Top Banner
A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation
21

A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

A.A. Chabanov, Abe Pena (UT-San Antonio)

Jing Wang, A.Z. Genack (Queens College of CUNY)

Speckle Fluctuations and Correlation

Page 2: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Speckles

Page 3: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Wave propagation in disordered media

mean free path

wavelength

Field

Intensity

Page 4: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Average intensity:

Gaussian statistics: only the pairs of identical paths have the same phase and thus give a contribution to the average intensity

Wave diffusion in a disordered medium

wavelength

mean free path

Page 5: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Diffusion equation for the average intensity:

Wave diffusion in a disordered medium

(This equation would yield the Ohm’s law for a disordered conductor)

Page 6: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Wave interference

A

A* 22*222* 2,4 AAAAAA Probability of return:wave particle

• transport reduction

• nonlocal correlation

• weak localization

• non-Gaussian statistics

Page 7: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Transmission coefficients

a′ b

:abt

a ababa

abba

abab

TTT

TT

tT2

Transmitted intensity = speckle intensity

Total transmission = brightness

Transmittance = conductance

a b′

Page 8: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Transmission coefficients

,

0

...

01

VUt

N

N

tt

0

...

01†

n n

nn ana

nm mbnbmnamanab

nbnn anab

ttTrT

uT

vvuuT

vut

)( †

2

**

i.e., Beenakker, RMP (1997)

Page 9: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Statistics of tab and Tab

ban bn nannbnanab vTvuvut 2

0

22

/exp

1)(

/),(

NT

irTP

NT

dTirP

aa

a

a

22

baabab vTtT

0 /exp)(

/)(

NT

TTP

NT

dTTP

a

aba

a

aab

Kogan & Kaveh, PRB (1995)

AAC & Genack, PRA (2005)

Page 10: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Alumina sample

d=0.9 cm

n=3.14

f=0.068

alumina sphere:

copper tube: D=7.3 cm

Page 11: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

L=60 cm, 10,000 sample configurations

A: ν=14.7-15.7 GHz, var(sab)=1.18, diffusive wave

B: ν =9.95-10.15 GHz, var(sab)=6.18, localized wave

C: t=740 ns, var[sab(t)]=20.1, strongly localized wave

Transmission in alumina samples

a

aa

ab

abab T

Ts

I

Is var21var

7 10 13 16 19-40

-30

-20

-10

0

<I a

b>

(dB

)

Frequency (GHz) -500 0 500 1000 150010-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

time (ns)

<I ab

(t)>

AB C

σ = 5 MHz

Page 12: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Transmitted field distribution

-10 -8 -6 -4 -2 0 2 4 6 8 10

P

10-5

10-4

10-3

10-2

10-1

100

101

AB C

abab T

i

T

r

2exp1

)(

P

Gaussian statistics:

Page 13: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Characteristic and distribution functions of total transmission

sa0 1 2 3 4 5

P(s

a )

0.0

0.5

1.0

1.5

A

B

C

A

B

C

z0 2 4 6 8 10

F(z

)

10 -2

10 -1

100

)()exp()2cos( zFzszasa

)var(3/2)],//1(lnexp[)( 2as sggzgzgzF

a

Nieuwenhuizen & vanRossen (1995)

Stoytchev & Genack (1999)

Page 14: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Factorizing of statistics of the field and intensity

nan

na

n

bn

ab

kakkn

an

bn

ab

TN

nTvT

kn

knTN

kTvt

!

120

22

!)!12()()(

2

2/

Ea

bbabaab FN

TvvTtt

**

2

2

2222 1 E

a

bbabaab FN

TvvTTT

Fluctuations:

Correlations:

Page 15: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Correlation with polarization

0 15 30 45 60 75 90

C

0.0

0.5

1.0

1.5

0 15 30 45 60 75 90

Re

FE

0.0

0.2

0.4

0.6

0.8

1.0

=0.29

=0.24

=0.32

a

a

T

Tvar

cos*

*

bbab

baab

E vvNT

ttF 22

2 11 EE

ab

baab FFT

TTC

AAC, Hu & Genack (2004)

Page 16: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Statistics of total transmission

n nana uT 2

TT

T

T

TTuvvTT

TuuT

a

a

ababbaab

aaa

222

2

1

2

1 In localized regime (only one open channel):

Page 17: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Statistics of transmission quantities in localized regime

0 /exp)(

/)(

NT

TTP

NT

dTTP a

a

)//(2)(/

2/

exp)(/

)( 20

02

0

NTTKTPNT

dT

NT

TTP

NT

dTTP ab

a

aba

a

aab

22

2

2222

'

22 11 outE

inEbbaabaab FF

N

TvvuuTTT

)1()(1 32'' outinoutinoutinoutinbaab FFFFAFFAFFss Pnini (2001)

)/var()1)(1)(1(,1 33''2 TTAFFAssA outinbaab

Page 18: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Correlation with wave polarization

Ei(S )E yi

E xi

S Dsample z

E x

E y E(D )

Page 19: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Intensity correlation of localized waves

D

0 15 30 45 60 75 90

C

0

2

4

6

8

10

S = 0o

(a)

(b)

S = 90o

S D

S D

S D

0 15 30 45 60 75 90

C

0

5

10

15

20

S D

4L

Page 20: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

Intensity correlation of localized waves

S = 0o

S = 90o

S D

S D

D

0 15 30 45 60 75 90

C /

(1+

cos2

D)

0

2

4

6

8

10

12

S DS D

]1[2,1 3AFin

31,0 AFin

)1)(1()1( 3

''in

out

baab FAF

ss

04.038.4)var(3 sA

Page 21: A.A. Chabanov, Abe Pena (UT-San Antonio) Jing Wang, A.Z. Genack (Queens College of CUNY) Speckle Fluctuations and Correlation.

• In a given random configuration, the statistics of transmitted field is Gaussian for both diffusive and localized waves; non-Gaussian mesoscopic field statistics arise in ensemble of configurations due to mesoscopic fluctuations of transmission

• In localized regime, the transmitted intensity can be written as a product of three statistically independent variables; two of them have Rayleigh distribution

• Future work:

Conclusions

In diffusive regime (many channels):

TT

TTTP a

aa , ?