Top Banner

of 31

Aatcc Meeting 2008 Khk

Apr 07, 2018

Download

Documents

kiranhkale
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/6/2019 Aatcc Meeting 2008 Khk

    1/31

  • 8/6/2019 Aatcc Meeting 2008 Khk

    2/31

    Plasmas are generated in gases by heating, byapplying a voltage, or by injectingelectromagnetic waves.

    Electrical discharges commonly used

    Generation of Plasma

  • 8/6/2019 Aatcc Meeting 2008 Khk

    3/31

    The ignition is brought about by the small fraction

    of charged particles always present in the gas.

  • 8/6/2019 Aatcc Meeting 2008 Khk

    4/31

    Emission of characteristic

    glow when it comes to

    ground state

    Electron interactions in plasma

  • 8/6/2019 Aatcc Meeting 2008 Khk

    5/31

    PROPAGATION

    GENERATION

    LOSS OFELECTRONES

  • 8/6/2019 Aatcc Meeting 2008 Khk

    6/31

    Plasma Species determine the plasma type

    Electron density

    Ion density

    Electron/ion temperatureInteractions between electron-electron, ion-

    electron, ion-ion etc are possible

    Plasma exhibit broad range of spectrum i.e

    electron density from few to 1025

    /cm3

    Different mean path length

  • 8/6/2019 Aatcc Meeting 2008 Khk

    7/31

    System pressure

    Electrode configuration

    Nature of gasFlow rate of gas

    Power

    Time of treatment

    Nature of substrate

    PLASMA PROCESS PARAMETERSPLASMA PROCESS PARAMETERS

  • 8/6/2019 Aatcc Meeting 2008 Khk

    8/31

    PLASMA Dependency on System Pressure

    To initiate and sustain the plasma

    continuous supply of energy is must.

    Vb= f (p .d)

    At fixed applied voltage, d must decrease, as weincrease the pressure

  • 8/6/2019 Aatcc Meeting 2008 Khk

    9/31

    Electrode configuration and features

    Presence of DielectricPresence of DielectricBarrierBarrier

    Spacing between theSpacing between the

    electrodeselectrodes

    Geometry ofGeometry of

    electrodeselectrodes

    Symmetry ofSymmetry of

    electrodeselectrodes

  • 8/6/2019 Aatcc Meeting 2008 Khk

    10/31

    The type of gas determines the nature of interactionbetween the substrate and the plasmai.e. etching, grafting, polymerisationBreakdown energy necessary to produce plasma varies

    Inert gasesInert gasesHe, Ar are commonly used .These are used for cleaning, activation purposeThey act as diluting media for reactive gas

    Oxygen containing plasmaOxygen containing plasma:Importance of reactive gas in surface modificationscan react with wide range of polymersImpart various functional groups like c-o, c=o, o-c-o,c-o-o etc

    Types of Gas UsedTypes of Gas Used

  • 8/6/2019 Aatcc Meeting 2008 Khk

    11/31

    Fluorine containing plasmaFluorine containing plasma :CFx etching and polymerisation

    HydrocarbonsHydrocarbons : methane, ethane, ethylene to generate plasma polymerised

    hydrocarbon film to impart microhardness, optical refractive index and

    impermeability

    Organosllicone monomers :

    excellent thermal and chemical resistance

    Nitrogen containing plasma to improve wettability, printability

    biocompatibility of the substrate

    Types of Gas Used contd..Types of Gas Used contd..

  • 8/6/2019 Aatcc Meeting 2008 Khk

    12/31

    Why Helium in glow discharges?

    Media for uniform glow discharge and carrier of

    reactive gases

    Mean free path

    Possibility of collisions

    Meta stable state configuration

    Simple energy levels

    Thermal conduction properties support theuniform discharge

  • 8/6/2019 Aatcc Meeting 2008 Khk

    13/31

    Discharge power SupplyDischarge power SupplyThe energy required to generate plasma depend on

    the nature of gas and equipment

    Higher power means high kinetic energy of the

    reactive speciesOptimization depends with the substrate and

    system parameters

    Duration of treatment

    The extent of treatment can be varied with time

  • 8/6/2019 Aatcc Meeting 2008 Khk

    14/31

    Polyester/cotton blended textiles

    Why treatment of P/C blended textiles?

    Treatment carried out at Textile Chemistry,Science and Engineering department of NCSU,

    Raleigh, USA.

    Hydrophilic textiles with AtmosphericHydrophilic textiles with AtmosphericPressure PlasmaPressure Plasma

  • 8/6/2019 Aatcc Meeting 2008 Khk

    15/31

    ObjectivesObjectives

    1. To impart hydrophilicity to the textiles withatmospheric pressure plasma

    2. To assess the effect of plasma treatment withmeasurement of wicking behaviour and surface

    characteristics3. To study influence of following process variables

    Intensity of Glow Discharge (Power Supply)Duration of Treatment

    Nature of GasGas concentration (Flow rate)Distance between substrate and electrode

  • 8/6/2019 Aatcc Meeting 2008 Khk

    16/31

    Fabric: Polyester/cotton blended RFD fabric

    Blend composition 67/33

    epi / ppi : 90/70GSM: 88

    Machine: Atmospheric Pressure Glow Discharge

    at RF 13.56 MHz

    Materials and methods

  • 8/6/2019 Aatcc Meeting 2008 Khk

    17/31

    Atmospheric Pressure Glow Dischargeat RF 13.56 MHz

    RF generator

    Electrodes

    Gas input

    Evaporator

    Cooling for

    system

  • 8/6/2019 Aatcc Meeting 2008 Khk

    18/31

    Assessment of Efficiency of Hydrophilic Treatment

    Capillary rise up to 30 min

    Interval of measurement of height-every

    5 min.

  • 8/6/2019 Aatcc Meeting 2008 Khk

    19/31

    He : 40 LPMHe : 40 LPM

    OO22 : NIL: NIL

    D: 0.13D: 0.13

    T: 25 secT: 25 sec

    Height of capillary rise (cm)

    wicking time 5 min 10 min 15 min 20 min 25 min 30 min

    Discharge

    Intensity

    (Watts)

    C 0.4 0.9 1.4 1.7 2.1 2.4

    400 0.6 1.35 1.85 2.5 2.9 3.3

    500 0.9 1.65 2.35 2.85 3.45 3.95

    600 0.9 2 2.7 3.4 4.3 5700 0.85 1.5 2.6 3.35 4.1 4.8

    Discharge Intensity v/s Wicking HeightDischarge Intensity v/s Wicking Height

  • 8/6/2019 Aatcc Meeting 2008 Khk

    20/31

    Role of Discharge Intensity of He Plasma with ORole of Discharge Intensity of He Plasma with O22

    Height of capillary rise (cm)

    Wicking time 5 min

    10min

    15min

    20min

    25min

    30min

    Intensity of

    Discharge

    (Watts)

    C 0.4 0.9 1.4 1.7 2.1 2.4

    400 2.3 3.35 4.25 4.95 5.45 6.1

    500 2.45 3.45 4.3 5.35 5.95 6.6

    600 3.2 4.55 5.35 5.9 6.3 7

    700 3.6 4.55 5.4 6.05 6.6 7.1

    He : 40 LPMHe : 40 LPM

    O2 : 0.15 LPMO2 : 0.15 LPM

    D: 0.13D: 0.13

    T: 25 secT: 25 sec

    effect of o er on ca i ary rise

    0

    1

    2

    3

    45

    6

    7

    400 500 600 700

    Po er (Watts)

    HeightofCa

    iary

    ise(c

    5 min

    10 min15 min

    20 min

    25 min

    30 min

    n

  • 8/6/2019 Aatcc Meeting 2008 Khk

    21/31

    Height of capillary rise (cm)

    Wicking time 5 min 10 min 15 min 20 min 25 min 30 min

    Treatment

    Time

    (sec)

    C 0.4 0.9 1.4 1.7 2.1 2.4

    14 0.5 0.95 1.55 1.9 2.4 2.7

    20 1.1 2.1 2.9 3.75 4.6 5.3

    25 1.5 2.55 3.35 4.2 4.8 5.35

    37 2. 4 4.1 5.4 6.4 7 7.7

    He : 40 LPMHe : 40 LPM

    O2 : NILO2 : NIL

    P: 650 wattsP: 650 watts

    D: 0.13D: 0.13

    Effect of Duration of TreatmentEffect of Duration of Treatment

    Helium Plasma inHelium Plasma in

    absence ofabsence ofoxygenoxygen

    effect of treatment time on capilary rise

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    C 14 20 25 37

    treatment time (sec)

    HeightofCapilary

    Rise(cm)

    5 min

    10 min

    15 min

    20 min

    25 min

    30 min

  • 8/6/2019 Aatcc Meeting 2008 Khk

    22/31

    Height of capillary rise (cm)

    wicking time 5 min 10 min 15 min 20 min 25 min 30 min

    Treatment

    time

    (sec)

    C 0.4 0.9 1.4 1.7 2.1 2.4

    14 1.1 2.2 3.3 4.3 5 5.85

    20 1.6 2.9 3.7 4.6 5.3 5.9

    25 2 3.7 4.7 5.65 6.15 6.6

    37 2.65 3.8 5 5.8 6.4 7.5

    He : 40 LPMHe : 40 LPM

    O2 : 0.15 LPMO2 : 0.15 LPM

    P: 650 wP: 650 w

    D: 0.13D: 0.13

    Effect of Duration of Treatment in Presence of OEffect of Duration of Treatment in Presence of O22

    Helium Plasma inHelium Plasma in

    presence ofpresence ofoxygenoxygen

    effect of treatment time on capilary rise

    0

    1

    2

    3

    4

    5

    6

    7

    8

    C 14 20 25 37

    treatment time (sec)

    HeightofCapilaryRise(

    5 min

    10 min

    15 min

    20 min

    25 min

    30 min

  • 8/6/2019 Aatcc Meeting 2008 Khk

    23/31

    Height of capillary rise (cm)

    wicking time 5 min 10 min 15 min 20 min 25 min 30 min

    He flow rate

    LPM

    13 0.65 1.9 2.4 3.15 3.7 4.1

    22 1.5 2.4 3.4 3.8 4.2 4.6

    30 2 3.5 4.45 5.15 5.6 6.15

    40 1.4 2.6 3.65 4.4 5 5.5

    50 1.2 2.1 2.9 3.3 4.45 4.9

    60 0.7 1.4 2.3 3.1 3.5 4

    P: 650 w

    O2 : NIL

    D: 0.13

    T:25 sec

    Effect of Gas Concentration

    He plasma in

    absence ofoxygen

    effect f l te

    0

    1

    2

    3

    4

    5

    6

    7

    13 22 31 40 52 60

    Gas l

    ate ( )

    ei

    t

    f

    apilar

    ise(cm)

    5

    i

    10

    i

    15

    i

    20

    i

    25

    i

    30

    i

  • 8/6/2019 Aatcc Meeting 2008 Khk

    24/31

    Height of capillary rise(cm)

    wicking time

    5

    min 10 min 15 min 20 min 25 min 30 min

    He flow rate

    LPM

    30 2 2.9 3.6 4.1 4.5 4.9

    40 2.4 3.4 4.3 5.1 5.7 6.3

    50 2.7 3.8 4.9 5.5 6 6.560 2.45 3.35 4.4 4.9 5.45 5.8

    P: 650 w

    D: 0.12

    T:25 sec

    O2 : 0.15 LPMO2 : 0.15 LPM

    Effect of Gas Concentrationwith Oxygen

    Helium Plasma inHelium Plasma inpresence ofpresence ofoxygenoxygen

    e ec Gas Ra e

    0

    1

    2

    3

    4

    5

    6

    7

    35 40 52 60

    Gas

    Ra

    e

    P

    He

    Ca

    ay

    Rse

    c

    5 !"

    n

    10 !"

    n

    15 !"

    n

    20 !"

    n

    25 !"

    n

    30 !"

    n

  • 8/6/2019 Aatcc Meeting 2008 Khk

    25/31

    Height of capillary rise (cm)

    wicking time 5 min 10 min 15 min 20 min 25 min 30 min

    Electrode

    distance

    (inch)

    0.10 2.5 3.6 4.5 5.5 6.2 6.6

    0.11 2.1 3.1 3.8 4.4 5 5.7

    0.12 1.2 2.2 3 3.7 4.3 4.9

    0.13 0.9 1.85 2.6 3.4 4.1 4.70.14 0.8 1.7 2.4 3.3 4 4.6

    0.15 0.7 1.4 2 2.6 3.1 3.8

    effect of Electrode distance

    0

    1

    2

    3

    4

    5

    6

    7

    0.10 0.11 0.12 0.13 0.14 0.15

    Electrode istance (inch)

    Heightof

    apilaryRi

    se(cm)

    5 min

    10 min

    15 min

    20 min

    25 min

    30 min

    P: 600 W

    He: 40

    T: 25 sec

    Effect of Distance between Substrate andElectrode

  • 8/6/2019 Aatcc Meeting 2008 Khk

    26/31

    Height of capillary rise(cm)wicking time 5 min 10 min 15 min 20 min 25 min 30 min

    Electrode

    distance

    (inch)

    0.11 3.1 4.4 5.3 5.9 6.5 6.95

    0.12 2.6 3.7 4.5 5.15 5.55 5.9

    0.13 2.2 3.3 4.3 4.9 5.4 5.7

    0.14 2 2.6 3.6 4.25 4.7 5.1

    effect of Electrode distance

    0

    1

    2

    3

    4

    5

    6

    7

    0.11 0.12 0.13 0.14

    Electrode Distance (inch)

    HeightofCapilaryRise(cm)

    5 min

    10 min

    15 min

    20 min25 min

    30 min

    P: 600 WP: 600 W

    O2 : 0.15 LPMO2 : 0.15 LPM

    P: 600P: 600

    Effect of Electrode SpacingEffect of Electrode Spacing

    Helium Plasma inHelium Plasma inpresence ofpresence ofoxygenoxygen

  • 8/6/2019 Aatcc Meeting 2008 Khk

    27/31

    Gas composition and Power AppliedGas composition and Power Applied

    0

    1

    2

    3

    4

    400 500 600 700

    powe applie wa s

    wickingheight(cm

    with e iu on

    with e iu and gen

  • 8/6/2019 Aatcc Meeting 2008 Khk

    28/31

    Gas composition and Duration of TreatmentGas composition and Duration of Treatment

    0

    0.5

    1

    1.5

    2

    2.5

    3

    14 20 25 37

    time o treatment sec

    ic

    kingheiht

    cm)

    i h eliu onl

    i h eliu and O gen

  • 8/6/2019 Aatcc Meeting 2008 Khk

    29/31

    0

    0.5

    1

    1.5

    2

    2.5

    33.5

    0.11 0.12 0.13 0.14

    electrode distance) inch)

    wickingheight(c

    with Helium only

    with Helium and Oxygen

    Gas composition and electrode spacingGas composition and electrode spacing

  • 8/6/2019 Aatcc Meeting 2008 Khk

    30/31

    Plasma treatment can modify the textile surfacePlasma treatment can modify the textile surfaceto impart the hydrophilic propertiesto impart the hydrophilic propertiesIncrease in duration of treatment and intensityIncrease in duration of treatment and intensityof Plasma led to more hydrophilicityof Plasma led to more hydrophilicity

    Increase in Gas flow rate showed initially increaseIncrease in Gas flow rate showed initially increasein hydrophilicity and then decreasein hydrophilicity and then decreaseAt given applied power (Intensity), the increase inAt given applied power (Intensity), the increase inelectrode spacing has negative effect onelectrode spacing has negative effect onhydrophilicityhydrophilicity

    Addition of little amount of oxygen hasAddition of little amount of oxygen hassignificant effect on the hydrophilic propertiessignificant effect on the hydrophilic properties

    Concluding RemarksConcluding Remarks

  • 8/6/2019 Aatcc Meeting 2008 Khk

    31/31