Top Banner
A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications (ITA) 2 Physical Layer Security
25

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

Dec 28, 2015

Download

Documents

Joan Gwen Neal
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1

Information Security 2 (InfSi2)

Prof. Dr. Andreas Steffen

Institute for Internet Technologies and Applications (ITA)

2 Physical Layer Security

Page 2: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 2

Security Protocols for the OSI Stack

Application layer Platform Security, Web Application Security, VoIP Security, SW SecurityTransport layer TLS

Network layer IPsec

Data Link layer [PPTP, L2TP], IEEE 802.1X,IEEE 802.1AE, IEEE 802.11i (WPA2)Physical layer Quantum Cryptography

Communication layers

Security protocols

Page 3: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 3

Layer 1 Security – Frequency Hopping

f1 f2 f4 f5 f6 f7f3 f8

f

Counter measures: e.g. n parallel receivers

tf8 f1f2

t

f4 f1 f3 f2 f7 f5 f7 f6 f3

Standardized (public) or secret (military) hopping sequence

Frequency band divided into n hopping channels

Page 4: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 4

Information Security 2 (InfSi2)

2.1 Quantum Cryptography

Page 5: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 5

Quantum Cryptography using Entangled Photons

• Nicolas Gisin et al.University of Geneva

• Compact source emittingentangled photon pairs

• Quantum correlation overmore than 10 km

• Founding of ID Quantique

Page 6: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 6

4.

Quantum Key Distribution using Entangled Photons

PhotonSource

PhotonSource 1.

Alice

Bob

3. 7.2. 6.

0

0

-

-

1

1

1

1

-

-

0

0

5.

Eve (eavesdropping)

-

-

E91 protocol: Arthur Ekert, 1991

Page 7: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 7

Quantum Key Distribution using the BB84 Protocol

PolarizationModulated

PhotonSource

PolarizationModulated

PhotonSource

Alice

Bob

1.

0

0

2.

-

-

3.

1

1

4.

1

1

6.

-

-

7.

0

0

BB84 protocol: Charles Bennett & Gilles Brassard, 1984

5.

-

-

Eve (eavesdropping)

Page 8: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 8

Decoy States against Multi-Photon Splitting Attacks

• Single photon lasers are nearly impossible to build.• The natural Poisson distribution of practical laser sources

causesmulti-photon pulses to occur which can be split by Eve.

• In order to compensate for the stolen photons, Eve might inject additional photons.

• As a counter measure Alice randomly inserts a certain percentage of decoy states transmitted at a different power level.

• Later Alice reveals to Bob which pulses contained decoy states.

• If Eve was eavesdropping, the yield and bit error rate statistics for the signal and decoy states are modified which can be detected by Alice and Bob.

• The use of decoy states extends the rate of secure key exchange to over 140 km.

Page 9: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 9

Photon Yield versus Power Level

Power Level 0.80 photons/pulse0.12 photons/pulse

449 pulses

360 pulses

144 pulses

38 pulses

8 pulses

887 pulses

106 pulses

7 pulses

0 pulses

0 pulses

0 photons/pulse

1 photon /pulse

2 photons/pulse

3 photons/pulse

4 photons/pulse

Signal states Decoy states

• Poisson distribution of the number of photons in a pulse,measured over 1000 pulses:

1 pulse 0 pulses5 photons/pulse

551 of 1000 pulses 113 of 1000 pulsesYield

Page 10: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 10

Photon Yield versus Transmission Distance

• Attenuation in a monomode fiber with =1550nm: 0.2 dB/km• 50 km: 10dB 1 out 10 photons survive• 100 km: 20dB 1 out of 100 photons survive• 150 km: 30dB 1 out of 1000 photons survive

Page 11: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 11

Photon Yield in 50 km (10 dB Attenuation)

Power Level 0.80 photons/pulse0.12 photons/pulse

0 pulses

36 pulses

28 pulses

10 pulses

3 pulses

0 pulses

10 pulses

2 pulses

0 pulses

0 pulses

77 of 1000 pulses 12 of 1000 pulses

0 photons/pulse

1 photon /pulse

2 photons/pulse

3 photons/pulse

4 photons/pulse

Signal states Decoy states

Yield

• Received pulses containing at least one photon,measured over 1000 pulses:

0 pulses 0 pulses5 photons/pulse

Page 12: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 12

Layer 2 Encryption with Quantum Key Distribution

• 10 Gbit/s Ethernet Encryption with AES-256 in Counter Mode

• QKD: RR84 and SARG protocols, up to 50 km (100 km on request)

• Key Management: 1 key/minute up to 12 encryptors

Page 13: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 13

Cerberis QKD Server and Centauris Encryptors

Page 14: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 14

Information Security 2 (InfSi2)

2.2 Key Material andRandom Numbers

Page 15: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 15

Cryptographical Building Blocks

BlockCipher

s

Stream

Ciphers

Symmetric KeyCryptography

Authentication

Privacy

Encryption

HashFunction

s

Challenge

Response

IVs

MACsMICs

MessageDigests

Nonces

PseudoRandom

Random

Sources

Secret Keys

SmartCards

DHRSA

Public KeyCryptography

EllipticCurve

s

Digital Signatures

DataIntegrity

Secure Network Protocols

Non-Repudiatio

n

Page 16: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 16

HMAC Function (RFC 2104)

DocumentDocument

KeyKey

Inner KeyInner Key

64 bytes

MD5 / SHA-1 Hash FunctionMD5 / SHA-1 Hash Function

HashHash

MD5 / SHA-1 Hash FunctionMD5 / SHA-1 Hash Function

0x36..0x360x36..0x36

XOR

Outer KeyOuter Key

64 bytes

0x5C..0x5C0x5C..0x5C

XOR

PadPad 64 bytes

MACMAC 16/20 bytes

Page 17: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 17

TLS Handshake Protocol

Server

Server HelloServer Hello RSRS

ServerHelloDoneServerHelloDone

Client

Client HelloClient Hello RCRC

Application Data°Application Data°Application Data°Application Data°

Certificate*

ClientKeyExchange

CertificateVerify**optional

ServerKeyExchange*

Certificate*

CertificateRequest*

*optional

Finished°Finished°

ChangeCipherSpec

Finished°Finished°

ChangeCipherSpec

°encrypted

Page 18: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 18

Secret

Key Stream

Seed key stream = PRF_MD5(secret, seed)

Pseudo Random Function (PRF)

A(3)

S

A(3)

HMAC-MD5

1..16

S

Seed

17..32

S

Seed

33..48

S

Seed

HMAC-MD5 HMAC-MD5 HMAC-MD5

A(2)

S HMAC-MD5

A(2)

16 bytes

A(1)

A(1)

16 bytes

HMAC-MD5

Seed

Page 19: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 19

Computing the TLS 1.1 Master Secret

Master Secret

"master secret"

48 bytesPRF_MD5

60 bytes PRF_SHA-1

S1

S2

Pre-Master Secret

RC RS

label seed

label seed

key stream = TLS_PRF(secret, label, seed)

TLS_PRF

48 bytes

Page 20: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 20

Generating TLS 1.1 Key Material

Key Material

"key expansion"

n bytesPRF_MD5

n bytesPRF_SHA-1

S1

S2

Master Secret

RS RC

label seed

label seed

key stream = TLS_PRF(secret, label, seed)

TLS_PRF

n bytes

Page 21: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 21

Generating True Random Numbers (RFC 1750)

• The security of modern cryptographic protocols relies heavily on the availability of true random key material and nonces.

• On standard computer platforms it is not a trivial task to collect true random material in sufficient quantities:• Key Stroke Timing• Mouse Movements• Sampled Sound Card Input Noise• Air Turbulence in Disk Drives• RAID Disk Array Controllers• Network Packet Arrival Times• Computer Clocks

• Best Strategy: Combining various random sources with a strong mixing function (e.g. MD5 or SHA-1 hash) into an entropy pool (e.g. Unix /dev/random) protects against single device failures.

Page 22: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 22

Hardware-based True Random Generators

• Quantum Sources or Radioactive Decay Sources• Reliable, high entropy sources, but often bulky and

expensive.

• Thermal Noise Sources• Noisy diodes or resistors are cheap and compact but level

detection usually introduces considerable skew that must be corrected.

• Free Running or Metastable Oscillators • The frequency variation of a free running oscillator is a good

entropysource if designed and measured properly. Used e.g in smart card crypto co-processors.

• The Intel Ivy Bridge processor family implements an on-chipmetastable digital oscillator.

• Lava Lamps• Periodic digital snapshots of a lava lamp exhibit a lot of

randomness.

Page 23: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 23

The Intel RDRAND Instruction

• Available with Intel Ivy Bridge Processors (XEON & Core i7)• The RDRAND instruction reads a 16, 32 or 64 bit random

value• Throughput 500+ MB/s random data with 8 concurrent

threads• The random number generator is compliant with NIST SP800-

90,FIPS 140-2, and ANSI X9.82

Page 24: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 24

Quantum Random Number Generatorwww.idquantique.com

• Detection of single photons viaa semi-transparent mirror

• High throughput: 4 – 16 Mbit/s• Low cost (990…2230 EUR)

Page 25: A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 1 Information Security 2 (InfSi2) Prof. Dr. Andreas Steffen Institute for Internet Technologies and Applications.

A. Steffen, 22.09.2013, 02-PhysicalLayer.pptx 25

Skew Corrections and Tests for Randomness

• Simple Skew Correction (John von Neumann)• p(1) = 0.5+e, p(0) = 0.5-e, -0.5 < e < 0.5• Example with e = 0.20, i.e. p(1) = 0.7, p(0) = 0.3

• Strong Mixing using Hash functions • Hashing improves statistical properties but does not increase

entropy.

• Statistical Tests for Randomness• A number of statistical tests are defined in FIPS PUB 140-2

"Security Requirements for Cryptographic Modules" : Monobit Test, Poker Test, Runs Test, etc.

• Entropy Measurements• The entropy of a random or pseudo-random

binary sequence can be measured using Ueli Maurer's"Universal Statistical Test for Random Bit Generators"

- 0 - - 1 1 - 0 1 - 1 0 - 1 0 - 0 - - 1 - 0 - - - - 0 0

11011111101011011000100111100111011111101101111111110101