Top Banner
A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University of Cambridge, UK) Ivan Damgård, Louis Salvail (University of Århus, DK) Crypto-Workshop Dagstuhl Thursday, September 20 th 2007
24

A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

A Tight High-Order Entropic Quantum Uncertainty Relationwith Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL)

Renato Renner (University of Cambridge, UK)

Ivan Damgård, Louis Salvail (University of Århus, DK)

Crypto-Workshop Dagstuhl

Thursday, September 20th 2007

Page 2: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

2 / 24

1970:

Page 3: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

3 / 24

(Randomized) 1-2 Oblivious Transfer

Rand1-2OT

S0;S1C 2 f0;1g

complete for 2-party computation impossible in the plain (quantum) model possible in the Bounded-Quantum-Storage Model

SC

Page 4: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

4 / 24

Outline

Motivation and Notation

Quantum Uncertainty Relation

Contributions

Page 5: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

5 / 24

Quantum Mechanics

with prob. 1 yields 1

with prob. ½ yields 0

Measurements:

with prob. ½ yields 1

+ basis

£ basis

j0i+ j1i+

j1i£j0i£

Page 6: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

6 / 24

get X'

0

0

1

1

0

Quantum 1-2 OT ProtocoljX i£

S0;S1

F1 2R F 1F0 2R F 0

£ ;F0;F1

S1 = ?S0

C = 0£ 0= +n

£ 2R X 2R sendf+;£gn f0;1gn

0

1

1

1

0

Correctness

Receiver-Security against Dishonest Alice

Page 7: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

7 / 24

Sender-Security?jX i£

S0;S1

F1 2R F 1F0 2R F 0

£ ;F0;F1

get

½

£ 2R X 2R sendf+;£gn f0;1gn

0

1

1

1

0

Sender-Security: one of the strings looks completely random to dishonest Bob

# qubits < n=4

Page 8: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

8 / 24

Quantum Mechanics II

+ basis

£ basis

j0i+ j1i+

j1i£j0i£

EPR pairs:prob. ½ : 0 prob. ½ : 1

prob. ½ : 0prob. ½ : 1

prob. 1 : 0

Page 9: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

9 / 24

get

Entanglement-Based Protocol

S0;S1

F1 2R F 1F0 2R F 0

£ ;F0;F1

½

epr n

# qubits < n=4

Sender-Security: One of the strings looks completely random to dishonest Bob

£ 2R X 2R sendf+;£gn f0;1gn

?

?

?

?

?

Page 10: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

10 / 24

get

Entanglement-Based ProtocoljX i£

S0;S1

F1 2R F 1F0 2R F 0

£ ;F0;F1

½

# qubits < n=4

Sender-Security: One of the strings looks completely random to dishonest Bob

£ 2R X 2R sendf+;£gn f0;1gn

0

1

1

1

0

Page 11: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

11 / 24

£ 2R X 2R sendf+;£gn f0;1gn

?

?

?

?

?

Let Bob Act First

F1 2R F 1F0 2R F 0

½

£ ;F0;F1

getepr n

//...

# qubits < n=4

Sender-Security: One of the strings looks completely random to dishonest Bob

S0;S1 2 f0;1g̀

[Renner KÄonig 05, Renner 06]

PA : 2̀ ¼H1 (X j £;½)

Page 12: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

12 / 24

get£ 2R X 2R send

f+;£gn f0;1gn

?

?

?

?

?

Sender-Security Uncertainty Relation

F1 2R F 1F0 2R F 0

½

£ ;F0;F1

epr n

//...

# qubits < n=4

Sender-Security: One of the strings looks completely random to dishonest Bob

S0;S1 2 f0;1g̀

[Renner KÄonig 05, Renner 06]

PA : 2̀ ¼H1 (X j £;½) ¸ H1 (X j £)| {z }

¸ ?

¡ # qubits| {z }

<n=4

H1 (X j £ ) ¸ ?

Page 13: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

13 / 24

Outline

Motivation and Notation

Quantum Uncertainty Relation

Contributions

Page 14: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

14 / 24

Quantum Uncertainty Relation needed

j0i+

j1i+j1i£ j0i£

qubit as unit vector in C2

®

Pr[X = 0] = j®j2

Pr[X = 1] = 1¡ j®j2

Pr[X = 0] = j¯ j2

Pr[X = 1] = 1¡ j¯ j2

¯

Page 15: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

15 / 24

M aassen U±nk 88: Let ½i be a 1-qubit state.£ i 2R f+;£g, X i the outcome of measuring ½i in basis £ i . Then,

H(X i j £ i ) = 12

¡H(X i j £ i = +) + H(X i j £ i = £)| {z }

¸ 1

¢¸ 1

2:

Uncertainty Relation for One Qubit

j0i+

j1i+j1i£ j0i£

Pr[X = 0] = 1Pr[X = 1] = 0

Pr[X = 0] = 1=2Pr[X = 1] = 1=2

Page 16: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

16 / 24

) H"1 (X n j £ )

n! 1¼ n ¢H(X i j £ i ) ¸ n=2

£ 2R statef+;£gn ½

...

Quantum Uncertainty Relation needed

//

H1 (X j £) ¸ ?

X i independent

X i := X 1; : : : ;X i

X := X n = X 1; : : : ;X n

H(X i j £ i ) ¸ 12

M aassen U±nk 88: Let ½i be a 1-qubit state.£ i 2R f+;£g, X i the outcome of measuring ½i in basis £ i . Then,

H(X i j £ i ) = 12

¡H(X i j £ i = +) + H(X i j £ i = £)| {z }

¸ 1

¢¸ 1

2:

except with prob · "

Page 17: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

17 / 24

£ 2R statef+;£gn ½

...

Main Result

//

H1 (X j £) ¸ ?

M aassen U±nk 88: Let ½i be a 1-qubit state.£ i 2R f+;£g, X i the outcome of measuring ½i in basis £ i . Then,

H(X i j £ i ) = 12

¡H(X i j £ i = +) + H(X i j £ i = £)| {z }

¸ 1

¢¸ 1

2:

X i dependent

H(X i j £ i ) ¸ 12

Quantum Uncertainty R elation: LetX = (X 1; : : : ;X n) be the outcome. Then,

H"1 (X j £ ) & n=2

with " negligible in n.

H(X i j £ i ;X i ¡ 1 = xi ¡ 1;£ i ¡ 1 = µi ¡ 1) ¸ 12

Page 18: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

18 / 24

Main Technical Lemma

Z1; : : : ;Zn (dependent) random variables

Then, H"1 (Z) & n ¢h with " negligible in n

with H(Zi j Z i ¡ 1 = zi ¡ 1) ¸ h.

P roof:

² information theory

² generalized Cherno®bound (A zuma inequality)

Page 19: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

19 / 24

£ 2R statef+;£gn ½

...

Proof of Quantum Uncertainty Relation

Zi := (X i ;£ i )

M U : ½1-qubit state: H(X 0 j £ 0) ¸ 12

//

T hm: H(Zi j Z i ¡ 1 = z) ¸ h ) H"1 (Zn) & hn

Quantum Uncertainty R elation: LetX = (X 1; : : : ;X n) be the outcome. Then,

H"1 (X j £ ) & n=2

with " negligible in n.

H(Zi j Z i ¡ 1 = z) = H(X i j £ i ;Z i ¡ 1 = z) +H(£ i j Z i ¡ 1 = z)

¸ 12

+1=: h:

H"1 (X j £) ¼H"

1 (Zn) ¡ H0(£ ) & n=2+n ¡ n:

Page 20: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

20 / 24

Tight?M U : ½1-qubit state: H(X 0 j £ 0) ¸ 1

2

H(X j £ ) = 12

¡H(X j £ = +)| {z }

=0

+H(X j £ = £)| {z }

=1

¢= 1

2:

£ 2R statef+;£gn ½

...

//

Quantum Uncertainty R elation: LetX = (X 1; : : : ;X n) be the outcome. Then,

H"1 (X j £ ) & n=2

with " negligible in n.

For the pure state j0i n, the X are independent and we know

that H"1 (X j £ )

n! 1¼ H(X j £ ) = n=2.

Page 21: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

21 / 24

Outline

Motivation and Notation

Quantum Uncertainty Relation

Contributions

Page 22: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

22 / 24

conjugate coding / BB84:£ 2R state

f+;£gn ½

...

classical general lemma:

instantiate it for various quantum codings:

Contributions I: Uncertainty Relations

H(Zi j Z i ¡ 1 = z) ¸ h ) H"1 (Zn) & hn

//

H"1 (X j £) ¸ n=2

Page 23: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

23 / 24

conjugate coding / BB84:

three bases / six-state:

classical general lemma:

instantiate it for various quantum codings:

Contributions I: Uncertainty Relations

H(Zi j Z i ¡ 1 = z) ¸ h ) H"1 (Zn) & hn

H"1 (X j £) ¸ n=2

//

//

£ 2R statef+;£;ª gn ½

...H"

1 (X j £) ¸ 23n

Page 24: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications Serge Fehr, Christian Schaffner (CWI Amsterdam, NL) Renato Renner (University.

24 / 24

Bounded-Quantum-Storage Model:Non-interactive, practical protocols for 1-2 OT and BC secure according new composable security definitions.

Quantum Key Distribution: Security proofs in realistic setting of a quantum-memory bounded eavesdropper. Tolerate higher error rates than against unbounded adversaries.

Composition of certain Quantum Ciphers: key-uncertainty adds up in terms of min-entropy.

Contributions II: Applications