson  Building,  George  Square,  Edinburgh  EH8  9XD,  UK  2Mammal  Research  Institute,  Department  of  Zoology  and  Entomology,  University  of  Pretoria,  Pretoria  0001,  South  Africa  

In  mammals  reproduction  is  under  the  control  of  the  gonadotropic  axis.  Hypothalamic  GnRH  neurons  are  the  main  element  of  this  axis   and   kisspeptins   and   their   receptors   were   identified   as   potent   regulators   of   the   axis.   Hypothalamic   kisspeptin   neurons   are  mainly  found  in  the  arcuate  and  the  anteroventral  periventricular  nuclei.  A  third  population  of  kisspeptin  neurons  is  located  in  the  amygdala,   but   their   connectivity  with  other  brain   regions   and   their   involvement   in   the   control   of  GnRH  neurons  was  unknown.  Using  viral  specific-­‐cell  gene  expression  in  combination  with  immunofluorescence  histochemistry  we  show  here  that  the  amygdala  kisspeptin   neurons   project   to   GnRH   neurons   in   the   preoptic   area.  We   also   determined   the   precise   localization   and   number   of  kisspeptin  neurons   in   the   rat  medial   amygdala  and   their   innervation  by   the   two  major   systems   involved   in   social  behaviors,   the  vasopressin  and  dopamine  system.  The  amygdala  receives  inputs  from  the  olfactory  system  and  here  we  show  that  the  amygdala  kisspeptin   neurons   project   back   to   the   accessory   olfactory   bulb.   Our   data   suggest   that   amygdala   kisspeptin   neurons   integrate  odour   and   social   behavior   information   to   the   GnRH   neurons   of   the   gonadotropic   axis   to   coordinate   the   endocrine   axis   with  appropriate  behavior.  Acknowledgements  :  This  work  was  supported  by  the  Newton  International  Fellowship  program  awarded  to  RPR   (Ref.   NF130516),   co-­‐funded   by   the   Royal   Society   and   the   British   Academy,   and   the   British   Society   for   Neuroendocrinology  (Project  Support  Grant)  

P12:  Multiple  markers  reveal  different  features  of  sex  differences  in  HVC  neurogenesis  Olesya  T.  Shevchouk,  Gregory  F.  Ball,  Charlotte  A.  Cornil  and  Jacques  Balthazart  University  of  Liege,  Belgium  and  University  of  Maryland,  College  Park,  MD  In   oscines,   neurogenesis   in   the   song   control   nucleus  HVC   is   sensitive   to   changes   in  hormonal   and   social   environment.  We  used  three  independent  markers  to  investigate  effects  of  social  context  on  HVC  neurogenesis  in  male  and  female  canaries.  Males  were  castrated,   implanted   with   testosterone   and   housed   either   alone   (M),   with   a   female   (M-­‐F)   or   with   another   male   (M-­‐M)   while  females  were  implanted  with  17β-­‐estradiol  and  housed  alone  (F)  or  with  a  male  (F-­‐M).  All  subjects  received  injections  of  BrdU  at  the  start  of  the  social  manipulation,  21  days  before  brain  collection,  and  EdU  10  days  before  brain  collection.  Cells   incorporating  the  two  thymidine  analogs  and  expressing  doublecortin  (DCX)  which  labels  young  newborn  neurons,  were  quantified  in  the  HVC  of  each   subject.  No  effect   of   social   condition  was   found  on   the  numbers  of   either  BrdU+  or   EdU+  and  only   a   subtle   effect   on   the  number  of  DCX+  cells.  Further  comparisons  were  performed  between  males  and  females  regardless  of  social  condition.  In  terms  of  number  of  cells  per  section,  males  had  more  EdU+  and  BrdU+  cells  in  the  lateral  ventricle  dorsal  of  HVC,  suggesting  higher  rates  of  proliferation,  and  also  more  EdU+  in  HVC.  In  the  equivalent  analysis  for  BrdU+  cells  no  sex  difference  was  found.  The  total  number  of  DCX+  neurons  per  section  recruited  to  HVC  was  equal  in  males  and  females,  but  since  HVC  is  smaller  in  females,  the  density  of  DCX+  neurons  was  higher  in  this  sex.  These  data  suggest  that  while  initial  survival  of  newborn  neurons  in  HVC  is  higher  in  males,  in  the  long-­‐term  the  females  have  equal  numbers  and  higher  densities  of  newborn  neurons.  A  lack  of  effect  of  social  context  is  likely  due  to  the  short  day  lengths  the  birds  were  exposed  to  during  this  study,  indicating  that  social  effects  on  the  song  control  system  are   gated   by   photoperiod.   In   addition,   these   data   suggest   that   proliferation,   recruitment   and   survival   of   new   neurons   can   be  independently  affected  by  environmental  conditions.  

Page 33: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P13:  Membrane-­‐estrogen  receptor  alpha  does  not  seemed  to  be  involved  in  the  control  of  reproductive  behavior  but  might  influence  sexual  differentiation  Taziaux  Mélanie1,  Ceuleers  Meg-­‐Anne1,  Arnal  Jean-­‐François2,  Lenfant  Françoise2,  Cornil  Charlotte  A1.  1.  GIGA  Neurosciences,  University  of  Liege,  Liège,  Belgium  2.  Inserm  U1048-­‐I2MC-­‐  Equipe  9,  Institut  des  Maladies  Métaboliques  et  Cardiovasculaires,Toulouse,  France  

Besides  the  slow  and  long-­‐term  control  they  exert  on  physiologyl  and  behavior  through  the  transcriptional  action  of  their   ligand-­‐activated  nuclear  receptors,  estrogens  also  activate  membrane-­‐initiated  effects  resulting  in  more  rapid  and  transient  actions.  Yet,  the   receptors   involved   in   these  actions  are  often  unknown.  Here  we  sought   to  determine   the   role  of   the  membrane   fraction  of  estrogen  receptor  alpha  (ERα)  in  the  control  of  male  and  female  sexual  behavior  using  the  C451A-­‐ERα  mouse  model  whose  ERα  is  unable   to   translocate   to   and   signal   from   the   membrane   while   retaining   its   transcriptional   activity   due   to   a   mutation   in   the  palmitoylation  site  of  ERα.  Because  defects   in  estrogen  signaling  may  impair  normal  sexual  differentiation  of  brain  and  behavior,  we  also   investigated   the  effect  of   the  mutation  on   the  expression  profile  of  markers  of  brain  sexual  differentiation.  Male  sexual  behavior  did  not  differ  between  the  three  genotypes  in  castrated  males  chronically  implanted  with  capsule  delivering  testosterone.  Similarly,  no  genotype  difference  was  found  for  lordosis  behavior  in  females  implanted  with  a  chronic  capsule  delivering  estradiol  and  injected  with  progesterone  3  hours  before  testing.  A  second  group  of  mice  gonadectomized  and  injected  for  2  weeks  with  EB  were  compared  for  the  number  of  cells  immunoreactive  (ir)  for  tyrosine  hydroxylase  (TH)  and  kisspeptin  (Kp)  in  the  anteroventral  periventricular   nucleus   (AVPv),   two   cell   populations   known   to   be   more   abundant   the   in   females   than   males.   No   genotype  difference  was   found   in   the   number   of   TH-­‐immunoreactive   (TH-­‐ir)   cells.   The   analysis   of   the   number   of   Kp-­‐ir   cells   revealed   not  genotype  difference   in  females  while  KO  males  were  found  to  express  more  Kp-­‐ir  cells   than  wild-­‐type  males  suggesting  that  this  membrane   receptor  might  play  a   role   in   the  sexual  differentiation  of   the  brain.  Further  experiments  are  currently  performed   to  confirm  this  observation.  

P14:  Effects  of  neural  invalidation  of  estrogen  receptor  β  in  mice.  Lydie  Naulé1,  Vincent  Robert2,  Clarisse  Marie-­‐Luce1,  Caroline  Parmentier1,  Mariangela  Martini2,  Hélène  Hardin-­‐Pouzet1,  Valérie  Grange-­‐Messent1,  Matthieu  Keller2,  Isabelle  Franceschini2,  Sakina  Mhaouty-­‐Kodja1  1  Neuroscience  Paris  Seine,  Team  “Neuroplasticity  of  Reproductive  Behaviors”,  CNRS  UMR  8246,  INSERM  U  1130,  UPMC,  Paris,  France.  2  

Physiologie  de  la  reproduction  et  des  comportements,  UMR  7247  INRA-­‐CNRS-­‐Université  de  Tours-­‐Haras  Nationaux,  Nouzilly,  France  

Sexual  differentiation  of  the  central  nervous  system  is  governed  by  sex  steroid  hormones  (testosterone  and  its  metabolites).  During  the  perinatal  period,  estradiol,  originating  from  neural  aromatization  of  testicular  testosterone,  masculinizes  and  defeminizes  the  neural   structures   underlying   the   regulation   of   the   hypothalamus-­‐pituitary-­‐gonad   (HPG)   axis   and   the   expression   of   reproductive  behaviors.  In  females,  the  ovaries  are  inactive  during  the  fetal  period,  and  the  brain  is  protected  from  the  masculinizing  effects  of  perinatal  estradiol  through  the  action  of  the  α-­‐fetoprotein.  Recent  studies  suggested  an  active  role  of  estradiol  liberated  from  the  postnatal  ovaries   in   the  establishment  of  puberty  and  feminization  of  neural  circuits   involved   in   the  expression  of   female  sexual  behavior.   In  adulthood,  estradiol  has  an  activational   role   in   the  regulation  of   the  HPG  axis  and  reproductive  behaviors.  Estradiol  acts  via  two  nuclear  estrogen  receptors  (ER)  α  and  ERβ.  Many  studies  showed  that  neural  ERα  is  essential  for  the  maturation  and  regulation  of  the  HPG  axis,  as  well  as  the  expression  of  sexual  behavior.  Global  knockout  of  ERβ  showed  either  a  minor  or  a  major  defect  of  female  fertility.  The  present  study  aimed  to  determine  the  relative  contribution  of  neural  ERβ  in  estradiol-­‐induced  effects  in  female  mice.  For  this  purpose,  we  generated  and  characterized  a  mouse  model  selectively  lacking  ERβ  in  the  nervous  system,  by  using  a  conditional  mutagenesis  Cre-­‐loxP  approach.  This  strategy  allows  to  distinguish  between  the  peripheral  and  central  effects  of  this   receptor.   Female  mice   lacking   the   neural  ERβ   were   analyzed   for   pubertal   onset   and   expression   levels   of  molecular   factors  involved  in  pubertal  maturation.  At  adulthood,  mutant  female  mice  were  tested  for  fertility,  oestrous  cyclicity,  hormonal  levels  and  expression  of  sexual  behavior  and  anxiety  state  level.  The  results,  obtained  in  this  context,  will  be  presented.  

P15:  Effect  of  adult  exposure  to  low  doses  of  Phthalates  on  peripheral  and  neural  responses  in  male  mice  Poissenot  K.a,  Moussu  C.  a,  Robert  V.  a,  Keller  M.  a,  Mhaouty-­‐Kodja  S1.  &  Franceschini  I.  a  a   INRA,   UMR   85   Physiologie   de   la   Reproduction   et   des   Comportements,   F-­‐37380  Nouzilly,   France   1Neuroscience   Paris   Seine-­‐IBPS,   Inserm  UMR-­‐S1130,  Université  P.  et  M.  Curie,  Paris,,  France  

Di-­‐2-­‐ethylhexyl  phthalate  (DEHP)   is  an  endocrine  disruptor  (EDC)  with  known  anti-­‐androgenic  activity.  The  exposure   is   important  and   DEHP   metabolites   are   found   in   urine   in   humans.   A   number   of   such   EDCs   have   been   reported   to   target   the   developping  neuroendocrine   circuitry   controlling   reproductive   fonction,   including   the   Kiss1   gene.  Moreover,   a   recent   study   on   Bisphenol   A,  another   EDC   with   known   anti-­‐androgenic   activity,   highlighted   a   particular   sensitivity   of   the   adult   male   mouse   nervous   system  controlling  sexual  behavior  to  this  compound  following  chronic  low  level  exposure  (Picot  et  al.,  2014).  Such  studies  raise  questions  about  the  effects  of  adult  exposure  to  low  doses  of  DEHP  on  reproductive  function,  neuroendocrine  responses,  and  on  the  neural  circuitry  underlying  male  sexual  behavior.  Adult  male  mice  were  exposed  for  one  month  to  DEHP  at  the  tolerable  daily  intake  (TDI,  50µg/kg(bw)/day)  or  the  5  µg/kg(bw)/day  dose.  The  effects  were  evaluated  on  a  mouse  line  expressing  a  GFP  reporter  under  the  control  of   the  Kiss1  promoter   (Gottsch  et  al.,  2011).  This  model  allowed  us  to  quantify  the  number  of  GFP-­‐immunoreactive  cells  (GFP-­‐ir),  and  the  proportion  of  these  cells  witch  express  estrogen  receptor  α  (ERα)  or  androgen  receptor  (AR)  in  the  preoptic  area  (POA)  and  the  arcuate  nucleus  (ARC).  The  mean  density  of  Erα-­‐ir  and  AR-­‐ir  cells  was  further  evaluated   in  brain  areas  relevant  to  male  sexual  behavior.  There  was  no  significant  effect  of  DEHP  treatment  on  the  number  of  GFP-­‐ir  cells  and  the  proportion  that  co-­‐expressed  ERα  or  AR  in  the  POA  and  in  the  ARC.  Accordingly,  DEHP  treatment  did  not  affect  the  weight  of  the  androgen-­‐dependant  genital  tract  organs,  nor  circulating  testosterone  levels.  The  density  of  ERα  or  AR  remained  unchanged  in  the  main  areas  relevant  to  male  sexual  behavior  following  exposure  to  DEHP  at  the  TDI  dose.  The  potential  anti-­‐androgenic  activity  of  this  adult  TDI  exposure  will  be  further  explored  including  its  physiological  and  behavioral  relevance.  

Page 34: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P16:  Adult  exposure  to  DEHP  affects  sexual  steroid-­‐dependant  behaviors  at  very  low  doses  Dombret  C.1,  Capela  D.1,  Malbert-­‐Colas  A.1,  Lavoue  A.1,  Keller  M.2,  Franceschini  I.2,  Mhaouty-­‐Kodja  S.1.  1Neuroscience   Paris   Seine-­‐IBPS,   Inserm   UMR-­‐S1130,   Université   P.   et   M.   Curie,   Paris,,   France  ;   2   INRA,   UMR   85   Physiologie   de   la  Reproduction  et  des  Comportements,  F-­‐37380  Nouzilly,  France    

The  male  sexual  behavior  is  a  complex  centrally  regulated  behavior  controlled  by  sex  steroids.  During  development  the  male  brain  is   subjected   to   organisational   effects   of   testosterone,   which   permanently   shapes   brain   structures   through  masculinization   and  defeminization  processes.  Later,  during  adulthood,  sexual  steroids  activate  these  structures  to  initiate  sexual  behavior.  Endocrine  disrupting   chemicals   (EDCs)   are   chemicals   of   natural   or   human-­‐made   origin,   able   to   interfere  with   normal   physiology   by   either  altering   the   levels   of   hormones,  modifying   the   expression   of   hormones   receptors   or   changing   endogenous   signalling   pathways  triggered  by  these  hormones.  EDCs  are  suspected  to  play  a  broad  role  in  dysfunctions  and  diseases  leading  to  a  loss  or  a  reduction  of   fertility   like   alteration  of   the   semen  quality.   EDCs   can  also   induce  anomalies  of   the  urogenital   tract   like   testicular   dysgenesis  syndrome.  In  this  context,  we  have  previously  shown  that  adult,  but  not  perinatal,  exposure  to  bisphenol  A  (BPA)  at  low  dose  alters  male  sexual  behavior  through  an  anti-­‐androgenic  effect  (Picot  et  al.,  2014).  In  an  effort  to  identify  other  molecules  that  alter  the  neural   circuitery   supporting   the  expression  of   the  male   sexual   behavior,  we   focused  on  di   (2-­‐ethylhexyl)   phthalate   (DEHP).   This  plasticizer   is  the  most  abundant   in  PVC-­‐based  materials  and  has  been  shown  to  have  anti-­‐androgenic  and  estrogenic  activities   in  different   models.   Moreover   this   molecule   is   listed   in   the   Priority   Substances   under   the   water   framework   directive   (Directives  200/60/CE   and   2008/105/CE).   In   order   to   evaluate   a   putative   effect   of   DEHP   on  male   sexual   behavior,  we   treated   adult  males  during  one  month  at  doses  of  0,5  ug/kg/day,  5  ug/kg/day  and  50  ug/kg/day  and  compared  these  DEHP-­‐treated  animals  to  vehicule-­‐treated  males.  The  first  two  doses  are  close  to  the  environmental  exposure  while  the  last  dose  corresponds  to  the  tolerable  daily  intake  (TDI)  dose  (calculated  by  dividing  the  no-­‐observed-­‐adverse-­‐effect  

P17:  Developmental  exposure  to  17-­‐alpha-­‐ethinylestradiol  alters  behavioral  and  neural  outcomes  in  adult  male  mice  Derouiche  Lyes.,  Keller  Mathieu.,  Duittoz  Anne.,  Pillon  Delphine  UMR  0085  INRA  -­‐  CNRS  -­‐  Université  de  Tours  -­‐  IFCE,  37380  NOUZILLY,  France  Endocrine   disrupting   chemicals   may   specifically   target   the   neuroendocrine   circuits   of   the   central   nervous   system   and   induce  deleterious   effects   on   health.   Ethinylestradiol   (EE2)   is   a   pharmacological   estrogen   largely   used   in   oral   contraceptives   and  constitutes   one   of   the  major   pharmaceutical   products   found   as   a   contaminant   in   effluent  waters.   The   aim  of   our   study  was   to  demonstrate   whether   a   chronic   exposure   to   environmentally   relevant   or   pharmacological   doses   (respectively   0.1   and   1  microg/kg/day)   of   EE2   during   the   whole   development   (from   mid-­‐gestation   up   to   peri-­‐puberty)   can   disturb   behavioural   and  neuroanatomical   parameters   of   reproductive   function   in   adult   mice.   Mating   behaviour,   reproductive   physiology   and   then  neuroanatomical  studies  were  preformed  on  control  developmentally  exposed  males  to  EE2.  Our  results  showed  that  both  doses  induced  an  exacerbated  sexual  behaviour,  evidenced  by  a  decrease  in  the  latency  to  initiate  sexual  behaviour  and  an  increase  in  the  number  of  intromissions.  Fertility,  plasma  testosterone  concentrations  and  testicular  histology  were  not  affected.  Neuroanatomical  analysis   showed   that   exposed   males   had   more   Calbindin-­‐D28k   immunoreactive   cells   in   the   hypothalamic   sexually   dimorphic  nucleus   (SDN)   than   controls.   No   difference   was   detected   in   the   numbers   of   kisspeptin   neurons   in   the   preoptic   periventricular  nucleus.   Strikingly,   the   same  effects  on   sexual  behaviour  and  SDN   than   those  depicted   in   F1  males  exposed   to  EE2  during   their  development  were  also  observed   in  their  F2  to  F4  offspring.  Altogether,  our  results  show  that  a  developmental  exposure  to   low  doses  of  EE2  alters  mating  behaviour  and  neuroanatomy  of  the  SDN  in  adult  male  mice.  These  disruptions  are  transmitted  to  the  next   generations.  We  now  aim   at   identifying,   by   using   embryonic  murine   neural   stem   cells   cultures,   the   cellular   and  molecular  targets  through  which  EE2  can  act  during  development  to  induce  in  adult  functional  alterations,  such  as  behavioural  modifications.  

P18:  Effect  of  progestagens  on  neurodevelopment  of  zebrafish  embryos  Elisabeth  Pellegrini,  Cécile  Cruciani,  Justyne  Feat,  Joel  Cano,  Marie-­‐Madeleine  Gueguen,  Colette  Vaillant-­‐Capitaine,  Olivier  Kah  Université  Rennes  1,  IRSET,  Neuroendocrine  effects  of  endocrine  disruptors  

A  single  nuclear  progesterone  receptor  (Pgr)  is  widely  expressed  in  the  brain  of  zebrafish,  particularly  in  radial  glial  progenitor  cells  (RGCs).   This   suggests   that   progestagens   (such   as   progesterone   (P4),   norethindrone)   and/or   their   metabolites   could   affect   the  neurogenic   activity   of   these   cells   during   neurodevelopment.   In   this   context,   we   used   zebrafish   embryos   in   order   to   study   the  effects  of   increasing   concentrations  of  P4  on   the  expression  of   several   genes  potentially   involved   in  brain  development   such   as  cyp19a1b   (encoding   Aro-­‐B,   the   specific   enzyme   converting   androgens   into   estrogens   and   selectively   expressed   in   RGCs),   pgr,  estrogen   receptors   (esr1,  esr2a,  and  esr2b),   the  proliferation  marker  pcna,   the  anti-­‐apoptotic  gene  bcl2,   the  pro-­‐apoptotic  gene  bax  and   the  apoptotic   gene   casp3.  Our   results   show   that  P4   significantly   affects   the  expression  of   several   genes   in   the  brain  of  zebrafish   larvae.  We   demonstrate,   based   on   quantitative   PCR   analysis,   that   cyp19a1b   is   upregulated   by   P4.   Inversely,   casp3   is  downregulated  by  P4.  The  inhibitory  action  of  P4  on  apoptosis  process  is  confirmed  by  the  TUNEL  assay.  Given  the  crucial  role  of  RGCs   in   neurodevelopment,   we   suggest   that   P4   could   affect   apoptosis   process   that   takes   place   during   early   neurogenesis   in  zebrafish   embryo.   Using   cyp19a1b-­‐GFP   transgenic   zebrafish,   we   also   evaluated   the   potential   estrogenicity   of   norethindrone,   a  synthetic  progestagenic  molecule  used  in  contraceptive  pills  and  found  in  surface  water.  Our  preliminary  results  demonstrate  that  GFP   signal   is   increased   in   the   brain   of   larvae   treated   with   norethindrone   suggesting   estrogenic   properties   of   this   compound.  Although   more   studies   are   required,   this   data   suggest   that   P4   and   norethindrone   may   have   effects   on   neurodevelopment   in  zebrafish  notably  on  cell  proliferation,  the  fate  of  newborn  cells  and  their  survival.  Supported  by  the  ANR  PROOF  

 

Page 35: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P19:   Alteration   of   the   neuroendocrine   control   of   female   puberty   by   early   postnatal   Bisphenol   A   exposure   and  involvement  of  GPR151,  a  potential  new  regulator  of  GnRH  network  Franssen,   Delphine   1;   Dupuis,   Nadine   2;   Gerard,   Arlette   1;   Hennuy,   Benoit   3   ;   Hanson,   Julien   2;   Parent,   Anne-­‐Simone   1;  Bourguignon,  Jean-­‐Pierre  1  1GIGA  Neurosciences,  Neuroendocrinology  Unit,  University  of  Liège,  Belgium  2GIGA,  Laboratory  of  Molecular  Pharmacology,  University  of  Liège,  Belgium  3GIGA,  Transcriptomic  platform,  University  of  Liège,  Liège,  Belgium  

We  studied   the  effects  of  early  postnatal   exposure  of   female   rats   to  Bisphenol  A   (BPA)  on  GnRH   release   (ex   vivo)   and  pubertal   timing.  Newborn  female  rats  were  exposed  from  postnatal  day  (PND)  1  to  15  to  vehicle  (corn  oil)  or  BPA  (25  ng/kg/d  or  5  mg/kg/d).  After  exposure  to   the   low  dose   of   BPA,   the   age   at   vaginal   opening   (VO)  was   delayed   (35.3±0.7   days   vs   33.5±0.5   days   in   controls)  while   advancement  (32.1±0.6  days)  was  observed  after  5  mg/kg/d.  The  late  VO  after  exposure  to  25  ng/kg/d  of  BPA  was  preceded  by  a  significantly  increased  GnRH   interpulse   interval   (52.5±0.8  min   vs   44.6±0.7min   in   controls)   at   PND   20.   By   contrast,   early   VO   after   exposure   to   5  mg/kg/d  was  preceded   by   a   significantly   reduced   GnRH   interpulse   interval   (40.3±0.1   min   vs   42.8±0.4   min).   Gene   expression   in   the   retrochiasmatic  hypothalamus  was   assessed  by  whole  exome  RNA-­‐sequencing  on  PND20.   The  most   significantly   affected  gene  was  GPR151,  with  dose-­‐opposing  changes  since  mRNA  levels  increased  after  the  low  BPA  dose  and  decreased  after  the  high  dose.  GPR151  is  an  orphan  GPCR  with  some  homology  to  galanin  and  kisspeptin  receptors.  We  observed  that  GPR151  was  expressed   in  the  median  eminence  of  pubertal  and  adult  female  and  male  rats  where  some  GnRH  nerve  terminals  were  found  to  co-­‐express  GPR151.  Via  overexpression  of  GPR151  in  human  embryonic   kidney  cells   (HEK293),  we   showed   that  GPR151  was   located  at   the   cell  membrane.  GPR151  mRNA  expression  was   increased  throughout  development  in  the  retrochiasmatic  hypothalamus  of  female  rats.  In  adult  females,  GPR151  mRNA  expression  was  increased  in  preoptic  area  on  proestrus  vs  diestrus  day.  Using  a  cellular  clone  expressing  GPR151,  current  studies  attempt  to  predict  signaling  pathways  activated   by   possible   endogenous   ligands.   In   conclusion,   early   postnatal   exposure   to   BPA   altered   the   onset   of   puberty   in   female   rats  through  disruption  of  the  GnRH  release.  This  effect  could  involve  changes  in  expression  of  a  potential  new  regulator  of  the  GnRH  network,  GPR151.`  

P20:  Sex  differences  in  basal  hypothalamic  anorectic  and  orexigenic  gene  expression  after  re-­‐feeding  Caughey  S,  Wilson  PW,  Mukhtar  N,  D’Eath  RB,  Dunn  IC,  Boswell  T  The  Roslin  Institute  and  Royal  (Dick)  School  of  Veterinary  Studies,  University  of  Edinburgh,  Scotland,  UK;  Scotland’s  Rural  College,  Scotland,  UK;  School  of  Biology,  Newcastle  University,  England,  UK.  We   have   previously   demonstrated   that   AGRP   and   NPY   gene   expression   in   the   basal   hypothalamus   of   female   meat-­‐producing  (broiler)   chickens   is   sensitive   to   feeding   history   following   food   restriction   and   re-­‐feeding   whereas   POMC   and   CART   expression  remain   unchanged.   To   distinguish   the   effects   of   gut   fullness   from   nutritional   signal   feedback   on   basal   hypothalamic   gene  expression,   we   compared   the   effect   in   restricted-­‐fed   12-­‐week-­‐old   male   and   female   birds   of   re-­‐feeding   either   on   a   normal   ad  libitum  diet  for  2  days,  or  on  a  diet  diluted  with  a  non-­‐nutritive  bulking  agent,  ispaghula  husk.  Overall,  expression  of  AGRP  and  NPY  measured  by   real-­‐time  PCR  was   significantly  decreased   in  birds   re-­‐fed  ad   libitum  but  was  high  and   statistically   indistinguishable  between   restricted-­‐fed   controls   and   birds   re-­‐fed   on   ispaghula   husk.   An   identical   pattern   of   group  differences  was   observed   for  expression  of  POMC  and  CART,  except   that  expression  was  significantly  higher   in   the  ad   libitum  re-­‐fed  group.  Collectively,   these  results   suggest   that   gut-­‐fill   alone   is   not   sufficient   to   reduce   orexigenic   gene   expression   after   re-­‐feeding.   We   also   observed  pronounced  sex  differences  in  gene  expression.  AGRP  and  NPY  mRNA  levels  were  significantly  higher  in  males  compared  to  females  in  all  groups,  and  the  difference  was  more  pronounced  in  the  restricted  control  and  ispaghula  husk  groups  compared  to  birds  re-­‐fed  ad  libitum.  For  POMC  and  CART,  mRNA  levels  were  significantly  higher  in  males  in  the  ad  libitum  re-­‐fed  group  compared  to  the  other  groups.  However  in  females,  there  were  no  significant  effects  of  treatment  on  gene  expression,  consistent  with  our  results  from  previous  experiments  with  females  only.  A  change  in  CART  gene  expression  in  response  to  nutritional  manipulation  has  not  been  observed  previously   in   birds.   The   cause   of   differences   in   gene   expression   between  males   and   females   is   unclear   but  may  relate  to  sex  differences  in  growth  rate.  

P21:  Impact  of  repeated  stress  on  caloric  efficiency  in  the  rat  Rabasa  Cristina;  Askevik,  Kaisa;  Vogel,  Heike;  Dickson,  Suzanne  L  Department  of  Physiology,  Institute  of  Neuroscience  and  Physiology,  The  Sahlgrenska  Academy  at  the  University  of  Gothenburg,  Medicinaregatan  11,  PO  Box  434,  SE-­‐405  30  Gothenburg,  Sweden  

Chronic  stress  is  believed  to  be  an  important  factor  driving  the  over-­‐consumption  of  food  and  obesity.  Here  we  explored  the  impact  of  acute  versus   repeated  stress  on  caloric  efficiency   in   the  rat.  Male  rats   fed  chow  or  a  combination  high-­‐fat/high-­‐sucrose   (HFS)  were  exposed  to  repeated  forced  swim  stress  (RFS-­‐chow,  n=20  and  RFS-­‐HFS,  n=20)  or  handling  (control-­‐chow,  n=16  and  control-­‐HFS,  n=14)  for  7  days.  On  day  8,  all  rats  were  exposed  to  1  h  of  forced  swim  (FS)  and  blood  sampled  to  study  the  HPA  response.  24  h   later  (day  9)  half  of  the  rats  were  sacrificed  and  other  half  were  assessed  for  caloric  efficiency  after  the  stress  for  8  days.    RFS  reduced  food  intake  in  chow  fed  rats,  but  not   in  rats  exposed  to  a  HFS  diet.  However,  both  groups  under  chronic  stress  reduced  their  body  weight  (BWt)  gain  indicating  that  mechanisms  other  than  food  intake  cause  BW  changes  in  RFS  animals.  During  days  1  to  7,  the  non-­‐stressed  groups  were  the  most  caloric  efficient.  However,  after  the  acute  FS  on  day  8,  chow  fed  rats  with  previous  stress  experience  increased  their  caloric  efficiency  compared  with  acutely  stressed  rats.  Thus,  repeated  stressed  rats  gained  more  weight  although  they  continued  to  eat  less  food  than  rats  after  acute  stress,  suggesting  that  repeated  stress  causes  metabolic  adaptations,  making  the  rats  more  able  to  transform  the  Kcal  into  BWt.  Also,  the  RFS-­‐chow  rats  sacrificed  on  day  9  had  reduced  white  adipose  tissue,  leptin  and  thymus  weight,  while  this  was  not  seen  in  RFS-­‐HFS  rats,   indicating  that  consuming  a  chow  diet  could  attenuate  some  of  the  adipogenic  effects  of  chronic  stress.  Our  results  demonstrate  that  repeated  stress   induces  adaptations  that   increase  caloric  efficiency   in   rats.   The  mechanisms  underpinning   this  metabolic   adaptation  are  being  explored  as   they  may  prove   insight  regarding  the  link  between  chronic  stress  and  metabolic  disorder.  Supported  by  EC  (Nudge-­‐it,  607310)  

Page 36: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P22:  Long-­‐term  behavioural  consequences  of  exposure  to  a  high  fat  diet  during  the  post-­‐weaning  period  in  rats  Suzanne  L.  Dickson,  Winsa  Julia  and  Rabasa  Cristina  Department  of  Physiology/Endocrine,  Institute  of  Neuroscience  and  Physiology,  The  Sahlgrenska  Academy  at  the  University  of  Gothenburg.  Sweden.  

It   seems   clear   that   early   life   diet   can   play   a   role   in   obesity   development.   What   is   much   less   explored   is   the   the   long-­‐term  consequences  of  dietary  interventions  during  adolescence,  a  critical  period  for  the  consolidation  of  reward  processing.  Thus,  in  the  present  work  we  exposed  adolescent  rats  (post  natal  day  21),  to  normal  chow  or  high  fat  (HF)  diet  for  10  days  (PN21-­‐PN31).  Right  after  PN31,  one  group  of  rats  were  moved  to  chow  (n=82)  or  kept  under  HF  +  chow  choice  diet  (n=42).  Half  of  the  rats  were  tested  immediately   after   PN31   (adolescence),   and   the   other   half   were   tested   for   the   long-­‐term   effects   starting   on   PN60   (adult).   We  studied  the  food  preferences  in  a  three  choice  model  (high  fat,  high  carbohydrates  and  high  proteins).  The  rewarding  properties  of  chocolate   in   the   conditioned   place   preference   (CPP),   the   preference   for   saccharin   and   sucrose   over   water,   the   anxiety   in   the  elevated  plus  maze  (EPM),  and  the   locomotor  response  to  Quinpirole  (that  tests  dopamine  signalling)  were  studied  at  both  time  points.  Strikingly,  behaviour  was  unaltered  in  adult  rats  transiently  fed  HF  diet  post-­‐weaning,  suggesting  that  short  exposure  to  HF  diet  does  not  induce  long-­‐term  effects   in  food  preferences,  reward  perception  and  value  of  palatable  food,  anxiety  or   locomotor  activity.  Nevertheless,  the  HF-­‐continuous  group  ate  less  chocolate  during  the  training  in  the  CPP  and  consumed  less  saccharin  and  sucrose  when  they  were  tested  during  the  young  period.  However,  this  effect  was  attenuated  when  they  had  access  to  HF  diet  until  adulthood.  On  the  other  hand,  the  intake  of  HF  over  chow  was  reduced  in  the  adult  HF-­‐continuous  group,  probably  due  to  the  lack  of   novelty   of   the   treat.   Our   results   demonstrate   that   longterm   access   to   HF   diet   in   adolescent   rats   causes   a   reduction   in   the  consumption  of  sweet  tastes  (saccharin/sucrose)  and  that  sucrose  (but  not  saccharine  consumption)  recovers  if  the  rats  continue  to  have  HF  access  until  adult.  Supported  by  Nudge-­‐it,  607310.  

P23:  Palatability  can  drive  feeding  independent  of  AgRP  neurons  Raphaël  G.  P.  Denis1,15,  Aurélie  Joly-­‐Amado1,15,  Julien  Castel1,  Céline  Cansell1  ,  Emily  Webber13,14,  Stéphanie  Padilla9,  10  Anne-­‐Sophie  Delbès1,  Sarah  Martinez1,  Marie  Schaeffer  2,3,4,  Fanny  Langlet  5,6,  Bénédicte  Dehouck  5,6  ,  Amélie  Lacombe1,  Claude  Rouch1,  Nadim  Kassis1,  Jean-­‐Alain  Fehrentz  7,  Jean  Martinez  7,  Pascal  Verdié  7,  Thomas  S.  Hnasko  8,  Richard.  D  Palmiter9,10,  Christophe  Magnan1,  Michael  Krashes13,14,  Ali.  D  Güler9,10,11  and  Serge  Luquet1  1Univ  Paris  Diderot,  Sorbonne  Paris  Cité,  Unité  de  Biologie  Fonctionnelle  et  Adaptative,  CNRS  UMR  8251,  F-­‐75205  Paris,  France.  2CNRS,  UMR-­‐5203,  Institut  de  Génomique  Fonctionnelle,  F-­‐34000  Montpellier,  France;  3INSERM,  U661,  F-­‐34000  Montpellier,  France  and  4Universities  of  Montpellier  1  &  2,  UMR-­‐5203,   F-­‐34000  Montpellier,   France.  5Inserm,   Jean-­‐Pierre  Aubert  Research  Center,  U837,   F-­‐59000  Lille,   France,  and  6Université  droit   et  santé  de  Lille,  Faculté  de  Médecine,  F59000  Lille,  France.  7CNRS,  UMR  5247,  Institut  des  Biomolécules  Max  Mousseron,  Universities  of  Montpellier  1&2.   8   Department   of   Neurosciences,   University   of   California,   San   Diego,   La   Jolla   CA,   USA.   9   Howard   Hughes   Medical   Institute,   University   of  Washington,   Seattle,   Washington   98195,   USA.   10Department   of   Biochemistry,   University   of   Washington,   Seattle,   Washington   98195,   USA.   11  Department   of   Biology,   University   of   Virginia,   Charlottesville,   VA   22904-­‐4328,   USA.   13Diabetes,   Endocrinology,   and   Obesity   Branch,   National  Institute  of  Diabetes  and  Digestive  and  Kidney  Diseases,  National  Institutes  of  Health,  Bethesda,  MD  20892,  USA.  14National  Institute  of  Drug  Abuse,  Baltimore,  MD  21224,  USA.  

Feeding  behavior   is  exquisitely  regulated  by  homeostatic  and  hedonic  neural  substrates  that   integrate  energy  demand  as  well  as  the  reinforcing  and  rewarding  aspects  of  food.  Understanding  the  net  contribution  of  homeostatic  and  reward-­‐driven  feeding  has  become  critical  due  to  the  ubiquitous  source  of  energy-­‐dense  foods  and  the  consequent  obesity  epidemic.  Hypothalamic,  agouti-­‐related  protein-­‐secreting  neurons  (AgRP  neurons)  represent  primary  orexigenic  drives  of  homeostatic  feeding.  Using  a  models  of  neuronal  inhibition  or  ablation  we  demonstrate  that  the  feeding  response  to  a  fast,  ghrelin  or  serotonin  receptor  agonist  relies  on  AgRP  neurons;  however,  when  palatable  food  is  provided,  AgRP  neurons  are  dispensable  for  an  appropriate  feeding  response.   In  addition,   AgRP-­‐ablated   mice   present   exacerbated   stress-­‐induced   anorexia   and   palatable   food   intake—a   hallmark   of   comfort  feeding.   These   results   demonstrate   that   hedonic   circuitry   can   solely   operate   feeding   and   override   the   homeostatic   circuitry  especially  in  conditions  where  positive  response  to  energy  demands  is  chronically  defective.  

P24:  Palatable  food  regulates  the  activity  of  magnocellular  oxytocin  neurons  in  the  supraoptic  nucleus  of  the  hypothalamus.  Hume  Catherine1,  Sabatier  Nancy1,  Menzies  John1  and  Leng  Gareth1.  1.  Centre  for  Integrative  Physiology,  The  University  of  Edinburgh,  Edinburgh,  UK.  

Oxytocin  is  now  considered  to  be  a  key  player  in  the  homeostatic  control  of  food  intake.  It’s  anorexigenic  effects  may  be  mediated  partly  through   peripheral   satiety   signals   regulating   oxytocin-­‐releasing   neurons   in   the   supraoptic   (SON)   nuclei   of   the   hypothalamus.  We   have  developed  an  in  vivo  model  to  study  the  activity  of  oxytocin-­‐releasing  SON  and  PVN  neurons  in  response  to  the  oral  gavage  of  palatable  food  using  c-­‐Fos-­‐like  immunoreactivity  and  in  vivo  electrophysiology.  Fasted  animals  were  anesthetised,  a  feeding  tube  inserted  into  the  stomach  and  5  ml  of  sweetened  condensed  milk  (SCM)  infused  over  40  min.  Animals  were  perfused-­‐fixed  1  hr  post  gavage  and  the  brains  processed  for  c-­‐Fos-­‐  and  oxytocin-­‐like  immunoreactivity.  Sham  gavage  acted  as  a  control.  For  electrophysiology,  the  ventral  surface  of  the  brain   was   exposed   by   transpharyngeal   surgery   and   a   microelectrode   inserted   into   the   SON.   Oxytocin   cells   were   identified   by   their  excitatory  response  to  i.v.  cholecystokinin.  Extracellular  recordings  were  made  continuously  during  gavage.    In  response  to  SCM  gavage,  c-­‐Fos-­‐like  immunoreactivity  was  strongly  increased  in  oxytocin-­‐positive  cells  of  the  SON  (p  <  0.05,  Mann  Whitney  test;  n  =  6).  Nine  identified  oxytocin  neurons  were  recorded  from  the  SON,  seven  showed  a  progressive  increase  in  firing  rate  beginning  within  10  min  after  start  of  gavage   (p   <   0.001,   two-­‐tailed  paired   t-­‐test).   These   findings   indicate   that   the   activity   of   SON  oxytocin  neurons   is   regulated  by   gut-­‐brain  signalling  triggered  by  delivery  of  palatable  food  into  the  stomach,  providing  further  evidence  for  a  role  of  magnocellular  oxytocin  neurons  in  the  homeostatic  control  of  food  intake.  Whether  this  response  is  specific  to  high-­‐sugar  foods  will  be  the  focus  of  future  experiments.  This  research   has   received   Funding   from   the   European   Union's   Seventh   Framework   programme   for   research,   technological   development   and  demonstration  under  grant  agreements  607310  (Nudge-­‐it)  and  245009  (NeuroFAST)  

Page 37: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P25:  A  new  role  for  Monocyte  chemoattractant  protein  1/CCL2  in  promoting  weight  loss  through  inhibition  of  melanin-­‐concentrating  hormone-­‐expressing  neurons  Le  Thuc  Ophélia  (1,2),  Blondeau  Nicolas  (1,2),  Guyon  Alice  (1,2),  Cazareth  Julie  (1,2),  Rostène  William  (3),  Heurteaux  Catherine  (1,2),  Nahon  Jean-­‐Louis  (1,2)  and  Rovère  Carole  (1,2).  (1)  Université  de  Nice  Sophia  Antipolis,  IPMC,  Sophia  Antipolis,  F-­‐06560,  France  ;  (2)  CNRS,  IPMC,  Sophia  Antipolis,  F-­‐06560,  France  ;  (3)  Institut  de  la  Vision,  UMRS  968-­‐Université  Pierre  et  Marie  Curie,  17  rue  Moreau,  75012  Paris,  France.  Injuries  or   infections   induce  endocrine,  autonomic  and  behavioural   changes  known  as   “sickness  behaviour”.  Among   them,   fever  and   weight   loss   appear   driven   by   hypothalamic   cytokines,   although   the   exact   mechanism   remains   elusive.   Our   goal   was   to  investigate  the  neuroimmunological  events  driving  appetite  and  weight  loss  in  systemic  high-­‐grade  inflammation.  To  study  the  role  of  the  hypothalamic  inflammation  in  the  inflammation-­‐driven  weight  loss,  we  performed  intracerebroventricular  (ICV)  injections  of  lipopolysaccharide   (LPS)   in   C57Bl6/J   male   mice.   Blood   and   cerebral   tissues   were   collected:   mRNA   and   protein   levels   of  cytokines/chemokines   and   hypothalamic   peptides   involved   in   the   regulation   of   food   intake   were   measured   by   qPCR   and  ELISA/EIA/FACS  array,   respectively.   The  effect  of   inflammatory   factors  on  neuropeptidergic   systems   involved   in   food   intake  was  investigated   via   perifusion   and   electrophysiology   experiments.   A   central   injection   of   LPS   provokes   a   temporal   sequence   linking  activation   of   pro-­‐inflammatory   cytokines   and   chemokines   (notably   CCL2)   to   down-­‐regulation   of   the   orexigenic   neuropeptide  Melanin-­‐Concentrating  Hormone  (MCH).  CCL2  particular  activation  kinetics  lead  us  to  investigate  whether  CCL2  could  mediate  LPS  effects.   ICV-­‐injected  CCL2   triggers  neuroinflammation,  downregulation  of  MCH  and  weight   loss.   Furthermore,  CCL2   reduces  KCl-­‐induced  MCH  release  from  perifused  hypothalamic  explants  and  hyperpolarizes  MCH  neurons.  These  effects  are  reversed  by  the  CCR2   antagonist   INCB   3344   and   in   CCR2-­‐deficient  mice.   Finally,   the   demonstration   that  MCH  neurons   expressed   CCL2   receptor  confirms  that  CCL2  could  act  directly  on  MCH-­‐neurons  promoting  inflammation  associated  weight  loss.  In  conclusion,  CCL2  appears  as  a  major  intermediate  between  cytokine-­‐producing  cells  and  neurons  in  the  cascade  linking  inflammation  and  eating  disorders  as  LPS-­‐induced  weight  loss  is  mediated  by  CCL2  up-­‐regulation  through  modulation  of  the  MCH  neuronal  network  

P26:  Using  a  single  cell  model  to  explain  oxytocin  neurons  ability  to  reliably  report  absolute  long  term  levels  of  gut  peptides  involved  in  satiety.  Maicas  Royo,  Jorge;  MacGregor,  Duncan;  Leng,  Gareth.  University  of  Edinburgh  

In  analysing  the  firing  patterns  of  oxytocin  cells  in  the  supraoptic  nucleus  (SON)  we  noticed  an  unexpected  feature:  the  mean  firing  rate   at   large  binwidths   is  much   less   variable   than  expected   from   the   variability   at   small   binwidths,   implying   a   structure   in   their  activity   that   “smooths   out”   perturbations   in   activity.  We  have  been  using   computational  modelling   in   an   attempt   to   determine  whether  this  feature  can  be  explained  by  the  after-­‐hyperpolarising  potential  (AHP)  and  if  the  AHP’s  role  in  oxytocin  cells  is  thus  to  help  produce  a  relatively  stable  firing  rate.  However,  a  model  of  oxytocin  neurons  with  an  AHP  and  hyperpolarising  after-­‐potential  (HAP)  was  not  able  to  give  a  good  match  to  both  this  behaviour  and  the  interspike  interval  distribution.  Our  new  model  solves  this  by  adding  equations  for  a  fast  depolarising  after  potential  (DAP)  and  increasing  the  magnitude  of  the  AHP.  To  test  the  role  of  the  AHP   with   this   new   model,   we   matched   recordings   of   five   oxytocin   cells   exposed   to   apamin,   a   blocker   of   the   AHP,   at   two  concentrations.  With  the  new  model  we  are  able  to  obtain  good  matches  for  the  five  cells  under  all  conditions  –  baseline,  apamin  1  and  apamin  2  -­‐  by  varying  only  the  AHP  amplitude  and  the  synaptic   input  rate  for  each  condition.  Apart  from  now  having  a  very  accurate  model  for  oxytocin  cells,  we  have  identified  the  membrane  properties  that  enable  these  cells  to  be  very  sensitive  to  small  changes  in  inputs  while  still  having  a  stable  firing  rate.  This  work  was  supported  by  Nudge-­‐it  (http://www.nudge-­‐it.eu/)  a  research  program  that  aims  to  better  understand  decision-­‐making  in  food  choice  and  to  build  predictive  models  to  contribute  to  improving  public  health  policy.  Nudge-­‐it  is  a  European  Commission-­‐funded  FP7  project.  

P27:  A  potential  role  in  motivated  feeding  behaviour  for  the  rat  supramammillary  nucleus  Menzies  John,  Hume  Catherine,  Plaisier  Fabrice,  Sabatier  Nancy,  Leng  Gareth  Centre  for  Integrative  Physiology,  University  of  Edinburgh,  George  Square,  Edinburgh,  UK  The  supramammillary  nucleus  (SuM)  is  a  posterior  hypothalamic  region  with  a  potential  role  in  goal-­‐oriented  behaviour  (Pan  et  al.,  2004.  The  supramammillary  area.  Prog  Neurobiol.  74:127).  However,  the  SuM  is  understudied  in  the  context  of  food  reward.  We  hypothesised   that  motivated  eating  behaviour  would  be  associated  with  activation  of   the  SuM.  We   fasted  male   rats   to   increase  their  motivation  for  food  and  used  c-­‐Fos  to  map  neuronal  activity  after  refeeding  with  standard  laboratory  diet.  Compared  to  rats  fed  ad  lib,  re-­‐fed  rats  showed  an  increase  in  c-­‐Fos  expression  in  the  SuM.  Next,  to  determine  the  effects  of  motivation  for  palatable  food,  we  conditioned  satiated  rats  to  consume  5  ml  sweetened  condensed  milk  (SCM)  daily.  Compared  to  control  animals,  we  saw  increased   Fos   expression   in   the   SuM   of   rats   receiving   daily   SCM   access.   Levels   of   Fos   were   increased   yet   further   in   rats   that  received  SCM  at  a  different  time  of  day  to  that  used  during  conditioning.  We  also  used   in  vivo  electrophysiology  to  characterise  SuM   neurones   in   anaesthetised   satiated   male   rats.   The   majority   of   SuM   cells   showed   a   short-­‐burst   firing   pattern   while   the  remainder   showed   a   more   regular   pattern.   The   stomach-­‐derived   orexigenic   hormone   ghrelin   is   involved   in   food   motivation  (Menzies  et  al.,  2013.  Ghrelin,  reward  and  motivation.  Endocr  Dev.  25:101).  We  tested  six  SuM  cells  with  10  µg  ghrelin  iv.  Five  cells  responded  with  an   increase   in  the  mean  firing  rate.  These  data   indicate  that  the  SuM  is  activated  by  behaviours  associated  with  food  motivation   and   is   sensitive   to   ghrelin,   a   key   reward-­‐related   signal.   This   research   has   received   Funding   from   the   European  Union's   Seventh   Framework   programme   for   research,   technological   development   and   demonstration   under   grant   agreements  607310  (Nudge-­‐it),  266408  (Full4Health)  and  245009  (NeuroFAST).  

Page 38: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P28:  Glucose  excites  hypothalamic  neurons  through  the  activation  of  Transient  Receptor  Potential  Canonical  (TRPC)  channels  Chrétien,  Chloé;  Fenech,  Claire;  Grall,  Sylvie;  Pénicaud,  Luc;  Leloup  Corinne  &  Fioramonti,  Xavier  Centre  des  Sciences  du  Goût  et  de  l’Alimentation,  UMR  6265  CNRS,  1324  INRA,  Université  de  Bourgogne-­‐Franche  Comté  The  mediobasal  hypothalamus  (MBH)  houses  specific  glucose-­‐sensitive  neurons  able  to  sense  changes  in  glucose  levels  which  are  suggested   to   participate   in   the   control   of   food   intake   and   glucose   homeostasis.   Glucose-­‐excited   (GE)   neurons   increase   their  electrical  activity  in  response  to  increased  glucose  level.  The  molecular  mechanisms  involved  in  GE  neurons  response  to  glucose  are  not  totally  understood.  In  view  of  1/  the  role  of  Mitochondrial  Reactive  Oxygen  Species  (mROS)  in  hypothalamic  glucose  detection  and  2/  the  ROS  sensitivity  of  some  transient  receptor  potential  canonical  (TRPC)  channels,  we  hypothesized  that  GE  neuron  detect  increased  glucose  level  through  a  ROS-­‐TRPC  dependent  signaling  pathway.  To  test  this  hypothesis,  dissociated  rat  MBH  cells  activity  in   response   to   increased   glucose,   was   monitored   using   Fura-­‐2   calcium   imaging   in   presence   of   TRPC   channel   inhibitors   or  antioxidants.   Hypothalamic   detection   of   hyperglycemia   was   also   evaluated   in   vivo   in   models   of   TRPC3   deficient   mice.  Quantification  of  the  area  under  the  curve  of  GE  neurons  responses  to  glucose  shows  that  MBH  GE  neuron  responses  to  2.5-­‐10  mM  increased   glucose   are   inhibited   by   antioxidants   (trolox/gluthation   or   catalase)   or   the   non-­‐selective   TRPC   channel   inhibitor  SKF96365.  Glucose  responses  are  also  partially   inhibited  by   the  TRPC3   inhibitor  Pyr3  or  mimicked  by   the  TRPC3  activator  O-­‐Acyl  Glycerol.  In  vivo,  pharmacological  inhibition  of  TRPC3  channel  specifically  into  rat  MBH  significantly  decreases  insulin  secretion  in  response  to  intra-­‐carotid  glucose  injection.  Hypothalamic  detection  of  increased  blood  glucose  level  is  also  impaired  in  whole-­‐body  TRPC3  deficient  mice  in  which  MBH  GE  neurons  response  to  glucose  is  impaired.  The  selective  inhibition  of  MBH  TRPC3  expression  is   currently   under   investigation.   Altogether,   these   data   highlight   a   new   ROS-­‐TRPC3   channel   dependent   pathway   involved   in   GE  neuron  glucose  response  and  the  central  control  of  glucose  homeostasis.  

P29:  The  hypothalamic  neuropeptide  26RFa  acts  as  an  incretin  to  regulate  glucose  homeostasis  Picot  Marie  1,3,4  ;  Prévost  Gaëtan  1,2,3,4;  Jeandel  Lydie1,3,4;  Arabo  Arnaud  3,4;  Coëffier  Moïse  3,4,5,6;  EL  Ouahli  Mariama  1,3,4,7;  Alexandre  David  1,3,4;  Leprince  Jérôme  1,3,4;  Berrahmoune  Hind  2,3,4;  Déchelotte  Pierre  3,4,5,6;  Chigr  Fatiha  7;  Lefebvre  Hervé  1,2,3,4;  Anouar  Youssef  1,3,4;  Chartrel  Nicolas  1,3,4  1,   INSERM   U982,   Laboratory   of   Neuronal   and   Neuroendocrine   Differentiation   and   Communication,   Institute   for   Research   and   Innovation   in  Biomedecine   (IRIB),   Mont-­‐Saint-­‐   Aignan,   France.   2,   Department   of   Endocrinology,   Diabetes   and  Metabolic   Diseases,   Institute   for   Research   and  Innovation  in  Biomedecine  (IRIB),  University  Hospital  of  Rouen,  Rouen,  France.  3,  Normandy  University,  Caen,  France.  4,  University  of  Rouen,  Rouen,  France.   5,   INSERM   U1073,   Institute   for   Research   and   Innovation   in   Biomedecine   (IRIB),   Rouen,   France.   6,   Department   of   Nutrition,   University  Hospital  of  Rouen,  Rouen,  France.  7,  Biological  Engineering  Laboratory,  Life  Sciences,  Sultan  Moulay  Slimane  University,  Beni-­‐  Mellal,  Morocco.  

26RFa,   a   hypothalamic   neuropeptide   discovered   by   our   team,  was   identified   as   the   endogenous   ligand   of   an   orphan   human   receptor,  GPR103.   It   strongly   stimulates   food   intake.   26RFa   is   up-­‐regulated   in   obese   animal  models   and   its   orexigenic   activity   is   accentuated   in  rodent  fed  a  high  fat  diet,  suggesting  that  this  neuropeptide  might  play  a  role  in  the  development  and  maintenance  of  the  obese  status.  Obesity  and  type   II  diabetes  are   frequently  associated.  Their  significant  and  synchronous  progression   for  30  years  so  that   the  pandemic  "diabesity"  currently  observed  worldwide,  is  a  real  public  health  issue.  Recent  studies  revealed  that  neuropeptides  known  to  play  a  crucial  role  in  the  hypothalamic  control  of  feeding  behavior  are  also  expressed  in  pancreatic   islets,  suggesting  that  hypothalamic  neuropeptides  could  provide  the  link  between  energy  and  glucose  homeostasis,  and  constitute  potential  therapeutic  targets  for  the  treatment  of  obesity  associated  with   type   II   diabetes.   Indeed,  our  human   studies   showed  a  moderate  positive   correlation  between  plasma  26RFa   levels   and  plasma  insulin  in  diabetic  patients.  Plasma  26RFa  concentration  also  increases  in  response  to  an  oral  glucose  tolerance  test.  In  addition,  we  found  that  26RFa  and  its  receptor  GPR103  are  present   in  human  pancreatic  β  cells  as  well  as   in  the  gut.   In  this  context,  we  investigated  whether   26RFa  may  be   involved   in   the   regulation  of   glucose  homeostasis   in  mice.  We   found   that   26RFa   attenuates   the  hyperglycemia  induced  by  a  glucose   load,  potentiates   insulin  sensitivity  and   increases  plasma   insulin  concentrations.  Consistent  with  these  data,  26RFa  stimulates  insulin  production  by  MIN6  insulinoma  cells.  Finally,  we  show,  using  in  vivo  and  in  vitro  approaches,  that  a  glucose  load  induces  a  massive  secretion  of  26RFa  by  the  small  intestine.  Altogether,  the  present  data  indicate  that  26RFa  acts  as  an  incretin  to  regulate  glucose  homeostasis.  

P30:  5-­‐HT2CR  agonist  obesity  medication  increases  the  activity  of  appetitive  brain  stem  neurons  Teodora  Georgescu,  Giuseppe  D’Agostino,  Raffaella  Chianese,  Celine  Cansell,  David  Lyons  and  Lora  K  Heisler  Rowett  Institute  of  Nutrition  and  Health,  University  of  Aberdeen,  Aberdeen,  UK  The  brain  plays  an  essential  role  in  the  regulation  of  food  intake  and  energy  balance.  This  vital  regulatory  process  is  coordinated  via  the   interaction   of   numerous   brain   regions.   Amongst   these   is   the   nucleus   of   the   solitary   tract   (NTS),   a   brain   stem   region   that  integrates  satiety  signals   from  the  gastrointestinal   tract  and  related  digestive  organs.  5-­‐hydroxytryptamine   (5-­‐HT;   serotonin)   is  a  neurotransmitter   involved   in   the   regulation   of   energy   homeostasis  mainly   via   its   action   at   the   5-­‐HT2C   receptor   (5-­‐HT2CR).   This  receptor   is   amenable   to   pharmacological   manipulation   for   obesity   treatment,   as   illustrated   by   the   new   obesity   medication  lorcaserin,  which  is  a  5-­‐HT2CR  agonist.  We  utilised  immunohistochemistry  (IHC)  in  a  reporter  5-­‐HT2CR-­‐yellow  fluorescent  protein  (YFP)  mouse  line  to  map  5-­‐HT2CR  distribution  and  characterise   its  expression  within  the  NTS.  We  report  that  5-­‐HT2CRs  are  most  abundantly  expressed  in  the  medial-­‐caudal  NTS,  a  sub-­‐region  expressing  energy  balance  regulating  pro-­‐opiomelanocortin  (POMC)  neurons.  We  observed  that  5-­‐HT2CRs  are  anatomically  positioned  to  influence  the  activity  of  POMC  cells  as  NTS  POMC  cells  express  5-­‐HT2CR  mRNA.  Furthermore,  we  observed  that  5-­‐HT2CR  agonist  obesity  treatment  lorcaserin  increases  c-­‐fos  immunoreactivity  (a  marker   for   neuronal   activation)   in  NTS  POMC  neurons.   These   findings   reveal   that   5-­‐HT2CR  agonist   obesity   treatment   lorcaserin  influences   the   activity   of   appetitive   NTS   POMC   neurons   and   this   may   be   a  mechanism   through   which   its   therapeutic   effect   is  achieved.  Work  was  supported  by  the  Wellcome  Trust  (WT09801)  and  BBSRC  (BB/K001418/1)  

 

Page 39: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P31:  Hedonic  sensitivity  to  natural  rewards  is  affected  by  prenatal  stress  in  a  sex-­‐dependent  manner  Jenny   Cigalotti1,7,   Marie-­‐Line   Reynaert1,7,   Jérôme   Mairesse1,7,   Luana   Lionetto2,   Maurizio   Simmaco2,   Lucie   Deruyter1,7,   Delphine  Allorge3,  Anna  Moles4,5,  Anna  Pittaluga6,  Stefania  Maccari1,7,  Sara  Morley-­‐Fletcher1,7,  Gilles  Van  Camp1,7*,  Ferdinando  Nicoletti7,8*  1Glycobiology   of   Stress-­‐related   Diseases   team,   UMR   8576  University   of   Lille1/CNRS,   Villeneuve   d’Ascq,   France   2Advanced  Molecular   Diagnostic,  Sant’Andrea  Hospital,  Italy;  3EA4483,  University  Lille  2,  France;  4Institute  of  Neuroscience,  National  Research  Council  (CNR),  Italy;  5Genomnia,  Italy;  6Department   of   Pharmacy,   University   of   Genoa,   Italy   7International   Associated   Laboratory   “Prenatal   Stress   and   Neurodegenerative   Diseases”  France/Italy  (Glycobiology  of  Stress-­‐related  Diseases  team,  UMR  8576  University  of  Lille1/CNRS,  Villeneuve  d’Ascq,  France;  Neuromed,  Pozzilli,  Italy  and  Sapienza  University  of  Rome,  Rome,  Italy)  8IRCCS  Neuromed,  86077-­‐Pozzilli,  Italy  

Palatable   food   is  a   strong  activator  of   the   reward  circuitry  and  may  cause  addictive  behavior   leading   to  eating  disorders.  How  early   life  events  and  sex  interact  in  shaping  hedonic  sensitivity  to  palatable  food  is  largely  unknown.  We  used  prenatally  restraint  stressed  (PRS)  rats,  which  show  abnormalities  in  the  reward  system  and  anxious/depressive-­‐like  behavior.  Some  of  the  hallmarks  of  PRS  rats  are  known  to  be  sex-­‐dependent.We   report   that   PRS   enhanced   and   reduced  milk   chocolate-­‐induced   conditioned   place   preference   in  males   and   females,  respectively.   Male   PRS   rats   also   show   increases   in   plasma   dihydrotestosterone   (DHT)   levels   and   dopamine   (DA)   levels   in   the   nucleus  accumbens   (NAc),   and   reductions   in   5-­‐hydroxytryptamine   (5-­‐HT)   levels   in   the   NAc   and   prefrontal   cortex   (PFC).   In   male   rats,   systemic  treatment  with   the  DHT-­‐lowering  drug   finasteride   reduced  both  milk   chocolate  preference  and  NAc  DA   levels.   Female  PRS   rats   showed  lower  plasma  estradiol  (E2)   levels  and  lower  DA  levels   in  the  NAc,  and  5-­‐HT  levels   in  the  NAc  and  PFC.  E2  supplementation  reversed  the  reduction  in  milk  chocolate  preference  and  PFC  5-­‐HT  levels.  In  the  hypothalamus,  PRS  increased  ERα  and  ERβ  estrogen  receptor  and  CARTP  (cocaine-­‐and-­‐amphetamine  receptor  transcript  peptide)  mRNA  levels  in  males,  and  5-­‐HT2C  receptor  mRNA  levels  in  females.  Changes  were  corrected  by   treatments  with   finasteride  and  E2,   respectively.   These  new   findings   show   that  early   life   stress  has  a  profound   impact  on  hedonic   sensitivity   to   high-­‐palatable   food   via   long-­‐lasting   changes   in   gonadal   hormones.   This   paves   the   way   to   the   development   of  hormonal  strategies  aimed  at  correcting  abnormalities  in  the  response  to  natural  rewards.  

P32:  Circulating  triglycerides  interaction  with  mesolimbic  structures  regulate  the  rewarding  and  motivational  aspects  of  feeding  Chloé  Berland  (1),  Céline  Cansell  (1,2),  Julien  Castel  (1),  Raphaël  G.  P.  Denis  (1)  PhD,  Anne-­‐Sophie  Delbes  (1),  Thomas  S.  Hnasko  (3)  PhD,  Matthias  H.  Tschöp  (4,5)  MD,  PhD,  Serge  Luquet  (1)PhD  (1)Univ  Paris  Diderot,  Sorbonne  Paris  Cité,  Unité  de  Biologie  Fonctionnelle  et  Adaptative,  CNRS  UMR  8251,  F-­‐75205  Paris,  France  (2)Rowett  Institute  of  Nutrition  and  Health,  University  of  Aberdeen,  Aberdeen  AB21  9SB,  United  Kingdom  (3)  Department  of  Neurosciences,  University  of  California,  San  Diego,   La   Jolla   CA,   USA   (4)   Helmholtz   Diabetes   Center,   Helmholtz   Zentrum   München,   German   Research   Center   for   Environmental   Health,  München/Neuherberg,  Germany  (5)  Div.  of  Metabolic  Diseases,  Dept.  of  Medicine,  Technische  Universität  München,  Germany  

Obesity   results   from  a  disruption  of  energy  balance,  where  energy   input   (food   intake)   is   greater   than  energy  expenditure.  Hyperphagia  associated  to  obesity  involves  an  uncontrolled  craving  for  a  calorie  rich  diet  similar  to  the  compulsive  consumption  seen  in  drugs  addiction.  Rewarding  aspect  of   food   intake   is   tightly  associated  with   the   release  of  dopamine   in   the  mesocorticolimbic   (MCL)   system.  Obesity  has  been   associated   with   specific   defect   in   dopamine   signaling   pathway   and   the   ability   to   encode   reward.   Hence,   obesity-­‐associated  hyperphagia  could  be  the  result  of  altered  dopamine  signaling  in  the  MCL  and  the  development  of  uncontrolled  craving  for  food  reward.  Triglycerides  (TG)  increase  after  a  meal  and  are  chronically  elevated  in  obese.  Lowering  plasma  TG  can  resorbe  cognitive  deficits  associated  with   obesity,   suggesting   that   TG   might   act   in   the   brain.   Interestingly,   the   MCL   expresses   several   genes   involved   in   TG   metabolism,  suggesting  that  TG  sensing  in  the  MCL  might  be  involved  in  DA  signaling  regulation.  This  suggests  that  circulating  TG  could  serve  as  a  satiety  signal  by  modulating  reward  processes  in  the  MCL.  Using  a  model  that  allows  brain-­‐specific  delivery  of  TG  through  intra  carotid  catheter,  we   showed   that   circulating   TG   act   upon  MCL   structures   to   control   the  motivational   and   rewarding   aspect   of   food   intake.   In   order   to  precisely  decipher   if   TG-­‐per   se-­‐could  act  as  a  drug  of  abuse  and  be  a  positive   reinforcer,  we  developed  a   conditioned  place  preference  protocole   (CPP)   in  which   animals   associate   one   environment   to   a   TG  delivery.   4   conditioning   sessions   are   sufficient   to   learn   a   positive  conditioning  for  the  compartment  associated  with  brain-­‐specific  delivery  of  TG  (average  time  in  associated  compartment  =  185  seconds  on  a  30  minutes  test,  n=6).  This  result  strongly  suggest  that  nutritional  TG  can  act  on  the  reward  circuitry  as  a  natural  reinforcer.  

P33:  Humanization  of  hepatocyte  results  in  metabolic  and  circadian  change  in  rodent.  Delbès  AS.1,  Hubert  M1,  Denis  RG1,  Berland  C1,  Castel  J1,  Philippe  E1,  Martinez  S1,  Parini  P2,  Vedin  LL2,  Bail  J3,  Wilson  EM3,  Steffensen  KR2  &  Luquet  S1.  1Université  Paris  Diderot,  Sorbonne  Paris  Cité,  Unité  de  Biologie  Fonctionnelle  et  Adaptative,  CNRS  UMR  8251,  F-­‐75205  Paris,  France.  2Division  of  Clinical  Chemistry,  Department  of  Laboratory  Medicine,  Karolinska  Institutet,  Karolinska  University  Hospital  Huddinge,  Stockholm,  Sweden.  3Yecuris  Corporation,  Portland,  Oregon,  United  States  of  America.  

Despite  being  very  useful  to  identify  genes  and  pathways  involved  in  basic  biological  mechanisms,  their  evolutionary  distance  from  humans  and   rodent   has   been   a   major   limitation   in   the   overall   understanding   of   the   disease.   To   overcome   these   limitations,   The   European  consortium   "Health   and   the   Understanding   of   Metabolism,   Aging   and   Nutrition"   (HUMAN)   has   generated   mouse   models   highly  repopulated  with  human  hepatocytes.  Here  we  described  for  the  first  time  the  metabolic  and  behavioural  response  of  animal  repopulated  with  either  murine  (FRG-­‐KO-­‐Mur)  or  human  hepatocyte  (FRG  KO-­‐Hum)  to  a  high  fat  high  sucrose  (HFHS)  challenge.  FRG-­‐Hum  exhibited  a  strong   shift   toward   lipid-­‐substrate   oxidative   preference   as   assessed   by   respiratory   quotient   without   changing   food   intake   and   overall  energy  expenditure.  In  addition,  FRG-­‐Hum  mice  exhibit  increased  insulin  sensitivity  associated  with  low  hepatic  gluconeogenesis  compared  to  FRG  KO-­‐Mur  and  complete  resistance  to  the  deleterious  action  of  HFHS  diet  on  glucose  metabolism  and  insulin  sensitivity.  Analysis  of  circulating   lipoproteins   confirms   a   "humanization"   of   the   lipid   profile   of   FRG-­‐Hum   mouse   with   the   appearance   of   triglyceride-­‐rich  lipoprotein   (LDL   /   IDL)   and  provide   a   potential  mechanism  by  which   enhanced  muscle   lipid   availability   could   redirect   oxidative   change.  Finally,  we  observed  that  circadian  distribution  of  feeding,  metabolic  and  activity  profile  displayed  a  ~2hrs  shift  in  FRG-­‐KO-­‐Hum  compared  to   FRG  KO-­‐Mur   suggesting   an   alteration   in   circadian   rhythm.   Change   in   feeding   pattern  was   also   associated  with   altered   expression  of  hypothalamic   orexigenic   neuropeptide.   Exposure   to   dark   further   confirmed   that   liver-­‐borne   inputs   was   sufficient   to   drive   endogenous  clock.  These  data  reveals  an  important  new  mechanism  by  which  liver-­‐born  inputs-­‐presumably  to  the  brain-­‐could  act  as  a  dominant  signals  in  the  control  of  feeding  behaviour  and  metabolism  

Page 40: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P34:  Chemerin  modulates  the  control  of  feeding  and  hypothalamic  remodelling  in  seasonal  animals  Helfer,  Gisela  1;  Stoney,  Patrick  2;  Ross,  Alexander  W  1;  McCaffery,  Peter  J  2;  Morgan,  Peter  J  1  1  Rowett  Institute  of  Nutrition  and  Health,  University  of  Aberdeen,  Greenburn  Road,  Bucksburn,  Aberdeen  AB21  9SB,  Scotland,  UK;  2  Institute  of  Medical  Sciences,  School  of  Medical  Sciences,  University  of  Aberdeen,  Foresterhill,  Aberdeen  AB25  2ZD,  Scotland,  UK  

Long-­‐term   and   reversible   changes   in   growth   and   feeding   are   characteristic   of   seasonal   animals.   These   changes   are   triggered   by  photoperiod   through  melatonin  and   involve  altered   thyroid  and   retinoic  acid   signalling  within   the  ependymal  cells  and   tanycytes  of   the  hypothalamus.  Here  we  examined  signalling  downstream  of  retinoic  acid,  and  investigated  how  it  links  to  the  control  of  growth  and  feeding  in   photoperiod-­‐sensitive   F344   rats.   Using   microarray   analysis,   we   identified   the   inflammatory   chemokine   chemerin   as   a   physiological  effector   downstream   of   retinoic   acid   regulated   transcription   in   the   hypothalamus.   Chemerin   is   a   recently   discovered   adipokine   that   is  involved  in  energy  metabolism  but  a  central  role  for  chemerin  is  not  known.  We  show  that  Chemerin  and  its  receptors,  Cmklr1  and  Ccrl2,  are   expressed   in   the   ependymal   cells   and   tanycytes   of   the   hypothalamus   and   are   under   strong   photoperiod   regulation.   Acute  intracerebroventricular   injections   of   chemerin   results   in   a   decrease   in   body   weight   and   food   intake,   accompanied   by   a   change   in  hypothalamic   expression   of   neuropeptides   that   play   a   pivotal   role   in   growth   and   feeding,   such   as   growth-­‐hormone-­‐releasing-­‐hormone  (GHRH)  and  pro-­‐opiomelanocortin   (POMC).   In  contrast,   chronic   infusion  of  chemerin   into  F344  rats  causes  a  significant   increase   in   food  intake   after   two   weeks,   together   with   changes   in   POMC   mRNA   expression   thereby   mimicking   long   day   conditions.   Hypothalamic   re-­‐modelling   plays   an   important   role   in   the   photoperiodic   response   and   here   we   show   that   Chemerin   is   involved   in   this   seasonal   brain  plasticity,  monitored  by  hypothalamic  changes  in  the  intermediate  filament  protein  vimentin.  Thus,  we  show  that  inflammatory  signalling  downstream   of   thyroid   hormone   and   retinoic   acid   is   involved   in   seasonal   brain   plasticity   and   reveal   a   novel   pathway   within   the  hypothalamus  that  contributes  to  the  neuroendocrine  control  of  seasonal  physiology.  

P35:  Chronic  over-­‐expression  of  VGF  in  the  hypothalamus  leads  to  decreased  bodyweight  despite  increases  in  food  intake  in  Siberian  hamsters  and  mice  Lewis  J.E,  Brameld  J.M,  Hill  P.J,  Barrett  P,  Ebling  F.J.P,  Jethwa  P.H  Division  of  Nutritional  Sciences,  School  of  Biosciences,  University  of  Nottingham  Sutton  Bonington  Campus,  Loughborough,  LE12  5RD.  The  catabolic  phenotype  of  mice  lacking  the  functional  vgf  (non-­‐acronymic)  gene  has  not  been  supported  by  subsequent  functional  studies  using  VGF-­‐derived  peptides  in  both  mice  and  Siberian  hamsters,  particularly  in  terms  of  energy  balance.  One  theory  is  that  in  the  null  mice  the  gene  is  ablated  in  all  areas  not  just  the  hypothalamus.  To  further  elucidate  the  role  of  VGF  in  the  hypothalamic  regulation  of  energy  balance,  we  designed  a  recombinant  adeno-­‐associated  viral  vector  (rAAV)  utilizing  the  novel  viral  2A  sequence  for  dual  expression  of  VGF  mRNA  and  enhanced  green  fluorescent  protein  (eGFP),  which  would  not  only  overexpress  VGF  mRNA,  but  also  allow  visualisation  of  transfected  neurones.  Bilateral  infusion  of  the  rAAV  vector  containing  VGF,  the  viral  2A  sequence  and  eGFP  into  the  hypothalamus  of  Siberian  hamsters  resulted  in  a  significant  decrease  in  bodyweight  from  5  weeks  post  infusion,  an  effect  which  lasted  for  the  duration  of  the  study  (12  weeks).  By  12  weeks  the  VGF  treated  hamsters  weighed  12%  less  than  eGFP  controls  (p<0.001),  despite  an  8%  increase  in  food  intake  per  gram  of  bodyweight  (p<0.001).  The  comprehensive  laboratory  animal  monitoring  system  (CLAMS)  revealed  a  significant  increase  in  oxygen  consumption  and  carbon  dioxide  at  12  weeks  (p<0.05),  but  no  effect   on   locomotor   activity.   There   was   also   a   significant   increase   in   food   intake   during   the   dark   phase   without   affecting   the  frequency  of  meals.  A   similar  effect  was  observed   in  mice.  Mapping  of  GFP  expression  at   the  end  of   the   two  studies   confirmed  widespread   expression   of   both   the   control   and   VGF-­‐encoding   constructs   within   the   hypothalamus   and   in-­‐situ   hybridisation  confirmed  that  the  localisation  of  VGF  mRNA  expression  within  the  brain  was  similar  to  the  eGFP  expression  pattern.  In  conclusion  the  rAAV  with  viral  2A  sequence  allowed  long-­‐term  dual  expression  of  both  VGF  and  GFP  in  mice  and  Siberian  hamsters,  and  the  over-­‐expression  of  VGF  results  in  a  catabolic  phenotype.  

P36:  Hypothalamic  lipoprotein  lipase  plays  a  role  in  the  adaptation  to  cold  exposure.  Laperrousaz   Elise   (1),   Denis   Raphaël   G.   (1),   Luquet   Serge   (1),   Contreras   Cristina   (2),   Lopez  Miguel   (2),   Magnan   Christophe   (1),  Cruciani-­‐Guglielmacci  Céline  (1)  (1)  University  Paris  Diderot  ,  (2)  University  of  Santiago  de  Compostela-­‐Instituto  de  Investigación  Sanitari  The  effect  of  the  utilization  of  the  adipose  tissue  during  a  cold  exposure  is  well  characterized  in  the  literature.  However,  there  is  few  data   concerning   brain   lipid  metabolism   in   this   adaptation   to   cold   exposure.  We  exposed  C57Bl6/J  mice   at   4°C   for   4   hours,  compared  to  a  group  at  room  temperature,  and  analysed  the  gene  expression  of  enzymes  involved  in  lipids  metabolism  by  PCR,  in  different  areas  of  the  brain.   In  a  second  set  of  experiments,  we  focused  on  lipoprotein   lipase  (LPL)  role   in  response  to  cold.    We  found   that   cold   exposure   modulates   the   expression   of   some   lipases   in   hypothalamus   (HT),   hippocampus   (HP)   and   striatum,  especially   the   LPL,   the   key   enzyme   of   the   hydrolysis   of   the   triglycerides   from   circulating   lipoproteins.   This   enzyme   is   mainly  expressed   in   HP   and   HT   and  we  measured   that   its   expression   and   enzymatic   activity   are   strongly   decreased   in   HT   during   cold  exposure.    Then,  we  tested  the  response  to  cold  exposure  on  mice  deleted  for  the  LPL   in  the  ventro-­‐medial  HT  (VMH).  We  used  mice  floxed  for  the  LPL  gene  and  C57Bl6/J  as  control.  The  2  groups  were  injected  bilaterally  in  the  VMH  with  an  adeno-­‐associated-­‐virus   expressing   the   Cre   recombinase.  We   also   implanted   an   intraperitoneal   probe   to  measure   the   body   temperature   every   15  minutes   by   telemetry.   10   days   post-­‐injection,   during   cold   exposure,   LPL   VMH   -­‐/-­‐   showed   a   decrease   of   locomotor   activity   and  energy  expenditure  without   any   change   in   respiratory   exchange   ratio,   compared   to  WT.   Interestingly,  WT  mice  decreased   their  body  temperature  whereas  LPL  VMH  -­‐/-­‐  succeeded  to  maintain  theirs.  Thermogenic  images  showed  that  the  brown  adipose  tissue  temperature  was  also  maintained  in  LPL  VMH-­‐/-­‐  whereas  is  decreased  in  WT.  We  concluded  that  the  hypothalamic  LPL  plays  a  role  in  the  response  to  cold  exposure,  by  a  modulation  of  energy  expenditure  and  thermogenesis.  

 

Page 41: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P37:  The  role  of  prenatal  leptin  in  the  development  of  parasympathetic  innervation  of  pancreatic  b-­‐cells  Croizier  Sophie,  Bouret  G  Sebastien  The  Saban  Research  Institute,  Neuroscience  Program,  Children’s  Hospital  Los  Angeles,  USC,  Los  Angeles  CA  90027,  USA  -­‐  Inserm,  Jean-­‐Pierre  Aubert  Research  Center,  U837,  University  of  Lille  2,  Lille  59045,  France  Epidemiological  and  experimental  data  have  suggested  that  changes  in  the  hormonal  environment  during  perinatal  life  can  play  a  significant  role  in  the  development  of  obesity  and  related  diseases.  Here,  we  investigated  whether  the  adipocyte-­‐derived  hormone  leptin  acts,  during  embryonic  life,  in  the  hindbrain  to  influence  the  development  of  the  parasympathetic  fibers  to  pancreatic  b-­‐cells.  Parasympathetic  axons  containing  the  vesicular  acetylcholine  transporter  (VAchT)  begin  to  innervate  insulin-­‐producing  cells  in  the  pancreas   at   embryonic   day   (E)   E12.   The   density   of   cholinergic   fibers   innervating   insulin-­‐containing   cells   increases   markedly  between  E12  and  E18.  High  levels  of  leptin  receptor  mRNA  are  found  in  the  hindbrain  as  early  as  at  E12,  suggesting  that  prenatal  leptin  might  play  a  role  in  hindbrain  development.  Consistent  with  this  idea,  a  single  intracerebroventricular  injection  of  leptin  in  leptin-­‐deficient  embryos  at  E12  causes  a   reduction   in   the  parasympathetic   innervation  of  pancreatic  b-­‐cells  and   induces   lifelong  glucose   intolerance.   Furthermore,  direct  exposure  of  dorsal   vagal   complex  explants   to   leptin  blunts  VAchT+  axon  growth.  These  data   indicate   that   a   single   injection   of   leptin   during   an   important   period   of   fetal   hindbrain   development   causes   long-­‐term  alterations  in  glucose  homeostasis  that  likely  result  from  disruption  parasympathetic  control  of  b-­‐cell  function.  

P38:  Circadian  and  metabolic  disruption  caused  by  prenatal  inflammation  may  be  partly  restored  by  scheduled  feeding.  Velarde,  Elena;  Biscaia,  Jose  Miguel,  Llorente  de  Miguel,  Ricardo;  Marco,  Eva  European  University  of  Madrid.  School  of  Biomedical  and  Health  Sciences.  Department  of  Basic  Biomedical  Sciences;  Complutense  University  of  Madrid.  School  of  Biology.  Department  of  Animal  Physiology  II  

Prenatal   inflammation   is   commonly   used   for   the   investigation   of   developmental   psychiatric   disorders   such   as   schizophrenia   or  autism.   One   of   the   most   common   approaches,   LPS   injection   to   the   dams,   might   induce   disruptions   on   the   offspring   circadian  system.   Therefore,   feeding   time   arises   as   a   potential   strategy   to   counteract   some   of   the   long-­‐term   effects   of   prenatal   LPS  administration.  We  assessed  metabolic  and  circadian  parameters  in  the  female  offspring  of  Sprague  Dawley  rats  administered  with  LPS  (1mg/kg,  sc)  or  saline  (Sal)  during  the  second  half  of  pregnancy  (gd  11  to  21).  From  weaning  to  sacrifice  (adulthood),  females  were   fed  ad   libitum   (AL)  or   a   scheduled   feeding   (SF)   regime   (restricted   temporal   access   for  5  hours   after   lights  off).  AL  animals  consumed  more  food  than  SF  during  the  first  3  weeks;  thereafter  no  differences  were  found  between  AL  and  SF  animals.  Only  on  the  last  weeks  (8  and  9)  did  LPS-­‐AL  animals  decrease  their  food  intake.  Additionally,  LPS-­‐AL  weighted  less  than  Sal-­‐AL  but  LPS-­‐AL  exhibited  the  higher  percentage  of  subcutaneous  adipose  tissue.  Notably,  SF  decreased  body  weight,  although  among  SF  animals  no  differences  were  found  between  treatments  (Sal  vs.  LPS).  Besides,  expression  of  the  clock  genes  Per1  and  Per2  was  assessed  in  the  hypothalamus.  Samples   from  each  group  were  extracted  after  decapitation  of   the  animals  every  six  hours   for  24  hours,  and  then  analysed  by  RT-­‐PCR.  Following  beheading,  blood  samples  were  extracted  from  the  trunk  to  determine  corticosterone   levels  and   rhythmicity.   Rhythmic  parameters   form  both   gene  expression  and   serum  corticosterone  also  points   to   significant   effects  of  scheduled  feeding  on  the  LPS  offspring,  being  similar  to  non-­‐treated  groups.  Present  results  suggest  that  SF  may  counteract  some  of  the  disruptions  described  following  prenatal  LPS  administration,  and  therefore  could  be  a  potential  strategy  to  ameliorate  some  symptoms  related  to  neuropsychiatric  disorder  associated  with  maternal  immune  activation.  

P39:  Identification  of  a  selective  glucocorticoid  receptor  modulator  that  prevents  both  diet-­‐induced  obesity  and  inflammation  J.K.  van  den  Heuvel1,2,  M.R.  Boon1,2,  I.  van  Hengel1,2,  E.  Peschier-­‐van  der  Put1,2,  L.  van  Beek2,3,  V.  van  Harmelen2,3,  K.  Willems  van  Dijk2,3,  H.  Hunt4,  J.K.  Belanoff4,  P.C.N.  Rensen1,2,  O.C.  Meijer1,2  1Dept  of  Medicine,  Div.  of  Endocrinology,  Leiden  Univ.  Medical  Center,  Leiden,  The  Netherlands  2Einthoven  Laboratory   for  Experimental  Vascular  Medicine,  Leiden,  the  Netherlands  3Dept  of  Human  Genetics,  Leiden  Univ.  Medical  Center,  Leiden,  the  Netherlands  4Corcept  Therapeutics,  CA,  USA  

High-­‐fat   diet   consumption   results   in   obesity   and   chronic   low-­‐grade   inflammation   in   adipose   tissue.   Whereas   glucocorticoid  receptor   (GR)   antagonism   reduces  diet-­‐induced  obesity,  GR  agonism   reduces   inflammation,   the   combination  of  which  would  be  desired  in  a  strategy  to  combat  the  metabolic  syndrome.  The  aim  of  this  study  was  to  assess  the  beneficial  effects  of  the  selective  GR  modulator  C108297  on  both  diet-­‐induced  weight  gain  and  inflammation  in  mice,  and  to  elucidate  underlying  mechanisms.  10-­‐week   old   C57Bl/6J  mice  were   fed   a   high-­‐fat   diet   (60%   energy   from   fat)   for   4  weeks  while   being   treated  with   the   selective   GR  modulator  C108297,  a  full  GR  antagonist  (RU486/mifepristone)  or  vehicle.  C108297  and,  to  a  lesser  extent,  mifepristone  reduced  body  weight  gain  and  fat  mass.  C108297  decreased  caloric  intake  and  increased  lipolysis  in  WAT  and  free  fatty  acid  levels  in  plasma,  resulting   in   decreased   fat   cell   size   and   increased   fatty   acid   oxidation.   Furthermore,   C108297   reduced   pro-­‐inflammatory   M1  macrophage  infiltration  in  WAT  and  reduced  inflammation  in  the  hypothalamus  as  measured  by  immunostaining  for  the  microglia  marker  CD45.  On  the  other  hand,  mifepristone  increased  energy  expenditure  as  measured  by  fully  automatic  metabolic  cages  and  enhanced  expression  of  thermogenic  markers  in  energy-­‐combusting  brown  adipose  tissue  (BAT),  but  did  not  affect  inflammation.  In  conclusion,   C108297   attenuates   obesity   by   reducing   caloric   intake   and   increasing   lipolysis   and   fat   oxidation,   and   in   addition  attenuates   inflammation.  These  data   suggest   that   selective  GR  modulation   is   a   viable   strategy   for   the   reduction  of  diet-­‐induced  obesity  and  inflammation  

   

Page 42: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P40:  Mice  lacking  TLR4  or  CD14  are  not  protected  against  high-­‐fat  diet  induced  obesity  Dalby,  Matthew;  Ross,  Alexander;  Morgan,  Peter.  The  Rowett  Institute  of  Nutrition  and  Health  

The  gut  microbiota  has  been  proposed  to  increase  body  weight  and  body  fat  in  high-­‐fat  diet  fed  mice  through  increased  systemic  exposure   to   low   levels   of   gut   derived   bacterial   lipopolysaccharide   (LPS),   defined   as  metabolic   endotoxemia.   Chronic   low-­‐grade  inflammation  resulting  from  LPS  activation  of  Toll  like  receptor-­‐4  (TLR4)  is  implicated  as  a  mechanism  linking  the  gut  microbiota  to  body  weight.  The  hypothalamus  is  a  region  of  the  brain  where  inflammation  has  been  implicated  in  disrupting  energy  homeostasis.  Hypothalamic  inflammation  due  to  systemic  LPS  potentially  links  the  microbiota  to  increased  body  weight.  This  study  investigated  whether  mice  lacking  TLR4,  or  its  co-­‐receptor  CD14,  are  protected  from  diet  induced  obesity  and  hypothalamic  inflammation.  Mice  were  fed  high-­‐fat  or  low-­‐fat  diets  and  body  weight,  body  composition,  and  food  intake  measured.  LPS  exposure  was  assessed  via  serum  lipopolysaccharide  binding  protein  (LBP).  Denaturing  gradient  gel  electrophoresis  (DGGE)  was  used  to  assess  differences  in  caecal  microbiota.  Hypothalamic  gene  expression  was  investigated  using  microarray.  Mice  lacking  TLR4  or  CD14  were  not  protected  against  obesity.  There  was  no  difference  in  high-­‐fat  diet  induced  increases  in  body  weight  and  body  fat  in  TLR4  or  CD14  null  mice  compared  to  wild-­‐type  mice.  Food  intake  was  not  different  in  high-­‐fat  diet  fed  TLR4  or  CD14  null  mice  compared  to  wild-­‐type  mice.  This  is  despite  increased  serum  LBP  in  high-­‐fat  diet  mice  indicating  increased  systemic  exposure  to  LPS.  Genotype  influenced  caecal  microbiota  composition  but  this  did  not  influence  obesity  susceptibility.  Hypothalamus  gene  expression  did  not  indicate  increased  inflammatory   gene   expression   in   either   wild-­‐type   mice,   or   mice   lacking   TLR4,   or   CD14.   Mice   lacking   TLR4   signalling   are   not  protected   against   high-­‐fat   diet   induced   obesity.   This   study   does   not   support   the   role   for   gut-­‐derived   LPS   or   TLR4   mediated  hypothalamic  inflammation  as  causes  of  increased  body  weight  or  body  fat.    

P41:  The  effect  of  RFamides  on  food  intake  in  two  different  photoperiodic  conditions  in  male  and  female  Siberian  hamster.  Cazarez-­‐Márquez,  Fernando;  Laran-­‐Chich,  Marie-­‐Pierre;  Kalsbeek,  Andries;  Simonneaux,  Valérie  Neurobiology  of  Rhythms  Department,  Institute  of  Cellular  and  Integrative  Neurosciences,  Strasbourg,  France.  Hypothalamic  Integration  Mechanisms,  Netherlands  Institute  for  Neurosciences,  Amsterdam,  The  Netherlands  Kisspeptin  and  RFRP-­‐3  are   two  peptides   that   control   the  activity  of  GnRH  neurons  and  modify   reproductive  activity.   It  has  been  demonstrated  that  over  the  different  seasons  photoperiod  synchronizes  reproductive  and  metabolic  activities  via  melatonin.  The  photoperiodic  regulation  of  reproduction   involves  an  action  of  kisspeptin  and  RFRP  on  GnRH  neurons.   Interestingly,  some  of  the  areas   in   the  mediobasal  hypothalams  that  show   increased  c-­‐FOS  expression  after  acute  central   injections  of  kisspeptin  or  RFRP3  (PVN,  DMH,  and  ARC)  are  also  involved  in  bodyweight  regulation  and  feeding  behavior.  On  the  other  hand  metabolic  factors,  like  leptin  and  glucose,  are  also  strongly  involved  in  the  regulation  of  reproductive  activity  over  the  year  and  recent  data  suggest  that  both   RF-­‐amide   peptides  may   be   also   be   involved   in   the   regulation   of   these  metabolic   processes.   The   aim   of   this   project   is   to  delineate  how  RFRP  is  involved  in  the  metabolic  seasonal  programming  of  male  and  female  siberian  hamsters.  We  analyzed  if  RFRP-­‐3  has  a  role  in  the  food  intake  behavior  in  the  two  photoperiods  that  could  reflect  the  changes  in  the  body  weight  associated  to  the  seasonal   changes,   and   we   will   delineate   the   central   mechanisms   involved   in   the   observed   effect   of   RFRP.   Preliminary   results  indicate  photoperiodic  and  sex-­‐dependent  effect  of  central  administration  of  RFRP  on  food  intake.  

P42:  The  RFRP  system  in  the  female  Syrian  hamsters:  photoperiodic  and  oestral  regulation  of  the  reproductive  axis  Henningsen,  Jo  B;  Poirel,  Vincent-­‐Joseph;  Mikkelsen,  Jens  D;  Gauer,  François;  Simonneaux,  Valérie  1.  Neurobiology  of  Rhythms,  Institute  of  Cellular  and  Integrative  Neuroscience,  CNRS/University  of  Strasbourg,  Strasbourg,France.  2.  Neurobiology  Research  Unit,  Rigshospitalet,  Copenhagen  University  Hospital,  Denmark.  

Hypothalamic   RF-­‐(Arg-­‐Phe)   related   peptides   (RFRP-­‐1   and   -­‐3)   are   considered   to   play   a   role   in   the   (seasonal)   regulation   of  reproduction  and  their  expression  is  down-­‐regulated  in  short  photoperiod.  RFRP-­‐3  stimulates  reproductive  activity  in  male  Syrian  hamsters;  however   the  effects  of   the  peptides  depend  on  species  and  gender.   In   females,   the  control  of   reproductive  activity   is  more  complex  and  depends  on  proper  integration  of  environmental  as  well  as  cyclic  changes.  This  study  aimed  at  investigating  the  RFRP  system  in  female  Syrian  hamsters  by  determining  the  photoperiodic  and  oestral  changes   in  the  RFRP  system  as  well  as  the  effects  of   intracerebroventricular  administration  of  RFRP-­‐3.  The  expression  of  RFRP  neurons  as  well  as  GPR147  mRNA  is  strongly  down-­‐regulated  in  short  photoperiod  and  interestingly,  the  number  of  RFRP-­‐positive  fibers  in  the  MPN/AVPV  is  higher  only  in  short  photoperiod   adjusted   females.   Chronic   intracerebroventricular   administration   of   RFRP-­‐3   decreases   the   gonadal   size   of   sexually  active   female  hamsters,  whereas   in  SP-­‐adapted   females,  RFRP-­‐3  potently   stimulates  gonadal   size.   In  sexually  active   females,   the  number  of  c-­‐Fos  activated  RFRP  neurons  are  reduced  at  the  time  of  the  LH-­‐surge,  where  the  activity  of  kisspeptin  neurons  in  the  MPN/AVPV   is   at   the   highest.   In   the   female   Syrian   hamster,   the   RFRP   system   is   strongly   regulated   by   photoperiod   and   central  administration  of  RFRP-­‐3  has  opposite  effects  depending  on  season.  Interestingly,  RFRP-­‐3  reactivates  the  reproductive  axis  despite  photoinhibitory   conditions.  All   together  our   results   suggest   that  RFRP  neurons  are   important   for   the   seasonal   control  of   female  reproductive  activity  and  might  play  a  key  role  in  the  integration  of  the  photoperiodic  input  onto  the  reproductive  axis.  Moreover,  our   results   suggest   that   the   RFRP   system   is   important   for   proper   female   cycling   and   generation   of   the   pre-­‐ovulatory   LH   surge,  possibly  through  a  direct  action  onto  the  kisspeptin  neurons  located  in  the  MPN/AVPV.  

     

Page 43: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P43:  The  effect  of  RFRP-­‐3  on  the  mouse  reproductive  axis  Ancel  Caroline,  Kim  Joon,  Inglis  Megan,  Anderson  Greg  Centre  for  Neuroendocrinology  and  Department  of  Anatomy,  Otago  University  School  of  Medical  Sciences,  Dunedin,  New  Zealand  In  2000,  gonadotrophin-­‐inhibitory  hormone  (GnIH)  was  discovered  in  birds  and  shown  to  inhibit  gonadotrophin  secretion  (Tsutsui  et   al.   2000).   The  mammalian   ortholog  was   concurrently   discovered   in   humans   and   rats   and   termed   RFamide-­‐related   peptide-­‐3  (RFRP-­‐3)   (Hinuma   et   al.   2000).   Since   then,   a   number   of   studies   have   aimed   at   determining   the   involvement   of   RFRP-­‐3   in   the  regulation  of  reproduction  in  various  mammalian  species,   including  rats  (Johnson  et  al.  2007,  Murakami  et  al.  2008,  Pineda  et  al.  2010),  hamsters  (Kriegsfeld  et  al.  2006,  Ancel  et  al.  2012,  Ubuka  et  al.  2012),  sheep  (Clarke  et  al.  2008,  Sari  et  al.  2009,  Caraty  et  al.  2012),  and  cattle  (Kadokawa  et  al.  2009).  This  plethora  of  results  has  underlined  the  species-­‐  and  sex-­‐specific  effects  of  RFRP-­‐3  on  the   reproductive   axis,   through   the   analysis   of   LH   section   in  most   cases.   However,   a   comprehensive   investigation   of   the   role   of  RFRP-­‐3   in   the   regulation   of   the  mouse   gonadotrophic   axis   remains   to   be   carried   out,   in   part   because   of   the   difficulty   in   taking  repeated   LH  measurements   from   this   species.   In   this   study,  we  performed  an  extensive   analysis   of   the  effects  of  RFRP-­‐3  on   LH  secretion  in  male  C57BL/6  mice.  Using  a  repeated  tail  tip  blood  sampling  method  combined  with  a  highly  sensitive  ELISA,  RFRP-­‐3  dose-­‐dependently   stimulated   LH   secretion   in   mice   when   injected   centrally   (0.5-­‐5   nmol/mouse),   but   had   no   effect   when  administered  peripherally  (5-­‐50  nmol).  In  cultured  HEK293  cells  transfected  with  the  human  KISS1R,  RFRP-­‐3  showed  some  affinity  to  KISS1R  and  was  able  to  potentiate  the  effects  of  kisspeptin,  but  did  not  show  agonism  alone.  This  potentiating  effect  may  occur  through  allosteric  modulation,  although  further  studies  are  required.  To  conclude,  our  results  show  that  RFRP-­‐3  can  stimulate  the  reproductive  axis  in  male  mice,  as  has  been  shown  in  hasmsters  (Ancel  et  al.  2012,  Ubuka  et  al.  2012).  Thus,  the  idea  that  RFRP-­‐3  and  kisspeptin  exert  opposing  effects  is  likely  to  be  overly  simplistic.  

P44:  Winter  Is  Coming:  Linking  Seasonal  Cues  to  Reproduction  in  the  Mouse  Beymer,  Matthew;  Sáenz  de  Miera,  Cristina;  Simonneaux,  Valerie  University  of  Strasbourg,  Strasbourg,  France  The   Arginine-­‐Phenylalanine-­‐amide   (RF-­‐amide)   family   is   a   class   of   neuropeptides   which   is   implicated   in   many   physiological  processes,   including  stress,  metabolism,  and  reproduction.  Two  members  of  this  family,   in  particular,  regulate  the  hypothalamic-­‐pituitary-­‐gonadal   (HPG)  axis.  Kisspeptin   is  expressed  by  neurons   in   the  arcuate  and  medial  preoptic  nuclei.  Release  of  kisspeptin  can  strongly  activate  the  HPG  axis.  RF-­‐amide  related  peptides  (RFRP)  are  expressed   in  neurons   located   in  and  around  the  dorso-­‐  and   ventro-­‐medial   hypothalamic   nuclei.   The   roles   of   RFRP   seem   to   be   species-­‐,   sex-­‐,   and   photoperiod-­‐dependent.   The   central  pathways   by   which   seasonal   cues   regulate   reproduction   are   still   unknown;   however   recent   findings   suggest   that   RFRP   and  kisspeptin  may  be  involved.  In  order  to  elucidate  the  pathways  involved  in  the  transduction  of  seasonal  cues  to  the  HPG  axis  we  are  using   three   strains   of  mice  with   different  melatonin   profiles:   C57BL/6,  melatonin-­‐deficient,   CBA   and  MsM/MS,   both  melatonin-­‐proficient.  We  placed  males  of  all  strains  in  either  short  day  (SP)  or  long  day  (LP)  conditions  to  determine  the  effects  of  melatonin  on  RF-­‐amides  in  mice.  Both  CBA  and  C57  males  showed  no  changes  in  body,  paired  testes,  or  seminal  vesicle  weight  in  response  to  different  photoperiodic  conditions.  Interestingly,  SP  CBA  show  a  decrease  in  Rfrp  expression  as  compared  to  LP  CBA,  whereas  there  was   no   change   in   Rfrp   expression   in   C57   in   either   photoperiod.   This   is   in   concordance   to   what   is   found   in   classical   seasonal  breeders  adapted  to  SP  where  hypothalamic  Rfrp  expression  is  reduced.  It  is  clear  from  these  findings  that  the  RFRP  system  in  mice  is  still  sensitive  to  seasonal  cues  in  the  form  of  melatonin.  Furthermore,  since  we  do  not  see  a  response  of  the  testes  in  CBA  due  to  changing  photoperiods,  it  is  tempting  to  conclude  that  another  central  factor,  a  likely  candidate  being  kisspeptin,  in  non-­‐seasonal  breeders  is  blocking  the  full  transduction  of  seasonal  cues  to  the  HPG  axis. P45:  Siberian  hamster  genome  reveals  novel  mechanisms  for  neuroendocrine  plasticity.  Riyue  Bao1,  David  G.  Hazlerigg2,  Perry  Barrett3,  Brian  J.  Prendergast4  &  Tyler  J.  Stevenson5  1Center  for  Research  Informatics,  University  of  Chicago,  2Dept.  Arctic  and  Marine  Biology,  University  of  Tromso,  3  Rowett  Institute,  University  of  Aberdeen,  4Institute  for  Mind  and  Biology,  University  of  Chicago,  5Institute  for  Biological  and  Environmental  Sciences,  University  of  Aberdeen.  Siberian   hamsters   have   a   strong   tradition   for   studies   that   examine   seasonal   neuroendocrine   plasticity   due   to   the   robust   and  naturally-­‐occurring   variation   at  multiple   levels   of   analysis—from   genomic   to   behavioural.  Molecular   and   cellular   advances   have  been   stymied  due   to   a   lack  of   an   available   genome.  Using  next   generation   sequencing,  we  have   sequenced   the   genome  of   the  Siberian  hamster  (Phodopus  sungorus).  Genome  comparisons  with  other  high  and  low  amplitude  seasonal  species  reveal  genome  regions   that  may   have   been   selected   for   robust   circannual   rhythms.   Subsequent   RNA   sequencing   of   hypothalamic   tissue   from  summer   (LD)   and  winter   (SD)   phenotypes   revealed   extensive   plasticity   in   both   coding   and   non-­‐coding   transcripts.   Remarkably,  almost  80%  of  all  transcripts  that  exhibited  a  significant  change  in  expression  were  non-­‐coding.  mRNAs  for  several  known  ‘seasonal  genes’  exhibited  the  anticipated  photoperiodic  changes  in  expression  (e.g.,  increased  dio3  mRNA  in  SD).  Follow-­‐up  qPCR  analyses  were  used   to   confirm  photoperiod-­‐  and  melatonin-­‐dependent   regulation  of   the  expression  of   select  non-­‐coding  RNAs.  The  data  suggest  that  non-­‐coding  RNAs  may  play  a  role  in  molecular  mechanisms  of  neuroendocrine  plasticity  and  afford  novel  insights  into  the  complex  nature  of  plasticity  in  non-­‐coding  RNA  signaling  in  adult  mammalian  neuroendocrine  systems.    

 

 

Page 44: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P46:  Ovine  melatonin  receptors  (MT1  and  MT2):  Functional  activity  and  potential  role  in  the  pineal  gland  Lépinay  Julie,  Gennetay  Dominique,  Delagrange  Philippe*,  Taragnat  Catherine  and  Bozon  Véronique  UMR  7247  "  Physiologie  de  la  Reproduction  et  des  Comportements"  (INRA/CNRS/Université  François-­‐Rabelais  Tours/IFCE);  *  Institut  de  Recherches  Servier,  78290  Croissy-­‐sur-­‐Seine  Melatonin  (MLT)   is  synthetized   in  pineal  gland  and  binds  on  MT1  and  MT2  receptors.  The  aim  of  our  work   is  to  study  functional  properties  of  MT  receptors  and  their  role  in  ovine  pineal  gland.  Transduction  pathways  induced  by  MLT  were  studied  on  primary  culture  of  ovine  pinealocytes.  The  role  of  MT  receptors  on  MLT  synthesis  was  analyzed  with  Luzindole  (MT   inverse  agonist).  The  level   of  MT   receptors   expressed   and  binding   affinity  were   studied  with   2-­‐[125I]–iodoMLT   (MT  agonist)   and   [125I]-­‐S70254   (MT2  antagonist)   according   to   the   seasonality   on  pineal   gland.   The   internalization  mechanism  was   analyzed  on  pineal   gland  and  pars  tuberalis  which  doesn’t   synthetize  MLT.   In  pinealocytes,   10-­‐7M  MLT   increases   the  amount  of  pErk1/2  which   is   inhibited  by  PTX  (pertussis   toxin).   This   result   suggests   an   activation   of   this   MAP   kinase   pathway   by   MLT   through   Gi-­‐protein.   During   the   estrus  (September   to   February)   and   anoestrus   (May   to   August),   the   number   of  MT   receptors   expressed   (20±6.9   fmol/mg   in   estrus   vs  23.7±4fmol/mg   in   anoestrus)   and   the   binding   affinity   (2.24±1.11nM   vs   1.7±0.4nM)   don’t   significantly   vary.   However,   in   the  transition   period   (March-­‐April),   the   number   of   MT   receptors   decreases   (6.25±0,6fmol/mg)   and   the   binding   affinity   is   stronger  (0.67±0,11nM).  With  the  two  radioligand  assays,  the  proportion  of  MT1  and  MT2  receptors  could  be  estimated  during  the  estrus,  70%  MT1  and  30%  MT2  receptors.  MT  receptors  are  able  to  be  internalized  rapidly  (5min).  The  maximum  level  is  reached  after  10-­‐15min  of  incubation.  In  transition  period,  internalization  rate  is  similar  between  pineal  gland  and  pars  tuberalis  (30-­‐35%).  This  rate  decreases   in  anoestrus  (7%)  for  pinealocytes  and   increases   in  estrus  for  pars  tuberalis   (70-­‐80%).  Finally,  Luzindole   increases  MLT  secretion  suggesting  an  inhibitory  role  of  MT  receptors  on  MLT  synthesis  in  pinealocytes.  In  conclusion,  MT  receptors  are  functional  in  pineal  gland,  able  to  transduce  an  intracellular  signal  and  regulate  negatively  MLT  synthesis.    

 P47:  Mu  and  delta  opioid  receptor  autoradiographic  binding  in  brains  of  a  mouse  model  of  autism  Pantouli,  Fani;  Hourani,  Susanna;  Bailey,  Alexis  University  of  Tours  

Autism   Spectrum   Disorders   are   a   family   of   neurodevelopmental   disorders   that   affect   1%   of   the   general   population.   They   are  characterised   by   deficits   in   social   communication   and   interaction,   repetitive   and   restricted   behaviour   and   difficulty   in   inferring  others’  emotions  and  beliefs.  There  is  no  established  pharmacological  treatment  for  the  core  symptoms  and  the  aetiology  of  the  disorders   remains   largely   unknown.   Recent   evidence   has   demonstrated   an   important   involvement   of   the   endogenous   opioid  system  in  the  neurobiology  of  autistic  like  traits.  In  order  to  further  investigate  the  involvement  of  the  endogenous  opioid  system  in  autistic   like  disorder,  we  carried  out  Mu  and  delta  opioid  receptor  autoradiographic  binding  in  brain  sections  of  a  genetic  mouse  model  of  autistic-­‐like  behaviour,  the  Fmr1  KO  mice.  Mice  lacking  the  so  called  Fmr1  gene  (FMR1  protein  expressed  ubiquitously  in  the  brain  and  appears  to  be  involved  in  the  development  of  synapses  and  the  regulation  of  synaptic  plasticity)  is  considered  a  good  animal  model  for  the  human  disorder  Fragile  X  syndrome,  a  neurodevelopmental  syndrome  that   includes  autistic  symptoms.  Full  autoradiographic  mapping  of  Mu  and  delta  opioid  receptors  in  the  brains  of  WT  and  Fmr1  KO  mice  showed  no  alterations  of  either  of  the  receptors   in  any  of  the  regions  analysed.  These  findings  show  a   lack  of  endogenous  opioid  dysregulation   in  this  particular  model  of  fragile  X  at  least  at  the  receptor  level.  

 

P48:  Anti-­‐opioid  effects  of  RFamide  related  peptide-­‐3  and  reversal  of  morphine  tolerance  using  a  novel  antagonist.  Kim  Joon,  Brown  Colin,  Anderson  Greg  

Centre  for  neuroendocrinology,  University  of  Otago  Agonists   of   the  neuropeptide   FF   receptors   (NPFFR1  and  NPFFR2)  have  been   generically   termed   “anti-­‐opioids”   for   their   putative  ability  to  block  opioid  function.  However  in  vivo  evidence  for  this  has  been  limited  to  nociceptive  tests,  which  are  confounded  by  the  pronociceptive  effects  of  the  NPFFR  ligands.  To  elucidate  the  functions  of  the  NPFFRs,  we  first   identified  and  characterised  a  true,  potent,  and  selective  antagonist,  called  GJ14.  Next,  we  used  the  vasopressin  neurons  of  the  supraoptic  nucleus  as  a  model  to  examine  the  anti-­‐opioid   function  of   the  NPFFR   ligand,  RFamide  related  peptide-­‐3   (RFRP-­‐3).   In  extracellular  single-­‐unit   recordings  from  urethane-­‐anaethetised  rats,  the  spontaneous  firing  rate  of  vasopressin  neurons  was  significantly  reduced  by  morphine  (i.v.  30  ug/kg).  This  inhibition  was  virtually  abolished  by  pretreatment  with  RFRP-­‐3  (i.c.v.  12  nmol)  and  morphine  sensitivity  was  recovered  10   min   after   RFRP-­‐3   treatment.   Control   rats   receiving   3   consecutive   morphine   treatments   alone   did   not   show   any   change   in  morphine   sensitivity.   RFRP-­‐3   alone   had   no   effect   on   vasopressin   neuron   firing   rate.   A   challenging   notion   is   that   chronic   opioid  treatment   triggers   the   upregulation   of   these   anti-­‐opioid   systems,   which   in   turn   attenuates   the   effect   of   morphine,   thereby  producing   tolerance.   To   test   this   hypothesis,   rats   were   given   a   continuous   dose   of  morphine   (10  mg/kg/day)   via   osmotic  mini  pumps   for   6   days.   Vasopressin   neuron   reponses   to   morphine   (i.v.   30   ug/kg)   were   virtually   absent   in   morphine-­‐infused   rats,  confirming   morphine   tolerance.   Pretreatment   with   GJ14   (i.c.v.   50   nmol)   increased   the   sensitivity   to   morphine   in   vasopressin  neurons   of   tolerant   rats.   In   summary,   this   is   the   first   evidence   demonstrating   an   anti-­‐opioid   function   in   vivo   using  electrophysiology.  Furthermore  using  our  novel  antagonist,  we  report  convincing  evidence  that  the  NPFFRs  are  an  important  part  of  a  genuine  anti-­‐opioid  system  that  regulates  opioid  sensitivity.  

Page 45: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P49:  Oxytocin  efficacy  in  treating  detoxified  opioid  dependent  individuals.  A  randomised  double  blind  placebo  controlled  pilot  trial.  Weber,  Carol,  Robinson  Fiona,  Koumtsidis  Christos,  Boyle  Julia,  Revell  Vicky,  Hourani  Susanna,  Bailey  Alexis  University  of  Tours  The  major  problem   for  opioid  dependent   individuals  who  are   recovering   from   their  addiction   is   the  maintenance  of  a  drug-­‐free  state,  with  only  40%  maintaining  abstinence  1  month  post  detoxification.  People  dependent  on  opioids  undergoing  detoxification  suffer   from  persistent  emotional  withdrawal   symptoms  which   can   serve  as  a  motivational   trigger   to   re-­‐administer   the  drug  and  relapse.   These   symptoms   associated   with   emotional   distress   and   dysphoria   such   as   anxiety,   irritability,   stress,   depression  may  persist   for  months   in   recovering   opioid   addicts  with   30%-­‐50%   comorbidity   of   depression/anxiety.  Moreover,   the   adverse   social  consequences  of  drug  withdrawal   in   recovering  addicts  has  been  recognised,  especially   in   light  of   the  benefits   that  psychosocial  support  has   in  maintaining  abstinence   in  addicts.  As  opioid  substitution  pharmacotherapy,  benzodiazepine  based  anxiolytics  and  antidepressants  have   limited  benefit   in  term  of  relapse  prevention  and  induce  dependence   in  their  own  right,  there   is  a  need  to  develop  more  effective,  safer   treatment   for  emotional  opioid  withdrawal  symptoms  which  would  assist  with  relapse  prevention.  The   study  will   test   the   efficacy   of   intranasal   oxytocin   (Syntocinon)   administration   and   assess   if   a)   Detoxified   opioid   dependent  individuals  subjected  to  intranasal  oxytocin  administration  for  2  weeks  will  exhibit  decreased  rates  of  relapse  and  higher  retention  rates  in  an  in-­‐inpatient  rehabilitation  programme  as  well  as  following  30  days,  compared  to  those  subjected  to  intranasal  placebo  control.  b)   Intranasal  oxytocin  administered  for  2  weeks  will   reduce  anxiety,  depression,  social  anxiety  and  sleep  disturbances   in  these  detoxified  opioid  dependent  individuals  compared  to  placebo  control  group.  c)  These  post  detoxified  individuals  subjected  to  intranasal  oxytocin  will  have  reduced  cortisol  levels  compared  to  placebo  control  group.    

P50:  Adiponectin  :  a  Key  player  in  the  antidepressant  effects  of  enriched  environment  Nicolas  Sarah,  Veyssiere  Julie,  Gandin  Carine,  Zsürger  Nicole,  Pietri  Marielle,  Heurteaux  Catherine,  Glaichenaus  Nicolas,  Petit-­‐Paitel  Agnès,  Chabry  Joëlle  Université  de  Nice  Sophia  antipolis,  Institut  de  Pharmacologie  moléculaire  et  cellulaire,  CNRS  

Major  depression   is  a   complex  disorder  characterized  by  cognitive   impairments   triggered  by  various   factors   including   stress  and  environment.  Many  patients  are  resistant  to  current  antidepressant  therapy,  thus  alternative  strategies  are  needed.  "Positive"  life  experiences  could  help  to  remission  of  the  disorder  by  alone  or  in  association  with  antidepressant  drugs.  However,  little  is  known  about  the  molecular  mechanisms  involved  during  high  levels  of  sensory,  motor,  social  stimuli,  such  as  those  experienced  by  mice  housed  in  an  enriched  environment  (EE).  The  aim  of  the  study  was  to  fully  characterize  the  antidepressant-­‐like  effects  of  EE   in  a  well-­‐known  murine  model  of  depression-­‐like  behavior  induced  by  long-­‐term  administration  of  corticosterone.  We  showed  that  EE  efficiently   reverses   the   anxiety/depression-­‐like   state   of   mice   assessed   through   behavioral   tests   requiring   both   neurogenesis-­‐dependent  (Novelty  Suppressed  Feeding,  Learned  Helplessness)  and  -­‐independent  (Open  Field,  Light  and  Dark,  Forced  Swimming  test)  mechanisms.  The  contribution  of  this  latter  pathway  remains  largely  unexplored;  however  we  shown  here  that  the  adipokine,  adiponectin  is  an  absolute  requirement  for  its  establishment.  Indeed,  EE  prevented  the  anxiety/depression-­‐like  state  of  adiponectin  knock  out  (adipo-­‐/-­‐)  mice  in  some  but  not  all  behavioral  tests.  Our  data  suggest  that  the  environmental  conditions  of  life  may  favor  the  passage  of  the  adiponectin  from  the  blood  to  the  brain  rather  than  change  the  circulating  levels  of  adiponectin.    Our  findings  bring   insight   into   the   beneficial   effects   of   "positive"   life   experiences   in   anxiety/depression-­‐related   behaviors   and   highlight   the  pivotal  role  of  adiponectin  

P51:  Role  of  CD4+  T  cells  in  beneficial  effects  of  enriched  environment  on  hippocampal  plasticity  in  mice  Zarif  Hadi,  Nicolas  Sarah,  Hosseiny  Salma,  Petit-­‐Paitel,  Heurteaux  Catherine,  Chabry  Joëlle,  Guyon  Alice  CNRS/IPMC  -­‐  Université  de  Nice  Sophia  antipolis  

The   importance   of   environment   in   the   regulation   of   brain   functioning,   behavior   and   physiology   has   long   been   recognized   in  biological,   social   and  medical   sciences.  Animals  maintained  under  enriched  housing   conditions  have  been   shown   to  have  better  learning   abilities   than   those  maintained   under   standard   conditions.  We   have   shown   that   raising   mice   4   weeks   in   an   enriched  environment  (EE),  characterized  by  bigger  cages  with  running  wheels,  toys  and  mazes  and  increased  number  of  mice  per  cage  to  encourage   social   interactions,   increases   neurogenesis   in   the   dentate   gyrus   and   induces   changes   in   neuronal   morphology   and  synaptic  plasticity   in  the  CA1  region  of  the  hippocampus,  a  structure  of  the  brain  with  a  major  role   in   learning  and  memory.  The  immune  system  is  primarily  involved  in  the  surveillance  of  body  tissues  and  protection  from  infectious  agents  and  various  forms  of  injury  but  recent   findings   indicate  that   it  can  also  be   involved   in  normal  neurobehavioral  processes.   In  addition,   immune  system  can   be   affected   by   EE.   Other   groups   have   already   shown   that   CD4+   T   cells   depletion   affects   memory,   learning,   LTP   and  neurogenesis  but  nobody  has  ever  investigated  the  role  of  CD4+  T  cells  on  the  effect  of  EE.  In  this  study,  we  investigated  whether  CD4+  T  cells  and  among  them  CD25+  T  cells  are  involved  in  this  reshaping  of  the  hippocampus  after  EE.  We  show  that  deprivation  of  mature  T  cells  (CD4+  or  CD25+)  in  adult  mice  using  selective  depleting  antibody  reverses  some  but  not  all  of  the  effects  of  EE  on  hippocampal  plasticity.  Indeed,  while  the  increase  in  spontaneous  postsynaptic  excitatory  currents  and  the  decrease  in  long  term  potentiation   (LTP)   normally   induced   by   EE   at   the   CA3-­‐CA1   synapse  were   reversed,   the   increase   in   neurogenesis   in   the   dentate  dyrus  was  unaffected.  This  suggests  that  T  cells  are  necessary  specifically  to  some  of  the  effects  of  EE.  The  mechanisms  by  which  T  cells  impact  the  hippocampus  are  currently  under  investigation.  

   

Page 46: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  1—Thursday,  September  24  

P52:  Neuronal  and  synaptic  ultra-­‐structural  organization  in  layer  5  of  the  human  Gyrus  temporalis.  Yakoubi  R1,3,  Mosbah  R1,2,  Benmouloud  A1  ,  Rollenhagen  A3,  Lübke  JHR3,4,5,6  1Department   of   Biology,   Faculty   of   sciences-­‐   University   of   Boumerdes;   2Laboratory   of   Animal   Eco   –Biology,   ENS-­‐Kouba-­‐   Alger,  Algeria;  3  Institute  of  Neuroscience  and  Medicine  (INM-­‐2),  Research  Center  Jülich  GmbH,  Leo-­‐Brand-­‐Str,  52425  Jülich,  Germany;  4  School  of  Biomedical  Sciences,  University  of  Ulster,  Cromore  Road,  BT52  1SA,  Co.  Londonderry,  UK;  5  Department  of  Psychiatry  and  Psychotherapy,  Medical   Faculty,   RWTH/University  Hospital  Aachen,   Pauwelstr.   30,   52074  Aachen,  Germany;   6JARA  Translational  Brain  Medicine,  Germany.  

Synapses  are  the  key  elements  for  signal  transduction  and  plasticity  in  the  brain.  Despite  a  relatively  large  number  of  assumptions  that  have  been  made  on  the  structure  mature  cortical  synapses  in  many  other  animal  species,  little  is  known  about  these  structures  in  human.  Here,  synapses  in  cortical  layer  5,  the  main  recipient  layer  of  thalamo-­‐cortical  efferents,  therefore  representing  the  first  station   of   cortical   information   processing,   were   investigated   quantitatively   using   serial   ultrathin   sections   and   digital   electron  microscopic  images  and  immunohistochemistry  against  glutamine  synthetase.  3D-­‐reconstruction  is  the  only  way  to  describe  these  structures   in   great   details   to   provide   adequate   morphological   and   quantitative   data   for   realistic   structural   models   of   cortical  synapses   which   could   be   than   used   for   numerical   and/or   Monte   Carlo   simulations   of   synaptic   parameters   still   inaccessible   to  experiment.  These  structural  parameters  such  as  the  size,  number  and  distribution  of  active  zones  and  the  size  and  organization  of  the  pools  of  synaptic  vesicles  are  critical  factors  not  only  for  the  induction  but  also  for  the  maintenance  of  synaptic  transmission  and  plasticity  in  the  neocortex.  The  quantitative  3D-­‐reconstructions  of  cortical  synapses  will  allow  to  directly  comparing  structural  and   functional   aspects   of   synaptic   transmission   and   plasticity   thus   leading   to   a   better   understanding   of   the   function   of   cortical  networks   in   the  human  neocortex.  We  observed   large  pyramidal   neurons   (85%);   the   remainder   is  GABAergic   inter  neurons   and  astrocytes.  We  found  multiple  innervations  on  either  the  same  or  different  dendrites.  85%  of  the  spines  have  a  spine  apparatus,  a  specialized  form  of  endoplasmic  reticulum.  Perforations  exist  in  the  pre  and  post-­‐synaptic  densities;  we  also  found  multivesicular  bodies  as  well  as  mitochondria  (2-­‐8)  in  the  pre-­‐synaptic  element  

 

 

Page 47: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

 P1:  Multi-­‐level  monitoring  of  cellular  responses  of  corticotrophs  to  secretagogue  stimuli  Romanò  Nicola*,  Walker  Jamie#,  Le  Tissier  Paul*,  Shipston  Mike*  

*  University  of  Edinburgh,  #  University  of  Exeter  The   hypothalamic–pituitary–adrenal   axis   is   central   for   the   regulation   of   stress   responses   in   the   organism.   Corticotrophs   in   the  pituitary  gland  control  adrenal  release  of  corticosteroids  through  ACTH  release,  in  response  to  CRH/AVP  hypothalamic  stimuli.  We  are  using  primary  dispersed  pituitary   cells   and  organotypic   slice   cultures   to   study   the   cellular   and  molecular   correlates  of   these  responses.  Intracellular  calcium  levels  are  used  as  a  proxy  of  cellular  activity,  and  monitored  by  specifically  expressing  the  calcium  indicator   GCaMP6s   in   corticotrophs   using   a   lentiviral   approach.   This   allows   monitoring   of   the   system   for   several   hours,   and  determination   of   the   cellular   responses   to   different   concentrations   and   patterns   of   hormonal   stimulations.   Furthermore,  simultaneous  activation  of  intracellular  pathways  through  optogenetic  tools  (e.g.  channelrhodopsin  2,  the  photosensitive  adenylate  cyclase   bPAC   or   light   activated   GPCR   Jellyop),   allows   precise   activation   of   different   pathways   in   the   cell.   The   long-­‐term   and  population  responses  of   these  stimulations  can  also  be  analysed  by  monitoring  activation  of  CREB  or  by   real-­‐time  monitoring  of  cAMP  levels  through  a  luminescent  cAMP  sensor.  These  data  can  then  be  fed  to  a  mathematical  model,  which  allows  prediction  of  cellular  responses  that  can  be  then  further  tested  experimentally.  

   P2:  A  Luminescence-­‐Based  Toolkit  To  Bioassay  Endocrine  Cell  Function  Romanò,  Nicola,  Shipston,  Mike  and  Le  Tissier,  Paul  Centre  For  Integrative  Physiology,  University  of  Edinburgh,  United  Kingdom  In  all  neuroendocrine  axes,  the  precise  amount  of  hormone  produced  and  its  specific  pattern  of  release  in  response  to  stimulation  are  influenced  by  a  complex  interplay  between  multiple  signals.  Because  these  responses  are  dynamic  over  multiple  time-­‐scales,  it  is   important   to   develop   systems   capable   of   quantifying   these   signals   over   extended   periods  with   high   time   resolution.  We   are  developing  several  luminescence-­‐based  biosensors  which  allow  quantification  of  receptor  activation  (and  thus  bioactive  hormone  concentration),  monitoring  of  the  dynamics  of  resulting  intracellular  pathways  activation  and  measurement  of  secreted  hormone  output.  We  are  currently  testing  tools  for  measuring  GHRH,  SRIF,  CRH  and  TSH,  either  through  a  split-­‐luciferase  approach,  or  using  a   luminescent   cAMP   probe.   Tools   for   monitoring   cellular   pathways   include   the   cAMP   probe,   CRE-­‐luciferase   to   monitor   CREB  activation  and  secreted  luciferase  to  monitor  cell  secretion.  All  of  these  constructs  can  be  delivered  either  through  transfection  or  lentiviral  transduction  of  cell  lines,  tissue  slices  and  cells  in  living  animals.  Since  these  tools  are  not  based  on  the  irreversible  binding  of   hormones   to   antibodies,   they   offer   the   basis   for   dynamic   measurements   and   future   incorporation   in   flow   cells   or   in   vivo  applications.  Furthermore,  being  based  on   luminescence,   they  can  be  easily  coupled  with   fluorescence  markers,   such  as  calcium  indicators  or  optogenetic  tools  that  can  be  used  to  precisely  control  the  system.  

   P3:  Disruption  of  the  HPA  axis  by  vitamin  A  is  through  direct  action  on  the  adrenal  gland  Stoney,  Patrick,  Bowman,  Ellen,  McCaffery,  Peter  

Institute  of  Medical  Sciences,  University  of  Aberdeen,  Foresterhill,  Aberdeen,  AB25  2ZD,  UK  The  vitamin  A-­‐derived  hormone  retinoic  acid  (RA)  is  known  to  affect  the  activity  of  the  hypothalamic-­‐pituitary-­‐adrenal  (HPA)  axis,  but  the  sites  of  its  action  are  not  clear.  Retinoic  acid  regulates  transcription  by  binding  to  specific  nuclear  receptors  (retinoic  acid  receptors,  RARs).  To   investigate  the  mechanism  by  which  RA  affects   the  HPA  axis,  we  examined  the  short-­‐term  effects  of  RA  on  transcription  in  the  hippocampus,  hypothalamus,  pituitary  and  adrenal  gland.  8-­‐week-­‐old  rats  were  injected  with  10mg/kg  RA  once  a   day   for   3   days   before   sacrifice.   Expression   of   genes   important   for   HPA   axis   regulation   was   analysed   by   qPCR.   3   days   of   RA  treatment   did   not   significantly   alter   expression   of   the   investigated   genes   in   the   hippocampus,   hypothalamus   or   pituitary;  expression   of   the   RA   target   Rarb   was   upregulated   in   tissues   from   RA-­‐treated   rats,   confirming   the   presence   of   functional   RA.  However,  after  3  days  of  RA  treatment,  expression  of  Cyp11b2  (aldosterone  synthase)  was  significantly  decreased   in  the  adrenal  gland  (P=0.003).  Expression  of  Cyp11b1  (11-­‐β-­‐hydroxylase)  was  increased  in  the  adrenals  of  RA-­‐treated  rats  though  not  statistically  significant   (P=0.058).   Decreased   aldosterone   synthase   combined   with   elevated   11-­‐β-­‐hydroxylase   may   be   expected   to   increase  corticosterone  synthesis.  Cyp11b2  was  also  rapidly  downregulated  5  hours  after  a  single  RA  injection  (P=0.018).  This  rapid  effect  of  RA  on  Cyp11b2  was  reproduced  in  short-­‐term  cultures  of  isolated  adrenal  glands  treated  with  RA  for  5  hours,  suggesting  a  direct  effect  of  RA  in  the  adrenal  gland  itself.  A  5-­‐hour  RA  treatment,  whether  in  vivo  or  in  vitro,  had  no  effect  on  expression  of  Cyp11b1.  Rapid  changes  in  gene  expression,  which  may  result   in  dysregulation  of  the  HPA  axis,  suggest  that  the  adrenal  gland  is  a  primary  site  of  action  for  RA.  Further  studies  are  needed  to  investigate  if  the  transcriptional  effects  of  RA  in  the  adrenal  gland  correlate  with  changes  in  corticosterone  levels  and  behavioral  changes  

     

Page 48: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P4:  The  role  and  regulation  of  the  adrenal  cortex  circadian  clock  Dumbell,  Rebecca;  Leliavski,  Alexei;  Oster,  Henrik.  Chronophysiology  Group,  Medical  Department  I,  University  of  Lübeck,  Lübeck,  Germany  The   adrenal   gland   plays   an   integral   role   within   the   HPA   axis,   with   glucocorticoid   being   secreted   from   the   adrenal   cortex   with  circadian  and  ultradian  rhythmicity,  important  in  the  regulation  of  stress  response.  A  further  role  of  glucocorticoids  is  the  proposed  synchronisation  of  peripheral  clocks  in  other  tissues,  downstream  of  SCN  mediated  signals,  and  thus  the  regulation  of  this  rhythm  is  of  particular   interest   in  circadian  physiology.  The  sensitivity  of   the  adrenal   cortex   to  ACTH  stimulated  glucocorticoid   secretion   is  considered   to   be   under   the   control   of   the   local   circadian   clock,   and   mice   lacking   a   functional   circadian   clock   (Bmal1-­‐/-­‐)   have  severely  dampened  corticosterone  rhythms  and  an   impaired  behavioural   stress   response,  with  adrenal  explant  cultures  showing  impaired  response  to  ACTH.  However  the  specific  importance  of  the  local  circadian  clock  in  the  regulation  of  glucocorticoid  rhythm  is  not  entirely  clear.  We  have  characterised  a  cre-­‐loxP-­‐mediated  conditional  knockout  of  Bmal1   in   the  adrenal  cortex,  under   the  promoter  Cyp11a1,  confirming  loss  of  BMAL1  immunoreactivity,  and  saw  severely  dampened  or  absent  expression  rhythms  of  core  clock  genes,  clock  output  genes,  ACTH  receptor  Mc2r  and  the  key  steroidogenesis  limiting  StAR,  in  the  adrenal  cortex  of  these  mice.  However  the  circadian  rhythm  of  glucocorticoid,  whether  excreted  or  in  circulation,  does  not  appear  altered  and  the  behavioural  stress   response   remains   intact.   In   conditional   knockout  mice  expressing  a  PER2::LUCIFERASE   reporter  we  were  able   to  measure  circadian  rhythmicity  of  explant  adrenal  tissue,  revealing  intact  rhythms  in  whole  adrenals,  but  a  loss  of  rhythm  in  adrenal  cortex  alone.  This  suggests  a  role  of  the  adrenal  medulla  to  drive  cortex  rhythmicity  upon  loss  of  the  local  clock.  

 P5:  IL-­‐6  alters  pSTAT3  signalling  in  the  murine  adrenal  gland  Tranter,  Danielle  E.,  Bunn,  Stephen  J.  Department  of  Anatomy,  University  of  Otago  Immune   challenge   is   associated   with   both   the   sympathomedullary   and   the   hypothalamic   adrenal   (HPA)   responses   to   stress.  Previous   research   from   our   lab   has   shown   that   treatment   with   the   pro-­‐inflamatory   cytokine   interleukin-­‐6   (IL-­‐6)   induces   an  upregulation  of  neuropeptides  and  enzymes  involved  in  catecholamine  synthesis  in  isolated  adrenal  medullary  chromaffin  cells.  IL-­‐6  has  also  been  shown  to  modulate  the  HPA  axis,  altering  glucocorticoid  production  from  the  adrenal  cortex.  The  aim  of  the  current  study  was  to  examine  the  murine  adrenal  response  to  IL-­‐6  in  vivo.  Male  mice  were  administered  1μg  IL-­‐6  by  i.p  injection,  and  were  deeply  anaesthetised  and  perfused  with  4%  paraformaldehyde  10,  30  or  60  minutes  later.  To  investigate  the  effects  of  endogenous  cytokines  on  adrenal  function,  an  additional  group  of  male  mice  were  treated  with  10  μg/kg  lipopolysaccharide  (LPS)  for  3h  prior  to  perfusion.   The   adrenal   glands  were   removed,   and   10μm   sections   cut   and   processed   for   immunohistochemistry.   IL-­‐6   treatment  resulted   in  an   increase   in  phosphorylation  of  Signal  Transducer  and  Activator  of  Transcription  3   (STAT3)   immunoreactivity   in   the  adrenal  cortex  compared  to  saline  only  controls  after  10  min  (p<0.05),  with  the  response  most  apparent  in  the  region  adjacent  to  the  medulla.  An  IL-­‐6  response  was  also  seen  in  the  medulla,  however  dual-­‐labelling  showed  that  the  majority  of  chromaffin  cells  were   unaffected.   In   contrast,   LPS   treatment   induced   a   dramatic   increase   in   pSTAT3   in   the   adrenal   medullary   chromaffin   cells  (p<0.005).   A   pSTAT3   response   could   also   be   seen   in   the   cortex   (p<0.005),   however   the   distribution   of   staining   was   distinctly  different   from  the   IL-­‐6  treated  tissue,  with  the  bulk  of   immunoreactivity  seen   in  the  region  bordering  the  outer  capsule.  Further  experiments   are   underway   using   LPS   alongside   an   IL-­‐6   blocking   antibody   to   determine  whether   this   increase   in   pSTAT3   can   be  attributed  to  IL-­‐6.  

 

P6:  Regulation  of  secretion  in  pheochromocytomas  by  microRNAs  Quillet  Aurélie,  Tellier  Marie-­‐Capucine,  Cartier  Dorthe,  Bérard  Caroline,  Vergne  Nicolas,  Courel  Maïté,  Yon  Laurent,  Caron  Philippe,  Tabarin  Antoine,  Anouar  Youssef,  Dubessy  Christophe  Inserm,  France  Pheochromocytomas  are  tumors  of  the  adrenal  medulla  known  for  their  hypersecretion  of  catecholamines  which  are  responsible  for  numerous  negative   side  effects   (symptomatic  pheochromocytomas,   SP).   In  order   to   identify   the  molecular   regulators  of   this  hypersecretion,  we  study  a  specific  form  of  pheochromocytoma  that  secretes  physiological  levels  of  catecholamines  (Normotensive  Incidental  Pheochromocytomas,  NIP).  We  are  particularly  interested  by  microRNAs  (miRs)  whose  role  has  been  shown  in  cancers.  MiRs  are  non-­‐coding  small  RNA  that  regulate  transcription  by  fixing  mRNA.  We  used  molecular  biology  (qRT-­‐PCR),  statistics  (Limma)  and  bioinformatics  (miRabel,  GeneCodis3)  methods  on  32  samples  of  pheochromocytoma  (SP  and  NIP)  to  identify  miRs  and  their  putative  mRNA  targets.  Experimental  validations  are  done  by  qRT-­‐PCR,  western  blot  and  luciferase  reporter  assay.  Seven  miRs  have  been  shown  to  be  differentially  expressed  (hsa-­‐miR-­‐7-­‐1-­‐3p,  7-­‐2-­‐3p,  497-­‐3p,  32-­‐5p,  190b-­‐5p,  26a-­‐1-­‐3p  et  550a-­‐3p)  between  SP  and  NIP   tumors.   These   miRs   potentially   regulate   several   hundreds   of   pathways   within   which   10   seems   particularly   affected   (Wnt,  MAPK,  Ubiquitinated  proteasome,   Cell   cycle,  Axon   guidance,   Insulin,   Cell-­‐matrix   adhesion,   Cell-­‐cell   adhesion,  Actin   cytoskeleton  regulation   and   SNAREs).   The   targets   PAK3,  MLCP,  MLCK   (Actin   cytoskeleton),   SNAP25   and   STX1A   (SNAREs)  were   selected   to   be  experimentally  validated  on  the  basis  of  their  selection  score  (according  to  miR’s  expression,  number  and  up  or  down-­‐regulation)  and  their  function  in  the  regulation  of  catecholamines’  secretion.  Functional  tests  for  the  selected  interactions  are  still  in  progress.  However,   preliminary   results   indicate   that  miR-­‐7-­‐1   and  miR-­‐497  may   exert   an   inhibitory   effect   on   the   expression   of  MLCP   and  MLCK  mRNA  respectively.  Ultimately  this  study  should  allow  to  better  understand  the  regulation  of  catecholamines  hypersecretion  that  characterizes  pheochromocytomas  and  neuroendocrine  tumors.  

Page 49: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P7:  Cellular  and  Molecular  mechanisms  of  hypersecretion  in  pheochromocytomas  Croise  Pauline  1,  Houy  Sebastien1,  Lanoix  Joel2,  Calco  valerie  1,  Brunaud  Laurent  3,  Paramithiotis  Eustache2,  Chelsky  Daniel  2,  Tryoen  Petra1,  Ory  Stephane1,  Gasman  Stephane1  1  Cellular  and  Integrative  neuroscience  institute  (INCI),  CNRS  UPR  3212,  Strasbourg,  France  2  Caprion  Proteome,  Inc,  Montreal,  Canada  3  Hospital  Nancy-­‐Brabois  (CHU),  Chirurgie  Digestive,  Hépato-­‐bilaire  et  Endocrinienne,  Nancy,  France  

Neuroendocrine  tumors  (NETs)  are  neoplasms  arising  from  hormone/peptide-­‐secreting  cells.  Although  NETs  are  heterogeneous,  a  common  critical  feature  is  the  dysfunction  of  the  secretory  activity  leading  to  hypersecretion.  Pheochromocytomas  (pheo)  are  NETs  that  arise  from  chromaffin   cells   of   the   adrenal   medulla,   which   are   characterized   by   an   excess   of   catecholamine   secretion,   leading   to   hypertension,  cardiomyopathy  and  high   risk  of   stroke.  Although   this  aspect   is  well   known  by  clinicians,   it  has  never  been  explored  at   the  cellular  and  molecular   level.   Here,   we   have   analyzed   the   aberrant   secretion   of   catecholamine   at   a   single   cell   level   by   applying   carbon   fiber  amperometry  technique  on  human  pheo  resection.  We  have  observed  a  drastic  increase  of  exocytotic  events  in  tumoral  cells  comparing  to  non   tumoral   chromaffin   cells   from   the   same   patient.   These   data   demon-­‐strate   that   hypersecretion   is   a   direct   consequence   of   a  deregulation  of  the  secretagogue  induced  secre¬tion  and  not  simply  a  mass  effect  due  to  the  proliferation  of  tumoral  cells.  According  to  their  widely  accepted  involvement  in  tumorigenesis  Rho  GTPases  and  their  regulator  pathways  appear  as  good  candidates  to  be  involved  in  secretion   defect   and/or   development   of   pheo.   Our   results   show   a   decrease   of   the   GTPases   Rac1   and   Cdc42   activity   in   human   pheo  compared  to  non-­‐tumoral  tissu.  Moreover,  by  investigating  protein  expression  changes  in  tumor  through  a  mass  spectrometry  approach,  we  have  demonstrated  that  ARHGEF1  and  FARP1,  two  guanine  nucleotide  exchange  factors  that  activate  Rho  GTPases  are  down-­‐regulated.  We   then   confirmed   by   in   vitro   experiment   that   down-­‐regulation   of   ARHGEF1   and   FARP1   triggers   the   inactivation   of   Rac1   and   Cdc42,  respectively.  Altogether,  our  results  demonstrate  a  deregulation  of  the  secretory  activity  at  a  cellular   level,  and  an  alteration  of  the  Rho  GTPase  pathways  in  pheo.  This  work  has  been  supported  by  a  Ligue  Contre  le  Cancer  (CCIR-­‐GE)  and  a  Fondation  ARC  to  SG.  

P8:  Involvement  of  the  secretory  pathway  in  the  tumorigenesis  of  pheochromocytomas  Denorme  M.  1,2,3*,  Croisé  P.  4*,  Montero-­‐Hadjadje  M.  1,2,3,  Ory  S.  5  ,  Carmont  O.  1,2,3,  Cartier  D.  1,2,3,  Grumolato  L.  1,2,3,  Courel  M.  5,  Yon  L.  1,2,3,  Anouar  Y.  1,2,3,  Gasman  S.  4*  ,  Dubessy  C.  1,2,3*  1Institut   National   de   la   Santé   et   de   la   Recherche   Médicale   (INSERM),   UMRS   982,   Mont-­‐Saint-­‐Aignan,   France   2Normandie   Université,   France  3Université  de  Rouen,  Laboratoire  Différenciation  et  Communication  Neuronale  et  Neuroendocrine,  Institut  de  Recherche  et  Innovation  Biomédicale  (IRIB),  Mont-­‐Saint-­‐Aignan,  France  4CNRS  UPR  3212,  Institut  des  Neurosciences  Cellulaires  et  Intégratives,  Université  de  Strasbourg,  France  5Centre  National   de   la   Recherche   Scientifique   (CNRS)   UMR7622,   Laboratoire   de   Biologie   du   développement,   Université   Paris   VI,   Paris,   France   *   =   Equal  contributions  

Pheochromocytomas  (PCCs)  are  rare  neuroendocrine  tumors  (NETs)  which  arise  from  chromaffin  cells  of  the  adrenal  medulla.  Most  PCCs  secrete  high  levels  of  catecholamines  that  cause  many  deleterious  effects   in  patients,   including  hypertension  which  is  difficult  to  control  and   could   be   lethal   for   some   patients.   However,   the   impact   of   the   secretory   activity   on   the   development   of   NETs   has   never   been  investigated  before.  We  therefore  evaluated  the  role  of  the  secretory  activity  on  tumor  growth  in  a  xenograft  model  of  PCCs  in  nude  mice,  using   two  spontaneous  variants  of   the   rat  PCC  PC12  cell   line,  namely  A35C  and  PC12-­‐27,  both  defective   for   the  secretory  pathway.  We  have  shown  that  the  tumorigenic  potential  of  these  PCC  cell  variants  is  significantly  lower  than  that  of  the  parental  PC12  cells,  as  shown  by  the  tumor  growth  delay  (TGD,  38  and  14  days,  respectively)  and  the  increase  in  the  tumor  doubling  time  (TDT,  10  and  9.2  vs  4.8  days  ;  P  <0.001)  of   the  xenografts.  To  assess  more  specifically   the   involvement  of   the  secretory  pathway   in  the  development  of  PCC  tumors,  we  performed  a   lentiviral  delivery  of   specific   shRNA  to   inhibit   the  expression  of   chromogranin  A   (CgA),  a  key   regulator  of   the   formation  of  secretory  vesicles  (SV)  in  PC12  cells.  Unlike  parental  PC12  cells,  the  PC12-­‐shCgA  cell  line  showed  a  strong  decrease  (92%)  in  CgA  expression  along  with  that  of  other  granins,  associated  to  a  lack  of  SV  and  dopamine  secretion.  PC12-­‐shCgA  xenografts  exhibited  a  high  TGD  (24  days)  and  an  increased  TDT  (8.2  vs  2.6  days,  P  <0.001)  compared  to  controls.  Altogether,  these  results  unveil  a  causal  link  between  the  secretory  activity  and  PCC  tumor  growth.  Moreover,  our  data  suggest  that  the  secretory  pathway  could  be  targeted  to  develop  new  treatments  for  NETs.  This  work  was  supported  by  INSERM,  University  of  Rouen  and  Région  Haute-­‐Normandie.  

P9:  The  combined  treatment  cyclosporine  A  (  CsA)  (20mg/kg)  and  ketoconazol  (KTCZ)  (25mg/kg)  induced  a  repair  in  all  levels  in  testicular  ,  adrenal  ,  Thymic  ,  hormonal  and  behavior  disorders  in  wistar  rats.  1-­‐Aziez  Chettoum,  2-­‐Guedri  Kamilia  ,3_  Frih  Hacene  ¹Department  of  Animal  Biology,  University  Mentouri,  Constantine,  Algeria;  2-­‐3  Department  of  Biology,  University  BadjiMokhtar,  Annaba,Algeria  

Purpose:   Cyclosporine   (CsA   )   ,   is   a   neutral   lipophilic   decapeptide   cyclic   and  he  was   successfully   used   in   transplant  medicine   and   in   the  treatment   of   autoimmune   diseases   such   as   uveitis,   psoriasis   and   rheumatoid   arthritis.   However,   it   has   been   reported   that   the  administration  of  CsA  (20mg/kg)  causes  a  dysfunction  at  both  gonadotropic  that  neurobehavioral.  The  objective  of  our  study  is  to  propose  a   therapeutic   strategy   based   on   the   combined   CsA   treatment   while   relying   on   the   assumption   of   the   central   role   of   corticosterone   –  proinflammatory   cytokines   in   the   development   of   disorders   induced   by   the   administration   of   CsA   and   Ketoconazole   (   KTCZ),   (  antidepressant   and   anxiolyique)   and   physiological   (anti-­‐   gonadotropic   and   corticoblocking).   Methods:   In   our   study,   we   performed   the  combined  CsA  administration  (IP)  and  KTCZ  (oral)  for  14  consecutive  days  in  male  Wistar  rats  subsequently  the  forced  swim  test  (FST).  The  forced  swimming  test  in  rats  is  a  preclinical  behavioral  model  has  good  predictive  validity  and  is  widely  used  to  determine  the  effectiveness  of   antidepressant   drugs   (ADS)   In   addition   ,conventional   histopathological   investigations   in   target   organs   (testes   ,   thymus,   adrenal   )    neuropharmacological  behavioral  tests  were  used  in  this  study,  including  the  measure  of  the  anxiety  degree  of  the  animal  by  the  elevated  place  maze  test,  measure  of  the  locomotor  activity  by  the  open  fields  test  the  and  the  use  of  Morris  water  maze  test  to  assess  the  capacity  of  rat  memory.  Results:  Our  results  indicated  that  the  intraperitoneal  injection  of  CsA(20mg/kg)  cause  testicular  damage  associated  with  a  decrease  in  testosterone  ,  adrenal  cortical  hyperplasia  and  lobular  thymic  degeneration.  At  the  behavioral  level  ,  we  recorded  a  significant  improvement  in  learning  and  memory  that  an  antidepressant  and  anxiolytic  effect  .  Similar  results  were  found  following  administration  of  KTCZ  .  However,  we  reported  thymic  hypertrophy,  adrenal  medulla  hyperplasia  and  memory  disorders.  

Page 50: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P10:  The  orexin  type  1  receptor  is  overexpressed  in  advanced  prostate  cancer  with  a  neuroendocrine  differentiation,  and  mediates  apoptosis  Alexandre  David1,  Hautot  Coralie1,  Mehio  Marwa1,  Jeandel  Lydie1,  Courel  Maïté1,  Voisin  Thierry2,  Couvineau  Alain2,  Leprince  Jérôme1,  Pfister  Christian3,  Anouar  Youssef1,  Chartrel  Nicolas1  1,   INSERM   U982,   Laboratory   of   Neuronal   and   Neuroendocrine   Differentiation   and   Communication,   Biomedical   Research   and  Innovation  Institute  (IRIB),  University  of  Rouen,  Mont-­‐Saint-­‐Aignan,  France.  2,  University  Paris-­‐Diderot,  Sorbonne  Paris  Cité,  CRB3,  Centre  de  Recherche  Biomédicale  Bichat  Beaujon  (CRB3),  UMR773,  INSERM,  France.  3,  Department  of  Urology,  University  Hospital  of  Rouen,  Institute  for  Biomedical  Research,  University  of  Rouen,  Rouen,  France  Here,  we  have  examined  the  presence  of  orexins  and  their  receptors  in  prostate  cancer  (CaP)  and  investigated  their  effects  on  the  apoptosis  of  prostate  cancer  cells.  First,  we  have  localised  the  orexin  type  1  and  2  receptors  (OX1R  and  OX2R)  and  orexin  A  (OxA)  in  CaP  sections  of  various  grades.  OX1R  is  strongly  expressed  in  carcinomatous  foci  exhibiting  a  neuroendocrine  differentiation,  and  the   number   of   OX1R-­‐stained   cancer   cells   increases   with   the   grade   of   the   CaP.   In   contrast,   OX2R   is   only   detected   in   scattered  malignant   cells   in   high   grade   CaP.   Then,   expression   of   OX1R   was   also   evaluated   in   the   androgeno-­‐dependent   LNCaP   and   the  androgeno-­‐independent  DU145  prostate  cancer  cells  submitted  or  not  to  a  neuroendocrine  differentiation.  OX1R   is  expressed   in  the   AI   DU145   cells   but   is   undetectable   in   the   LNCaP   cells.   Acquisition   of   a   neuroendocrine   phenotype   by   the   DU145   cells   is  associated  with  an  overexpression  of  OX1R.  Finally,  we  showed  that  orexins   induce  the  apoptosis  of  DU145  cells   submitted  to  a  neuroendocrine  differentiation.  The  present  data  indicate  that  OX1R-­‐driven  apoptosis  is  overexpressed  in  androgeno-­‐independent  CaP  exhibiting  a  neuroendocrine  differentiation  opening  a  gate  for  novel  therapies  for  these  aggressive  cancers  which  are  incurable  until  now.  

 P11:  Developmental  chemical  exposure  alters  key  steroidogenic  enzymes  in  the  neonatal  sheep  testis  Bellingham,  Michelle;  Nikolatou  Konstantina;  Evans  Neil  

Institute  of  Biodiversity,  Animal  Health  and  Comparative  Medicine,  College  of  Medical,  Veterinary  and  Life  Sciences,  University  of  Glasgow,  Glasgow,  Scotland  

The   hypothalamo-­‐pituitary-­‐gonadal   axis   (HPG)   axis   is   tightly   regulated   by   sensitive   inputs.   This   system   is   a   possible   target   for  environmental   endocrine  disrupting   chemicals   (EDCs)  whereby  developmental   EDC  exposure   can  affect   reproductive   function   in  later  life.  Biosolids  (sewage  sludge)  contains  a  mixture  of  EDCs  and  its  application  to  pasture  is  a  relevant  model  to  examine  effects  of  EDC  mixtures  on  the  HPG  axis.  Our  previous  studies  have  shown  that  maternal  exposure  to  biosolids  can  affect  expression  of  regulatory  genes  in  the  hypothalamus  and  pituitary  gland  and  can  alter  fetal  and  adult  testicular  structure  in  offspring  exposed  in-­‐utero.  However,  the  effects  of  this  exposure  on  the  normal  patterns  of  gene  expression  in  the  developing  neonatal  testis  are  still  unknown.  The  present  study  examined  whether  developmental  exposure  to  EDCs  via  maternal  grazing  on  pastures  fertilised  using  biosolids,  affects  mRNA  expression  of  key  genes  which  regulate  testicular  function  in  neonatal  male  lambs.  Testes  were  collected  from   1   day   old  male   lambs   from  mothers  who   had   been   pastured   on   fields   fertilised  with   inorganic   fertiliser   (control,   n=9)   or  Biosolids  (n=8).  Testis  were  immersed  in  RNAlater®  solution  for  24  hours  before  storage  at  -­‐80°C  until  RNA  was  extracted  (25  mg)  and   reverse   transcribed   into   cDNA.   Using   qRT-­‐PCR,   mRNA   expression   of   genes   of   interest   were   quantified   relative   to   2  housekeeping   genes   (ß2-­‐microglobulin   and   mitogen-­‐activated   protein   kinase   14).   Data   were   normalised   to   testis   weight,   log  transformed  and  analysed  using  Student’s  T-­‐test   (P<0.05  considered  significant).  Testicular  expression  of  STAR  and  CYP17A1  was  significantly   reduced  whereas  expression  of  HSD3B  and  LHR  was  significantly   increased   in  biosolid  exposed  compared   to  control  lambs.  These  data  add  to  an  increasing  body  of  evidence  that  developmental  EDC  exposure  can  have  long  term  effects  on  the  male.  

 P12:  Ameliorating  role  of  Fertimax  in  treatment  of  male  infertility  Mosbah  Rachid  1,2*,  Kourta  Lamia2,  Habel  Mohamed  Amine3.  1Laboratory  of  Animal  Eco-­‐Physiology,  ENS-­‐  Kouba-­‐Alger,  2Departement  of  Biology,  University  of  Boumerdes,  3Clinic  El-­‐Bordj  for  Assisted  Reproductive  Technology,  Bordj  El  kifan  Alger,  ALGERIA.  Over  recent  decades,   there   is  a  growing  concern  around  the   infertility  problem   in  Algeria.   In   the   latest  census  of   the  health  and  populations  ministry,  the   infertility  affects  approximately  10-­‐12%  of  the  couples  and   in  30%  of  these  cases,  the  male   is  the  main  associated  origin  by  a  reduction  in  semen  quality  under  environmental  and  lifestyle  factors.  Many  studies  have  incriminated  sperm  oxidative  stress   in  the  pathogenesis  of  men  infertility  through  sperm  DNA  damage  and  membrane  peroxidation.   In  this  research,  we  attempt  to  determine  the  etiology  of  reproductive  failure  in  infertile  men  and  to  assess  the  effectiveness  therapy  of  Fertimax™  treatment  as  combination  of  a  specific  micronutrients  and  antioxidants  on  semen  quality.  Therefore,  thirty  six  men  consulting  for  infertility  spousal  in  clinic  of  assisted  reproductive  technology  "El  Bordj"-­‐  Algiers  were  interviewed,  examined  for  clinical  signs  and  their  sperm  was  analyzed,  then  after,  some  of  them  were  subjected  to  Fertimax™  treatment  for  six  months  and  their  sperm  was  reanalyzed.   The  obtained   results   revealed   that   Fertimax™   intake   for   six  months   can   improve   significantly   all   semen  parameters  including  seminal  volume,  viscosity,  spermatozoa  number,  motility,  viability  and  morphology  in  these  patients.  Besides,  in  33.33%  of  cases,  these  treated  patients  with  Fertimax™  have  fertilized  their  partners  without  recourse  to  in  vitro  fertilization  process.  This  wonderful  ameliorating  role  of  Fertimax™  may  be  related  to  the  particularly  potent  antioxidant  properties  of  its  components  and  thus  we  recommend  this  treatment  as  remedy  for  patients  suffered  from  subfertility  in  both  sexes.  

Page 51: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P13:  Selenoprotein  T,  a  novel  thioredoxin  reductase,  is  involved  in  maintenance  of  ER  homeostasis  Hamieh  A1,  Cartier  D1,  Abid  H1,  Calas  A2,  Anouar  Y1  and  Lihrmann  I1  1Inserm  U982,  Neuronal  and  Neuroendocrine  Differentiation  and  Communication  Laboratory,  (IRIB),  Rouen  University,  76821  Mont-­‐Saint-­‐Aignan,  France  ²CNRS  UMR  5297,  Interdisplinary  Institute  of  Neurosciences,  Bordeaux,  France  Selenoprotein  T   (SelT)   is   a   thioredoxin-­‐like  protein  which  was  discovered  during  a   transcriptomic  analysis  of   the  PACAP-­‐induced  neurodifferentiation  process.  This  protein  contains  a  thioredoxin  fold  structural  pattern,  which  suggests  that  it  participates  to  the  regulation  of  redox  homeostasis.  SelT  gene  is  silenced  in  adulthood,  except  in  pituitary  and  numerous  endocrine  organs.  Supporting  a  role  in  hormone  secretion,  SelT  was  reported  to  be  a  crucial  intermediate  in  the  calcium-­‐dependent  regulated  secretory  pathway  in  the  rat  pheochromocytoma  PC12  cells.  This  study  aimed  at  elucidating  the  role  of  SelT  in  endocrine  tissue,  using  the  pituitary  as  model.  We  found  that  SelT  is  a  novel  thioredoxin  reductase  and  this  enzymatic  activity  is  dependent  on  the  presence  of  Sec  or  Cys  residues   in   its   active   site.   We   next   characterized   SelT   expression   in   mouse   pituitary.   Double   immunostaining   and   confocal  microscopy  analysis  showed  that  SelT   is  expressed  in  some  corticotroph,  gonadotroph,  somatotroph,   lactotroph  and  thyreotroph  cells.  SelT  expression  is  induced  by  ER  stress  and  can  protect  pituitary  cells  against  ER  and  oxidative  stresses.  This  activity  requires  anchoring  of  SelT  in  the  ER  membrane,  online  with  results  obtained  by  electronic  microscopy,  as  well  as  the  integrity  of  the  CXXU/C  redox  domain.  Finally,  SelT  interacts  with  a  member  of  the  N-­‐glycosylation  complex  OST,  and  is  involved  in  POMC  N-­‐glycosylation  and  ACTH  secretion.  In  conclusion,  we  have  shown  that  SelT  is  a  new  member  of  the  OST  complex,  which  could  be  critical  in  tissues  with  high  secretory  activity.  Its  thioredoxin  reductase  activity  and  its  specific  presence  in  cells  producing  specific  hormones  (ACTH,  prolactin,  TSH,  LH,  FSH,  insulin,  somatostatin)  suggested  that  it  may  play  a  specific  role  in  the  N-­‐glycosylation  of  proteins  containing  disulfide  bridges,  as  it  has  been  shown  for  other  OST  subunits.  

P14:  Neat1  a  long  non-­‐coding  RNA  involved  in  pituitary  circadian  rhythms:  characterization  of  its  interactome  Torres  Manon  ,  Becquet  Denis,  Guillen  Séverine,  Boyer  Bénédicte,  Moreno  Mathias,  Blanchard  Marie-­‐Pierre,  Franc  Jean-­‐Louis  and  François-­‐Bellan  Anne-­‐Marie  Aix  Marseille   Université,   CNRS,   CRN2M-­‐UMR7286,   Faculté   de  Médecine  Nord,   51   Bd   Pierre   Dramard   CS   80011,   13344  Marseille  cedex  15,  France  Post-­‐transcriptional  regulation  appears  increasingly  essential  to  the  circadian  system  functioning.  Paraspeckles  are  nuclear  bodies  that   control   gene   expression   through   a   post-­‐transcriptional   mechanism   based   on   nuclear   retention   of   RNA   containing   in   their  3’UTR  region  inverted  repeats  of  Alu  sequences  (IRAlu).  Paraspeckles  are  form  around  the  long  non-­‐coding  RNA,  NEAT1,  together  with   numerous   RNA-­‐binding   proteins   including   NONO,   SFPQ,   PSPC1   and   RBM14.   We   found   that   all   these   key   components   of  paraspeckles   including   Neat1   displayed   a   circadian   expression   pattern   in   pituitary   cells.   In   this   study,   we   asked   whether   IRAlu  elements  inserted  in  3’-­‐UTR  of  a  reporter  mRNA  may  allow  for  its  circadian  retention  within  the  nucleus  by  paraspeckles.  The  single  antisense  AluSp,  or  the  IRAluSp  element  cloned  from  the  3’-­‐UTR  of  Nicolin1  gene  were  inserted  each  between  the  3’-­‐end  of  EGFP  cDNA   and   a   polyadenylation   signal   in   the   expression   vector   pEGFP-­‐C1.   These   constructs   were   stably   transfected   into   pituitary  GH4C1   cells.   Then   we   monitored   by   real-­‐time   video-­‐microscopy   EGFP   expression   and   determined   by   RTqPCR   the   nuclear   and  cytoplasmic   distribution   of   EGFP   mRNA   over   a   circadian   period.   We   also   aimed   to   identify   the   endogenous   RNA   targets   of  paraspeckles   in  GH4C1   cells.  We   developed   an   approach   used   to   analyze   RNA   targets   of   the  main   component   of   paraspeckles,  Neat1.With  this  approach  which  employed  capture  antisens  oligonucleotides  designed  to  specifically  hybridize  to  Neat1,  Neat1   is  enriched  together  with   its   targets  that  are   identified  by  RNA  sequencing.  Analysis  of   the  3’-­‐UTR  sequences  of  these  RNAs  shows  that  others  structural  elements  than  IRAlus  can  mediate  the  binding  of  RNA  to  the  paraspeckles.  

P15:  Stem  cells  in  the  hypothalamo-­‐pituitary  axis  Sam  Goldsmith,  Christophe  Galichet  ,  Robin  Lovell-­‐Badge  and  Karine  Rizzoti  The  Crick  Institute,  London,  UK  Organ-­‐specific  cell  renewal  can  be  achieved  by  cell  division  and/or  by  differentiation  from  stem  cells  (SC).  Recently,  populations  of  adult  hypothalamic  and  pituitary  SCs  have  been  characterized.   In   the  pituitary,   these  express   the   transcription   factors  SOX2  and  SOX9   (Fauquier   et   al.,   2008).   Using   cell-­‐lineage   tracing   we   showed   that   SOX2;SOX9+ve   progenitors   self-­‐renew   and   give   rise   to  endocrine  cells,  from  embryogenesis  to  adulthood.  In  the  embryo  SOX2  is  required  for  proliferation  and  the  protein  is  also  required  later,  for  melanotrophs  differentiation  (Goldsmith  et  al,   in  prep.).  In  the  adult,  SCs  mostly  maintain  their  identity,  so  we  explored  their   regenerative   potential.   Pituitary   target   organ   ablation   induces   a  mitotic  wave   in   the   gland   followed  by   generation   of   new  hormonal  cells;  cell  division  is  observed  in  non-­‐endocrine  cells  so  SCs  may  be  activated  (Nolan  et  al,  2006).  Combining  this  ablation  model  with   lineage  tracing,  we  showed  that  pituitary  SCs  proliferate  and  differentiate   in   the  appropriate  cell   type   (Rizzoti  et  al.,  2013).  To  understand  the  mechanisms  of  SC  mobilization,  we  used  the  somatostatin  analogue  Pasireotide  as  it  affects  the  pituitary  response   to   adrenalectomy   (Nolan   et   al.,   2007).   Pasireotide   administration   after   adrenalectomy   affects   proliferation   but   not  differentiation  of  SCs,  suggesting  that  these  events  are  regulated  independently.  In  the  hypothalamus,  SCs  express  SOX2  and  SOX3.  Sox3-­‐/-­‐  mutants  are  affected  by  hypopituitarism  (Rizzoti  et  al.,  2004)  but  the  deficiencies  only  appear  after  weaning.  We  show  that  Sox3  loss  affects  proliferation  and  differentiation  of  hypothalamic  progenitors  but  only  after  weaning.  In  Sox3-­‐/-­‐  median  eminence,  using   lineage  tracing,  we  observed  a  reduction   in  oligodendrocyte  differentiation,  as  pituitary  deficiencies  develop.  This  suggests  that   SCs   give   rise   post-­‐natally   to   oligodendrocytes,   required   in   the   median   eminence   for   a   functional   hypothalamo-­‐pituitary  connection  (Galichet  et  al,  in  prep).  

 

Page 52: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P16:  Pituitary  lactotroph  cell  ultrastructure  in  normal  and  reproductive  mutant  male  mice  Paul,  Nadine;  Abel,  Margaret;  Christian,  Helen  Department  of  Physiology,  Anatomy  and  Genetics,  University  of  Oxford  Testosterone  exerts  genomic  and  non-­‐genomic   rapid  effects   in   rats   to   stimulate  prolactin   secretion.  However,   there   is   relatively  little  known  about  the  effects  of  testosterone  on  the  structure  and  function  of  lactotrophs  in  male  mice.  Castration  of  mice  results  in  reduced  prolactin  content  in  the  pituitary  and  decreased  circulating  prolactin.  In  the  present  study  we  have  compared  the  effects  of  mutations  that  perturb  the  hypothalamic-­‐pituitary-­‐gonadal  axis  on  lactotroph  ultrastructure  in  male  mice.  Testicular  feminised  (tfm,  naturally  occurring  deletion  of   androgen   receptor),   luteinising  hormone   (LH)   receptor   knockout   (LuRKO),   and  hypogonadal  (hpg,   lack  GnRH)  mice  were   compared  with   control  wild-­‐type  mice.   Pituitary   glands   (8  week   old  mice)  were   collected   (n=4   per  group)  and  prepared  for  quantitative  electron  microscopy.   In  control  mice  type   I   lactotrophs  were   identified  by   irregular  shaped  secretory  granules  (10-­‐200nm  diameter)  and  type  II  lactotrophs  were  identified  by  regular-­‐shaped  secretory  granules,  as  in  the  rat  although  the  secretory  granule  size  was  smaller.  In  hpg,  tfm  and  LuRKO  mice  type  I  lactotrophs  were  smaller  in  size  than  controls  (P<0.05)  and  the  amounts  of  dilated  rough  endoplasmic  reticulum  were  reduced  (P<0.05)  in  hpg  and  LuRKO  mice  consistent  with  lack  of  testosterone  stimulation,  but  increased  in  tfm  mice.  Despite  androgen  insensitivity  testosterone  is  present  in  tfm  mice  and  may   act   on   lactotrophs   indirectly   via   conversion   to   estradiol.   Secretory   granule   density  was   not   significantly   different   between  control   and  mutant  mice   in   type   I   lactotrophs  but  was   increased   in   type   II   lactotrophs.   Fewer   (P<0.01)   secretory   granules  were  observed   adjacent   to   the   plasma  membrane   in   hpg   and   LuRKO   type   II   lactotrophs   than   in   control.   These   findings   indicate   that  lactotroph   ultrastructure   is   altered   in   different   gonadal   steroid   environments   and   are   consistent   with   a   lack   of   stimulation   by  testosterone  

 

P17:  The  gonadotroph-­‐vascular  unit  and  build-­‐up  of  LH  pulses  HOA  Ombeline,  LAFONT  Chrystel,  GUILLOU  Anne,  SAMPER  Patrick,  FONTANAUD  Pierre,  MOLLARD  Patrice  

CNRS  UMR5203,  INSERM  U1191,  University  of  Montpellier  The   hypothalamic-­‐pituitary-­‐gonadal   (HPG)   axis   controls   the   reproductive   function.   The   pituitary   gland   was   considered   as   a  patchwork  of  randomly  distributed  cells  which  simply  respond  to  hypothalamic  regulation,  but  it  turns  out  that  this  organ  is  highly  organized  into  structural  and  functional  cell  networks,  and  that  dynamics  of  pituitary  cell  networks  are  essential  for  the  build-­‐up  of  hormone   pulses.   Recent   preliminary   data   suggested   the   existence   of   a   Gonadotroph-­‐Vasculature   Unit   (GVU)   in  which   crosstalk  between  the  network  of  pituitary  gonadotrophs  and  vasculature  (pericytes  and  fenestrated  endothelial  cells)  may  be  prerequisites  for  regulation  of  LH  release  into  the  bloodstream.  Indeed,  the  gonadotroph  network  displays  at  proestrus  a  highly  dynamic  spatial  reorganization  which  is  correlated  with  changes  in  vascularisation/pericyte  coverage.  Our  working  hypothesis  is  that  GVU  plasticity  would  allow  pericytes  to  play  a  role  in  blood  flow  regulation  which  would  occur  during  LH  pulses/pre-­‐ovulatory  surge.  To  do  so,  we  use  optogenetic   tools  expression   in   transgenic  mice  models   to  modulate   the  activity  of  pericytes  during   LH   surges   following   i.v.  GnRH  or  Kisspeptin  injections.  We  study  GnRH  and  Kisspeptin  effects  in  pituitary  blood  flow  and  their  correlation  with  LH  secretion.  LH  secretion  will  be  determined  by  tail  vein  blood  sampling  and  ultra-­‐sensitive  hormone  ELISA.  Moreover  we  are  currently  adapting  the  use  of  GRIN  lenses  to  image  and  manipulate  blood  flow  during  LH  pulses  in  conscious  head-­‐fixed  mice.  Finally  we  are  setting  up  pituitary   gland   infection  with  AAV-­‐GCAMP6s   in  order   to  monitor   calcium   signals   in  GnRH   stimulated   gonadotrophs   in   conscious  animals.  These  experiments  are  expected  to  help  understand  the  role  of  GVU  remodelling  in  the  HPG  function.  

 

P18:  The  gonadotrope  lock  :  silencing  of  miR-­‐125  necessary  for  GnRH  activation  of  gonadotropins  expression  Lannes  J,  L’hôte  D,  Garrel  G,  Laverrière  JN,  Cohen-­‐Tannoudji  J  and  Quérat  B  Université  Paris-­‐Diderot,  Paris-­‐7  ;  CNRS  UMR  8251;  INSERM  U1133  

Gonadotropin-­‐releasing  hormone   (GnRH)  plays  a  key   role   in   the  vertebrate   reproductive   system  by  stimulating  biosynthesis  and  secretion  of  pituitary  gonadotropins.  Although  the  transcriptional  control  of  gonadotropin  subunit  genes  has  been  largely  studied,  the   involvement   of  microRNAs   (miRNAs)   still   needs   to   be   deciphered.  We   recently   showed   that  GnRH   activates   a  miR-­‐132/212  pathway,  involving  a  lowered  level  of  Sirt1  deacetylase  and  an  increase  in  the  acetylated  form  of  FoxO1,  releasing  its  transcriptional  inhibitory  action  on  Fshb  subunit  gene.  In  this  study,  we  investigated  the  role  of  miR-­‐125,  an  miRNA  that  showed  an  acute  decline  in   response   to   a  GnRH   treatment   in   the  murine   gonadotrope   cell   line,   LβT2.  We   first   demonstrated   that  GnRH  was  not   able   to  stimulate  gonadotropins  subunit  expression  when  miR-­‐125  was  overexpressed  in  rat  pituitary  gondadotrope  cells.  Overexpression  of   miR-­‐125   in   LβT2   cells   induced   a   marked   decline   in   mRNA   steady-­‐state   level   and/or   in   protein   level   of   a   number   of   known  mediators  of  GnRH  activation:  Gq/11  alpha,  IP3R,  CamK,  MKK7  and  c-­‐JUN,  Elk-­‐1  and  c-­‐Fos,  thus  affecting  both  calcium  and  MAPK  signalling  pathways.  Blocking  miR-­‐125  action  had  an  inverse  effect  on  all  these  actors.  In  contrast,  the  unmodified  phosphorylation  state   of   CREB   indicated   that   the   cAMP   signalling   pathway   is   not   altered   by   modulating   miR-­‐125   levels.   Interestingly,   miR-­‐132  expression  which  has  been   shown   to  be  CREB-­‐dependant,  exhibited  an  opposite  dynamic   to   that  of  miR-­‐125.   In  addition,  GnRH  treatment  stimulated  the  recruitment  of  miR-­‐132  into  the  RNA-­‐induced  Silencing  complex,  whereas  it  lowered  that  of  miR-­‐125.  The  mechanisms  involved  in  the  down-­‐regulation  of  miR-­‐125  are  still  under  investigation.  In  conclusion,  we  show  that  an  acute  decline  in   miR-­‐125   is   necessary   for   GnRH   activation   of   both   calcium   and  MAPK   signaling   pathways   and   for   the   resulting   activation   of  gonadotropin  subunit  genes  expression.  

Page 53: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P19:  MicroRNAs  flip  the  switch  for  the  production  of  hypothalamic  GnRH  before  puberty  Messina   Andrea1,2,   Langlet   Fanny   3,   Chlachaki   Konstantina   1,2   ,   Roa   Juan   4,5   ,   Rasika   S   1,   Jouy  Nathalie   1,2,   Gallet   Sarah   1,2,  Parkash  Jyoti  1,2,  Accili  Domenico  3,  Tena-­‐Sempere  Manuel  4,5,  Giacobini  Paolo  1,2,3,  Prevot  Vincent  1,2,3  1  Inserm,  Laboratory  of  Development  and  Plasticity  of  the  Neuroendocrine  Brain,  Jean-­‐Pierre  Aubert  Research  Centre,  UMR1172,  F-­‐59000   Lille,   France   2   University   of   Lille,   School   of   Medicine,   Lille,   F-­‐59000,   France   3   Columbia   University,   New   York,   USA   4  Department  of  Cell  Biology,  Physiology  and  Immunology,  University  of  Cordoba  &  Instituto  Maimonides  de  Investigación  Biomédica  de  Cordoba  (IMIBIC/HURS),  14004  Cordoba,  Spain  5  CIBER  Fisiopatología  de   la  Obesidad  y  Nutrición,   Instituto  de  Salud  Carlos   III,  14004  Cordoba,  Spain  A  sparse  population  of  a  few  hundred  primarily  hypothalamic  neurons  forms  the  hub  of  a  complex  neuroglial  network  that  controls  reproduction   in   mammals   by   secreting   the   "master   molecule",   gonadotropin-­‐releasing   hormone   (GnRH).   The   mechanisms  underlying   the   timely   changes   in   GnRH   expression   necessary   for   the   onset   of   puberty   are   unknown.   Here,   we   report   that   a  dramatic   inversion   in   microRNA   species   expressed   by   postnatal   GnRH   neurons   acts   as   an   epigenetic   switch   that   triggers   the  prepubertal   increase   in  GnRH   expression   and   the   correct   initiation   of   puberty.   The   disabling   of   this  microRNA-­‐mediated   switch  leads  to  hypogonadotropic  hypogonadism  and  infertility  in  mice.  The  underlying  mechanism  involves  a  complex  and  multilayered  network  of  GnRH  transcriptional  activators  and  repressors  reciprocally  controlled  by  several  microRNA  species  tuning  the  balance  between   inductive   and   repressive   signals   and   triggering   a   rise   in   hypothalamic   GnRH   expression.   Anomalies   in   this   microRNA-­‐mediated   switch,   which   appears   essential   for   the   neuroendocrine   control   of   reproduction,   could   thus   underlie   dysfunctions   of  human  puberty  and  fertility  when  a  genetic  cause  is  not  apparent.  

P20:  Dmxl2  haploinsufficiency  impedes  the  postnatal  maturation  and  activation  of  GnRH  neurons  in  mice.  Tata  Brooke  K  ,  Csaba  Zsolt  ,  Jacquier  Sandrine  ,  de  Roux  Nicolas  

INSERM  U1141,  Paris  Diderot  University,  Robert  Debré  Hospital  Puberty  involves  the  maturation  of  neuronal  circuits  where  synaptic  inputs  modify  GnRH  neuron  activity.  We  recently  described  a  new  neurodevelopmental  disorder   in  humans  associated  with  pubertal   and   fertility  defects  due   to  haploinsufficiency  of  DMXL2.  DMXL2  encodes   rabconnectin-­‐3α   (rbcn3-­‐α),  a   scaffolding  protein   for  Rab3-­‐GAP  and  RAB3-­‐GEP  proteins  and  V-­‐ATPase,  which  are  important   for   synaptic   plasticity   and   neurotransmitter   release.  We   previously   found   that   neuronal   loss   of   Dmxl2   in  mice   (Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt)  causes  infertility  associated  to  a  loss  of  GnRH  neurons  in  the  OVLT.  Because  the  GnRH  deficiency  in  Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt  mice  cannot  explain  the  complete  infertility,  we  suspect  an  additional  functional  defect  of  the  GnRH  neuron  system.  As  such,  we   pursued   to   characterize   the  GnRH  neuron   phenotype   in  Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt  mice.   Loss   of   neuronal   Dmxl2   impedes  morphological   maturation   of   OVLT   GnRH   neurons   which   could   not   respond   to   Kisspeptin-­‐10   nor   Estradiol.   Female   Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt  mice  had  a  blunted  circadian-­‐timed  LH  surge.  Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt  male  mice  showed  a  feminized  profile  of  kisspeptin  and  tyrosine  hydroxylase  in  the  AVPV,  suggesting  that  sexual  differentiation  is  perturbed.  We  found  evidence  indicative  that  Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt  mice  also  have  a  glutamatergic  defect.  Conditional  cre-­‐dependent  viral   filling  of  OVLT  GnRH  neurons   in  GnRH-­‐Cre+/-­‐;Dmxl2wt/wt  mice   showed   that   rbcn3-­‐α-­‐containing   terminals   contact  OVLT  GnRH  dendritic   spines,   associate  with  VgluT2-­‐positive  terminals,  wrap  between   juxtaposed  GnRH  dendrites,  and   is   in   the  GnRH  soma.  Collectively,  Nes-­‐Cre+/-­‐;Dmxl2-­‐/wt  mice  display  a  defect  in  the  maturation  of  GnRH  neurons  that  is  probably  related  to  a  decrease  in  glutamatergic  inputs  on  GnRH  neurons  during  the  juvenile  period.  This  study  opens  new  insights  in  the  characterization  of  the  postnatal  neurodevelopment  of  the  GnRH  neuronal  network  for  puberty  and  complete  gonadotropic  function  in  adulthood.  

P21:  Nitric  oxide  says  “NO”  to  promote  and  maintain  reproductive  capacity  Chachlaki  Konstantina  1  Messina  Andrea  1  Garthwaite  John  2,  Prevot  Vincent  1  1  Inserm,  U1172,  University  of  Lille,  France  2  The  Wolfson  Institute  for  Biomedical  Research,  University  College  London,  London,  UK  The  regulation  of  the  reproductive  axis  is  governed  by  a  delicate  balance  of  elaborate  positive  and  negative  signals  received  from  hypothalamic  neurons.  This  balance  is  of  pivotal  importance  for  the  initiation  of  puberty  and  normal  fertility.  Nitric  oxide  (NO)  and  its   downstream   signaling   cascades   are   critical   to   various   cellular   functions   in   the  brain,   including   the  neuroendocrine   control   of  reproduction.  NO   is  produced  by  neuronal  NOS-­‐expressing  neurons   (nNOS)   found   in   the  vicinity  of  GnRH-­‐containing  perikarya   in  the  preoptic  region  of  the  hypothalamus.  The  fact  that  nNOS  cells  surround  GnRH  cell  bodies,  creates  an  anatomical  relationship  between   the   two   neuronal   populations,   which   is   complemented   by   the   capacity   of   NO   to   modulate   GnRH   electrical   activity,  enabling   the   peak   release   of  GnRH   (Clasadonte   et   al.,2008).   Thus,   nNOS-­‐expressing   cells   are   considered   an   integral   part   of   the  neuronal  network  controlling  ovarian  cyclicity  and  ovulation,  provoking  the  peak  release  of  LH  (Bellefontaine  et  al.,2014;Hanchade  et   al.,2012).   Additionally,   recent   results   from   our   lab   demonstrate   a   different   role   of   NO,   proposing   its   implication   in   the  transcriptional   regulation   of   GnRH   during   the   crucial   infantile   period   (Messina   et   al.,subm).   Since   the   biological   actions   of   NO  depend   critically   on   its   concentration,   which   is   difficult   to   measure,   we   use   a   novel   cGMP   biosensor   in   combination   with   an  ultrasensitive  detector  cell   line   in  order  to  quantify  the  active  concentration  of  NO  being  released  in  a  mouse  hypothalamic  slice  using   live   imaging   techniques,   under   physiological   conditions   (Bhargava   et   al.,2013;Wood   et   al.,2011).   Our   results   suggest   that  nNOS  neurons  within   and   in  direct   proximity   to   the  OVLT,   a   site  devoid  of   the  blood  brain  barrier   and   to  which  GnRH  neurons  extend  dendrites,  relay  necessary  signals  to  GnRH  cells,  acting  as  mediators  of  repressive  cues  necessary  for  the  establishment  of  the  reproductive  balance  needed  to  promote  and  maintain  reproductive  capacity.  

 

Page 54: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P22:   Essential   role   of   α-­‐MSH   signaling   in   mediating   the   permissive   effects   of   leptin   on   puberty   onset   and   its  interplay  with  kisspeptin  pathways  Manfredi-­‐Lozano,  M1,2;   Roa,   J1,2;   Ruiz-­‐Pino,   F1,2;   Piet,   R3,   Garcia-­‐Galiano,   D1,2;   Zamora,   A1,2;   Leon,   S1,2;   Sanchez-­‐Garrido,  M.A.1,2;  Romero-­‐Ruiz,  A1,2;  Dieguez,  C.4;  Vazquez,  M.J.1,2;  Pineda,  R.4;  Herbison,  A.E.  3;  Pinilla,  L.1,2;  Tena-­‐Sempere,  M1,2.  1Department  of  Cell  Biology,  Physiology  and  Immunology,  University  of  Córdoba;  2Instituto  Maimónides  de  Investigaciones  Biomédicas  de  Córdoba  (IMIBIC)/Hospital  Universitario  Reina  Sofía,  14004  Córdoba,  Spain;  3Centre  for  Neuroendocrinology,  Department  of  Physiology,  University  of  Otago  School  of  Medical  Sciences,  Dunedin  9054,  New  Zealand;  4University  of  Santiago  de  Compostela,  15705  Santiago  de  Compostela,  Spain;  and  4Centre  for  Integrative  Physiology,  University  of  Edinburgh,  Hugh  Robson  Building,  George  Square,  Edinburgh  EH8  9XD,  UK.  

POMC  neurons  in  the  hypothalamic  arcuate  nucleus  (ARC)  play  a  key  role  in  energy  homeostasis,  mainly  via  the  release  of  α-­‐MSH,  which  acts  through  melanocortin  3  and  4  receptors   (MC3-­‐R  &  MC4-­‐R)  to  suppress   food   intake  and  mediate  the  effects  of   leptin.  Melanocortin  pathways   are   likely   involved   also   in   the   central   control   of   reproduction,   and   bidirectional   interactions  with   kisspeptins   (Kp),   ligands   of  Gpr54  and   indispensable  elements  of   the   reproductive  brain,  have  been  suggested.  Yet,   the   role  of  α-­‐MSH   in   the   regulation  of  puberty  onset   remains   ill   defined.   We   report   herein   that   central   activation   of   α-­‐MSH   signaling,   mainly   via   MC4-­‐R,   elicited   robust   luteinizing  hormone   (LH)   responses,   as   surrogate  marker  of   reproductive   axis   activity,   in  pubertal,   but  not   infantile   rats,   even  against   unfavorable  metabolic  conditions.   In  addition,  chronic  central  blockade  of  MC3/4-­‐R  during  the  pubertal  transition  delayed  the  timing  of  puberty  and  prevented   the  permissive  effect  of   leptin  on  puberty  onset.   Central   blockade  of  MC3/4-­‐R  or   selective  elimination  of  Kp   receptors   from  POMC  neurons  did  not   affect   LH   responses   to  Kp.  Conversely,  Gpr54  null  mice  displayed  markedly   attenuated  net   LH   responses   to  MC  receptor   activation,   whereas   blockade   of   α-­‐MSH   signaling   suppressed   Kiss1   expression   in   the   ARC   of   pubertal   female   rats.  Neuroanatomical   studies   documented   close   appositions   between   POMC   and   Kp   neurons   in   the  ARC   of   pubertal   female   rats.   Yet,   Kiss1  electrical   activity   was   not   overtly   modified   by   direct   application   of   α-­‐MSH   agonist,   suggesting   either   indirect   or   non-­‐action   potential-­‐mediated  mode  of  action.  In  sum,  our  data  document  the  essential  role  of  α-­‐MSH  pathways  in  the  physiological  control  of  puberty  and  in  transmitting   the   permissive   effects   of   leptin.   While   α-­‐MSH   signaling   seems   dispensable   for   the   reproductive   effects   of   Kp,   the  reproductive/pubertal  actions  of  α-­‐MSH  are,  at  least  partially,  mediated  via  direct  or  indirect  modulation  of  Kp  pathways.  

P23:  A  link  between  GnRH  neuronal  migration  and  central  precocious  puberty:  the  role  of  Semaphorin3A/Neuropilin-­‐1  signaling  in  GnRH  neurons  Charlotte  Vanacker  1,  ,  Filippo  Casoni1,  Andrea  Messina1,  Sophie  Croizier2,  Naresh  Kumar  Hanchate1,  Sébastien  G  Bouret1,2,  Paolo  Giacobini1,  Vincent  Prevot1  1  Inserm  U1172,  University  of  Lille,  CHRU  of  Lille,  France  2  Developmental  Neuroscience  Program,  The  Saban  Research  Institute,  Children’s  Hospital  Los  Angeles,  University  of  Southern  California,  Los  Angeles,  California,  United  States  of  America  

Semaphorin3A   (Sema3A)   and   its   receptor,   neuropilin   1   (Nrp1),   are   involved   in   the   guidance   of   GnRH   neuron  migration   during  embryogenesis.  Disruption  of  Sema3A  gene  expression  or  of  neuropilin  1  signaling  indeed  causes  marked  GnRH  migratory  defects  in  mice,   and   Sema3A   has   recently   been   described   as   a   Kallmann   gene.   However,   the   specific   role   of   Nrp1   expression   in   GnRH  neurons  remains  to  be  elucidated.  Here,  we  analyze  the  phenotype  of  mice  in  which  Nrp1  expression  was  selectively  knocked  out  in  GnRH   neurons.   Animals   harboring   the   conditional   Nrp1   allele  were   crossed  with   a  mouse   line   expressing   the   Cre   recombinase  under   the  control  of   the  endogenous  GnRH  gene  promoter.  The  efficacy  of  our  genetic   strategy  was   shown  by   the   loss  of  Nrp1  expression  in  GnRH  neurons  of  mutant  (GnRH-­‐Cre;  Nrp1lox/lox)  but  not  wild-­‐type  (Nrp1lox/lox)  littermates.  Unexpectedly,  mutant  mice   that  did  not   show  any  alteration  of  adult   reproductive   function,  exhibited  precocious  puberty.  While  wild-­‐type  mice   reach  puberty  (first  ovulation)  at  postnatal  day  50  (P50),  mutant  mice  first  ovulate  at  P45.  Interestingly  mutant  mice  also  have  impaired  energy  balance,  as  they  exhibit  higher  body  weight  and  fat  mass  than  control   littermates.  Our  preliminary  neuroanatomical  data  suggest  that  while  there  is  no  overt  difference  in  the  total  number  of  GnRH  neurons  in  the  brain,  their  distribution  differ  between  mutant   mice   and   wild-­‐type   littermates.   This   phenomenon   is   probably   due   to   differential   migration   of   the   cells   during  embryogenesis,  since  we  have  already  noted  differences  in  GnRH  neuronal  distribution  from  nose  to  brain  at  embryonic  age  14,5.  Even  though  further  analyses  are  required  to  determine  the  causes  of  this  precocious  puberty,  the  present  study  report  a  role  for  Nrp1  expression  in  GnRH  neurons  in  the  correct  development/physiology  of  the  reproductive  axis.  

P24:  A  novel  role  for  anti-­‐müllerian  hormone  on  the  development  of  the  GnRH  system    Malone,  SA,  Cimino,  I,  Jamin,  SP,  Prevot,  V,  Giacobini,  P  INSERM  U1172  &  University  of  Lille,  France  

Gonadotropin-­‐releasing  hormone   (GnRH)  neurons  originate   in   the  olfactory  placode  and  must  migrate  during  embryogenesis   to  reach  the  basal  forebrain  where  in  postnatal  life  they  function  as  the  master  regulators  of  reproductive  function.  Disruption  of  the  GnRH  migratory  process  results  in  hypogonadotrophic  hypogonadism  and  infertility.  A  number  of  factors  have  been  identified  that  regulate  this  migration  and  here  we  present  novel  evidence  that  anti-­‐Müllerian  hormone  (AMH)  acts  as  a  putative  regulator  of  this  developmental  process.  Recent   immunohistochemical   data   from  our   lab  have  demonstated   that   the  AMH   receptor   (AMH-­‐R2)   is  expressed  by  GnRH  neurons  both  during  development  and  postnatal  life  and  that  AMH  is  expressed  in  the  olfactory  epithelium  and  along  the  olfactory  fibers.  Further,  Amhr2  null  mice  display  a  30%  reduction  in  the  total  number  of  GnRH  neurons  located  in  the  brain,   coupled  with  an  altered  spatial  distribution.  Taken   together   these  data   suggest   that  AMH  may  be   important   in   regulating  GnRH  cell  survival  during  migration  or  to  facilitate  correct  migratory  behavior.  We  first  validated  that  the  immortalized  GnRH  cell  lines  Gn11  and  GT1-­‐7  express   the   receptors   required   to   transduce   the  AMH  signal.  We   then  assessed   the  effect  of  AMH  on   the  survival  of  both  Gn11  and  GT1-­‐7  cell   lines  by  MTT  and  flow  cytometry;  neither  approach  suggesting  that  AMH  is  able  to  increase  cell   survival   in  either  cell   line  when  challenged  with  pro-­‐apoptotic   factors.  AMH  was,  however,  able   to   significantly   increase  cell  motility  in  Gn11  cells  –  a  model  of  migrating  GnRH  neurons.  Together  this  data  identify  AMH  as  a  novel  putative  regulator  of  the  GnRH  migratory  process  

Page 55: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P25:  Beta-­‐NGF  regulates  GnRH  neurones  activity  Pinet-­‐Charvet  Caroline,  Duittoz  Anne  PRC,  INRA  U85,  CNRS  UMR727,  Université  de  Tours,  IFCE,  Tours  France.  Université  de  Poitiers,  Poitiers  France  GnRH   is   an   important   hormone   for   adequate   regulation   of   reproduction.   The   frequency   of   its   pulsatile   release   is   the   major  condition  to  the  secretion  of  two  pituitary  hormones,  FSH  which  is  involved  in  the  ovarian  follicle  maturation,  and  LH  whose  peak  is  responsible  for  ovulation.  In  animals  such  as  llamas,  alpacas  and  camels,  an  ovulation  inducing  factor  (OIF)  triggers  ovulation  at  the  time  of  mating.  Mass  spectrometry  studies  have  shown  this  OIF   to  be  beta-­‐NGF,  present   in  80%  of   the  seminal  plasma   in   these  species.   Several   studies   have   demonstrated   that   intramuscular   injection   of   beta-­‐NGF   resulted   in   the   release   of   LH   induced   by  secretion  of  GnRH  in  alpaca  but  also  in  species  with  spontaneous  ovulation  such  as  ewes.  The  purpose  of  the  present  study  was  to  investigate   the   effects   of   recombinant   beta-­‐NGF   on   GnRH   neurones.   Olfactory   placodes   explants   were   dissected   from   mouse  embryos  (E11.5).  Loose-­‐patch  electrophysiology  and  calcium  imaging  experiments  were  performed  on  cultured  GnRH  neurons  (10  DIV).  Here  we  found  that  beta-­‐NGF   increased  the  frequency  of  action  potentials  of  GnRH  neurons   in  a  dose-­‐dependent  manner.  Calcium  events   frequency  and  synchronization  were  also  affected  at  single  cell  and  network   levels.   In  addition,   immunostainings  revealed   rearangements  between   surrounding  glial   cells   and  GnRH  neurones,   suggesting  a  mechanism   involving  a  glial-­‐neuronal  cross-­‐talk.    Thus  our  results  bring  new  insights   into  the  understanding  of  beta-­‐NGF  effect  on  GnRH  neurons.  As  beta-­‐NGF  targets  two  different  receptors  p75  and  TrkA,  which  are  differentially  expressed  in  neurons  or  glial  cells,  more  experiments  are  necessary  to  determine  if  beta-­‐NGF  acts  directly  on  neuron  or  through  glial  cells.  

P26:  Investigating  sexual  dimorphism  and  morphological  plasticity  in  GABAergic  input  to  gonadotropin-­‐releasing  hormone  neurons  Moore,  Aleisha  M.;  Yip,  Siew  Hoong;  Campbell,  Rebecca  E.  University  of  Otago,  Centre  for  Neuroendocrinology  and  Department  of  Physiology,  Dunedin,  New  Zealand  9013  

The  density  of  GABA  terminals  to  gonadotropin-­‐releasing  hormone  (GnRH)  neurons  is  enhanced  in  prenatally  androgenised  female  mice  that  display  impaired  steroid  hormone  negative  feedback.  GABA  neurons,  in  the  arcuate  nucleus  in  particular,  have  recently  been  implicated  in  mediating  steroid  hormone  feedback  directly  to  GnRH  neurons.  The  present  study  aimed  to  determine  whether  GABAergic   input   to   GnRH   neurons   differs   between   males   and   females,   and   exhibits   morphological   plasticity   over   the   female  estrous   cycle.   Tissue   collected   from   GnRH-­‐green   fluorescent   protein   (GFP)   male   (n=   5)   and   female   mice   in   diestrus   (n=   5)  underwent  immunofluorescent  labelling  of  GFP  and  the  vesicular  GABA  transporter  (vGaT).  The  density  of  vGaT-­‐immunoreactive  (-­‐ir)   puncta   apposed   to   GnRH   neuron   somata   and   proximal   dendrites   was   not   different   between   males   and   females.   To   assess  putative   GABAergic   innervation   to   the   full   extent   of   GnRH   neurons   and   over   the   female   estrous   cycle,   GnRH-­‐Cre   mice   were  stereotaxically   injected   with   a   cre-­‐dependent   adenovirus   expressing   farnesylated   enhanced   green   fluorescent   protein   into   the  preoptic  area.  Tissue  was  collected  at  least  one  week  later  from  mice  in  the  diestrous,  proestrous  or  estrous  stage  of  the  cycle  (n=  4/   group)   and   sagittal   brain   sections  were   labelled   for  GFP   and   vGaT.   Putative  GABAergic   inputs  were   greatest   to   the   proximal  dendrites  of  GnRH  neurons  in  the  preoptic  area.  The  density  of  vGaT-­‐ir  puncta  to  GnRH  neurons  was  not  significantly  different  in  animals   in   different   estrous   cycle   stages,   indicating   that   GABAergic   input   to   GnRH   neurons   does   not   exhibit   significant  morphological  plasticity  across  the  estrous  cycle.  Together,  these  data  suggest  that  prenatal  androgen  induced  re-­‐wiring  of  GABA  inputs   to   GnRH   neurons   do   not   reflect   masculinization   of   GABA   innervation   and   that   cyclic   fluctuations   in   steroid   hormone  feedback  over  the  female  estrous  cycle  is  unlikely  to  result  in  plastic  changes  in  GABA  inputs  to  GnRH  neurons  

P27:  Design  of  a  selective  kisspeptin  analog  capable  of  synchronizing  ovulation  Beltramo  Massimiliano1,  Robert  Vincent1,  Lomet  Didier1,  Anger  Karine1,  Galibert  Mathieu2,  Madinier  Jean-­‐Baptiste2,  Marceau  Philippe2,  Delmas  Agnès2,  Caraty  Alain1,  Aucagne  Vincent  2,  Decourt  Caroline1.  1UMR  Physiologie  de  la  Reproduction  et  des  Comportements  (INRA,  UMR85;  CNRS,  UMR7247;  Université  François  Rabelais  Tours;  IFCE)  F-­‐37380  Nouzilly,  France;  2Centre  de  Biophysique  Moléculaire  (CNRS  UPR  4301)  F-­‐45071  Orléans  cedex  2,  France.  GnRH   secretion   is   central   to   reproduction   control   and   the  neuropeptide   kisspeptin   (Kp)   is   the  most  potent  GnRH   secretagogue.  Hence,   Kp   system   is   an   appealing   target   to   develop   new   methods   to   manage   reproduction   and   heal   related   pathologies.  Endogenous   Kp   isoforms   have   short   in   vivo   half-­‐life   and   continuous   administration   is   required   to   obtain   the   wanted   effects.  However,  in  livestock  management  and  in  human  therapy  a  single  injection  is  preferable  to  continuous  administration.  To  meet  this  need  we  designed  analogs  of  the  10  amino  acid  isoform  of  Kp  with  improved  pharmacokinetics  and  pharmacodynamics.  To  this  aim  we  combined  various  modifications  improving  resistance  to  degradation  and  reducing  renal  clearance.  Our  effort  produced  analogs  that  compared  to  Kp10  have  equal  efficacy,  similar  or  better  potency,  and  a  prolonged  half-­‐life  in  blood  serum.  Several  compounds  were  active  by  intramuscular  injection  at  very  low  doses  (5  to  15  nmoles/ewe)  and  LH  level  was  still  higher  than  basal  nine  hours  after  analog  injection.  When  injected  during  the  breeding  season,  in  ewes  pretreated  with  flugestone  acetate  (FA)  for  14  days,  the  best   Kp   analog   produced   a   superior   synchronization   of   LH   surge   compared   to   available   treatment   (pregnant   mare   serum  gonadotropin).   In  presence  of  a  ram  treated  ewes  showed  all  behavioral  signs  of  estrus.  Ovulations  triggered  by  Kp  analog  were  fertile  as   indicated  by   the   rate  of  pregnancy   (7  out  of  10)  obtained  after   servicing.  Experiments  are  ongoing   to  assess   if  analogs  could   also   induce   ovulation   during   the   non-­‐breeding   season.   In   conclusion   we   generated   a   Kp   analog   with   improved  pharmacokinetics   and   pharmacodynamics   capable   of   inducing,   after   a   single   intramuscular   injection,   synchronized   fertile  ovulations   in  ewes  pretreated  with  FA.  This  molecule  holds  a  strong  potential  to   improve  management  of   livestock  reproduction  and   possibly   to   treat   human   reproductive   disorders   due   to   reduced   GnRH   secretion.   Supported   by   Région   Centre   (Reprokiss  grant).  

Page 56: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P28:  Neuromedins  U  and  S  differentially  regulate  pulsatile  LH  and  prolactin  secretion  and  are  expressed  in  the  supraoptic  and  paraventricular  nuclei  in  ewes.  Grachev,  Pasha;  Valent,  Miroslav;  Goodman,  Robert  L.  Department  of  Physiology  &  Pharmacology,  West  Virginia  University,  Morgantown,  WV,  USA  Prolactin  (PRL)  secretion  is  elevated  annually  during  long  days  and  is  stimulated  by  estradiol,  while  pulsatile  LH  secretion  is  subject  to   negative   feedback   effects   of   gonadal   steroids   and   photoperiodic   suppression.  We   have   recently   demonstrated   the   biphasic  effect  of  central  administration  of  NMU-­‐8,  a  synthetic  peptide  the  sequence  of  which  resembles  the  receptor-­‐binding  portion  of  endogenous   ovine   neuromedins   U   and   S,   on   LH   pulse   amplitude   in   ewes   –   stimulatory   in   ovary-­‐intact   and   inhibitory   in  ovariectomized  sheep.   In   light  of   the  differential   regulation  of  prolactin  and  LH,  we  proposed   that  NMU-­‐8  would  have  converse  effects  on  PRL  pulse  amplitude.  To  test  this  hypothesis,  we  examined  the  effects  of  intracerebroventricular  administration  of  NMU-­‐8  on  PRL  levels  in  frequently  sampled  blood  from  anestrous  or  ovariectomized  ewes.  Immunohistochemistry,  utilizing  a  polyclonal  antibody  raised  in  rabbit  against  NMU-­‐8,  was  performed  as  a  first  step  in  exploring  the  localization  of  endogenous  ovine  neuronal  populations   expressing  neuromedins  U  and   S.   Contrary   to  our  hypothesis,  NMU-­‐8   failed   to   affect   PRL  pulse   amplitude   in   either  anestrous  or  ovariectomized  ewes,  but  did  exert  significant  biphasic  influence  over  PRL  pulse  frequency:  inhibitory  in  ovary-­‐intact  anestrous  and  stimulatory  in  ovariectomized  ewes.  Discrete  populations  of  neuromedin  U/S-­‐immunoreactive  soma  were  localized  to  the  supraoptic  (including  auxiliary  supraoptic)  and  paraventricular  nuclei.  These  are  the  first  data  in  sheep  that  detail  effects  of  central  neuromedin  U/S  signaling  on  pulsatile  PRL  secretion  and  the  hypothalamic  expression  of  endogenous  ovine  neuromedins  U  and/or  S.  Source  of  research  support:  NIH  RO1  HD039916  (RLG)  

P29:  Anatomical  and  phenotypical  evidences  for  early  prenatal  maturation  of  the  kisspeptin-­‐GnRH  system  

Alfaïa  Caroline,  Poissenot  Kevin,  Faure  Mélanie,  Robert  Vincent  and  Franceschini  Isabelle  UMR  INRA-­‐CNRS-­‐Université  de  Tours-­‐IFCE,  Physiologie  de  la  Reproduction  et  des  Comportements.  37380  Nouzilly  

Kisspeptin   (Kp),  encoded  by  Kiss1,   is  a  potent  secretagogue  of  GnRH  playing  key  roles   in  sexual  differentiation  and  regulation  of  reproductive   cycles.   Kp   is   synthesized   by   neurons  with   specific   estrogen   sensitivity,   located   in   the   periventricular   region   of   the  preoptic   area   (POA)   and   in   the   arcuate   nucleus   (Arc)   where   these   also   express   neurokinin   B   (NKB).   Close   anatomical  interconnections  between  POA  Kp  neurons,  Arc  kp  neurons  and  GnRH  neurons  exist   in  adults.  Recently,  we  discovered  that  Kp  is  already  produced  and  regulated  prenatally  in  the  Arc  which  prompted  us  to  refine  the  prenatal  development  of  Kp  neurons.  Here,  we   used   a   knock-­‐in   mouse   expressing   cre-­‐GFP   under   control   of   the   Kiss-­‐1   promoter   to   define   by   immunohistochemistry   the  spatiotemporal  pattern  of  Kiss-­‐GFP  expression  in  the  fetal  brain,  in  relation  to  Kp,  NKB,  GnRH,  sox2  and  Era.  GFP-­‐immunoreactive  (ir)  cells  increased  with  age,  were  first  detected  at  embryonic  day  (E)  13.5  in  the  mantle  layer  of  the  tuberal  hypothalamus,  were  clustered  on  either  side  of  the  infundibular  recess  up  to  the  mammillary  recess  at  E14.5  and  accumulated  around  the  infundibulum  at  E16.5.  Phenotypic  differences  were  further  noted:  between  E14.5  and  E16.5  the  proportion  of  GFP/ERa-­‐ir  increased  while  that  of  GFP/sox2-­‐ir  decreased  and  cells  of   the  posterior  Arc  displayed  a  more   immature  profile   than   the  anterior  one.  Preliminary  data  suggests  an  increase  in  Kp-­‐ir  between  E14.5  and  E16.5  and  in  NKB-­‐ir  between  E16.5  and  E18.5  in  females.  Kp-­‐ir  at  E16.5,  and  NKB-­‐ir  at   E18.5  were   detected   around  many   GFP-­‐ir   cell   nuclei   and   along   fibers   in   the   Arc,  median   eminence   and   POA   including   in   its  periventricular  part.  No  evidence  for  GFP  or  Kp-­‐ir  cell  bodies  were  found  outside  the  Arc  at  any  stage  analyzed.  GnRH  fibers  were  seen   close   to   GFP/kp   cell   bodies   and   reciprocally.   Taken   together,   these   results   show   an   early   prenatal   maturation   of   Arc   Kp  neurons.  Potential  sex  differences  in  this  prenatal  maturation  are  currently  being  investigated.  

P30:  Somatostatin  (SOM)  contacts  on  kisspeptin  (KP)  neurons  in  the  arcuate  nucleus  both  in  ewes  and  rats:  a  possible  involvement  of  SOM  on  KP-­‐induced  LH  secretion.  Dufourny  Laurence,  Delmas  Oona,  Decourt  Caroline,  Martinet  Stéphanie  

UMR  Physiologie  de  la  Reproduction  et  des  Comportements  (PRC),  Centre  INRA  de  Tours,  37380  Nouzilly.  Kisspeptin  (KP)  is  the  most  potent  secretagogue  of  GnRH  secretion  known  to  date  in  mammals.  Its  secretion  is  under  the  control  of  several   endogenous   hormones   and   neuromodulators   among  which   some   are   involved   in   the   control   of   both   reproduction   and  metabolic  homeostasis.  A  former  study  performed  by  Pillon  et  al.  (2004)  in  the  ewe  pinpointed  an  inhibitory  action  of  somatostatin  (SOM)  on  LH  pulsatility  within  30  min  following  intracerebroventricular  (icv)  delivery  suggesting  that  SOM  acting  directly  or  through  interneurons  was  able  to  inhibit  GnRH  neuron  activity.  Our  hypothesis  is  that  SOM  inhibits  KP  neuron  activity  directly  in  order  to  modulate  GnRH  release.  We  performed  a   triple   immunofluorescent  approach  to  detect  simultaneously  KP,  SOM  and  synapsin,  a  marker  for  synaptic  vesicles,  on  sections  from  ewes  killed  during  the  breeding  season  having  therefore  an  activated  gonadotrope  axis  and  high  numbers  of  KP  neurons  in  the  arcuate  nucleus  (ARC).  The  same  approach  was  also  performed  on  sections  from  male  rats  killed  following  a  colchicine  icv  treatment.  Sections  from  the  preoptic  area  (POA)  and  from  the  mediobasal  hypothalamus  were  counterstained  with  DAPI  and  examined  under  a  confocal  microscope.  KP  neurons  were  randomly  chosen  in  the  POA  and  ARC  and,  SOM  neurons  were   observed   in   these   2   regions   and   in   the   ventromedial   hypothalamus   (VMH).   Both   in   ewes   and   rats,   ARC   KP  neurons  were  densely  surrounded  by  SOM  terminals  while  in  the  POA  few  SOM  terminals  were  found  on  KP  neurons.  SOM  neurons  were  scarcely  contacted  by  KP  terminals   in   the  POA  and  VMH  of  both  species  while  more  SOM  neurons  with  KP  terminals  were  observed  in  the  ovine  ARC  than  in  the  rat  ARC.  Quantitative  estimations  are  currently  underway  to  strengthen  these  observations.  Our  data  suggests  a  strong  inhibitory  action  of  SOM  on  KP  neurons  found  in  the  ARC  both  in  males  and  females  of  ovine  and  rodent  species.  This  remains  to  be  ascertained  using  other  approaches  such  as  electrophysiology.  

 

Page 57: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P31:  Inputs  to  arcuate  kisspeptin  neurons  revealed  by  conditional  viral  transneuronal  tracing  Shel-­‐Hwa  Yeo,  Victoria  Kyle  and  William  H.  Colledge  Department  of  Physiology,  Development  and  Neuroscience,  University  of  Cambridge,  Cambridge,  UK  Kisspeptin  neurons  are  well  established  as   the  crucial   regulator  of   reproduction  and   fertility   in  mammals.  However,   the  circuitry  controlling  kisspeptin  neurons  remained  uncharacterised.  We  therefore  investigated  the  inputs  onto  ARN  kisspeptin  neurons  using  genetically  restricted  transsynaptic  retrograde  tracing  strategy.  We   injected  the  conditional  pseudorabies  virus   (Ba2001)   into  the  ARN   that   can   replicate   only   in   Cre-­‐expressing   kisspeptin   neurons.   Since   Ba2001   transports   across   synapses   exclusively   in   a  retrograde  manner,  we  were   able   to   identify   a   subset   of   the   neurons   upstream  of   the   Cre-­‐expressing   ARN   kisspeptin   neurons.  Expression   of   green   fluorescent   protein   (GFP),   the   marker   for   both   viral   infection   and   replication,   was   observed   in   kisspeptin  neurons  within  the  injection  site  32  hours  post-­‐injection  (females,  n=3;  males,  n=3).  Two  to  three  days  post-­‐injection,  we  identified  forebrain   inputs   from   the   subfornical   organ,   ventral   tuberomammillary,   ventrolateral   part   of   the   ventromedial   nucleus,  paraventricular  and  periventricular  nuclei.  We  also  observed  midbrain   input   from   the   interpeduncular  nucleus.   Interestingly,  we  observed   a   small   subset   of   proopiomelanocortin   (POMC)-­‐expressing   neurons   in   the   ARN   labelled   with   GFP   48-­‐72   hours   post-­‐innoculation  (n=3,  females;  n=2,  males),  indicating  synaptic  connectivity  between  POMC  neurons  and  ARN  kisspeptin  neurons.  Five  days   after   Ba2001   injection,   GFP-­‐expressing   cells   were   found   in   additional   brain   regions,   the   bed   nucleus   of   stria   terminalis,  suprachiasmatic  nuclei,  posterodorsal  part  of  the  medial  amygdala,  amygdalohippocampal  region  and  the  medial  habenula;  which  represented  the  secondary  or  tertiary  afferents  of  the  ARN  kisspeptin  neurons.  Our  observations  demonstrate  that  ARN  kisspeptin  neurons   receive   direct   projections   from  brain   regions   that   are   involved   in   appetite   and  metabolic   regulation,   sleep/wake   cycle,  stress  response  and  sexual  behaviour.  This  work  is  supported  by  BBSRC  grant  (BB/K003178/1).  

P32:  Vasopressin  effect  on  intracellular  calcium  in  pre-­‐optic  kisspeptin  neurons  Richard  Piet1,  Antoine  Fraissenon1,  Ulrich  Boehm,  2,  Allan  E.  Herbison,  1  1  Centre  for  Neuroendocrinology  and  Department  of  Physiology,  Otago  School  of  Medical  Sciences,  University  of  Otago,  9054  Dunedin,  New  Zealand.  2  Department  of  Pharmacology  and  Toxicology,  University  of  Saarland  School  of  Medicine,  D-­‐66421  Homburg,  Germany  The   Luteinizing   hormone   (LH)   surge   driven   by   gonadotropin-­‐releasing   hormone   (GnRH)   neurons   is   crucial   for   ovulation   in  mammals.   Kisspeptin   neurons   located   in   the   rostral   periventricular   area   of   the   third   ventricle   (RP3V)   are   thought   to   integrate  ovarian   steroids   feedbacks   and   circadian   inputs   controlling   LH   surge   timing.   Recently,   RP3V   kisspeptin   neurons  were   shown   to  express   the   arginine   Vasopressin   Receptor   1a   (V1a)   and   to   receive   Arginine   Vasopressin   (AVP)   projections   from   the   Supra-­‐Chiasmatic  Nucleus   (SCN),   the  biological   clock  driving   circadian   rhythms   in  mammalian.  Previous  works   in   the   lab  demonstrated  that  AVP  increases  RP3V  kisspeptin  neurons  firing  rate  in  an  estrogen  dependent  manner.  Here,  we  firstly  explored  the  AVP  effect  on   the   intracellular   calcium  concentration  ([Ca!!]!)   in  RP3V  kisspeptin  neurons  using   a   transgenic  mice  expressing   a   genetically  encoded  calcium  indicator  called  GCaMP3  in  kisspeptin  neurons.  Following  AVP  administration,  a  significant  and  reversible  [Ca!!]!  increase  was  observed  in  RP3V  kisspeptin  neurons.  Moreover,  in  presence  of  sodium  channel  and  fast  amino  acid  synaptic  blockers,  a  second  AVP  application  also  induced  [Ca!!]!  increase  in  RP3V  kisspeptin  neurons.  Secondly,  we  performed  AVP  administration  on  RP3V   kisspeptin   neurons   from  ovariectomized  mice   and   demonstrated   that   ovarian   steroid   deprivation   suppressed  [Ca!!]!     rise  evoked   by   AVP.   Altogether,   we   showed   that   AVP   induces   a   reversible,   reproducible   and   directly-­‐mediated  [Ca!!]!  rise   in   RP3V  kisspeptin  neurons.  We  also  demonstrated  that  ovarian  mediators  are  required  for  [Ca!!]!  increase  evoked  by  AVP  administration  in  RP3V  kisspeptin  neurons.  Therefore,  these  data  support  that  ovarian  steroids  influence  how  RP3V  kisspeptin  neurons  integrate  the  vasopressinergic  circadian  input  controlling  the  LH  surge  timing.  

P33:  Increased  kisspeptin  fibre  innervation  in  the  pregnant  mouse  paraventricular  and  supraoptic  nuclei  Rachael  Augustine,  Gregory  Bouwer  and  Colin  Brown  Centre  for  Neuroendocrinology  and  Department  of  Physiology,  University  of  Otago,  New  Zealand  

Oxytocin   secretion   is   required   for   normal   birth.   An   increase   in   action   potential   firing   of   oxytocin   neurons   of   the   hypothalamic  paraventricular   nucleus   (PVN)   and   supraoptic   nucleus   (SON),   releases   oxytocin   from   the   posterior   pituitary   gland   into   the  circulation.  Oxytocin  causes  uterine  contractions,  which  aids  in  the  delivery  of  the  newborn.  The  trigger  for  increased  oxytocin  cell  firing  is  largely  unknown.  However,  we  have  shown  that  intracerebroventricular  injection  of  the  neuropeptide,  kisspeptin,  increases  the  firing  rate  of  SON  oxytocin  neurons  in  vivo  in  late-­‐pregnant  rat  but  not  in  non-­‐pregnant  rats.  Coincident  with  the  emergence  of  kisspeptin  excitation  of  oxytocin  cells,  is  an  increase  in  kisspeptin  fibre  density  around  the  SON  at  the  end  of  pregnancy.  Here,  we  tested  whether  this  plasticity   in  kisspeptin   fibre  density  and  oxytocin  neuron  response  to  kisspeptin   is  evident   in  pregnant  mice.  Kisspeptin  and  oxytocin  double-­‐label  immunofluorescent  staining  was  carried  out  on  perfused  brain  slices  from  non-­‐pregnant  (n  =  7),  day  7,  14  and  19  (n  =  8/group)  pregnant  and  day  7  lactating  (n  =  7)  mice.  Sections  were  photographed  on  a  confocal  microscope  and  the  average  voxels/section  (one  section/animal)  in  the  PVN  and  SON  were  analysed  using  FIJI  as  a  measure  of  kisspeptin  fibre  density   in  the  PVN  and  SON.  Kisspeptin  fibre  density  within  the  PVN  of  day  19  pregnant  mice  (337.0  ±  107.8  voxels/section)  was  higher  than  in  non-­‐pregnant  mice  (92.9  ±  25.01  voxels/section;  P  <  0.05).  Similarly,  kisspeptin  fibre  density  within  the  SON  of  day  19  pregnant  mice  (68.3  ±  12.1  voxels/section)  was  higher  than  in  non-­‐pregnant  mice  (19.0  voxels/section  ±  4.1;  P  <  0.05).  We  are  also  investigating  whether  oxytocin  neurons  in  the  PVN  and  SON  of  mice  are  activated  after  ICV  kisspeptin  administration  using  cFos  as  a  marker  of  activation  in  these  neurons.  Preliminary  results  suggest  ICV  kisspeptin  induces  Fos  in  the  SON  and  PVN  but  Fos  is  not  co-­‐expressed  in  oxytocin  neurons  and  appears  to  be  co-­‐expressed  in  vasopressin  neurons.  Kisspeptin  fibre  innervation  to  the  SON  and   PVN   increases   over   pregnancy   and   might   contribute   to   oxytocin   neuron   excitation   at   parturition   but   an   acute   kisspeptin  injection  at  the  end  of  pregnancy  does  not  increase  Fos  expression  in  oxytocin  neurons  at  this  time.  

Page 58: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P34:  Kisspeptin  does  not  affect  excitatory  postsynaptic  current  frequency  or  amplitude  in  magnocellular  neurosecretory  cells  from  virgin  or  pregnant  rats  Seymour,  Alexander;  Piet,  Richard;  Campbell,  Rebecca;  Brown,  Colin  Centre  for  Neuroendocrinology  and  Department  of  Physiology,  Otago  School  of  Medical  Sciences,  University  of  Otago,  Dunedin,  New  Zealand  Oxytocin  magnocellular  neurosecretory  cells  (MNCs)  of  the  supraoptic  nucleus  (SON)  and  paraventricular  nucleus  secrete  oxytocin  from  the  posterior  pituitary  gland   in  response  to  action  potential   firing  to  cause  contraction  of  the  uterus  during  parturition  and  mammary   gland   ducts   during   lactation.   The  mechanisms   that   underpin   oxytocin   neuronal   activity   at   these   times   remain   poorly  understood.   Using   in   vivo   electrophysiology   in   anaesthetised   rats,   we   have   shown   that   intracerebroventricular   kisspeptin  administration  excites  oxytocin  neurons  in  late  pregnant  rats  but  not  in  virgin  rats.  To  determine  the  mechanisms  of  this  excitation,  we  performed  whole-­‐cell  recordings  of  MNCs  in  hypothalamic  slices  from  virgin  and  late-­‐pregnant  rats  (gestation  day  18  –  21).  We  measured   miniature   excitatory   postsynaptic   current   (mEPSC)   frequency   and   amplitude   in   response   to   kisspeptin   at   a   holding  potential  of   -­‐60  mV  under  constant  perfusion  of  100  μM  picrotoxin   to  block  GABA-­‐mediated  events  and  0.5  μM  tetrodotoxin   to  block   action   potential-­‐mediated   events.   While   spontaneous   mEPSC   frequency   was   significantly   lower   in   late-­‐pregnant   rats  compared   to   virgin   rats   (P   =   0.02,   t-­‐test),   1   μM   kisspeptin   did   not   affect   the   mEPSC   frequency   (P   =   0.70,   two   way   repeated  measures   ANOVA)   or   amplitude   (P   =   0.77)   in   MNCs   from   virgin   or   late-­‐pregnant   rats.   The   mean   baseline   current   was   also  unchanged  by  kisspeptin  (P  =  0.82),  which  might  indicate  that  kisspeptin  has  no  direct  effect  on  MNCs.  These  results  suggest  that  the  oxytocin  MNC  excitation  by  kisspeptin  in  late-­‐pregnant  rats  is  not  a  local  effect  on  excitatory  inputs.  We  are  currently  testing  whether  kisspeptin  alters  inhibitory  postsynaptic  currents  in  MNCs  from  virgin  and  late  pregnant  rats.  

P35  :  Sex-­‐dependent  effects  of  prenatal  stress  on  social  memory  in  rats  Grundwald,  Natalia;  Brunton  Paula  J  Division  of  Neurobiology,  The  Roslin  Institute,  University  of  Edinburgh,  UK  

Prenatal   stress   (PNS)   affects   a   number   of   traits   in   the   offspring   including   neuroendocrine   stress   axis   regulation,   cognition   and  emotionality.  Here  we  investigated  the  effect  of  PNS  on  social  recognition  in  the  adult  offspring  of  dams  exposed  to  social  stress  during   pregnancy.    We   first   tested   social   preference   using   a  modified   3   chamber   sociability   test:   containing   either   a   same   sex  conspecific,  an  object  or  a  neutral  chamber.  Next  using  a  social  discrimination  task,  we  assessed  social  memory  with  and  without  prior  acute  stress  exposure   (30  min   restraint).  Rats  were   initially  exposed   to  1,  and  after  a   lag   time,  2   juveniles   (1  known  and  1  novel).  Memory  was  assessed  by   comparing   investigation   times.   Finally  we  assessed  olfaction   in   female   rats   for   social   and  non-­‐social  odours  using  wooden  beads.  Oxytocin  (OT)  and  vasopressin  play  key  roles  in  regulating  social  memory,  thus  central  OT  and  vasopressin-­‐1a  (V1a)  receptor  mRNA  expression  was  quantified  using  in  situ  hybridization.  PNS  has  no  effect  on  sociability  in  rats,  however   it   impaired   social   memory   under   basal   conditions   in   PNS   females,   but   not   PNS   males.   In   accordance,   V1a   mRNA  expression  in  the  rostral  part  of  the  lateral  septum  and  the  bed  nucleus  of  stria  terminalis  was  significantly  lower  in  PNS  females,  compared  with  controls.  Acute  stress  impaired  social  memory  in  both  sexes  in  control  rats,  however  PNS  males  were  not  affected.  Moreover,   in   PNS   females   social   memory   was   significantly   enhanced   by   prior   stress   exposure.   Social   memory   deficits   in   PNS  females  persisted  when  social  odours  were  used,  however   these   social  memory  deficits  do  not  appear   to  be   linked   to   impaired  olfaction  as  memory  for  non-­‐social  odours  was  similar  in  control  and  PNS  females.    PNS  has  a  negative  effect  on  social  memory  in  females  under  basal  conditions.  However  our  data  support  the  environmental  mismatch  hypothesis  of  prenatal  programming,  as  the  PNS  females  perform  markedly  better  after  acute  stress  than  controls.  Support:BBSRC/BSN  

P36:  Suppression  of  maternal  HPA  axis  activity  may  be  mediated  indirectly  by  prolactin.  Gustafson,  Papillon,  Bunn,  Stephen,  Grattan,  Dave.  Centre  for  Neuroendocrinology,  University  of  Otago,  Dunedin.  

Stress   during   pregnancy   and   lactation   is   associated   with   increased   postpartum   maternal   anxiety,   impaired   lactation,   and   the  development  of  an  anxiety  phenotype  in  the  offspring.  To  avoid  these  outcomes,  the  activity  of  the  hypothalamic-­‐pituitary-­‐adrenal  (HPA)   axis   is   attenuated   at   these   times.   The  mechanism   generating   this   change   is   not   known;   however,   the   anterior   pituitary  hormone   prolactin   may   play   a   significant   role.   This   project   aimed   to   investigate   basal   HPA   axis   activity   during   pregnancy   and  lactation   in   the   mouse,   focussing   upon   the   corticotropin-­‐releasing   hormone   (CRH)   neurons.   In   situ   hybridisation   was   used   to  characterise  CRH  mRNA  expression  in  the  hypothalamic  paraventricular  nucleus  (PVN)  of  pregnant  (Day  18;  n=7),  lactating  (Day  7;  n=7)  and  pup-­‐deprived  (24  h)   lactating  (Day  7;  n=7)  mice   in  comparison  to  virgin  controls  (n=6).  Quantification  of  the  number  of  CRH  mRNA-­‐expressing  neurons  in  the  PVN  revealed  significant  reductions  in  both  pregnant  (49.6  ±  9.3)  and  lactating  (53.6  ±  4.9)  mice   in   comparison   to   controls   (158.2   ±   21.5,   P<0.0001),   while   removal   of   the   pups,   and   thus   the   associated   suckling-­‐induced  prolactin   secretion,   partially   restored  CRH  neuron  number   (107.6  ±  9.4,   P<0.05   versus   lactation).   Evidence  of  prolactin   receptor  expression   and   activation   within   the   PVN   suggested   prolactin   may   be   acting   directly   upon   the   CRH   neurons.   Using   dual   label  immunohistochemistry   for   pSTAT5   (a   marker   of   prolactin   action)   and   green   fluorescent   protein   expression   (a   marker   of   CRH  neurons  in  a  CRH-­‐Cre  reporter  mouse  line),  no  co-­‐expression  of  pSTAT5  and  GFP  was  found,  suggesting  prolactin  does  not  directly  regulate  CRH  neurons.  These  data  show  that  basal  HPA  axis  activity  is  suppressed  in  late  pregnant  and  lactating  mice  and  suggest  a  potential   role   for   prolactin   in  mediating   this   suppression   through   an   indirect  mechanism.   Future   studies   aim   to   determine   the  cellular  target  and  precise  role  of  prolactin  in  mediating  maternal  HPA  axis  suppression.  

 

Page 59: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P37:  Novel  prolactin  signalling  in  the  median  eminence  of  stressed  male  mice  Kirk,  Siobhan,  Grattan,  Dave,  Bunn,  Stephen  Department  of  Anatomy  and  Centre  for  Neuroendocrinology,  University  of  Otago.  Specific  stressors  have  been  shown  to  elevate  prolactin  early  in  the  stress  response.  Serum  prolactin  is  regulated  by  dopaminergic  inhibition  from  hypothalamic  neurons.  These  neurons  project  to  the  median  eminence  (ME)  where  they  release  dopamine  into  the  hypothalamic-­‐pituitary  portal  vasculature.  Elevated  prolactin  activates  Signal  Transducers  and  Activators  of  Transcription  (STAT)5  in  these   and   other   cells.   We   have   described   a   prolactin   dependent   activation   of   STAT5   in   the   ME.   Unlike   phospho-­‐STAT5   in  hypothalamic  cells,  which  is  nuclear  located,  the  ME  shows  a  distinct  non-­‐nuclear  distribution,  as  shown  by  colabelling  for  phospho-­‐STAT5  and  DAPI.  Male  mice  (n=15)  were  treated  with  either  bromocriptine  (10μg)  or  saline  for  24h  prior  to  the  experiment.  Mice  were  exposed  to  either  restraint  stress  (+/-­‐  prior  treatment  of  bromocriptine),  or  home  cage  environment  for  15  minutes  prior  to  euthanasia   using   pentobarbitone,   and   transcardiac   perfusion   with   4%   paraformaldehyde.   Brains   were   excised   and  immunohistochemical  preparations  made,   identifying  phospho-­‐STAT5   in  ME  sections.  Analysis  of  nuclear   labelling   in   the  arcuate  nucleus   showed   significant   phospho-­‐STAT5   in   ventral   regions   when   exposed   to   restraint   stress   (p<0.05).   This   response   was  abolished  by  bromocriptine,   indicating  it   is  prolactin  dependent  (p<0.05).  Densitometric  measures  of  granular   labelling  in  the  ME  showed   a   similar   response,   with   restraint   stress   increasing   phospho-­‐STAT5   from   control   levels   (p<0.05),   and   bromocriptine  treatment  reducing  the  effect.  Immunolabelling  of  prolactin-­‐induced  phospho-­‐STAT5  with  either  vimentin  or  β-­‐III  tubulin  (markers  for   tanycytes   or   neurons)   identified   colocalisation   of   phospho-­‐STAT5  within   neuronal   processes,   however   the   specific   neuronal  type  has  not  been  identified.  These  results  show  a  novel  response  of  the  ME  to  prolactin  during  stress,  suggesting  that  neurons  in  the  ME  are  sensory  to  circulating  prolactin.  

P38:  Prolactin  receptor-­‐mediated  enkephalin  expression  in  TIDA  neurons  of  late  pregnant  and  lactating  mice  Yip  Siew  Hoong,  Williams  Eloise,  Grattan  David,  Bunn  Stephen  Centre  for  Neuroendocrinology,  University  of  Otago,  New  Zealand  

During  late  pregnancy  and  lactation,  the  tuberoinfundibular  dopaminergic  (TIDA)  neurons,  located  in  the  arcuate  nucleus  exhibit  a  reduction  in  dopamine  synthesis  and  induction  of  enkephalin  expression.  Evidence  suggests  that  elevated  prolactin  may  contribute  to  this  phenomenon.  The  current  study  aimed  to  test  the  hypothesis  that  this  induction  of  enkephalin  expression  in  TIDA  neurons  is  prolactin-­‐dependent.   Quantitative   PCR   analysis   revealed   that   there   was   a   significant   reduction   in   the   mRNA   level   of   TH   (a  dopaminergic  marker)  of  about  50%,  while  pro-­‐enkephalin  A  mRNA   level   significantly   increased  by  10-­‐  and  4-­‐fold   in   the  arcuate  nucleus  of  late  pregnant  and  lactating  mice  respectively  compared  to  diestrous  mice  (n=5-­‐6).  While  the  TH  mRNA  level  decreased  during   lactation,   immunohistochemical   analysis   showed   that   the   number   of   TH   expressing   cells   was   not   significantly   altered  (92.3±8.2   lactating   vs.   68.3±5.7   diestrous   mice)   (n=3).   Consistent   with   the   rise   in   enkephalin   mRNA   levels,   the   number   of  enkephalin-­‐positive   cells   was   significantly   higher   in   lactating   compared   to   diestrous   mice   (39.0±3.5   vs.   1.0±0.6   respectively;  p<0.001)  (n=3).  Dual-­‐labeling  revealed  approximately  80%  of  the  enkephalin-­‐positive  cells  in  lactating  mice  were  also  TH-­‐positive.  The   suppression   of   prolactin   in   lactating  mice   by   bromocriptine   administration   significantly   reduced   the   number   of   enkephalin-­‐positive   cells  by  approximately  50%   (n=5-­‐6),   suggesting   that  enkephalin  expression   in  TIDA  neurons   requires  prolactin.   This  was  further   supported   by   deletion   of   prolactin   receptor   specifically   in   forebrain   neurons,  which   abolished   the   increased   number   of  enkephalin-­‐positive  cells  seen  in  the  late  pregnant  mice  (n=5-­‐6).  This  study  therefore  indicates  that  the  induction  and  maintenance  of  enkephalin  expression  in  TIDA  neurons  during  late  pregnancy  and  lactation  is  prolactin-­‐dependent.  

P39:  Evaluating  Prolactin-­‐sensitive  Somatostatin  Neurones  in  the  Rat  Paraventricular  Nucleus  of  the  Hypothalamus  I.C.  Kokay,  T.J.  Sapsford,  D.R.  Grattan  Centre  for  Neuroendocrinology,  Department  of  Anatomy,  University  of  Otago,  Dunedin,  New  Zealand  During  lactation  when  circulating  prolactin  levels  are  high,  prolactin  has  important  actions  in  the  brain.  The  paraventricular  nucleus  (PVN)  contains  a  number  of  populations  of  neuroendocrine  neurones  that  are  defined  based  on  the  hormones  they  synthesise.  We  have  identified  prolactin-­‐responsive  cells  in  the  PVN.  Previously,  we  have  shown  that  oxytocin  neurones  express  prolactin  receptors  and  using  phosphorylated  signal  transducer  and  activator  of  transcription  5  (pStat5)  as  a  marker  of  prolactin  receptor  activation,  we  have  shown  that  oxytocin  cells  rapidly  respond  to  administration  of  ovine  prolactin  (oPRL).  In  addition,  in  the  PVN,  we  also  have  observed  a  population  of  non-­‐oxytocin  neurones  that  express  prolactin  receptors.  As  a  substantial  population  of  somatostatin  (SST)  neurones  is  present  in  the  periventricular  region  of  the  PVN,  we  investigated  whether  these  SST  neurones  respond  to  prolactin.  We  performed   immunohistochemistry   to   determine  whether   SST   neurones   co-­‐localised  with   prolactin–induced   pStat5   following   icv  injection  of  oPRL.  We  also  conducted  in  situ  hybridization  to  verify  the  presence  of  prolactin  receptor  mRNA  in  SST  neurones.  We  found  that  SST  neurones  responded  strongly  to  administration  of  oPRL  with  around  80%  of  SST  neurones  co-­‐localising  with  nuclear  pStat5,  strongly  suggesting  that  SST  neurones  are  prolactin–sensitive.  Surprisingly,  however,  we  found  that  very  few  SST  neurones  expressed  prolactin  receptor  mRNA.  It   is  possible  that  prolactin  receptors  are  expressed  in  very   low  abundance  on  SST  neurones  and   in   situ   hybridization  methodology   lacks   the   sensitivity   to   detect   the  mRNA.   Alternatively,   oPRL  may   activate   non-­‐prolactin  receptors  such  as  growth  hormone  receptors,  that  are  present  on  SST  cells.  We  are  currently  investigating  this  latter  possibility  by  comparing  the  pattern  of  pStat5  activation  following  oPLR  administration  with  that  activated  by  rat  prolactin.  

 

Page 60: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P40:   Microglia   are   not   activated   in   the   hypothalamic   supraoptic   or   paraventricular   nuclei   at   the   onset   of  angiotensin  II-­‐dependent  hypertension  Korpal,  Aaron;  Schwenke,  Daryl;  Brown,  Colin  Centre  for  Neuroendocrinology  and  Department  of  Physiology,  Otago  School  of  Medical  Sciences,  University  of  Otago,  Dunedin,  New  Zealand  Arginine   vasopressin   (AVP)  magnocellular   neurosecretory   cells   are   located   in   the   paraventricular   nucleus   (PVN)   and   supraoptic  (SON)  nucleus  of  the  hypothalamus.    AVP  signalling  causes  systemic  vasoconstriction  as  well  as  renal  reabsorption  of  water  at  the  site  of  the  collecting  duct,  ultimately   increasing  blood  pressure.    Normally,  AVP  release   is  suppressed  by  tonic   input  arising  from  arterial  baroreceptors,  which  detect  acute  changes  in  blood  pressure.    Decreased  blood  pressure  attenuates  this  inhibitory  input  to  allow   vasopressin   release,   helping   return   blood   pressure   back   towards   normal.     Paradoxically,   some   patients   with   essential  hypertension  exhibit  an  increased  plasma  concentration  of  AVP.    We  have  found  that  AVP  cell  activity  is  increased  early  during  the  induction   of   moderate   angiotensin   (ANG)   II-­‐dependent   hypertension.     Microglia   are   activated   in   the   PVN   in   severe   ANG   II-­‐dependent   hypertension,   so  we   aimed   to   investigate  whether  microglia   are   activated   in   the   SON   and   PVN   during   the   onset   of  moderate   hypertension.     We   used   the   Cyp1a1-­‐Ren2   transgenic   rat   model,   which   allows   for   the   controlled   onset   of   ANG   II-­‐dependent   hypertension   by   administering   a   diet   containing   0.225%   indole-­‐3-­‐carbinol   over   7   days.     We   carried   out  immunohistochemistry   for   the  brain  microglia  marker,   ionized   calcium-­‐binding   adapter  molecule   1   (Iba1),   to   quantify  microglial  activation   in   the   SON   and   PVN.     A   region   of   interest   (ROI)   was   selected  within   the   SON   or   PVN,   and  microglial   activation  was  measured  as  percentage  area  above  a  set  threshold  of  the  ROI  immunolabelled  for  Iba1.    No  increase  in  Iba1  thresholded  area  was  observed   in   the  SON  (control  =  9.2%  vs.  hypertensive  =  11.3%;  P  =  0.19  unpaired   t-­‐test;  n  =  5   -­‐  7).     Similarly,  no  change   in   Iba1  staining   was   observed   in   the   PVN.     In   conclusion,   we   can   eliminate   microglia   activation   as   a   trigger   for   AVP   cell   activity   in  hypertension  and,  thus,  refine  the  scope  for  identifying  key  targets  in  AVP  cell  activation.  

P41:  Electrophysiological  properties  of  lateral  septum  neurons  are  modulated  by  oxytocin  and  vasopressin,  two  neuro-­‐hormones  involved  in  social  behavior  regulation  Borie,  A.M.  (1)(2),  Guillon  G.  (1)(2),  Muscatelli,  F.  (3)  and  Desarménien,  M.G.  (1)(2)  (1)  Institut  de  Génomique  Fonctionnelle,  CNRS  UMR5203,  Inserm  U1191,  Montpellier,  France  (2)  Université  de  Montpellier,  Montpellier,  France  (3)  INMED,  Inserm  U910,  Marseille,  France  Central  oxytocin  (OT)  and  vasopressin  (VP),  have  almost  opposite  roles  in  mammal  behavior:  OT  facilitates  social  interactions  while  VP   promotes   aggressivity   and   anxiety,   but   their   mechanism   of   action   is   unknown.   In   the   lateral   septum   (LS),   both   OT   and   VP  increase   social   interactions   and   social   memory.   This   structure   highly   expresses   OT   and   VP   receptors   but   electrophysiological  consequences  of  their  activation  have  not  been  studied  in  detail  so  far.  Using  patch  clamp  recordings  from  acute  brain  slices,  we  characterized  electrophysiological  responses  of  mouse  LS  neurons  to  TGOT  (a  specific  OT  receptor  agonist)  and  VP.  Strikingly,  the  firing   frequency   of   almost   all   recorded   neurons  was   significantly  modulated   by   at   least   one   of   these   peptides.   Accordingly,  we  classify   LS   neurons   into   three   populations:   i)   activated   by   TGOT;   ii)   activated   by   VP;   iii)   inhibited   by   both.   Since   the   septo-­‐hippocampal   network   can  modulate   theta   rhythm,  we   analyzed   the   effect   of   TGOT   and   VP   on   spike   patterning.  We   show   that  modulation  of  electrical  activity  in  the  LS  results  from  a  modification  of  inter-­‐burst  intervals  (1.5-­‐5  s  range)  rather  than  intra-­‐burst  frequency   (close   to   the   theta   rhythm,   3-­‐5   Hz   range).     To   decipher   a   local  microcircuitery   involving   the   three   above-­‐mentioned  neuronal  categories,  we  studied  spontaneous  synaptic  events  and  demonstrate  that  they  are  mostly  GABAergics.  Their  frequency  is  increased  by  TGOT  and  VP,  opening  the  possibility  that  these  peptides  act  locally  by  regulating  interactions  between  interneurons.  We  observe  similar  effects  of  OT  and  VP,  consistent  with  their  behavioral  action  and  demonstrate  that  OT  and  VP  set  the  tone  of  electrical   activity   in   the   LS.    Disruption  of  OT  or  VP   systems   in  mouse   leads   to   social   deficits   and   this   is   broadly   used   to   define  animal  models  of  social  diseases.  We  will  now  compare  LS  modulation  by  TGOT  and  VP  in  these  models  and  wild  type  animals.  

P42:  Intrinsic  osmotic  regulation  of  vasopressin  neurons  in  virgin  and  lactating  rats  in  vivo  Brown,  Colin;  Jaquiery,  Zoë;  Bouwer,  Gregory:  Augustine,  Rachael  Centre  for  Neuroendocrinology  and  Department  of  Physiology,  University  of  Otago,  New  Zealand  

Body   fluid   balance   is   regulated   in   large   part   by   the   anti-­‐diuretic   actions   of   vasopressin   in   the   kidney.   Vasopressin   secretion   is  stimulated  by  increased  plasma  osmotic  pressure.  During  pregnancy  and  lactation,  plasma  osmotic  pressure  is  reduced  and  plasma  volume   is   increased.   Despite   the   decreased   plasma   osmotic   pressure,   circulating   vasopressin   is   paradoxically   increased   during  lactation.   Vasopressin   release   from   the   posterior   pituitary   gland   is   triggered   by   action   potential   firing   in   magnocellular  neurosecretory  neurons  that  are  mainly  located  in  the  hypothalamic  supraoptic  nucleus  and  paraventricular  nucleus.  Vasopressin  neuron  activity   is   increased  by  osmosensitive  TRPV1  channels   that  are  activated  by   increasing  extracellular  osmolality.  Here,  we  tested   whether   TRPV1   channels   contribute   to   the   spontaneous   activity   of   vasopressin   neurons   in   virgin   and   lactating   rats   by  microdialysis  administration  of  ruthenium  red  into  the  supraoptic  nucleus  to  block  TRPV1  channels  during  extracellular  single  unit  recording  in  vivo.  Ruthenium  red  reduced  the  firing  rate  of  vasopressin  neurons  (P  <  0.01,  two-­‐way  repeated  measures  ANOVA)  and  the   degree   of   inhibition   was   similar   (P   =   0.97)   in   virgin   rats   (n   =   9)   and   lactating   rats   (n   =   7).   By   contrast   to   its   inhibition   of  vasopressin   neurons,   ruthenium   red   did   not   affect   the   firing   rate   of   supraoptic   nucleus   oxytocin  magnocellular   neurosecretory  neurons   in  virgin  rats   (P  =  0.65,  n  =  5).  Hence,   it  appears  that  the  spontaneous  activity  of  vasopressin  neurons,  but  not  oxytocin  neurons,   is   driven,   in   part,   by   TRPV1   activity   in   vivo   and   that   this   intrinsic   osmotic   drive   remains   during   lactation   despite   the  decreased  plasma  osmotic  pressure  evident  during   lactation.  We  are  currently   completing  western  blotting   for  TRPV1  and  dual-­‐label   immunohistochemistry   for   TRPV1   and   vasopressin   to   determine   the   abundance   and   location   of   TRPV1   in   the   supraoptic  nucleus  of  virgin  and  lactating  rats.  

Page 61: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P43:  A  vasopressin  neuron  network  model  –  using  dendritic  communication  to  regulate  heterogeneous  population  response  MacGregor,  Duncan;  Leng,  Gareth  Centre  for  Integrative  Physiology,  University  of  Edinburgh  The  magnocellular  vasopressin  neurons  form  part  of  the  homeostatic  systems  that  maintain  osmotic  pressure.  Experiments  show  a  robust  linear  relationship  between  osmotic  pressure  and  vasopressin  hormone  secretion  despite  very  non-­‐linear  properties  of  spike  generation  and  stimulus-­‐secretion  coupling  in  the  neurons.  Spiking  activity  across  the  population  is  also  highly  heterogeneous,  but  we  have  previously  shown,  in  our  spiking  and  secretion  model  that  this  heterogeneity  actually  helps  to  produce  a  linear  population  response,   despite   the   non-­‐linear   response   in   individual   neurons.   We   now   consider   is   how   to   maintain   this   response   during  sustained   osmotic   challenge.   In   an   unconnected   heterogeneous   population,   the   most   active   neurons   rapidly   deplete   their  vasopressin  stores.  Increased  activity  upregulates  the  rate  of  synthesis  but  not  sufficiently  to  match  the  high  rates  of  secretion.  A  role  for  dendritic  communication  may  be  to  coordinate  the  neurons’  response,  taking  turns  at  being  the  most  active,  and  allowing  stores   to   recover.   To   test   this   we   added   synthesis   to   our   model,   based   on   a   previous   model   using   spike   activity   dependent  upregulation   of   mRNA   stores;   and   dendritic   communication,   turning   the   unconnected   population   model   into   a   coordinated  network.  Dendritic  vasopressin  secretion  acts  to  suppress  the  activity  of  neighbouring  neurons,  allowing  the  more  active  neurons  to  maintain  their  dominance  until  they  deplete  their  stores.  Assuming  that  dendritic  stores  deplete  in  parallel  with  the  stores  in  the  pituitary  terminals,  this  can  successfully  cycle  activity  between  neurons,  dynamically  controlling  the  heterogeneity  to  maintain  the  population  response  to  sustained  challenge.  The  network  works  most  effectively  when  we  connect  the  neurons  in  bundles,  using  a  ‘small   world’   network   structure.  MacGregor   D,   Leng   G.   (2013)   Spike   triggered   hormone   secretion   in   vasopressin   cells;   a  model  investigation  of  mechanism  and  heterogeneous  population  function.  PLoS  Comp  Bio.  

P44:  Activation  of  presynaptic  oxytocin  receptors  enhances  glutamate  release  in  the  ventral  hippocampus  of  prenatally  restraint  stressed  rats  Alexandre  Beuttin1,6,  Jérôme  Mairesse1,6,  Eleonora  Gatta1,6,  Marie-­‐Line  Reynaert1,6,  Sara  Morley-­‐Fletcher1,6,  Marion  Soichot2,  Lucie  Deruyter1,6,  Gilles  Van  Camp1,6,  Hammou  Bouwalerh1,6,  Francesca  Fagioli3,  Anna  Pittaluga4,  Delphine  Allorge2,  Ferdinando  Nicoletti5,6*,  Stefania  Maccari1,6*.  1Glycobiology  of  Stress-­‐related  Diseases  team,  UMR  8576  University  of  Lille1/CNRS,  Villeneuve  d’Ascq,  France  2Faculté  de  Médecine  de  Lille,  UDSL,  Lille,  France;  3Azienda  Sanitaria  Locale,  RM.E.  Unità  Operativa  Complessa  Adolescent,  00100-­‐Rome,  Italy  4Dept.  of  Pharmacy,  Univ.  of  Genoa,  Genoa,  Italy  5IRCCS  Neuromed,  Pozzilli,  Italy  6International  Associated  Laboratory  “Prenatal  Stress  and  Neurodegenerative  Diseases”  France/Italy  (Glycobiology  of  Stress-­‐related  Diseases  team,  UMR  8576  University  of  Lille1/CNRS,  Villeneuve  d’Ascq,  France;  Neuromed,  Pozzilli,  Italy  and  Sapienza  University  of  Rome,  Rome,  Italy)  Oxytocin   receptors   are   known   to   modulate   synaptic   transmission   and   network   activity   in   the   hippocampus,   but   their   precise  function  has  been  only  partially  elucidated.  Here,  we  have  found  that  activation  of  presynaptic  oxytocin  receptor  with  the  potent  agonist,   carbetocin,   enhanced   depolarization-­‐evoked   glutamate   release   in   the   ventral   hippocampus   with   no   effect   on   GABA  release.  This  evidence  paved  the  way  for  examining  the  effect  of  carbetocin  treatment  in  “prenatally  restraint  stressed”  (PRS)  rats,  i.e.   the   offspring   of   dams   exposed   to   repeated   episodes   of   restraint   stress   during   pregnancy.   Adult   PRS   rats   exhibit   an  anxious/depressive-­‐like  phenotype  associated  with  an  abnormal  glucocorticoid  feedback  regulation  of  the  hypothalamus-­‐pituitary-­‐adrenal  (HPA)  axis,  and,  remarkably,  with  a  reduced  depolarization-­‐evoked  glutamate  release  in  the  ventral  hippocampus.  Chronic  systemic  treatment  with  carbetocin  (1  mg/kg,  i.p.,  once  a  day  for  2-­‐3  weeks)  in  PRS  rats  corrected  the  defect  in  glutamate  release,  anxiety-­‐  and  depressive-­‐like  behavior,  and  abnormalities  in  social  behavior,  in  the  HPA  response  to  stress,  and  in  the  expression  of  stress-­‐related   genes   in   the   hippocampus   and   amygdala.   Of   note,   carbetocin   treatment   had   no   effect   on   these   behavioral   and  neuroendocrine   parameters   in   prenatally   unstressed   (control)   rats,  with   the   exception   of   a   reduced   expression   of   the   oxytocin  receptor  gene  in  the  amygdala.  These  findings  disclose  a  novel  function  of  oxytocin  receptors  in  the  hippocampus,  and  encourage  the  use  of  oxytocin  receptor  agonists  in  the  treatment  of  stress-­‐related  psychiatric  disorders  in  adult  life.  

P45:  Neuroglobine  protects  astroglial  cells  against  oxidative  stress-­‐induced  apoptosis  AMRI  Fatma  universite  aix  marseille  (France)  -­‐  universite  tunis  el  manar  (Tunisia)  Oxidative  stress  resulting  from  the  accumulation  of  reactive  oxygen  species  (ROS)  and  /  or  reactive  nitrogen  species  (RNS)  plays  an  essential  role  in  astroglial  cell  death  associated  with  neurodegenerative  diseases.  An  excess  of  a  hydrogen  peroxide  (H2O2)  causes  an  imbalance  in  production  of  ROS  and  an  alteration  of  cellular  antioxidant  defense,  leading  to  oxidative  damage  and  cell  death  by  apoptosis.   Neuroglobin   (Ngb)   is   a   family   member   involved   in   vertebrate   globin   cellular   homeostasis   of   oxygen.   Ngb   is   mainly  expressed   in   the  nervous   system,  and  acts  as  an   important   scavenger  of   toxic   reactive   species,   since   it  may  bind  directly   to   the  nitric   oxide   (NO).   Ngb   exerts   a   potent   neuroprotective   effects   in   ischemic   or   hypoxic   conditions,   and  many   neurodegenerative  diseases,  but   little   is   known   regarding   its  potential  protective  effect   in  astroglial   cells.   In   this   study,  we  propose   to  evaluate   the  potential  role  of  Ngb  to  protect  astrocytes  against  oxidative  stress  induced  by  H2O2.  In  fact,  incubation  of  cultured  astrocytes  with  Ngb  inhibited  a  cell  death  and  prevented  the  morphological  modifications  induced  by  H2O2.  Thereby,  Ngb  reduces  significantly  the  overproduction  of  ROS  induced  by  H2O2.  

 

Page 62: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P46:  TLDA-­‐based  mRNA  profiling  of  laser  capture  microdissected  spinal  cord  white  matter  astrocytes  reveals  high  estrogen/phenol  sulfotransferase  expression  during  neuroinflammation  Guillot  Flora  (1,2),  Garcia  Alexandra  (1-­‐3),  Salou  Marion  (1,2),  Brouard  Sophie  (1-­‐3),  Lapaud  David  A  (1-­‐4),  Nicot  Arnaud  B  (1,2)  (1)  INSERM  UMR1064/CRTI,  Nantes,  France  ;  (2)  Université  de  Nantes,  Faculté  de  Médecine,  Nantes,  France  ;  (3)  ITUN,  CHU  de  Nantes,  France  ;  (4)  Service  de  Neurologie,  CHU  de  Nantes,  France  White  matter  (WM)  reactive  astrocytes  are  important  players  in  amplifying  neuroinflammation.  However,  their  mRNA  profile  has  not   been   specifically   defined   because   they   are   difficult   to   purify,   compared   to   gray   matter   astrocytes.   Here,   we   isolated  WM  astrocytes  by  laser  capture  microdissection  (LCM)  in  a  murine  model  of  multiple  sclerosis  to  better  define  their  molecular  profile  focusing  on  selected  genes  related  to  inflammation.  Based  on  previous  data  indicating  anti-­‐inflammatory  effects  of  17beta  estradiol  only   at   high   nanomolar   doses,   we   also   examined   mRNA   expression   for   enzymes   potentially   involved   in   steroid   hormone  inactivation.   Experimental   autoimmune   encephalomyelitis   (EAE)   was   induced   in   female   C57BL6   mice   with   MOG35-­‐55  immunization.   FACS   analysis   of   a   portion   of   individual   spinal   cords   at   peak   disease   confirmed   the   infiltration   of   immune   cells,  composed  mostly   of   CD4   T   cells   and  macrophages.  GFAP   immunolabeled  WM  astrocytes  were  microdissected   from   spinal   cord  sections   of   control   and   EAE   mice.   TLDA   (Taqman-­‐low-­‐density-­‐array)-­‐based   mRNA   profiling   of   WM   astrocytes   confirmed   EAE-­‐induced  gene  expression  of  proinflammatory  cytokines  or  chemokines.  Strikingly,  among  phase   II  metabolism  enzymes,  SULT1A1  was  expressed  in  control  WM  spinal  cord  astrocytes.  Moreover,  its  expression  was  further  increased  in  EAE.  Immunohistochemistry  on  spinal  cord  tissues  confirmed  preferential  expression  of  this  enzyme  in  WM  astrocytic  processes.  In  conclusion,  we  evidenced,  in  WM  astrocytes,  relative  high  astrocytic  expression  of  SULT1A1,  an  enzyme  having  -­‐  among  several  phenolic  compounds  -­‐  estrogens  as   substrates.   This   high   astrocytic   expression   may   account   for   the   relative   resistance   of   this   cell   population   to   the   anti-­‐neuroinflammatory  effects  of  estradiol.  Supported  by  the  Region  Pays  de  Loire  (AN).  

P47:  The  impact  of  glucocorticoid  hyporesponse  to  stress  on  memory  function  de  Medeiros,  G.F.,  Cerpa  J.C.,  Helbling,  J.C.  ,  Ferreira  GF,  Lafenêtre  P.,  Moisan,  M.P.  INRA,  Université  de  Bordeaux,  Nutrition  et  neurobiologie  intégrée,  Bordeaux,  France  

Glucocorticoids   (GCs)   are   the   adrenal   hormones   secreted   in   response   to   the   HPA   axis   activation.   GCs   are   known   to   influence  memory  processes,  and  their  effects  follow  an  inverted-­‐U-­‐shape  dose–response  relationship.  Corticosteroid  binding  globulin  (CBG),  a  plasma  glycoprotein  that  binds  GCs  with  high  affinity,  endorses  a  major  role  in  regulating  free  GCs  levels,  especially  under  stress  conditions.  Our  team  has  developed  the  Cbg  ko  mice  which  presents  a  blunted  rise  of  GCs  after  stress  and  thus  constitutes  a  model  of  GC  hyporesponse.  A  study  from  our   lab  used  the  spontaneous  alternation  paradigm  to  demonstrate  that  the  Cbg  ko  mice  are  insensitive   to   the  memory   retrieval   impairments   induced  by   stress   due   to   a   lower   rise   of  GC   levels   in   the   brain,   notably   in   the  hippocampus.   In   this   context,  we  were   interested   in   investigating   the   impact  of  CBG  deficiency   ,  and   thus  GC  hyporesponse,  on  hippocampus-­‐dependent  memory   paradigms.   For   that,   adult  male   Cbg   ko   and  wild-­‐type   (wt)  mice   were   submitted   to   the   fear  conditioning  (FC)  and  to  the  novel  object  recognition  test  (NORT).  The  NORT  was  also  performed  with  variations  of  the  standard  protocol,  including  habituation  sessions  between  the  familiarization  and  the  test  and  a  stress  delivery  right  after  the  familiarization  session.  Cbg  ko  mice  displayed  an   impaired  association  between  the  context  and  the   footshock   in   the  FC  when  compared  to  wt  mice.  In  addition,  only  wt  animals  showed  increased  exploration  of  the  novel  object  in  the  NORT,  while  Cbg  ko  mice’s  exploration  levels  did  not  differ  from  chance  level.  Habituation  sessions  in  the  NORT  were  able  to  enhance  the  performance  of  Cbg  ko  mice,  while   the   stress  delivery   right  after   the   familiarization   session  not  only  enhanced   the  performance  of   the  Cbg  ko  mice,  but  also  impaired  the  performance  of  wt  animals.  Altogether,  these  results  suggest  that  the  lower  GC  levels  in  the  hippocampus  due  to  CBG  deficiency  might  underlie  the  memory  impairment  observed  in  Cbg  ko  mice.  

P48:  Interactions  of  corticosteroids  and  estrogens  that  influence  aggression  in  male  mice  Rainville,  Jennifer.,  Clark,  Sara.,  Kemp,  Brekel.,  and  Vasudevan,  Nandini  

1:  Cell  and  Molecular  Biology  Department,  Tulane  University,  New  Orleans,  LA  70118.  2:  Neuroscience  Program,  Tulane  University,  New  Orleans,  LA  70118.  

Steroid   hormones   such   as   17β-­‐estradiol   (17β-­‐E)   and   corticosterone   (cort)   are   necessary   for   the   display   of   aggression   in   male  rodents.   Both   hormones   slowly   regulate   genomic   transcription   by   binding   classical   nuclear   receptors   but   also   rapidly   and   non-­‐genomically  regulate  kinases  or  calcium  via  a  putative  receptor  on  the  plasma  membrane.  Though  it  has  been  implicitly  assumed  that   aggression   is   dependent   on   genomic   signaling,   rapid   signaling   by   17β-­‐E   or   cort   increased   aggression   in   rodents   within   20  minutes.  Though  this  short  time-­‐scale  is  indicative  of  non-­‐genomic  signaling,  the  relative  contributions  of  genomic  vs.  non-­‐genomic  signaling   by   either   hormone   to   aggression   are   not   well   understood.   Our   aim   was   to   elucidate   the   control   of   hormone  concentrations  and  the  signaling  mechanisms  that  mediate  aggression.  Since  previous  experimental  approaches  do  not  allow  one  to  distinguish  the  contribution  of  non-­‐genomic  signaling,  we  developed  a  novel  paradigm  where  an  aromatase  inhibitor,  letrozole,  given   in  drinking  water   for   two  weeks,   reduced  17β-­‐E   levels  and  aggressive  behavior   in  male  mice,  compared   to  vehicle   treated  mice.   Injection   of   cyclodextrin   conjugated   17β-­‐E   (cE2)   rapidly   increased   aggressive   behavior   in   male   mice   within   20   minutes,  suggesting   that   non-­‐genomic   signaling   is   sufficient   to   driven   aggression.   cE2   also   restored   cort   levels   that   were   decreased   in  letrozole   treated  mice,  within  20  minutes  of   injection.   These  data   suggest   that   17β-­‐E   rapidly   increases   cort  which   could   in   turn  increase   aggressive   behavior.   Surprisingly,   a   48-­‐hour   treatment   of   hypothalamic   cultures   with   the   GR   agonist,   dexamethasone  increased  neuroestrogen  concentration,  possibly  via  aromatase  transcription.  Hence,  intermale  aggression  could  be  controlled  by  a  “feed-­‐forward   loop”   of   cort   and   17β-­‐E   that   signal   via   both   non-­‐genomic   and   genomic   mechanisms   to   maintain   the   behavior.  Supported  by  NSF  CAREER  IOS-­‐  IOS-­‐1053716  and  Tulane  startup  funds  to  N.V.  

Page 63: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P49:  Effect  of  early  life  stress  on  synaptic  plasticity  in  the  developing  hippocampus  of  male  and  female  rats  N.A.V.  Derks1,  R.A.  Sarabdjitsingh1,  H.J.  Krugers2,  C.C.  Hoogenraad3,  M.  Joëls1  1)  Dept  Translational  Neuroscience,  Brain  Center  Rudolf  Magnus,  Univ.  Medical  Center  Utrecht.  2)  Swammerdam  Institute  for  Life  Sciences,  Univ.  of  Amsterdam.  3)  Dept  Cell  Biology,  Faculty  of  Science,  Utrecht  University.  

Early   life   stress   (ELS)   increases   the   risk   for  developing  psychopathology   in  adulthood.  How  brain  development   is  affected  by  ELS  before  symptoms   emerge   in   adults   is   largely   unknown.  An   established   rodent  model   for   ELS   is   24h  maternal   deprivation   (MD).   Earlier   studies  showed   that  MD   reduces  hippocampal   synaptic   plasticity   and   impairs   spatial  memory   functioning   in   adult   rats.   The   aim  of   the  present  study  is  to  determine  how  MD  affects  the  development  of  hippocampal  synaptic  plasticity  from  early  life  up  to  adulthood.  Male  and  female  Wistar  rats  were  maternally  deprived  for  24h  on  postnatal  day  (PND)3  or  left  undisturbed  with  their  mother  (control).  On  PND4,  8,  22  and  90,  plasma  corticosterone  (CORT)  levels,  body  weight  and  thymus  and  adrenal  weights  were  determined  to  validate  stress  effects  of  MD.  Furthermore,  field  potentials  in  the  CA1  hippocampus  were  recorded  in  vitro  before  and  after  high  frequency  stimulation.  Brain  slices  were  incubated  with  100nM  CORT,  to  mimic  high-­‐stress  conditions  in  vitro,  or  vehicle.  Preliminary  results:  At  PND4  and  8,  rats  showed  a  trend  towards  increased  basal  CORT  levels  after  MD,  which  was  normalized  again  in  adults.  Reduced  body  weight  and  increased  adrenal  weight  were   seen   in   PND90  MD   females   compared   to   controls,   indicating   a   partial   long-­‐term   effect   of  MD   on   the   stress   system.   In   line  with  previous  studies,  we  found  a  CORT-­‐induced  suppression  of  LTP  in  control  PND90  males;  this  was  not  seen  in  females.  PND90  females  did  show  a  trend  towards  more  stable  LTP  after  MD,  which  was  reversed  by  CORT.  Furthermore,  age  in   itself  affected  field  potential  size  by  yielding  smaller  maximum  slopes  on  PND4  and  8  while  requiring  a  larger  stimulus  intensity  than  adults.  Future  recordings  will  indicate  how  MD   affects   synaptic   plasticity   in   early   life   and   during   adolescence.   Together,   this   information   will   enhance   our   understanding   of   the  mechanisms  behind  the  development  of  psychopathology  and  indicate  possible  windows  for  intervention  after  ELS.  

P50:  Sex-­‐dependent  trans-­‐generational  effects  of  prenatal  stress  on  the  neuroendocrine  stress  axis  and  anxiety-­‐like  behaviour  in  rats  Grundwald,  Natalia  J.  and  Brunton,  Paula  J.  Division  of  Neurobiology,  The  Roslin  Institute,  University  of  Edinburgh,  Easter  Bush  Campus,  Midlothian,  EH25  9RG,  UK  

Exposure   to  social   stress  during  pregnancy   results   in  hyperactive  hypothalamo-­‐pituitary-­‐adrenal   (HPA)  axis   stress   responses   in   the  adult  male  and   female  offspring  and  heightened  anxiety  behaviour   in   the  males,  but  not   the   females.  Here  we   tested  whether   the  effects  of  prenatal  stress  (PNS)  are  transmitted  to  the  second  filial  generation  (F2)  via  the  maternal  line.  F1  control  and  PNS  female  rats  were  mated  with  control  males  and  housed  under  non-­‐stress  conditions  throughout  pregnancy.  HPA  axis  responses  to  stress  and  anxiety-­‐like  behaviour  were  assessed  in  the  adult  F2  offspring.  ACTH  and  corticosterone  responses  to  acute  stress  were  markedly  enhanced/prolonged  in  F2  PNS  females.  This  was  associated  with  greater  levels  of  corticotropin  releasing  hormone  (Crh)  mRNA  in  the  paraventricular  nucleus  and  reduced  glucocorticoid   (Gr)   and  mineralocorticoid   receptor   (Mr)  mRNA  expression   in   the  hippocampus.  Whereas   in   the   F2  PNS  males,  HPA  axis  responses   to  acute   stress  were  attenuated  and  hippocampal  Gr  and  Mr  mRNA  expression  was  greater   compared  with   controls.   F2  PNS  males   exhibited   greater   anxiety-­‐like   behaviour   (light-­‐dark   box   and   elevated   plus   maze)   compared   with   control   F2   males.   Anxiety-­‐like  behaviour  did  not  differ  between  F2  control  and  PNS  females  during  metestrus/diestrus,  however  at  proestrus/estrus,  F2  control  females  displayed   a   reduction   in   anxiety-­‐like   behaviour,   but   this   effect   was   not   observed   in   the   F2   PNS   females.   Crh   mRNA   expression   was  significantly  greater  in  the  central  nucleus  of  the  amygdala  in  F2  PNS  males  compared  with  controls,  but  there  was  no  difference  in  the  F2  females.  Moreover,   CRH   receptor-­‐1   (Crhr1)  mRNA   expression  was   significantly   increased,  whereas   Crhr2  was   significantly   decreased   in  discrete  regions  of  the  amygdala  in  F2  PNS  males  compared  with  controls,  with  no  differences  in  the  F2  females.  In  conclusion,  some  of  the  effects  of  PNS  are  transmitted  to  subsequent  generations  and  this  occurs  in  a  sex-­‐dependent  manner.  [Support:  BBSRC]  

P51:  Altered  circadian  locomotor  activity  in  the  males  and  females  rats  prenatally  restraint  stressed,  a  model  of  depression.  Remy  Verhaeghe1,4,  G.  Van  Camp1,4,  M.  L  Reynaert1,4,  E  Gatta1,4,  S.  Morley-­‐Fletcher1,4,  R  Ngomba2,  A.  Tramutola3,  P.  Navarra3,  S.  Maccari1,4,  F.  Nicoletti2,4  and  J.  Mairesse1,4  1Glycobiology  of  Stress-­‐related  Diseases  team,  UMR  8576  University  of  Lille1/CNRS,  Villeneuve  d’Ascq,  France  2IRCCS,  NEUROMED,  Pozzilli,  Italy  3Instituto  di  Farmacologia,  Univ.  Catt.  Sacro  Cuore,  Rome,  Italy  4International  Associated  Laboratory  “Prenatal  Stress  and  Neurodegenerative  Diseases”  France/Italy  (Glycobiology  of  Stress-­‐related  Diseases  team,  UMR  8576  University  of  Lille1/CNRS,  Villeneuve  d’Ascq,  France;  Neuromed,  Pozzilli,  Italy  and  Sapienza  University  of  Rome,  Rome,  Italy)  

Prenatal  restraint  stress  (PRS)  in  rats  is  a  well-­‐documented  model  of  early  stress  known  to  induce  depression-­‐like  behaviour.  Recently,  we  have   shown   that   in   male   PRS   rats   the   decrease   of   glutamate   release   in   the   ventral   hippocampus   is   associated   with   reduction   of   the  expression  of  synaptic-­‐vesicle-­‐  associated  proteins.  Conversely,  the  pharmacological  enhancement  of  glutamate  release  of  the  animals  in  vivo  and  the  chronic  antidepressant  treatment  is  able  to  reverse  anxiety-­‐like  behavior.  Interestingly,  most  the  enduring  changes  induced  by  PRS   are   sex-­‐dependent,   with   a   depression-­‐like   phenotype   being   present   in   both   males   and   females,   and   an   anxiety-­‐like   phenotype  predominating  in  males.  Because  PRS  also  results  in  changes  in  circadian  rhythms  and  sex  dependence  is  not  defined,  we  studied  whether  changes  in  circadian  patterns  caused  by  PRS  are  also  sex-­‐dependent.  Here,  we  examined  the  relationships  between  PRS,  gender  and  the  circadian  system  by  monitoring  the  running  wheel  behaviour  in  male  and  female  adult  PRS  rats,  first  under  a  regular  light-­‐dark  (LD)  cycle,  and  then  after  an  abrupt  6h  advance  shift  in  the  LD  cycle.  Furthermore,  to  investigate  whether  hypothalamic  modifications  are  associated  with  these  circadian  behavioural  activities,  we  also  measured  the  hypothalamic  CRH  content  in  males  and  females  at  08h00  and  at  20h00.  Among  biological  substrates,  we  studied  if  hormones  such  as  cortisol  and  also  a  driving  circadian  hormone,  melatonin  are  involved  in  these  circadian   differences.   Finally,   measured   gene   expression   of   biological   clock   parameters   (clock,   Bmal,   Per   and   cry)   in   suprachiasmatic  nucleus.  Our  results  showed  a  pattern  of  locomotor  activity  in  PRS  rats  that  was  erratic  and  more  fragmented,  particularly  in  female  PRS  rats.  PRS  increased  and  decreased  total  locomotor  activity  in  males  and  females,  respectively,  and  induced  a  significant  phase  advance  in  the  rhythm  of  circadian  activity  only  in  males.    

Page 64: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Poster  Session  2—Friday,  September  25  

P52:  Evidence  for  an  imbalance  between  tau  O-­‐GlcNAcylation  and  phosphorylation  in  the  hippocampus  of  a  mouse  model  of  Alzheimer’s  disease  Eleonora   Gatta1,7,   Tony   Lefebvre2,   Silvana   Gaetani3,  Marc   Dos   Santos4,   Tommaso   Cassano5,   Ferdinando   Nicoletti6,7,   Stefania  Maccari1,7,  Jérôme  Mairesse1,7  1Glycobiology  of  Stress-­‐related  Diseases  team,  UMR  8576  University  of  Lille1/CNRS,  Villeneuve  d’Ascq,  France  3Dept  of  Physiology  and  Pharmacology,  Sapienza  University  of  Rome,  00185-­‐Rome,  Italy  4INSERM,  UMR-­‐S  1130,  Neuroscience  Paris  Seine,  75005-­‐Paris,  France   5Dept   of   Clinical   and   Experimental  Medicine,   University   of   Foggia,   71100-­‐Foggia,   Italy   6IRCCS  Neuromed,   86077-­‐Pozzilli,  Italy  7International  Associated  Laboratory  “Prenatal  Stress  and  Neurodegenerative  Diseases”  France/Italy  (Glycobiology  of  Stress-­‐related   Diseases   team,   UMR   8576   University   of   Lille1/CNRS,   Villeneuve   d’Ascq,   France;   Neuromed,   Pozzilli,   Italy   and   Sapienza  University  of  Rome,  Rome,  Italy)  Intracellular   accumulation   of   hyperphosphorylated   tau   protein   is   linked   to   neuronal   degeneration   in   Alzheimer’s   disease   (AD).  Mounting   evidence   suggests   that   tau   phosphorylation   and   O-­‐N-­‐acetylglucosamine   glycosylation   (O-­‐GlcNAcylation)   are   mutually  exclusive  post-­‐translational  modifications.  O-­‐GlcNAcylation  depends  on  3-­‐5%  of   intracellular  glucose   that  enters   the  hexosamine  biosynthetic  pathway.  To  our  knowledge,  the  existence  of  an  imbalance  between  tau  phosphorylation  and  O-­‐GlcNAcylation  has  not  been   reported   in   animal  models   of   AD,   as   yet.   Here,  we   used   triple   transgenic   (3xTg-­‐AD)  mice   at   12  months,   an   age   at  which  hyperphosphorylated  tau  is  already  detected  and  associated  with  cognitive  decline.  In  these  mice,  tau  was  hyperphosphorylated  on  both   Ser396   and   Thr205   in   the   hippocampus,   and   to   a   lower   extent   and   exclusively   on   Thr205   in   the   frontal   cortex.   Tau   O-­‐GlcNAcylation,   assessed   in   tau   immunoprecipitates,   was   substantially   reduced   in   the   hippocampus   of   3xTg-­‐AD   mice,   with   no  changes   in   the   frontal   cortex   or   in   the   cerebellum.   No   changes   in   the   expression   of   the   three   major   enzymes   involved   in   O-­‐GlcNAcylation,   i.e.,  glutamine  fructose-­‐6-­‐phosphate  amidotransferase,  O-­‐linked  β-­‐N-­‐acetylglucosamine  transferase,  and  O-­‐GlcNAc  hydrolase  were  found  in  the  hippocampus  of  3xTg-­‐AD  mice,  raising  the  interesting  possibility  that  the  amount  of  glucose  entering  the  hexosamine  pathway  is  reduced  in  the  hippocampus  of  3xTg-­‐AD  mice.  These  data  demonstrate  that  an  imbalance  between  tau  phosphorylation  and  O-­‐GlcNAcylation  exists  in  AD  mice,  and  strengthens  the  hypothesis  that  O-­‐GlcNAcylation  might  be  targeted  by  disease  modifying  drugs  in  AD.  

 

Page 65: ABSTRACT BOOK - hypothalamus.euhypothalamus.eu/wp-content/uploads/BSN-SNE2015_Program_low.pdf · LocalOrganizingCommittee !! Vincent Prévot, Chair Bénédicte Dehouck, Deputy Chair

Exhibitors  

     

 

 

 

 

 

Non-­‐academic  Sponsor    

 

     

Academic  Sponsors