Top Banner
A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology [email protected] 1- Applied Thermodynamics 2- Chemical Kinetics
30

A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology [email protected].

Dec 14, 2015

Download

Documents

Seth Ortega
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

A Selection of Physical Chemistry Problems Solved using Mathematica

Housam BINOUS

National Institute of Applied Sciences and Technology

[email protected]

1- Applied Thermodynamics

2- Chemical Kinetics

Page 2: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Azeotropes for Ternary SystemsCase of Acetone - Chloroform - Methanol System

Gas Constant and

Total Pressure :

Vapor Pressure Using

Antoine Equation :

TC

BAPLog sat

10

R=1.987;P=760;

A1=7.11714;B1=1210.595;C1=229.664;A2=6.95465;B2=1170.966;C2=226.232;A3=8.08097;B3=1582.271;C3=239.726;

PS1=10^(A1-B1/(C1+T));PS2=10^(A2-B2/(C2+T));PS3=10^(A3-B3/(C3+T));

Page 3: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

C

ik

jijj

ikiC

jkjjk

x

xx

1

1

1

ln1ln

Liquid phase activity coefficients

from Wilson model :

RTv

v iiij

iL

jLij

exp

l12=116.1171;l21=-506.8519;l13=-114.4047;l31=545.2942;l23=-361.7944;l32=1694.0241;V1=74.05;V2=80.67;V3=40.73;

X3=1.-X1-X2;

A12=V2/V1 Exp[-l12/(R*(273.15+T))];A13=V3/V1 Exp[-l13/(R*(273.15+T))];A32=V2/V3 Exp[-l32/(R*(273.15+T))];A21=V1/V2 Exp[-l21/(R*(273.15+T))];A31=V1/V3 Exp[-l31/(R*(273.15+T))];A23=V3/V2 Exp[-l23/(R*(273.15+T))];

GAM1=Exp[-Log[X1+X2*A12+X3*A13]+1-(X1/(X1+X2*A12+X3*A13)+ X2*A21/(X1*A21+X2+X3*A23)+X3*A31/(X1*A31+X2*A32+X3))];GAM2=Exp[-Log[X1*A21+X2+X3*A23]+1-(X1*A12/(X1+X2*A12+X3*A13)+ X2/(X1*A21+X2+X3*A23)+X3*A32/(X1*A31+X2*A32+X3))];GAM3=Exp[-Log[X1*A31+X2*A32+X3]+1-(X1*A13/(X1+X2*A12+X3*A13)+ X2*A23/(X1*A21+X2+X3*A23)+X3/(X1*A31+X2*A32+X3))];

Page 4: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Modified Raoult’s law :

Using the Mathematica’s function FindRoot to solve a system

of nonlinear equations using different initial guesses :

Y1=X1*PS1*GAM1/P;Y2=X2*PS2*GAM2/P;Y3=X3*PS3*GAM3/P;

In[25]:=FindRoot[{Y1==X1,Y2==X2, P==X1*PS1*GAM1+X2*PS2*GAM2+X3*PS3*GAM3},{X1,0.3},{X2,0.4},{T,40}]

Out[25]={X1->0.329313,X2->0.230369,T->57.3763}In[26]:=FindRoot[{Y1==X1,Y2==X2, P==X1*PS1*GAM1+X2*PS2*GAM2+X3*PS3*GAM3},{X1,0},{X2,0.4},{T,57}]

Out[26]={X1 -> 4.068181432585476 10^-27, X2 -> 0.6547858067091471, T -> 53.89598911261277}In[27]:=FindRoot[{Y1==X1,Y2==X2, P==X1*PS1*GAM1+X2*PS2*GAM2+X3*PS3*GAM3},{X1,0.3},{X2,0},{T,57}]

Out[27]={X1 -> 0.7895499074011907, X2 -> 7.732502667736949 10^-31, T -> 55.37684581029206}In[28]:=FindRoot[{Y1==X1,Y2==X2, P==X1*PS1*GAM1+X2*PS2*GAM2+X3*PS3*GAM3},{X1,0.3},{X2,0.6},{T,63}]

Out[28]={X1->0.337271,X2->0.662729,T->64.5366}

Page 5: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Calculation of Binary Interaction Parameters for Wilson ModelCase of Methanol-Water binary system

P

Pxy

sat

Gas Constant and

Total Pressure :

Modified Raoult’s law with Wilson’s model:

P=760;R=1.987;

A12[T_]:=18.07/40.73 Exp[-d1/(R (T+273.15))];A21[T_]:=40.73/18.07 Exp[-d2/(R (T+273.15))];

y[x_,T_]:=x 10^(Aa-Ba/(T+Ca)) Exp[-Log[x+A12[T] (1-x)] +(1-x) (A12[T]/(x+A12[T] (1-x))-A21[T]/(A21[T] x+1-x))]/P

Aa=8.08097;Ba=1582.271;Ca=239.726;

Page 6: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

2

1

expexpexp ),(

N

iiii

cali yTxyMin

Use Mathematica’s function

FindMinimum to determine

the binary interaction coefficients :

Experimental data :

{Methanol liquid mole fraction, Temperature, Methanol Vapor Mole fraction}

from P. C. Wankat, Equilibruim Staged Separations, Prentice Hall 1988

mydata={{0,100,0},{0.02,96.4,0.134},{0.04,93.5,0.23}, {0.06,91.2,0.304},{0.08,89.3,0.365},{0.1,87.7,0.418}, {0.15,84.4,0.517},{0.2,81.7,0.579},{0.3,78,0.665},{0.4,75.3,0.729},{0.5,73.1,0.779},{0.6,71.2,0.825},{0.7,69.3,0.87},{0.8,67.6,0.915},{0.9,66,0.958},{0.95,65,0.979},{1,64.5,1}};

sumOfSquares[data_]:=Apply[Plus,Apply[Plus,Map[{(y[#[[1]],#[[2]]] - #[[3]])^2}&, data]]]

param1=FindMinimum[sumOfSquares[mydata],{d1,0.1,90},{d2,.01,1000},MaxIterations->300]

{0.000322454,{d1->127.624,d2->484.178}}

Page 7: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Isobar Vapor-Liquid Equilibrium CalculationsCase of Ethanol-Water System at 760 mmHg

Vapor Pressure Using

Antoine Equation :

TC

BAPLog sat

10

Activity coefficients

using the Van Laar Model :

2

221112

221121ln

xAxA

xAA

A1=8.07131;B1=1730.630;C1=233.426;A2=8.11220;B2=1592.864;C2=226.184;

PS2=10^(A1-B1/(C1+T));PS1=10^(A2-B2/(C2+T));

G1[i_]:=Exp[A12 (A21 (1-x[i])/(A12 x[i]+A21 (1-x[i])))^2]G2[i_]:=Exp[A21 (A12 x[i]/(A12 x[i]+A21 (1-x[i])))^2]

A12=1.6798;A21=0.9227;

Page 8: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Compute T and y for given x using a While loop

and Mathematica’s function FindRoot :

Create tables using Mathematica’s command Table :

i=0;P=760;T=.

While[i<101,{x[i]=i 0.01, T[i]=FindRoot[P== PS1 G1[i] x[i]+PS2 G2[i] (1-x[i]),{T,80}][[1,2]], y[i]=PS1 G1[i] x[i]/P/.T-> T[i],i++}]

tb=Table[{x[i],y[i]},{i,0,100}];tb2=Table[{x[i],T[i]},{i,0,100}];tb3=Table[{y[i],T[i]},{i,0,100}];

Page 9: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Mathematica’s commands ListPlot and Show are used to plot

Bubble point and dew point temperatures on the same figure :

0.2 0.4 0.6 0.8 1

85

90

95

100

x,y

T

plt1=ListPlot[tb2,PlotStyle->RGBColor[1,0,0],PlotJoined-> True, PlotRange->All]

plt2=ListPlot[tb3,PlotStyle->RGBColor[0,0,1],PlotJoined-> True, PlotRange->All]

Page 10: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Mathematica’s commands ListPlot, Line and Epilog are used to plot

the VLE data and the y=x line :

x

y

plt1=ListPlot[tb,PlotStyle->RGBColor[1,0,0],PlotJoined-> True, Epilog-> {RGBColor[0,1,0],Line[{{0,0},{1,1}}]}]

Page 11: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Isotherm Vapor-Liquid Equilibrium CalculationsCase of Ethanol-Ethyl acetate System at 70°C

Vapor Pressure Using

Antoine Equation :

TC

BAPLog sat

10

Partial pressure using Raoult’s law :

A1=7.10179;B1=1244.951;C1=217.881;A2=8.11220;B2=1592.864;C2=226.184;

PS1=10^(A1-B1/(C1+T));PS2=10^(A2-B2/(C2+T));

T=70;

P1[x_]:=PS1 x;P2[x_]:=PS2 (1-x);

plt3=Plot[{P1[x],P2[x]},{x,0,1}, PlotStyle->{RGBColor[1,0,1],RGBColor[0,1,0]}]

Page 12: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Liquid activity coefficients using the Margules Model :

2211221121 )2(ln xxAAA

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

2.2

Expect positive deviation

from ideality because activity

coefficients are greater than 1 :

x

i

A12=0.8557;A21=0.7476;

G3=Exp[(A12+2 (A21-A12) x) (1-x)^2]G4=Exp[(A21+2 (A12-A21) (1-x)) x^2]

plt8=Plot[{G3,G4},{x,0,1},PlotStyle->{RGBColor[0,0,1],RGBColor[0,0,1]}]

Page 13: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Partial pressure using Modified Raoult’s law :

x

Pi

0.2 0.4 0.6 0.8 1

100

200

300

400

500

600

P1[x_]:=G3 PS1 x;P2[x_]:=G4 PS2 (1-x);

plt5=Plot[{P1[x],P2[x]},{x,0,1}, PlotStyle->{RGBColor[0,0,1],RGBColor[0,0,1]}]

Show[plt3,plt5]

Page 14: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

x,y

P

Plotting P versus x and yto get the isotherm VLE diagram :

0.2 0.4 0.6 0.8 1

575

600

625

650

675

700

P[x_]:=G3 x PS1+G4 (1-x) PS2

plt10=Plot[P[x],{x,0,1},PlotStyle->RGBColor[1,0,1]]

tbl=Table[{x G3 PS1/(G3 x PS1+G4 (1-x) PS2),G3 x PS1+G4 (1-x) PS2},{x,0,1,0.01}];

plt11=ListPlot[tbl,PlotStyle->RGBColor[1,0,1],PlotJoined->True]

Show[plt10,plt11]

Page 15: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Wei-Prater mechanism 3-reactant triangle network : A1=A2=A3=A1

with rate constants k12, k21, k23, k32, k31, k13.

Steady state solution obtained using Mathematica’s function Solve :

Rate constants are not independent : k32=k23 (k12/k21) (k31/k13)

k12=.5;k21=0.7;k13=.1;k31=.2;k23=.9;k32=k23 (k12/k21) (k31/k13)A1o=.7;A2o=0;A3o=.3;tf=10;

sequil=Solve[{0==-(k12 +k13) A1+k21 A2+k31 A3 , 0==k12 A1 -(k21 +k23)A2+k32 A3,A3==A1o+A2o+A3o-A1-A2}, {A1,A2,A3}]//Simplify {A1+A2+A3,A2/A1,k12/k21,A3/A1,k13/k31,A3/A2,k23/k32}/.sequil

{{A1->0.451613,A2->0.322581,A3->0.225806}}

{{1.,0.714286,0.714286,0.5,0.5,0.7,0.7}}

Page 16: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

transient solution obtained using Mathematica’s function NDSolve :

Plotting the solution using Mathematica’s functions Plot and ParametricPlot :

solWP=NDSolve[{A1'[t]==-(k12 +k13) A1[t]+k21 A2[t]+ k31 (A1o+A2o+A3o-A1[t]-A2[t]) , A2'[t]==k12 A1[t] -(k21 +k23)A2[t]+ k32 (A1o+A2o+A3o-A1[t]-A2[t]), A1[0]==A1o,A2[0]==A2o},{A1[t],A2[t]},{t,0,tf}];

({A1[t],A2[t],A1o+A2o+A3o-A1[t]-A2[t]})/.solWP/.t->tf

{{0.45162,0.322577,0.225802}}

Plot[Evaluate[Table[{A1[t],A2[t],A1o+A2o+A3o-A1[t]-A2[t]}/.solWP]],{t,0,tf}, Frame->True,DefaultFont->{"Symbol-Bold",14}, FrameLabel->{"t","A1, A2, A3"},PlotRange->{{0,tf},{0,1}}, PlotStyle->{RGBColor[1,0,0],RGBColor[0,1,0],RGBColor[0,0,1]}];

ParametricPlot[Evaluate[Table[{A2[t],A1[t]}/.solWP]],{t,0,tf},Frame->True, DefaultFont->{"Symbol-Bold",14},FrameLabel->{"A2","A1"}, PlotRange->{{0,1},{0,1}}];

Page 17: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

A

A

A

A

t

A

A

A

Transient solution of Wei-Prater problem :

Page 18: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Consecutive reactions : A1=A2=A3=A4=A5

with rate constants k12, k21, k23, k32, k31, k13...

transient solution obtained using Mathematica’s function NDSolve :

Plotting the transient solution using Mathematica’s functions Plot :

k12=k23=k34=k45=1;k21=k32=k43=k54=.1;A1o=1;tf=10;sol5=NDSolve[{A1'[t]==-k12 A1[t]+k21 A2[t], A2'[t]==k12 A1[t] -(k21 +k23)A2[t]+k32 A3[t], A3'[t]==k23 A2[t] -(k32 +k34)A3[t]+k43 A4[t], A4'[t]==k34 A3[t] -(k43 +k45)A4[t]+k54 (A1o-A1[t]-A2[t]-A3[t]-A4[t]), A1[0]==A1o,A2[0]==0,A3[0]==0,A4[0]==0}, {A1[t],A2[t],A3[t],A4[t]},{t,0,tf}];

Plot[Evaluate[Table[{A1[t],A2[t],A3[t],A4[t],A1o-A1[t]-A2[t]-A3[t]-A4[t]}/.sol5]],{t,0,tf},Frame->True,DefaultFont->{"Symbol-Bold",14},FrameLabel->{"t","A1, A2, A3, A4, A5"},PlotRange->{{0,tf},{0,1}},PlotStyle->{RGBColor[1,0,0],RGBColor[0,1,0],RGBColor[0,0,1], RGBColor[1,1,0],RGBColor[0,1,1]}];

Page 19: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Steady state solution obtained using Mathematica’s function Solve :

Plotting the steady state solution using Mathematica’s functions ListPlot :

soleq=Solve[{0==-k12 A1+k21 A2, 0==k12 A1-(k21 +k23)A2+k32 A3, 0==k23 A2 -(k32 +k34)A3+k43 A4, 0==k34 A3 -(k43 +k45)A4+k54 (A1o-A1-A2-A3-A4)},{A1,A2,A3,A4}]

A5=(A1o-A1-A2-A3-A4)/.soleq

ListPlot[Flatten[{A1,A2,A3,A4,(A1o-A1-A2-A3-A4)}/.soleq], PlotStyle->{PointSize[0.015],RGBColor[1,0,0]}]

Page 20: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

t

A

A

A

A

A

transient solution :

Steady state solution :

Page 21: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Lotka-Volterra Mechanism

PY

YYX

XXA

2

2

Foxes and rabbits interactions :

Governing equations :

YkXYkdt

dY

XYkAXkdt

dX

32

21

Page 22: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

NDSolve finds the solutions to the ODEs and Plot gives the figure

with typical oscillationsfor the case A=3.7, k1=1.2, k2=1.5 and k3=1.2 :

2 4 6 8 10

1.5

2

2.5

3

t

x,y

A =3.7;k1=1.2;k2=1.5;k3=1.2;

LV=NDSolve[{X'[t]==k1 A X[t]-k2 X[t] Y[t],Y'[t]==k2 X[t] Y[t] -k3 Y[t],X[0]==.85,Y[0]==3.2},{X[t],Y[t]},{t,0,10}];

Plot[Evaluate[Table[{X[t],Y[t]}/.LV]],{t,0,10}, PlotStyle->{RGBColor[1,0,0],RGBColor[0,0,1]}]

Page 23: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

fYZ

PX

ZXXA

PYX

XYA

2

2

313

32122

212121

1

1

uuwdt

du

fuuuusdt

du

quuuuusdt

du

Oregonator model of the BZ reaction

Main chemical reactions taking places :

Governing equations :

Page 24: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

NDSolve finds the solutions to the ODEs for the case s=100, f=1.1, q=10-6 and w=3.835 :

Plotting the solution using Mathematica’s functions Plot and ParametricPlot :

s=100;f=1.1;q=10^-6;w=3.835;

sol1=NDSolve[{x'[t]==s (x[t]+y[t]-x[t] y[t]-q x[t]^2), y'[t]==1/s (-y[t]-x[t] y[t]+f z[t]), z'[t]==w (x[t]-z[t]), x[0]==1,y[0]==1,z[0]==1},{x,y,z},{t,0,5000}, WorkingPrecision->25,AccuracyGoal->10, PrecisionGoal->10,MaxSteps->Infinity]

pl1=Plot[Evaluate[x[t]/.sol1],{t,0,1000},PlotRange->All, PlotStyle->RGBColor[0,0,1]]

ParametricPlot[Evaluate[{z[t],y[t]}/.sol1],{t,500,1000}, PlotRange->{1,1.20},PlotStyle->RGBColor[0,1,0]]

Page 25: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

The solution shows regular oscillations such as those observed in the

Belousov-Zhabotinski experiments. Limit cycle are obtained and a lapse

of time is necessary before oscillations are observed.

10 20 30 40 50

1.02

1.04

1.06

1.08

1.12

1.14

u3

u2

200 400 600 800 1000

10

20

30

40

50

u1

t

Page 26: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Lindermann-Hinshelwood Mechanism

formactivatedinAisA

CBA

AAAA

c

c

c

Quasi steady state approximation :

If A large, reaction rate law is first order

If A small, reaction rate law is second order

Solve[{RA==k1 A^2-k2 A Ac,0==k1 A^2-k2 A Ac-k3 Ac},{RA,Ac}]//Simplify

32

1,

32

31 22

kAk

kAAc

kAk

kkARA

Page 27: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Continuous-Stirred Tank Reactor

11tan kandktoequaltsconsratewithCBA

Ain , Bin

A , B , CV

d

CkCkABkdt

dC

BBkCkABkdt

dB

AAkCkABkdt

dA

in

in

011

011

011

)(

)(

Page 28: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

50 100 150 200 250 300

1

2

3

4

5

6

7

8

t

103 C

NDSolve and Plot are used to get the concentration profile of the product :

k1=1;k2=10^-2;k0=d/V;V=10;d=0.6;

sol=NDSolve[{ c'[t]==k1 a[t] b[t]-k2 c[t]-k0 c[t], a'[t]==-k1 a[t] b[t]+k2 c[t]+k0 (0.01-a[t]), b'[t]==-k1 a[t] b[t]+k2 c[t]+k0 (0.02-b[t]), a[0]==10^-2,b[0]==2 10^-2,c[0]==0},{a,b,c},{t,0,300}]

Plot[Evaluate[1000 c[t]/.sol],{t,0,300},PlotRange->{0,8}, PlotStyle->RGBColor[1,0,0]]

Page 29: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

Conclusion

Mathematica’s algebraic, numerical and

graphical capabilities can be put into

advantage to solve several Physical Chemistry

problems such as applied thermodynamics

and chemical kinetics.

Page 30: A Selection of Physical Chemistry Problems Solved using Mathematica Housam BINOUS National Institute of Applied Sciences and Technology binoushousam@yahoo.com.

http://library.wolfram.com/infocenter/search/?search_results=1;search_person_id=1536

http://www.mathworks.com/matlabcentral/fileexchange/loadAuthor.do?objectType=author&objectId=1093893

1/

2/