Top Banner
A Numerical Study of Viscoelastic Flow Through an Array of Cylinders by Yuen Philip Hoang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Yuen Philip Hoang 2018
74

A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

Aug 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

ANumericalStudyofViscoelasticFlowThroughanArrayofCylinders

by

YuenPhilipHoang

AthesissubmittedinconformitywiththerequirementsforthedegreeofMasterofAppliedScience

DepartmentofMechanicalandIndustrialEngineeringUniversityofToronto

©CopyrightbyYuenPhilipHoang2018

Page 2: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

ii

ANumericalStudyofViscoelasticFlowThroughanArrayofCylinders

YuenPhilipHoang

MasterofAppliedScience

DepartmentofMechanicalandIndustrialEngineeringUniversityofToronto

2018

Abstract

Thisthesisisastudyoncreepingflowofanidealviscoelasticfluidthroughsquarearraysof

cylinderstopredictthepressuredrop.Numericalsimulationswerecompletedforarraysof

threedifferentsolidvolumefractions:2.5%,5%,and10%.Substantialamountsofelastic

stresseswerefoundbeyondacriticalflowrate,uptosixtimesthatofthehighestNewtonian

stresses.Anincreaseinpressuredropcausedbyelasticitywasfound,incontrasttomanyother

numericalstudieswhichfindadecreaseornochange.Thispressuredropwas,however,

considerablysmallerthanwhatwasfoundexperimentallybyJames,Yip,&Currie(2012).The

absenceofelasticextensionalstressesdownstreamofthecylinderforthe10%arraysupports

theargumentthattheincreaseinpressuredropiscausedbyelasticstressesduetoshear.

Page 3: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

iii

TableofContentsTableofContents..........................................................................................................................iii

ListofTables...................................................................................................................................v

ListofFigures................................................................................................................................vi

ListofAppendices.......................................................................................................................viii

Chapter1 Introduction............................................................................................................1

Chapter2 Background.............................................................................................................4

2.1 WhatIsViscoelasticity................................................................................................................4

2.2 PolymerSolutions.......................................................................................................................5

2.3 TheMaxwellModel....................................................................................................................6

2.4 TheOldroyd-BModel..................................................................................................................8

2.5 TheOldroyd-BModelinShearFlow.........................................................................................10

2.6 TheOldroyd-BModelinExtensionalFlow................................................................................12

2.7 TheDeborahNumberandWeissenbergNumber....................................................................13

2.8 ExperimentalLiteratureReview................................................................................................14

2.9 NumericalLiteratureReview....................................................................................................17

2.10 Objectives.................................................................................................................................19

Chapter3 Methodology........................................................................................................20

3.1 Geometry..................................................................................................................................20

3.2 MeshSetup...............................................................................................................................21

3.3 BoundaryConditions.................................................................................................................23

3.4 NewtonianSimulation..............................................................................................................24

3.5 SimulatingElasticStresses........................................................................................................26

3.6 ElasticProperties......................................................................................................................27

3.7 SummaryofAssumptions.........................................................................................................29

Chapter4 ResultsandDiscussion..........................................................................................30

4.1 NewtonianFlowPlots...............................................................................................................30

4.2 ElasticStressPlots.....................................................................................................................33

4.3 ElasticStressesNeartheCylinder.............................................................................................39

Page 4: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

iv

4.4 MeshConvergenceAnalysis.....................................................................................................40

4.5 ForceActingontheCylinderandPressureDrop......................................................................43

4.6 ComparisonswithOtherStudies..............................................................................................45

4.7 Discussion.................................................................................................................................47

Chapter5 Conclusion............................................................................................................49

References....................................................................................................................................50

Page 5: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

v

ListofTablesTable1.Permeabilityandflowresistanceofaperiodicarrayofcylindersbasedonthesolution

bySangani&Acrivos(1982).................................................................................................25

Page 6: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

vi

ListofFiguresFigure1.1.Periodicsquarearrayofcylinders(𝜙=5%)...................................................................2

Figure2.1.Polymerdeformationinshearandextension..............................................................5

Figure2.2.The1-dimensionalupper-convectedMaxwellmodel..................................................6

Figure2.3.The1-dimensionalOldroyd-Bmodel............................................................................9

Figure2.4.NormalizedflowresistancereproducedfromJamesetal.(2012).............................16

Figure3.1.Unitcelltorepresentaperiodicarrayofcylinders....................................................20

Figure3.2.Meshingregions.RegionAusesamappedfacemesh.RegionBusesaquadrilateral

dominantmesh.RegionB*isthesameasregionB,exceptforthe2.5%solidvolume

fractiongeometrywhereitislocallyrefined.......................................................................21

Figure3.3.5%arraycoarsestmesh(23,664elements)...............................................................22

Figure3.4.5%arrayclose-upofcoarsestmesh(23,664elements)aroundthetoppole............23

Figure3.5.Predictedsimulationflowresistancevs.ReynoldsnumberoftheNewtonianflow

field......................................................................................................................................26

Figure3.6.FirstnormalstresscoefficientofB2fluidadaptedfromYip(2011)...........................28

Figure4.1.NormalizedvelocitymagnitudesandpressurecontoursoftheNewtonianflowfield.

Blacklinesonthenormalizedvelocitycontoursrepresentstreamlines,whiletheright-hand

sideofthepressurecontoursareuniformly0.....................................................................31

Figure4.2.Newtonianstressesinaflowthroughasquarearrayofcylinders.Thesestresses

werenormalizedusingthemaximumstressintheflowfield,whichistheshearstressat

thetopandbottompolesofthecylinder............................................................................32

Figure4.3.𝛥𝜏𝑥𝑥stressesnormalizedbythemaximumNewtonianshearstress.Magnitudes

higherthan1.0aretruncated..............................................................................................34

Figure4.4.𝛥𝜏𝑥𝑥stressesnormalizedbythemaximumNewtonianshearstress........................35

Figure4.5.𝛥𝜏𝑥𝑦stressesnormalizedbythemaximumshearstress..........................................37

Figure4.6.𝛥𝜏𝑦𝑦stressesnormalizedbythemaximumshearstress..........................................38

Figure4.7.Additionalelasticstressesincylindricalcoordinatesatthecylindersurface.Notethat

𝛥𝜏𝑟𝜃overlapswith𝛥𝜏𝑟𝑟......................................................................................................39

Figure4.8.Stressesactingonasurfaceelementincylindricalcoordinates...............................40

Page 7: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

vii

Figure4.9.Meshconvergenceanalysisof2.5%solidvolumefractionatpoint(0.3L,0).(*)

indicatesthatthedownstreamregionwaslocallyrefinedratherthantheentireflow

domain.................................................................................................................................41

Figure4.10.Meshconvergenceanalysisof5%solidvolumefractionatpoint(0.3L,0)...............42

Figure4.11.Meshconvergenceanalysisof10%solidvolumefractionatpoint(0.3L,0).............42

Figure4.12.Stressesonasurfaceelement..................................................................................43

Figure4.13.Normalizedpredictedflowresistancevs.Deborahnumber....................................45

Figure4.14.ComparisonofflowresistanceresultswithexperimentalresultsbyJamesetal.

(2012)...................................................................................................................................46

Figure4.15.Comparisonofflowresistanceresultstonumericalresultsfrom(Hemingwayetal.,

2018).(*)indicatesthattheDeborahnumberiscalculatedusing𝜆=0.6sforthe

comparison...........................................................................................................................47

FigureC.1:Meshconvergenceanalysisof2.5%solidvolumefractionatthecylinderpole........61

FigureC.2:Meshconvergenceanalysisof5%solidvolumefractionatthecylinderpole...........61

FigureC.3:Meshconvergenceanalysisof10%solidvolumefractionatthecylinderpole.........62

FigureD.1.2.5%arrayvelocityprofilesbetweenparallelcylinders(x/L=0).Particleimage

velocimetryresultsareadaptedfromYip(2011).................................................................63

FigureD.2.2.5%arrayvelocityprofilesattheinletboundary(x/L=-0.5).Particleimage

velocimetryresultsareadaptedfromYip(2011).................................................................64

FigureD.3.5%arrayvelocityprofilesbetweenparallelcylinders(x/L=0).Particleimage

velocimetryresultsareadaptedfromYip(2011).................................................................64

FigureD.4.5%arrayvelocityprofilesattheinletboundary(x/L=-0.5).Particleimage

velocimetryresultsareadaptedfromYip(2011).................................................................65

FigureD.5.10%arrayvelocityprofilesbetweenparallelcylinders(x/L=0).Particleimage

velocimetryresultsareadaptedfromYip(2011).................................................................65

FigureD.6.10%arrayvelocityprofilesattheinletboundary(x/L=-0.5).Particleimage

velocimetryresultsareadaptedfromYip(2011).................................................................66

Page 8: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

viii

ListofAppendicesAppendixA:ExpandedUpper-ConvectedMaxwellandOldroyd-BEquations.............................53

AppendixB:FLUENTUserDefinedFunction................................................................................54

AppendixC:MeshConvergenceAnalysisatCylinderPoles.........................................................61

AppendixD:ComparisonofNewtonianVelocityProfilestoParticleImageVelocimetryResults

fromYip(2011).............................................................................................................................63

Page 9: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

1

Chapter1 IntroductionFlowsthroughporousmediawereinitiallystudiedbyHenryDarcy,whoinvestigatedtheflowof

waterthroughsand.Fromstudyingtheseflows,hefoundalinearrelationshipbetweenthe

flowrateandthepressuredropforNewtonianfluids,whichbecameDarcy’slaw,

𝑄 =𝐾𝐴𝜂𝛥𝑝𝑙 (1.1)

whereQistheflowrate,Δpisthepressuredrop,Aisthecross-sectionalarea,listhelength

throughtheporousmediumoverwhichthepressuredropistakingplace,𝜂istheviscosityof

thefluid,andKisaproportionalityconstantbasedonthegeometryofthemedium,knownas

theintrinsicpermeability.

Darcy’slawisthefoundationforstudyingaquifersandgroundwaterflows.Thisrelationshipis

validforaReynoldsnumberuptoabout10,andforporousmediaofanyparticles,andnotjust

forgrainsofsand.

Thestudyoffluidsflowingthroughabedoffibresisofinterestinengineeringbecauseof

applicationssuchasresintransfermoldinginmanufacturingandwaterproofingbreathable

fabricsbycoatingthefabricwithpolymericsubstances.Thefluidsusedintheseapplicationsare

polymericliquidswhichexhibitbothelasticandviscousbehaviour,thusthenecessitytostudy

theviscoelasticfluidsthroughfibrousporousmedia.

Thesefibrousbedsofmaterialscanbemodelledbyanarrayofregularlyspacedcylinderscalled

asquarearrayofcylinders(Figure1.1).

Page 10: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

2

Figure1.1.Periodicsquarearrayofcylinders(𝝓=5%)

Flowsthroughthisidealizedgeometryhavebeenextensivelystudiedbecausethisgeometryis

well-defined,two-dimensional,andperiodic,allowingforcomparisonsbetweenstudies.The

onlypropertywhichdefinesanarrayisthesolidvolumefraction,𝜙,whichisthefractionof

solidvolumetothetotalvolume.Forasquarearray,thesolidvolumefractionis,

𝜙 =

𝜋4𝐷7

𝐿7 (1.2)

whereDisthediameterofacylinderandListhedistancebetweenneighbouringcylinders,as

illustratedinFigure1.1.

Theflowthroughasquarearrayisknownasamixedflow,meaningthatitisacombinationof

shearandextension,asopposedtopureshearorpureextension.Theflowfieldismainly

dominatedbyshear,particularlyaroundthepolesofthecylinder.Thecylindersurfaceisa

regionofpureshear,whilethereareregionsofpureextensiondirectlydownstreamofthe

cylinderandatalineparalleltothisregionhalfaunitcelllengthupordown.Theseregionswill

stretchthepolymersdifferently,asitwillbeexplainedlaterinbackground.

Page 11: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

3

Theviscoelasticflowthroughthisporousmediumhasbeenshownexperimentallytoexhibitan

increaseinpressuredropcausedbytheelasticityofthefluid(Chmielewski,Nichols,&

Jayaraman,1990;Jamesetal.,2012;Khomami&Moreno,1997;Skartsis,Khomami,&Kardos,

1992).Replicatingthisincreasedpressuredropeffectwithnumericalsimulationshassofar

eludedthescientificcommunity.Infact,mostnumericalstudiesactuallypredictamarginal

reductionratherthanadefiniteincreaseinpressuredrop.

Thereasonforthisenhancedpressuredropeffecthasnotbeenestablished,whetheritis

causedbyelasticeffectsduetoshear,toextension,ortoflowinstabilities.Forexample,James

(2016)andYip(2011)havemadeargumentsthattheelasticeffectsareduetoshear,while

Chmielewski&Jayaraman(1993),Khomami&Moreno(1997),andLiu,Wang,&Hwang(2017),

havearguedthattheeffectsarecausedbyextensionortheformationofflowinstabilities.By

numericallysimulatingtheflowofviscoelasticfluidthroughasquarearrayofcylinders,Ihope

toshedsomelightonthisdebate.

Page 12: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

4

Chapter2 BackgroundThischapterfirstgivesabriefintroductiontoviscoelasticityandpolymersolutions.Thenan

overviewofviscoelasticconstitutivemodelsispresented,includingstressescausedbythese

typesoffluids.Finally,areviewofrelatedexperimentalandnumericalresearchonviscoelastic

flowthroughporousmediaispresentedlaterinthischapter,proceedingtotheprimary

researchobjectives.

2.1 WhatIsViscoelasticityNewtonianfluidsexhibitalinearrelationshipbetweenshearstressandshearrate,orinother

words,aviscosityindependentofshearrate.Mosttextbooks,therefore,definenon-Newtonian

fluidsasfluidsthathaveashearratedependentviscosity,fluidsthatareshear-thinning,shear

thickeningfluids,orhaveayieldbehaviour(Cengel&Cimbala,2013;Potter&Wigger,2010;

White,1994).TheshearstressinaNewtonianfluidunderpureshearconditionsiscalculatedas

follows,where𝜏9:istheshearstress,𝜂isviscosity,anduisthevelocityinthexdirection.

𝜏9: = 𝜂𝑑𝑢𝑑𝑦

(2.1)

Thereis,however,anothercategoryofnon-Newtonianfluidsareviscoelasticfluids.Although

theseviscoelasticfluidstendtobeshear-thinning,theyarealsoelastic,whichischaracterized

bytheirstringiness,wherebytheymayformlongfilamentswhichpersist.Examplesofthese

fluidsincludepolymermelts,eggwhites,andsaliva.

Viscoelasticfluidscanexhibitsomepeculiarphenomenanotobservedbyothertypesoffluids

suchastheopenchannelsiphon(James,1966)androdclimbing(Barnes,Hutton,&Walters,

1989).Theopensiphoneffectisaphenomenonwhereavesselcontainingaviscoelasticfluidis

tippedsothatfluidstartsflowoveritsedge.Ifthevesselisthenstraightened,thefluid

continuesclimbingupthesideandoutofthevessellikeasiphonwithoutatube.Therod

Page 13: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

5

climbingeffectisexhibitedwhenarotatingrodisinsertedinapoolofviscoelasticfluid.Instead

ofthefluidbeingpushedoutwardfromcentrifugalforces,thefluidclimbsuptherod.

Thefluidswhichexhibitthesephenomenaaresolutionsormeltsoflong-chainedpolymer

molecules.Theselongchainscanstretchandbecomeentangledwitheachother.Inthecaseof

theopensiphoneffect,theentangledpolymerspulleachotherupandoutofthevessel.Inrod

climbing,thepolymerchainsstretchlikeanelasticband,tighteningaroundtherod.This

createsaregionofhigherpressurearoundtherod,whichpushesthefluiduptherod.

2.2 PolymerSolutionsThepolymermolecules,attheirreststate,arerandomlycoiledwithoutapreferreddirection.

Underanapplieddeformationorstrain,however,thesecoilsstarttounravelandaligninthe

directionofthestrain,whichcanbecausedbyeithershearorextension(Figure2.1).

Figure2.1.Polymerdeformationinshearandextension

Asthesepolymercoilsstretch,theBrownianmotionofsurroundingmoleculesinthesolution

randomlybombardthepolymer,causingittoreturntoitsunalignedreststate.Thisrecoil

makesthepolymermoleculesactlikemicroscopicspringsinthesolution.Thecombinedeffect

ofmillionsofthesemicroscopicspringsgivethesepolymersolutionstheircharacteristic

“stringiness”orelasticity.

Page 14: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

6

Mostpolymersolutions,however,areshear-thinning,makingitdifficulttoisolatetheeffectsof

elasticityfromthosecausedbyshear-thinning.Fortunately,aclassoffluidscalledBogerfluids

exhibithighelasticitywithlittleshear-thinning,makingthemidealforstudyingtheeffectsof

elasticity.ABogerfluidisadilutesolutionofhighmolecularweightpolymergenerallydissolved

inahighlyviscoussolvent.Bycomparingtheresultsofaviscoelasticflowwiththoseofa

NewtonianflowfieldofthesameReynoldsnumber,itisthenpossibletoseparateviscousand

elasticeffects,allowingpurelyelasticeffectscanbeidentifiedfromthedifference.

2.3 TheMaxwellModelPolymermoleculescreateextrastresseswhenthefluidisbeingdeformedorstretchedunder

shearorextension.Thisbehaviourcanbeunderstoodusingaspringanddampersystemcalled,

theMaxwellmodel(Figure2.2).

Figure2.2.The1-dimensionalupper-convectedMaxwellmodel

TheMaxwellmodelisthesimplestviscoelasticmodel,inwhichmostothermodelsarebased

on.Thestressactingonthespringanddampersystem,𝜏,canbederivedasfollowstoobtain

thefollowingdifferentialequation.Thederivationstartsbydividingwithstrainrateofthe

system,𝛾,intoanelasticcomponent,𝛾>,andaviscouscomponent,𝛾?,

𝛾 = 𝛾> + 𝛾?. (2.2)

Thenrelatingthesestrainratestothestress,𝜏,usingthedamperconstant,𝜂,andthespring

constant,G,

𝛾 =𝜏𝐺+𝜏𝜂, (2.3)

BeforefinallyrearrangingtheequationtoobtaintheequationfortheMaxwellmodel

Page 15: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

7

𝜏 + 𝜆𝜏 = 𝜂𝛾,𝜆 =𝜂𝐺. (2.4)

TohelpillustratethebehaviouroftheMaxwellmodel,thestresscalculatedwhenasudden

increaseinshearrate,𝛾,isappliedfromrestis,

𝜏 = 𝜂𝛾 1 − 𝑒GHI . (2.5)

Equation2.5showsthatthestressincreasesasymptoticallytoitssteadystatevalues.Thestress

ofafluidelementdependsnotonlyonthecurrentstrainrate,butonpaststrainratesaswell.

Inotherwords,thefluidhasa‘memory’ofpaststressesandstrains.Therateatwhichthe

stressreachesitssteady-statevaluedependsonthevalueknownastherelaxationtime,𝜆,

whichisameasureoftheelasticityofthefluid.Incontrast,aNewtonianfluidwould

instantaneousreacttothesuddenincreaseinshearrate.

Iftheviscoelasticfluidissubjectedtoasmallamplitudeoscillatoryshearingoftheform,

𝛾 = 𝛾J cos 𝜔𝑡 , (2.6)

where𝛾istheappliedstrain,𝜔istheoscillatoryrate,𝛾Jisthestrainamplitude,andtistime

sincestartingthetest,theresponseoftheMaxwellmodelfromthisoscillatoryshearinputis

𝜏 =𝜂𝜔𝛾J

1 + 𝜔7 𝜆 7 𝜔𝜆 cos 𝜔𝑡 − sin 𝜔𝑡 . (2.7)

Thisresponsecanbeseparatedintoanin-phasecomponentcalledthestoragemodulus,G’,

andanout-of-phasecomponentcalledthelossmodulus,G”,asfollows,

𝜏/𝛾J = 𝐺′ cos 𝜔𝑡 − 𝐺"𝑠𝑖𝑛(𝜔𝑡),

where 𝐺′ = 𝜂𝜆𝜔7

1 + 𝜔7𝜆7

(2.8)

and 𝐺" =𝜂𝜔

1 + 𝜔7𝜆7. (2.9)

ThestoragemodulusisrelatedtotheelasticityofthefluidwhileG”isrelatedtotheviscous

responseofthematerial.Purelyelasticmaterials,suchasmostmetals,havealossmodulusof

zeroandpurelyviscousmaterialswouldhaveazerostoragemodulus.

Page 16: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

8

Inafluidflow,thesespringsanddumbbellsarerotatedandstretched.Mathematically,thisis

handledusingtheupper-convectedtimederivative.Thismodelisknownastheupper-

convectedMaxwell(UCM)model:

𝝉 + 𝜆[𝝉∇= 𝜂J𝜸. (2.10)

where𝝉representsthestresstensor,𝜸representsthestrainratetensor,𝜂representsthe

viscosity,andthe𝛻accentrepresentstheupper-convectedtimederivative,whichisasfollows,

𝝉∇=𝐷𝝉𝐷𝑡

− 𝛻𝑢 _ ⋅ 𝝉 + 𝝉 ⋅ 𝛻𝑢 =𝜕𝝉𝜕𝑡+ 𝑢 ⋅ 𝛻𝝉 − 𝝉 ⋅ 𝛻𝑢 _ − 𝝉 ⋅ 𝛻𝑢 , (2.11)

wheretheTsuperscriptisthetransposeofthetensor,𝑢isthevelocityvector,and bbcisthe

materialtimederivative.

AlthoughtherearenofluidsthatbehaveexactlylikeaMaxwellfluid,thetheMaxwellmodelis

thefoundationforothermoresophisticatedmodelssuchastheOldroyd-Bmodel.

2.4 TheOldroyd-BModelTheOldroyd-Bmodel,sometimesalsoknownastheJeffreysmodel,isanextensiontothe

upper-convectedMaxwellmodel.ThismodelcombinesaNewtoniansolventwiththeupper-

convectedMaxwellmodelrepresentingthepolymer.TheOldroyd-Bmodelisthesimplest

modelthatcansimulatethebehaviourtheclassofviscoelasticfluidcalledBogerfluids

introducedearlier(James,2009;Prilutskietal.,1983).Forthisreason,theOldroyd-Bmodelwas

chosenastheconstitutivemodeltofindthestressesinthefluidinthistheflowofapolymer

solutionthroughasquarearrayofcylinders.

Page 17: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

9

Figure2.3.The1-dimensionalOldroyd-Bmodel

Theone-dimensionalOldroyd-Bmodelcanberepresentedasastheupper-convectedMaxwell

modelwithanadditionalparalleldamper,shownasthemechanicalsysteminFigure2.3.Inthe

figure,thisparalleldamper,𝜂d,representsthestresscontributedbytheNewtoniansolvent

whilethespring,G,anddamper,𝜂e,combinationinseriesrepresentsthecontributionfrom

thepolymer.Thestressofthecombinedsystemcanbecalculatedasfollowstogivethe

Oldroyd-Bequationbysummingupthesolvent(𝜏d)andpolymer(𝜏e)stressestogether:

𝜏 = 𝜏e + 𝜏d. (2.12)

Thestressesinthesystemcanberelatedwiththestrainrateofthesystem.

𝛾 =

𝜏e𝐺+𝜏e𝜂e=𝜏d𝜂d (2.13)

ThenrearrangingtheaboveequationtosolvetheUCMpolymerstresscomponent,𝜏e,andthe

Newtoniansolventstresscomponent,𝜏d,

𝜏e = 𝜂e𝛾 −𝜂e𝜏e𝐺

(2.14)

𝜏d = 𝜂d𝛾 (2.15)

𝜏eisintermsof𝜏e,sotorelate𝜏ewiththetotalstressofthesystem,𝜏,itcanbeshownthat

𝜏e = 𝜏 − 𝜏d = 𝜏 − 𝜂d𝛾.

Nowsubstituting𝜏ewith𝜏 − 𝜂d𝛾inEquation2.14,

𝜏e = 𝜂e𝛾 −𝜂e𝜏𝐺+𝜂e𝜂d𝛾𝐺

. (2.16)

Page 18: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

10

CombiningEquations2.12,2.15,and2.16andsolvingtheequationtobeintermsof𝜏and𝛾

yields,

𝜏 +𝜂e𝜏𝐺

= 𝜂e𝛾 +𝜂e𝜂d𝛾𝐺

+ 𝜂d𝛾. (2.17)

Simplifyingtheaboveequationwiththefollowingconstants,

𝜆 =𝜂e𝐺,𝜂 = 𝜂d + 𝜂e, 𝜆7 =

𝜂d𝜂𝜆, (2.18)

producestheone-dimensionalformoftheOldroyd-Bequation

𝜏 + 𝜆𝜏 = 𝜂(𝛾 + 𝜆7𝛾). (2.19)

Again,theupper-convectedtimederivativecanbeusedtomodelhowthestressesare

convectedthroughoutaflowfield:

𝝉 + 𝜆𝝉∇= 𝜂 𝜸 + 𝜆7𝜸

∇. (2.20)

Expandedequationsoftheupper-convectedMaxwellandOldroyd-BmodelsinCartesian

coordinatesareprovidedinAppendixA.

TounderstandthebehaviouroftheOldroyd-Bmodel,itisinstructivetoobservehowthemodel

actsunderpureshearandpureextensional,forwhichtherearesimpleanalyticalsolutions.The

followingsectionsoutlinethesesolutions.

2.5 TheOldroyd-BModelinShearFlowUnderaconstantshearflow,thepolymersarestretchedintheshearingdirection,x,asshown

inFigure2.1.Thesepolymersstretchinthex-direction,creatingintwo-dimensions𝜏99and𝜏::

stressesthatwouldotherwisenotexistinNewtonianfluids.Thesestressescannotbemeasured

individually,sotheelasticstressesarenormallyrepresentedbythefirstnormalstress

difference(𝑁[),definedas𝜏99 − 𝜏::.FortheOldroyd-Bmodelinsteadyshear,thefirstnormal

stressdifferenceisfoundtobe,

𝑁[ = 2𝜂e𝜆𝛾7, (2.21)

where𝛾istheshearrate.N1isoftentimesusedtorefertotheelasticstressesduetoshear,and

willbereferredtoassuchthroughoutthepaper.

Page 19: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

11

UnderanoscillatoryshearflowwiththeOldroyd-Bmodel,G’andG”arefoundasfollowsusing

ananalysissimilartothatinsection2.3:

𝐺′ =

𝜂e𝜆𝜔7

1 + 𝜔7𝜆7 (2.22)

𝐺" =𝜂e𝜔

1 + 𝜔7𝜆7+ 𝜂d𝜔. (2.23)

Oneoftheusefulresultsoftheoscillatorysheartestistheabilitytoobtaintheviscosity

contributionofthesolvent,𝜂d,andthusthepolymerviscosity,𝜂e.Thesolventviscositymaybe

obtainedbymeasuringhighfrequencyG”plateauandthencalculatingthesolventviscosityas

follows(Prilutskietal.,1983):

𝜂d = limj→l

𝐺"𝜔 (2.24)

Thepolymerviscositycanthenbecalculatedbysubtractingthesolventviscosityfromthetotal

viscosity:

𝜂e = 𝜂 − 𝜂d (2.25)

TherelaxationtimecanthenbecalculatedusingthelowfrequencyG’plateauasfollowed:

𝜆 = lim

j→J

𝐺′𝜔7𝜂e

(2.26)

Additionally,insteadyshearflow,theOldroyd-Bmodel(2.20)predictsthat

𝜏9: = 𝜂d + 𝜂e 𝛾9:, (2.27)

thusconfirmingthattheviscosityofthefluidissimplythesumofthesolventandpolymer

viscosities.ThisalsomeansthattheOldroyd-Bmodelassumesnegligibleshear-thinningeffects,

areasonableassumptionforBogerfluids.Additionally,ifsolventviscosityisnegligible,thenthe

Oldroyd-Bmodelturnsbackintotheupper-convectedMaxwellmodel.However,inaBoger

fluid,𝜂e < 𝜂d,oreven𝜂e ≪ 𝜂d.

Page 20: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

12

2.6 TheOldroyd-BModelinExtensionalFlowItmaybefurtherinstructivetoexaminewhathappenswiththeOldroyd-Bmodelinextensional

flow.Insuchaflow,thereisanelongationbutnoshearing.Inasteadyplanarextensionalflow

fieldwithaconstantextensionalrateinthex-direction,𝜖,

𝜖 =𝜕𝑢𝜕𝑥

(2.28)

andfromcontinuity,

𝜖 = −𝜕𝑣𝜕𝑦

(2.29)

Theonlywaytosatisfytheaboveequationsis

𝑢 = 𝜖𝑥, 𝑣 = −𝜖𝑦, (2.30)

whereuisthefluidvelocityinthex-directionandvisthefluidvelocityinthey-direction.

Usingthisextensionalrate,theOldroyd-Bmodel(2.20)givesforstretchinginthex-direction

(Bird,Armstrong,&Hassager,1987),

𝜏99 + 𝜆𝑑𝜏99𝑑𝑡

− 2𝜆𝜏99𝜖 = 𝜂 2𝜖 1 − 2𝜆7𝜖 + 2𝜆7𝑑𝜖𝑑𝑥

, (2.31)

yieldingthestress

𝜏99 = 2𝜂𝜖

1 − 2𝜆7𝜖1 − 2𝜆𝜖

+ 2𝜂𝜖 1 −𝜆7𝜆

𝑒Gc[G7qrq

1 − 2𝜆𝜖𝑤ℎ𝑒𝑛𝜆𝜖 ≠

12 (2.32)

and

𝜏99 =𝜂𝜆2𝜖 − 4𝜆7 𝜖 7 𝑡 + 2𝜂d𝜖𝑤ℎ𝑒𝑛𝜆𝜖 =

12 (2.33)

Notably,when𝜆𝜖 ≥ 1/2,𝜏99willcontinuouslyincreasewithnosteady-statevalue.Infact,the

stressgrowsexponentiallywhen𝜆𝜖 > 1/2becauseofthe𝜆𝜖termintheexponent,meaning

thattheelasticstresscanincreaserapidlyandwithoutlimit.

Inextension,thereisalsoa𝜏::stress.Thisstress,however,doesnotexperiencesuch

exponentialgrowth,soitisoftennegligiblecomparedto𝜏99.

Page 21: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

13

2.7 TheDeborahNumberandWeissenbergNumberTheDeborahnumber,liketheReynoldsnumber,isadimensionlessquantitythathelpsto

characterizetheflowfield.Itistheratiooftherelaxationtimeofthefluid,𝜆,tothe

characteristictimeofthedeformationprocess,𝑡x (Barnesetal.,1989;Reiner,1964).

𝐷𝑒 = 𝜆𝑡x (2.34)

Thesilicone-basedmaterialcalled“Bouncingputty”maybeusedtoillustratetheimportanceof

theratioofthetwotimescales(Barnesetal.,1989).Whenplacedinacontainer,thematerial

willstarttolevelandtaketheformofthecontainergivensufficienttime,therefore,actinglike

aviscousliquid.When,however,rolledintoaballanddroppedfromaheight,thematerial

bounceslikeanelasticsolid.Thedifferencebetweenthetwobehavioursisduetothedifferent

timescalesofthetwoprocesses:longtimescalesmakethematerialactlikeaviscousliquid,

suchaswhensettlinginacontainer,andshortertimescalesmakethematerialactlikean

elasticsolid,suchastheimpactofthefluidontheground.

IntermsoftheDeborahnumber,avaluemuchlessthanonemeansthatelasticityhaslittleto

noinfluencewhileahighvaluemeansthatelasticitydominatesthestressfield.Athigh

Deborahnumbers,flowprocesseshappentooquicklytoallowthestressesinthematerialto

relax,allowingforstrongelasticeffects.

Anotherdimensionlessnumberusedtocharacterizetheeffectsofelasticityinaflowisthe

Weissenbergnumber,whichisdefinedas

𝑊𝑖 = 𝜆𝛾. (2.35)

Inprinciple,theWeissenbergnumberisusedforflowsdominatedbyshear;however,the

WeissenbergandDeborahnumbersareoftenusedinterchangeably,fortheybothare

measuresoftheelasticeffectsoftheflow.Bothnumbersare,however,proportionaltothe

flowrateandtherelaxationtimeofthefluid,oftenmakingtheminterchangeable.Inthisstudy,

theDeborahnumberwillbeusedtoquantifyflowelasticity.

Page 22: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

14

2.8 ExperimentalLiteratureReview

Oneoftheearlieststudiesontheviscoelasticflowsthroughaporousmediawascarriedout

whileattemptingtoincreasetheviscosityofbrinesolutionsinenhancedoilrecover.Pye(1964)

addedsmallamountsofpolyacrylamidepolymertoabrineandmeasuredthepressuredropin

flowsofthroughporoussandstonerocks.Hemeasuredtheviscosityofthebrinesolution,but

noticedthattheincreaseinviscositydidnotcompletelyaccountfortheincreaseinpressure

dropthroughthesandstoneforagivenflowrate.Infact,theymeasuredapressuredrop4.5to

15timesgreaterthanwhatwasexpectedfromapurelyviscousfluid.Theyconcludedthatthe

effectwascausedbythepolymer,buttheydidnotdiscoverthemechanismbywhichthese

polymersincreasethepressuredrop.

Thisenhancedpressuredropeffectwaslaterobservedinvariousexperimentsstudyingthe

flowofviscoelasticfluidsthroughpackedbedsofspheres.Thepressuredropwasfoundtobe

uptotwoordersofmagnitudehigher(Dauben&Menzie,1967;Durst,Haas,&Interthal,1987;

James&McLaren,1975;Marshall&Metzner,1967;Rodriguezetal.,1993;Vorwerk&Brunn,

1991).Atlowflowrates,thepressuredropmatchedwhatwasexpectedfromapurelyviscous

fluid.Dauben&Menzie(1967)notedthatN1stresseswereoftenaslargeorevenlargerthan

theviscousstresses.Laterstudies,however,arguedthattheincreaseinpressuredropwas

causedbyextensionalstressesduetothepolymer(Durstetal.,1987;James&McLaren,1975;

Vorwerk&Brunn,1991).

Skartsis,Khomami,&Kardos(1992)studiedtheflowofviscoelasticfluidsthroughbothasquare

andstaggeredarrayofcylinders,withahighsolidvolumefractionof55%,usingvarioustypes

polymericsolutions,includingtwoBogerfluids.Theyobservedanenhancedpressuredropafter

increasingtheflowratetoaDeborahnumberaboveapproximately0.01forbothgeometries

forallfluids.Theyconcludedthattheonsetofelasticeffectsdoesnotstronglydependonthe

geometryofthebed.

Page 23: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

15

Inalaterstudy,KhomamiandMoreno(1997)investigatedviscoelasticflowsthroughsquare

arraysofcylinderswithsolidvolumefractionsof14%and55%.Theyobservedthatwhenthe

Weissenbergnumberincreasedaboveacriticalvalue,theflowresistanceincreased.Theyused

particleimagevelocimetryandstreakphotographytostudythevelocityfieldoftheflow.They

foundthatthecriticalWeissenbergnumbercorrespondedtoachangeinflowregimefroma

steadytwo-dimensionalflowtoasteadythree-dimensionalone,andthen,atevenhigher

numbers,toanunsteadythree-dimensionalone.However,forthe55%array,theflowskipped

thesteadythree-dimensionalflow.Theyattributedtheabruptincreaseinflowresistancetoan

elasticflowinstability.

MuchofthestudybyKhomamiandMorenoconfirmedtheresultsofasimilarstudydone

earlierbyChmielewskiandJayaraman(1992,1993).ChmielewskiandJayaramanfoundan

increaseinpressuredropaboveaDeborahnumberof1usingasquarearraywithasolid

volumefractionof30%.They,however,foundpressurefluctuationsabovethecriticalDeborah

numberandascribedthiseffecttoelasticinstabilities.Theseelasticinstabilitieswerethen

observedusinglaserDopplervelocimetryandstreaklinephotography.Theirstudiessuggested

thattheenhancedpressuredropwascausedbyflowinstabilitiescreatedbyelasticity.

LaterexperimentswerepublishedbyJamesetal.(2012)basedonthethesisbyYip(2011),who

usedsquarearrayswithmuchlowersolidvolumefractions(2.5%,5%,and10%).Theyobserved

asteadyincreaseinflowresistanceaboveacriticalDeborahnumberofapproximately0.5,as

showninFigure2.4.Theincreaseinflowresistancewassimilarforallthreearraysuptoa

Deborahnumberof1.5,abovewhichtheflowresistanceofthe10%arraydivergedfromthe

othertwo.

Page 24: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

16

Figure2.4.NormalizedflowresistancereproducedfromJamesetal.(2012).

Jamesetal.(2012)andYip(2011)usedparticleimagevelocimetrytomonitortheflowfield,

andcontrarytothestudybyKhomami&Moreno(1997)andChmielewski&Jayaraman(1993),

theyfoundthattheflowfieldwassteadyandtwo-dimensionalwellabovethecriticalDeborah

number.SomeoftheirparticleimagevelocimetryresultsshowninAppendixD.Furthermore,

nosuddenflowfieldchangeswerefoundafterthecriticalDeborahnumber.Thisabsenceofa

suddenchangeinflowfieldisindirectcontrasttowhatwasfoundbyKhomamiandMoreno

(1997),whoobservedthattheenhancedpressuredropeffectwasassociatedwithathree-

dimensionalflowregimetransition.Themaindifferencebetweenthetwostudies,however,

werethemuchhighersolidvolumefractionsusedinKhomamiandMoreno(1997).Thisthesis

willmainlybebasedontheworkcompletedbyJamesetal.(2012)andYip(2011)becausetheir

flowsweresteady,andthusamenabletonumericalsimulation.

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Normalized

Flow

Resistance,fRe

/fRe

New

t.

DeborahNumber,De

φ=2.5%

φ=5%

φ=10%

Page 25: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

17

James,Shiau,&Aldridge(2015)studiedtheviscoelasticflowaroundanisolatedcylinderand

foundamonotonicincreaseinpressuredropaboveanonsetDeborahnumberof0.6.The

pressuredropincreased50%duetoelasticityataDeborahnumberof3.Notably,theyusedthe

samebatchofBogerfluidsasJames,Yip,&Currie(2012).Particleimagevelocimetryresults

showthattheflowfieldremainedsteadyandchangedgraduallyafteronset.Thoughthe

particleimagevelocimetryresultsgouptoDe=10.28,substantialchangesintheflowfield

happenaboveaDeborahnumberof1.3.

2.9 NumericalLiteratureReviewNumericallysimulatingviscoelasticflowsthroughanarrayofcylindersisnoteasy.Talwarand

Khomami(1992)attemptedtonumericallysimulatetheviscoelasticflowthrougharraysofhigh

solidvolumefractions(55%and35%),usingboththeupper-convectedMaxwellmodelandthe

Oldroyd-Bmodel.Despitefindingsubstantialelasticstressesusingbothmodels,theypredicted

asmallmonotonicdecreaseinflowresistancewithincreasingWeissenbergnumber,contraryto

whatwasobservedintheexperimentby(Skartsisetal.,1992)forthe55%array.However,they

werelimitedbythecomputationalpoweroftheday,sotheirmaximumnumberofdegreesof

freedomwaslessthan7,000(lessthan10,000degreesoffreedomisconsideredsmall).

Later,TalwarandKhomamiattemptedthesamesimulationwith12,000degreesoffreedom

(Khomami,Talwar,&Ganpule,1994).Thistime,theyusedadifferentfiniteelementtechnique,

buttheystillpredictedasmalldecreaseinflowresistance.

Talwar&Khomami(1995)againattemptedtosimulatetheflowthrougha45%arrayusingtwo

newmodels:thePhan-Thien-TannerandtheGiesekusmodels.Again,theyfoundsubstantialN1

andextensionalstresses,butthesestressesdidlittletoaffectthepressuredrop.Theyfound

onlyasmall10%decreaseinflowresistancetoaminimumbeforeitincreasedbacktoits

originalvalue.Theysuggestedthatatemporalinstabilityornon-linearflowtransitionmayhave

causedtheincreaseinflowresistanceobservedinexperiments.

Page 26: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

18

Othernumericalstudieshavebeensimilarlyunsuccessfulinpredictinganenhancedpressure

drop.SouvaliotisandBeris(1992)andHua&Schieber(1998)studiedtheflowthrougharraysof

cylinderswithasolidvolumefractionsrangingfrom12.6%to55%.Bothstudiespredictedsmall

pressuredropdecreases,incontrasttothepressuredropincreasesfoundexperimentally.Both

studiesspeculatedthatthediscrepancybetweennumericalandexperimentalresultswas

causedbyflowfieldchangescausingthree-dimensionaleffects,time-dependenteffects,orthe

formationofflowinstabilities.

Liu,Wang,&Hwang(2017)wereabletopredictasharpflowresistanceincreaseusing

hexagonally-packedandrandomly-packedarrays,butwereunsuccessfulinpredictingthesame

effectforasquarearrayofcylinders.Theyassociatedtheflowresistanceincreasewiththe

extensionalregiondownstreamofthecylinders.Therefore,theyarguedthatpolymerstretch

waslimitedinasquarearrayofcylindersandthusthepressuredropwaslimited.

Totheauthor’sknowledge,onlythenumericalsolutionbyHemingway,Clarke,Pearson,&

Fielding(2018)hasshownapressuredropincreaseforasquarearray.Theirsimulationsshowa

smalldipbeforeasharpincreaseinflowresistanceupto5%.Thisdecreasetoaminimum,

however,hasnotbeenobservedexperimentally,although,itwouldbedifficulttomeasurea

dipofonly8%fortheirhighestsolidvolumefractionof38.4%.Unfortunately,theirresultsare

cutoffsoonafterthesharpincreaseinflowresistancelikelybecauseofproblemswith

convergence.

Insummary,alloftheexperimentsstudyingthetheflowofviscoelasticfluidthroughporous

mediashowadefiniteincreaseinflowresistanceaboveacriticalDeborahnumber.Incontrast,

thenumericalsimulationshavegenerallypredictedasmalldecreasetoaplateauorasmall

decreasetoaminimumbeforereturningbacktotheoriginalvalue.Onlyonenumericalstudy

completedbyHemingway,Clarke,Pearson,&Fielding(2018)predictedanincrease,thoughthe

amountsofincreaseweresmall.Thecauseofthesediscrepanciesiscurrentlyunknown,

Page 27: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

19

althoughtheyhavebeenspeculatedtobecausedbyflowfieldchangeseithertoathree-

dimensionalflowfield,atime-dependentflowfield,orfromtheformationofflowinstabilities.

Toinvestigatethisinconsistency,anumericalstudyofflowusingtheOldroyd-Bmodelwas

carriedout.Differentfrompriorattempts,theflowfieldwasassumedtobeexactlythesameas

itsNewtoniancounterpartwithadditionalelasticstresses.Thisassumptionwasmadebecause

particleimagevelocimetryresultsbyYip(2011)showthattheflowfieldchangesonlygradually

beyondtheonsetDeborahnumberandtosimplifythesimulationsbecausesimulationsof

viscoelasticflowsgenerallytakeconsiderablecomputationalresourcesandaredifficultto

converge.

2.10 Objectives

Asindicatedabove,theobjectiveofthisthesisresearchastonumericallysimulatetheflow

throughaperiodicarrayofcylinders.Thesolidvolumefractions(2.5%,5%,and10%)werethe

sameasthatusedinJamesetal.(2012)andYip(2011).

Consequently,theprimaryobjectivesofthisstudyareasfollows:

• Findtheelasticstressesoftheflowfieldandexaminehowtheyvarywithincreasing

Deborahnumber

• Usingtheseelasticstresses,attempttopredictthepressuredropalongasquarearray

ofcylinders

• TopredictthecriticalDeborahnumberbeforewhichtheflowfieldhasonlymarginal

elasticeffects

• Toshedlightonthecauseoftheobservedincreaseinpressuredrop

• Todeterminewhethertheincreaseiscausedbyelasticstressesinshearorextension

Page 28: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

20

Chapter3 MethodologyThecommerciallyavailablesoftwarecalledANSYSFLUENT™wasusedtosetupthedomainand

tosimulatetheNewtonianflowfield.ANSYSFLUENT™isasolverthatusesthefinitevolume

methodwithacell-centredformulation.Auser-definedfunctionwasusedwiththesoftwareto

calculatetheupper-convectedMaxwellstressesforthepolymercontributionofthefluid.The

Oldroyd-BstresseswerethenobtainedbyaddingtheNewtoniansolventcontribution;thus,

findingtheelasticstressesoftheflowfield.

3.1 Geometry

Figure3.1.Unitcelltorepresentaperiodicarrayofcylinders

Theperiodicarraywastreatedusingaunitcell,aspresentedinFigure3.1.Thecellhasasingle

cylinderwithadiameterDatthecentreofasquareandthecelllengthisL.Threedifferentsolid

volumefractionswereusedinthisstudy,2.5%,5%,and10%,representingthelowsolidvolume

fractionsusedinJamesetal.(2012)andYip(2011),enablingpossiblecomparisonswith

experimentaldata.

Page 29: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

21

3.2 MeshSetupBeforeanysimulationcanstart,thedomainhastobedividedintosmallercellsorelementsin

whichtheequationsaresolved.

Figure3.2.Meshingregions.RegionAusesamappedfacemesh.RegionBusesaquadrilateraldominantmesh.RegionB*isthesameasregionB,exceptforthe2.5%solid

volumefractiongeometrywhereitislocallyrefined.

Thedomainofthesquarecellwasdividedintotwoorthreedistinctregions.RegionA,shownin

Figure3.2,usesameshofregularquadrilateralelementsmappedtotheconcentriccircles

enclosingtheregion.Themeshofthisinnerregionhadafivefoldbiastothecylinder,sofiner

elementswereusednearthecylinder.

ForregionsBandB*,theautomaticmeshingalgorithmprovidedbyANSYSMeshingcreated

mainlyquadrilateralelementsofsimilarsize.TheseouterregionsweremeshedusingANSYS’s

quadrilateral-dominantmeshalgorithm.Theleftandrighthandsidesoftheunitcellwere

madeidentical,sothattheycouldbematchedperfectlytosatisfytheperiodicboundary

condition.RegionB*wasseparatefromregionBonlyforthe2.5%arraytolocallyrefinethat

region.Otherwise,thenumberofelementswouldhavebecometoonumerous,making

simulationsunnecessarilycomputationallyexpensive.

Page 30: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

22

Themeshescomprisedapproximately350,000elements,exceptforthe2.5%array,whichhad

1,200,000elements.Thenumberofelementswasconsideredsufficientusingamesh

convergenceanalysispresentedinsection4.4.

Toshowtheshapeandtherelativesizeoftheelements,Figures3.3-3.4showthecoarsest

meshusedinthe5%array.Thefinestmeshesusedinthisworkhadmeshelementsatthepoles

ofthecylinderwithwidthslessthan0.1%ofthecylinderdiameter.

Figure3.3.5%arraycoarsestmesh(23,664elements)

Page 31: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

23

Figure3.4.5%arrayclose-upofcoarsestmesh(23,664elements)aroundthetoppole

3.3 BoundaryConditionsThetreatmentattheboundariesofthedomainmustbedefinedattheoutset.Inour

simulations,threeboundariesrequireddifferenttreatment:theleftandrightboundaries,the

topandbottomboundaries,andthesurfaceofthecylinder.

Attheleftandrighthandsidesoftheunitcell,aperiodicboundaryconditionwasspecified.A

periodicboundaryconditionimposestherestrictionthatthetwoboundariesmusthavethe

samedistributionsofvelocity,stress,andpressuregradient.Simulationsusinguptosix

cylinderslinedupintheflowdirectionconfirmthevalidityofusingaperiodicboundary

condition.Thetopandbottomboundarieswererequiredtohavezeromassfluxthroughthe

boundaryandzeroshearrate.Finally,theboundaryconditionsatthecylindersurfacewerethe

noslipconditionandthattherewaszeromassfluxpassingthroughthesurface.

Page 32: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

24

Formally,theseboundaryconditionsare:

𝑢 −𝐿2, 𝑦 = 𝑢

𝐿2, 𝑦 ; 𝝉 −

𝐿2, 𝑦 = 𝝉

𝐿2, 𝑦 ;

𝜕𝑝𝜕𝑥

−𝐿2, 𝑦 =

𝜕𝑝𝜕𝑥

𝐿2, 𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡;

𝑣 𝑥,−𝐿2

= 𝑣 𝑥,𝐿2

= 0;𝜕𝑢𝜕𝑦

𝑥,−𝐿2

=𝜕𝑢𝜕𝑦

𝑥,𝐿2

= 0;

𝑢 ± 𝑥7 + 𝑦7 =𝐷2

= 0,

(3.1)

wherepisthelocalpressure,𝑢isthevelocityvector,and𝝉isthestresstensor,asinsection

2.3.

3.4 NewtonianSimulationDarcy’slaw(Equation1.1)appliestoNewtonianfluidsforflowsthroughporousmedia.Thelaw

isgenerallyvalidforwhichtheReynoldsnumberslessthan1(Marsily,1986)andthehighest

Reynoldsnumberusedinthisthesisis0.0063.LowReynoldsnumbersensuresthatinertial

effectsarenegligible,yieldingStokesflow.Inthisregime,themomentumequationislinear,the

streamlinesaresymmetricupstreamanddownstreamofthecylinder,andthepressuredropis

directlyproportionaltothemassflowratethroughtheflowfield.

Darcy’slawmaybeusedtocomparetherelevantflowparametersandrelatethemtotheir

respectiveNewtoniancounterparts.

Inporousmedia,theReynoldsnumberisdefinedas(Marsily,1986)

𝑅𝑒 = 𝜌𝑈𝐷𝜂, (3.2)

whereDisthediameterofthecylinder,𝜌isthedensityofthefluid,𝜂isthefluidviscosity,and

Uisthebulkvelocitywhichis,

𝑈 =𝑞𝐿, (3.3)

whereqistheflowrateperunitlength.

Page 33: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

25

Theflowresistancecanberepresentedthefrictionfactoroftheflowgeometrycanbedefined

as,

𝑓 = −𝛥𝑝𝐷𝐿𝜌𝑈7

. (3.4)

Darcy’slawcanalsobeexpressedbymultiplyingthetwogroupstoyield,

𝑓𝑅𝑒 = −

𝛥𝑝𝐷7

𝜂𝐿𝑈=𝐷7

𝐾. (3.5)

BecauseEquation3.5isindependentofthedensity,viscosity,andflowrate,itisapreferred

waytopresentresults.

Therearevariousanalyticalsolutionsforpredictingtheresistancetoflow.Theoneusedinthis

paperwillbethatbySangani&Acrivos(1982),whousedaFourierseriesmethodtosolvethe

Stokesequation.Accordingtotheirtechnique,thepermeabilityoftheporousmedium,𝐾,is

𝐾 =

𝐷7

16𝜙ln

1𝜙

− 0.738 + 𝜙 − 0.887𝜙7 + 2.038𝜙� + 𝑂 𝜙� , (3.6)

where𝜙isstillthesolidvolumefractionofthearray.

Theflowresistanceistherefore,

𝑓𝑅𝑒 =

𝐷7

𝐾=

16𝜙−0.5 ln 𝜙 − 0.738 + 𝜙 − 0.887𝜙7 + 2.038𝜙� + 𝑂(𝜙�)

. (3.7)

Thisformulawasusedtoensuretheaccuracyofthenumericalresults.Thevaluesfor𝐾and

𝑓𝑅𝑒forthethreearraysaregiveninTable1.

Table1.PermeabilityandflowresistanceofaperiodicarrayofcylindersbasedonthesolutionbySangani&Acrivos(1982)

SolidVolumeFraction Permeability,K[m2] FlowResistanceParameter,fRe

2.5% 2.85e-5 0.355

5% 1.02e-5 0.991

10% 3.19e-4 3.17

Page 34: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

26

TheinitialvaluesoftheNewtonianvelocityfieldweresettobethebulkvelocity.The

simulationwasthenallowedtoiterateuntiltheflowratethroughthedomainstabilizedand

matchedwiththevaluesinTable1.ThedifferencebetweentheFLUENTflowrateandthat

predictedbySanganiandAcrivoswaslessthan0.1%,asshowninFigure3.5.

Figure3.5.Predictedsimulationflowresistancevs.ReynoldsnumberoftheNewtonianflowfield.

3.5 SimulatingElasticStressesAftertheNewtonianflowfieldconverged,threeuser-definedscalarswerecreatedtorepresent

thethreeUCMstresses:𝜏99,𝜏9:,and𝜏::.Thesestresseswerecalculatedtoidentifythe

magnitudeofthepolymerstresscontributionstothestressfield.CalculatingthethreeUCM

stressesrequiredsolvingthreecoupledequationsfoundinAppendixA.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Flow

Resistance,fRe

ReynoldsNumber,Re

ϕ=2.5%

ϕ=5%

ϕ=10%

AnalyticalSolutionfromS&A(1982)

Page 35: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

27

Tosolvethesethreecoupledequations,auser-definedfunctionwascreatedtodefinetheUCM

equationinFLUENT.Theseuser-definedfunctionsalongwithsetuponhowtheyweresetup

canbefoundinAppendixB.

Asdescribedearlier,thevelocityfieldwastakentobethesameastheNewtonianvelocityfield.

TheelasticstresseswereinitializedastheNewtonianstresses,asfoundpreviously.The

simulationiteratedandwasconsideredconvergedwhenthestressesstabilizedbetween

iterations.Thestressesonthecylinderandatthedomain’sinletwerealsomonitoredtoensure

convergence.

ItwasfoundthatatthehigherDeborahnumbers,itwasnecessarytointroduceadiffusivity

constantof5e-12mtopreventthepolymerstressesfromdiverging.Theconstantwasdoubled

invaluetoseewhetheritaffectstheresultsbycheckingthemaximumUCM𝜏99stresses

locatedatthetopandbottomofthecylinder,whicharetheregionswiththehigheststress

gradients,andthustheregionsmostaffectedbydiffusivity.Itwasobservedthatdoublingthe

diffusivityconstantdecreasedthe𝜏99stressatthesepointslessthan1%.Becauseofthissmall

magnitude,theintroductionofdiffusivitywasconsiderednegligibleotherthantoensurethe

convergenceofthepolymerstresses.

ThestressesofaNewtoniansolventwerethenaddedtothepolymerstressestoobtainthe

Oldroyd-Bstresses:

𝝉 = 𝝉𝒑 + 𝝉𝒔 (3.8)

where𝝉𝒑isthepolymerstresstensorcalculatedusingtheUCMmodeland𝝉𝒔isthestress

tensorcreatedbytheNewtoniansolvent.

3.6 ElasticPropertiesThepropertiesofthefluidusedinthesimulationwerethesameonesmeasuredbyJamesetal.

(2012).Hemeasuredthesolventviscosityandtotalviscosityandfoundtheratiobetweenthe

twovaluestobe0.525.HealsoprovidedG’andN1thatcouldbeusedtofindtherelaxation

timeofthefluid.

Page 36: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

28

Jamesetal.(2012)usedtherelaxationtimemeasuredbythelowoscillatoryshearresults

calculatedfromG’describedinEquation2.26,whichrequiresfindingalowfrequencyplateau

whenmeasuring𝐺′/𝜔7.Whilehedidattempttofindthisplateau,therewasstillsome

variationbetweenthelowestfrequencypoints.Additionally,thesemeasurementswerelikely

unreliableduetothelowshearstressesobservedatthelowestoscillatoryfrequencies.His

relaxationtimefromthesheartestcalculatedfromN1was,therefore,consideredmore

appropriateduetothebetterreliabilityofthemeasurementandtheimportanceofshearin

thisflowfield.He,however,usedtwofluids,sotheresultsforB2fluidwereusedbecauseit

showedlessvarianceinitsN1measurements.

TherelaxationtimemeasuredusingaconstantshearratetestintherheometerwithN1results

showninFigure3.6.Theseresultsareplottedusingthenormalstresscoefficient,𝛹[,

𝛹[ =𝑁[𝛾7

= 2𝜂e𝜆. (3.9)

Figure3.6.FirstnormalstresscoefficientofB2fluidadaptedfromYip(2011)

TheDeborahNumberisdefinedheretomatchthatofJamesetal.(2012),

1.5

1.8

2.1

2.4

2.7

3

0 1 2 3 4 5 6

NormalStressC

oefficien

t,𝛹

1[Pas²]

ShearRate[s⁻¹]

Page 37: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

29

𝐷𝑒 = 𝜆𝑈

(1 − 𝜙)𝐿. (3.10)

LatersectionswilluseaDeborahnumberbasedontherelaxationtimefromtheG’results

(3.9s)ratherthantheN1relaxationtimeoftheB2fluid(0.6s)usedinthesimulationsinthis

worktomaintainconsistencywith(Jamesetal.,2012).TheonsetDeborahnumberwill,

therefore,remainatDe=0.5.ThesoleexceptiontothisisFigure4.15,wherebytheDeborah

numbersinthex-axisarescaledtousetheN1relaxationtime(0.6s)tomakeacomparisonwith

anothernumericalstudy.

3.7 SummaryofAssumptionsInsimulations,someassumptionswerenecessary,andtheywere:

• Theflowfieldistwo-dimensionalandsteady,i.e.notvaryingwithtime.

• ThevelocityfieldfortheOldroyd-BfluidisexactlythesameasthatoftheNewtonian

fluid.

• TheOldroyd-BequationisagoodmodelfortheBogerfluidsusedintheexperimentby

Jamesetal.(2012).

• Inertialeffectsarenegligiblesothatasimplifiedmomentumequationmaybeused.

Page 38: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

30

Chapter4 ResultsandDiscussion

4.1 NewtonianFlowPlotsAsthefoundationfortheelasticstresscalculations,thevelocityfield,pressurefield,

streamlines,andstressesareshownfortheflowofaNewtonianfluid,whicharedisplayed

usingtwo-dimensionalcontourplots,showninFigures4.1and4.2.

InFigure4.1,thevelocitymagnitudesandpressurecontourplotsareshown.Thevelocity

magnitudeplotsinFigure4.1arenormalizedusingthebulkvelocitydefinedearliertheseare

overlaidwithstreamlines,whilethepressurefieldwasnormalizedusingthepressuredrop

acrosstheunitcell.ConsideringthattheNewtonianflowfieldscaleslinearlyintheStokesflow

regime,onlyonenormalizedplotforeacharraywasnecessarytorepresenteachflowfield.

Page 39: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

31

Figure4.1.NormalizedvelocitymagnitudesandpressurecontoursoftheNewtonianflowfield.Blacklinesonthenormalizedvelocitycontoursrepresentstreamlines,whiletheright-

handsideofthepressurecontoursareuniformly0.

Page 40: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

32

AsshowninthesetofcontourplotsinFigure4.1,theflowfieldiscompletelysymmetricdueto

theinsignificanceofthenon-linearinertialterm.Asforthepressure,themaximumand

minimumpressureswithintheunitcellarefoundatthefrontandrearstagnationpoints,

respectively.Additionally,theleftandrighthandsidesarelinesofconstantpressurealongwith

theverticalcentreline.

ShownbelowaretheaccompanyingNewtonianstressesforallthreearraysasabackgroundfor

theforthcomingnon-Newtonianstresses.Thesestresseswerenormalizedusingthemaximum

shearstressfoundatthepolesofthecylinder.Becausethesestressesareproportionaltotheir

strainrate,theseplotsalsoshowtheregionsofhighshearandextension.

Figure4.2.Newtonianstressesinaflowthroughasquarearrayofcylinders.Thesestresseswerenormalizedusingthemaximumstressintheflowfield,whichistheshearstressatthe

topandbottompolesofthecylinder

Page 41: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

33

InFigure4.2,theNewtonianstressfieldisdominatedbytheshearstressesaroundthecylinder,

thehigheststressesbeingtheshearstressesatthetopandbottompolesofthecylinder.

Smallamountsofstressduetoextensionforeandaftofthecylinderareslightlyoffsetfromthe

stagnationpoints,representedby𝜏99and𝜏::.Notingwhere𝜏99and𝜏::arepositiveand

negative,theregionforeofthecylinderexperiencesextensioninthey-direction,whileaftof

thecylinderexperiencesextensioninthex-direction.Additionally,extensionhaslessinfluence

forthe10%arraythantheothertwoarrays,shownbythelackofcontoursupstreamand

downstreamofthecylinderinthe𝜏99and𝜏::plots.

4.2 ElasticStressPlotsAfterobtainingtheNewtonianstresses,elasticstresseswerecalculatedfromtheOldroyd-B

modelusingtheNewtonianflowfield.TheOldroyd-Bmodel,however,includesbothelasticand

viscousstresses;therefore,thestressesexpectedfromaNewtonianflowfieldusingafluidof

thesameviscosity,𝝉𝑵𝒆𝒘𝒕.,werethensubtractedouttoobtaintheadditionalelasticstresses,

𝛥𝝉,whicharethestressesofinterest,

𝛥𝝉 = 𝝉 − 𝝉𝑵𝒆𝒘𝒕.. (4.1)

ThesestresseswerenormalizedbythehighestNewtonianstresscreatedbyaNewtonianfluid

ofthesameviscosity,i.e.,bytheNewtonianshearstressatthepolesofthecylinder.Theywere

normalizedinthiswaytosimplifycomparisonsbetweenplots.ThehighestNewtonianstress

waschosentofacilitatethenormalizationtoallowforcomparisonswiththeNewtonianstress

field.

𝛥𝝉hasthreecomponents,𝛥𝜏99,𝛥𝜏9:,and𝛥𝜏::,whichareshownusingsetsofninecontour

plotsforDeborahnumbersof0.3,1.0,and2.1andforthreesolidvolumefractionsof2.5%,5%,

and10%(Figures4.3-4.6).ThelowestDeborahnumberislowerthanthecriticalDeborah

numberof0.5,soelasticeffectsareexpectedtobelow.ThetwohigherDeborahnumbersare

twoandfourtimeshigherthanthecriticalDeborahnumber,sothatelasticeffectsareexpected

tobesubstantial.

Page 42: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

34

The𝛥𝜏99stressesarepresentedinFigures4.3and4.4.Plottedinbothfiguresaretheexact

samestresses,butthescalesofthecontourlevelsaredifferent,asshownbytheirlegends.In

Figure4.3,valueshigherthanitsmaximumcontourlevelof1.0aretruncatedtobetterreveal

regionsdominatedbyelasticity.Becauseeachplotisshownwiththesamecontourlevels,

Figure4.3alsoallowsforcomparisonsbetweeneachplot.Ontheotherhand,Figure4.4shows

the𝛥𝜏99withadifferentsetofcontourlevelstoshowthemagnitudeoftheelasticstresses.It,

however,failstoshowtheextentthat𝜏99affectstheflowfield.

Figure4.3.𝜟𝝉𝒙𝒙stressesnormalizedbythemaximumNewtonianshearstress.Magnitudeshigherthan1.0aretruncated.

Page 43: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

35

Figure4.4.𝜟𝝉𝒙𝒙stressesnormalizedbythemaximumNewtonianshearstress.

ThecontoursinFigures4.3and4.4showthattherearetwomainelasticregionsinthese

contours:nearthepolesofthecylinderanddownstreamofthecylinder.Theregionsaround

thepolesaredominatedbyshear,i.e.byN1,whilethedownstreamregionisdominatedby

extension.AstheDeborahnumberincreases,thestressesincreaseandthesetworegions

increaseinsize,allowingelasticstressesgreaterinfluenceovertheflowfield.Thesetwo

regionscontainthehighestelasticstresses,makingthe𝛥𝜏99stresscomponentofgreatest

interest.

TherearesignificantelasticstressesfoundnearthecylinderpolesevenatthelowestDeborah

number.TheelasticstressesinthisregionareN1stressescausedbyshear.AtDe=0.3,

however,thesestressesareextremelylocalandwouldonlyaffectasmallpartoftheflowfield

aroundthetopandbottom,andtheyactsymmetrically.AsforthelargerDeborahnumbers,N1

Page 44: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

36

stressesaffectlargeportionsoftheflowfieldaroundthepolescylinder;thesestressesare

convecteddownstreamslightly,creatingasymmetriesintheflowfield.

Theextensionalstressesdownstreamofthecylinderdecreasewithincreasingsolidvolume

fraction,asshowninFigures4.3and4.4.Infact,therearehighextensionalstressesonlyforthe

2.5%and5%arraysatDe=2.1,i.e.,theextensionalstressesinthe10%solidvolumefraction

geometryaresmallrelativetotheNewtonianstresses,despitebeingsubstantiallyabovethe

criticalDeborahnumber.Thisresultiscausedbythelowerextensionalratesintheregionand

thesmallerdistancesthatallowthepolymerstostretchbeforethenextcylinder.Thisfacthelps

toconfirmtheobservationsmadebyYip(2011)thattheextensionalstrainsforthe10%solid

volumefractiongeometryareinsufficienttocauselargestresses,aswellassupportingthe

argumentthatN1stressesarethemaincauseoftheenhanceddrageffect.

Shownnextaretheothertwostresscomponents(𝜏9:and𝜏::),whichareprovidedfor

completion.

Page 45: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

37

Figure4.5.𝜟𝝉𝒙𝒚stressesnormalizedbythemaximumshearstress.

The𝛥𝜏9:stressinFigure4.5arelocatednearthesurfaceofthecylinderandaresignificantonly

60°fromthex-axis.ThoughtheyincreasewithincreasingDeborahnumber,thesestresses

affectonlyasmallportionoftheflowfield.

Page 46: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

38

Figure4.6.𝜟𝝉𝒚𝒚stressesnormalizedbythemaximumshearstress.

Figure4.6showsthestresscontoursfor𝛥𝜏::.Thissetofcontoursshowthathighelastic

stressesoccurnearthefrontstagnationpoint.Theseextensionalstresses,however,are

substantiallysmallerinmagnitudethantheonesdownstreamofthecylinder.

InFigures4.3,4.4,and4.6,thethreemainelasticregionsareshowninred:aroundthetopand

bottomsurfacesofthecylinder,aroundtheaftstagnationpoint,andaroundtheforward

stagnationpoint.ThesideregionsareduetoN1stressescreatedbyshearingalongthecylinder,

whilethelattertworegionsarecausedbyextension.Thediscussionwhichfollowsfocuseson

thesideregionsandthezonedownstreamofthecylinder.ThestresscontoursfoundinFigure

4.3forthe10%arrayatDe=2.1qualitativelymatchwiththepolymerstraincontoursfoundin

(Liuetal.,2017)fortheir12.6%arrayatWi=4.52.Unfortunately,makingfurthercomparisons

isdifficultbecausetheyplottedcontoursofpolymerstrainratherthanstresses.

Page 47: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

39

4.3 ElasticStressesNeartheCylinderStressesonthecylinderaredirectlyrelatedtothepressuredrop,andsoitmaybeinformative

tostudythestressesactingonthecylinder.TheCartesiancoordinatesystem,however,splits

theseelasticstressesintothethreestresscomponents,soitismoresuitabletousestressesin

cylindricalcoordinates.Theconversionofthestressestoacylindricalcoordinatesystemcanbe

calculatedasfollows(Beer,Johnston,DeWolf,&Mazurek,2009),

𝜏�� =𝜏99 + 𝜏::

2+𝜏99 − 𝜏::

2𝑐𝑜𝑠2𝜃 + 𝜏9:𝑠𝑖𝑛2𝜃, (4.2)

𝜏�� = −𝜏99 − 𝜏::

2𝑠𝑖𝑛2𝜃 + 𝜏9:𝑐𝑜𝑠2𝜃, (4.3)

𝜏�� =𝜏99 + 𝜏::

2−𝜏99 − 𝜏::

2𝑐𝑜𝑠2𝜃 − 𝜏9:𝑠𝑖𝑛2𝜃, (4.4)

where𝜃istheangularpositionfromthepositivex-axis,ristheradialposition,𝜏�� istheradial

stresscomponent,𝜏��isthecircumferentialstresscomponent,and𝜏��istheshearstress

component.ThestressesatthecylindersurfaceareplottedinFigure4.7forthe5%arrayata

Deborahnumberof2.1.

Figure4.7.Additionalelasticstressesincylindricalcoordinatesatthecylindersurface.Notethat𝜟𝝉𝒓𝜽overlapswith𝜟𝝉𝒓𝒓

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Normalize

dτ-τ N

ewt.Stresses

x/DPosition

ΔτrrΔτrθΔτθθTheoreticalN1Stress

φ=5%De=2.1

Page 48: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

40

Thesurfaceofthecylinderisaregionofpureshear;therefore,theonlyrelevantelasticstresses

isfromN1.TheN1stresses,showninFigure4.7,actonlyinthecircumferentialdirectionas𝜏��.

SincetheonlyelasticstressisfromN1,thecircumferentialstressaroundthecylindershould

reachitssteadystatevalueof2𝜂e𝜆𝛾7accordingtotheOldroyd-Bmodel,whichisshownasthe

reddashedlineinFigure4.7.ThisclosematchbetweenthegreyandreddashedlinesinFigure

4.7showsthatthesimulationsareabletopredicttheN1stressesproperly.

Figure4.8.Stressesactingonasurfaceelementincylindricalcoordinates

Figure4.8showsafluidelementatthesurfaceofacylinderwith𝜏��,representingtheN1

stress,and𝜏��,representingtheviscousstresses.Theviscousstressescreateastressactingon

thesurface,asrepresentedbytheredarrow.TheN1stress,however,onlyacttangentiallyto

surface,creatingnostressonthesurfaceitself.ThisfactmeansthattheN1stressaroundthe

cylindercannotdirectlyactonthecylinder,whichwillberelevantinsection4.5.

4.4 MeshConvergenceAnalysisInordertoensurethatthepresentresultsareaccurateandmeshindependent,amesh

convergenceanalysiswasperformed.Thisanalysiswascompletedbysuccessivelydoublingthe

numberofmeshelementsinthemeshandmonitoring𝜏99attwopoints:oneatapoleofthe

cylinderandonedownstreamatcoordinates(0.3L,0).Thesepointswerechosentomonitorthe

highN1stressatapoleandthehighextensionalstressdownstreamofthecylinder.

ThemeshconvergenceanalysiswasperformedforeachgeometryatDe=2.1,whichwasthe

highestDeborahnumberorflowrateusedinthiswork,generatingthehighestelasticstresses,

andthusthehigheststressgradients.Thesehighstressgradientsmeanthatthesimulations

Page 49: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

41

wouldrequirethefinestmesh,andthesamemeshwouldbesufficientforsimulationsatlower

Deborahnumbers.Belowarethemeshconvergenceanalysesatapointdownstreamofthe

cylinder.

Figure4.9.Meshconvergenceanalysisof2.5%solidvolumefractionatpoint(0.3L,0).(*)

indicatesthatthedownstreamregionwaslocallyrefinedratherthantheentireflowdomain.

150

170

190

210

230

250

270

290

310

330

350

τ xxStressat(0.3L,0)(Pa)

NumberofMeshElements

Page 50: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

42

Figure4.10.Meshconvergenceanalysisof5%solidvolumefractionatpoint(0.3L,0).

Figure4.11.Meshconvergenceanalysisof10%solidvolumefractionatpoint(0.3L,0).

Figures4.9-4.11showthatthedifferencesinstressinthelasttwopointsarelessthan1%.To

reiterate,successfullyconvergingtheextensionalstressdownstreamofthecylinderrequireda

85

90

95

100

105

110

115

23665 51948 98506 183044 352389

τ xxStressat(0.3L,0)(Pa)

NumberofMeshElements

27

27.2

27.4

27.6

27.8

28

28.2

23216 44297 85553 167713 329164

τ xxStressat(0.3L,0)(Pa)

NumberofMeshElements

Page 51: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

43

highlyrefinedmesh,sothemeshinthatregionwasrefinedlocally,asdetailedinsection3.2.

Themeshconvergenceanalysismonitoringthestressatthecylinderpolecanbefoundin

AppendixC.

4.5 ForceActingontheCylinderandPressureDropOneoftheobjectivesofthesesimulationswastopredictthepressuredrop.Usingthestresses

andpressureactingonthecylinder,itispossibletocalculatetheforceactingonthecylinder

andthenthepressuredrop.Theforceactingonthecylinder,𝐹,hastwocomponents:aviscous

componentcausedbyfluidstressesactingdirectingonthecylinder,𝐹�,andapressure

componentcausedbythepressuredistributionaroundthecylinder,𝐹e.

𝐹 = 𝐹� + 𝐹e (4.5)

Theviscouscomponentwascalculatedbeintegratingthestressesaroundthecylindershownin

Figure4.12.

Figure4.12.Stressesonasurfaceelement

𝐹� = − 𝜏99𝑑𝑦 + 𝜏9:𝑑𝑥

d�

d�

d�

d� (4.6)

where𝑠[and𝑠7arethestartandendpointsoftheintegral.Aspreviouslyexplainedinsection

4.3,theelasticstressesaroundthecylinderactonlytangentiallytothesurface;therefore,the

viscousforcecomponentisidenticaltothatofaNewtonianfluid,makingthepressure

componenttheonlycontributortotheenhancedpressuredrop.

Inordertocalculatethepressure,themomentumequationwasused.Theinertialtermswere

neglectedbecauseoftheStokesflowassumption,i.e.,

Page 52: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

44

𝜕𝑝𝜕𝑥

=𝜕𝜏99𝜕𝑥

+𝜕𝜏9:𝜕𝑦

(4.7)

𝜕𝑝𝜕𝑦

=𝜕𝜏::𝜕𝑦

+𝜕𝜏9:𝜕𝑥

(4.8)

Thegradientsofthestresses,� ¡¡�9

,� ¡¢�:

,� ¢¢�:

,and� ¡¢�9

,wereextracteddirectlyfromthe

simulations.

Byusingthesegradients,thepressurearoundthecylindercanbecalculated,

𝑝 𝑥, 𝑦 =

𝜕𝑝𝜕𝑥𝜕𝑥 +

9

𝜕𝑝𝜕𝑦𝜕𝑦 + 𝑝J

:

:£. (4.9)

Thispressurewasintegratedaroundthecylindertoobtainthepressurecomponentofthedrag

forceactingonthecylinder.Thetop-bottomsymmetryoftheflowfieldmeansthatonlythex-

componentoftheforceneedstobeconsidered,

𝐹e = 𝑝 𝑥, 𝑦 𝑑𝑦

d�

d�, (4.10)

where𝑠[and𝑠7areagainthestartandendpointsoftheintegral.

Thepressuredropwasthencalculatedbydividingtheforce,F,actingonthecylinder,withthe

lengthLoftheunitcell,

𝛥𝑝 =𝐹𝐿. (4.11)

Toensuretheaccuracyofthesepressurecalculations,thepressuredropusingthismethodwas

firstcalculatedtopredicttheNewtonianflowresistance.Theintegralswerecalculatedusinga

simplemidpointRiemannsumandthepressuredropwasfoundtomatchwiththeanalytical

solutionpredictedbySanganiandAcrivoswithin0.1%error.

Theelasticpressuredropwasthencalculatedusingthismethodandnormalizedwiththe

Newtonianpressuredropforeacharray(Figure4.13).

Page 53: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

45

Figure4.13.Normalizedpredictedflowresistancevs.Deborahnumber

Itmayseempeculiarthatthelargeelasticstresses(upto6timesthehighestviscousstress)

aroundthecylinder(Figures4.3-4.6)causesuchasmallchangeinpressuredrop;however,this

differenceisduetothefactthattheelasticstressesonlyacttangentiallytothesurfaceofthe

cylinder,asexplainedinsection4.3.Inotherwords,theseelasticstressesdonotdirectlycause

aforceonthecylinder,onlythepressureproducedbythemdoes.

4.6 ComparisonswithOtherStudiesNowthattheflowresistancehasbeenpredicted,itisimportanttoensurethatthesevalues

haveabasisinrealitybycomparingthemtotheexperimentalresultsobtainedbyJamesetal.

(2012).

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 0.5 1 1.5 2 2.5

Normalized

Flow

Resistance,fRe

/fRe

New

t.

DeborahNumber,De

φ=2.5%

φ=5%

φ=10%

Page 54: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

46

Figure4.14.ComparisonofflowresistanceresultswithexperimentalresultsbyJamesetal.

(2012).

Thepredictedpressuredropsareconsiderablysmallerthanthosefoundintheexperimentsby

Jamesetal.(2012)(Figure4.14).Forexample,thepredictedpressuredropforthe10%arrayat

aDeborahnumberof2.1isonly10%comparedtothe125%foundexperimentally.Thislarge

discrepancymeansthatthesesimulationswereunsuccessfulinpredictingtheincreasein

pressuredrop,thoughthetrendofamonotonicpressureincreasematcheswhatwasfound

experimentally.Additionally,thetrendsfoundbetweenthethreegeometriesaresimilartothat

foundbyJamesetal.(2012)aswell(Figure4.14):Thethreegeometrieshavesimilarslopes

untilaDeborahnumberofroughly1.7,wherethe10%arrayseparatesfromtheotherarrays.

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 0.5 1 1.5 2 2.5

Normalized

Flow

Resistance,fRe

/fRe

New

t.

DeborahNumber,De

φ=2.5%φ=5%φ=10%Yip,φ=2.5%Yip,φ=5%Yip,φ=10%

Page 55: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

47

Figure4.15.Comparisonofflowresistanceresultstonumericalresultsfrom(Hemingwayet

al.,2018).(*)indicatesthattheDeborahnumberiscalculatedusing𝝀=0.6sforthecomparison.

InFigure4.15arenormalizedpressuredropresultscompletedinthisworkarecomparedwith

thenumericalresultsbyHemingwayetal.(2018)withthex-axisscaledforthecomparison.The

resultsbyHemingwayetal.predictasmalldecreaseinpressuredropbeforeincreasingagain,

comparedtothemonotonicincreasefoundinthisstudy.Thisflowresistancedecrease,

however,istoosmalltobemeasuredexperimentally.Additionally,theypredictedpressure

dropincreasesatmuchhigherDeborahnumbers.Theirpredictedpressuredrops,however,are

stillconsiderablysmallerthantheexperimentalresultsbyJamesetal.(2012).

4.7 DiscussionConsideringthatoneofthemainassumptionsofthesesimulationswasthattheflowfieldis

identicaltotheNewtonianflowfield,thediscrepancyinincreasedpressuredropmaybe

causedbyflowfieldchanges.TheparticleimagevelocimetryresultscompletedbyYip(2011)

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Flow

Resistance,fRe

/fRe

New

t.

DeborahNumber,De*

φ=2.5%

φ=5%

φ=10%

Hemingwayetal.,φ=3.1%

Hemingwayetal.,φ=7.1%

Hemingwayetal.,φ=12.6%

Page 56: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

48

showsomedecreasedflowvelocitiesaroundanddownstreamofthecylindersataDeborah

numberaround2.1foreachsolidvolumefraction(AppendixD);hencethepresentedresults

areexpectedtobelessaccurateatDeborahnumbersmuchhigherthanthecriticalDeborah

number.

Othernumericalstudieswhichmodifiedtheflowfield,however,wereunabletopredictthese

increasesinthepressuredrop;therefore,theabovereasonmaynotbeadequate.

Furthermore,othernumericalstudieshavealreadyusedotherconstitutivemodelssuchasthe

FENEmodels,thePhan-Thien-Tannermodel,andtheGiesekusmodel,buttheyweresimilarly

unsuccessfulinpredictinganincreaseinpressuredrop(Hemingwayetal.,2018;Hua&

Schieber,1998;Talwar&Khomami,1995).

Analternatereasonastowhythesenumericalresultsdonotmatchexperimentalresultsmay

berelatedtotheOldroyd-Bfluidinmodellingthepolymersolution.Forexample,theOldroyd-B

modelpredictsthatthesecondnormalstressdifference(N2),thenormalstressperpendicular

toN1,iszero,whichmaynotbetrue.N2is,however,unlikelytobeasourceofthisdiscrepancy

becauseitisgenerallyanorderofmagnitudelowerthanN1(Barnesetal.,1989).

Also,themodelpredictsinfiniteextensibility,meaningtheelasticstressescanincreasewithout

limit.Finiteextensibility,however,isunlikelytobetheproblembecause𝛥𝜏wouldneedtobe

oforderofmagnitudeofhundredsorthousands(Tirtaatmadja,1993),whichisimplausible

giventhatthesimulationswerelimitedtoflowsnearthecriticalDeborahnumber.Andso,the

causeoftheenhancedpressuredropeffectduetoelasticitystillremainsamystery,despiteall

oftheeffortmadetonumericallysimulateelasticflowfields.

Page 57: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

49

Chapter5 Conclusion

Thestresseswithinasquarearrayofcylindersinthreedifferentsolidvolumefractions(2.5%,

5%,and10%)havebeenfoundusingtheOldroyd-Bmodel,withtheassumptionthattheflow

fieldisidenticaltothatofaNewtonianflowfield.Themodelpredictslargenon-Newtonian

elasticstressescausedbyshearandextension,butthesedonotproducepressuredifferences

comparabletotheonesfoundexperimentally.However,thepredictionsarequalitatively

correctwiththepressuredifferenceincreasingwithsolidvolumefraction.Theelasticstresses

duetoextensiondownstreamofthecylinderdecreasewithincreasingsolidvolumefraction,in

constrasttotheincreaseinpressuredropwhichissimilarforallthreearrays.Thisfinding

supportstheargumentmadein(James,2016;Jamesetal.,2012;Yip,2011)thattheelastic

stressesduetoshearcausetheincreaseinpressuredrop.

Thereasonwhythereissuchalargediscrepancybetweenexperimentalandnumericalresults

stillremainsamystery,whichillustratesthedifficultiesinnumericallysimulatingviscoelastic

fluids.

Page 58: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

50

References

ANSYSInc.(2015).ANSYS®FLUENTUDFManual(Release16).

Barnes,H.A.,Hutton,J.F.,&Walters,K.(1989).AnIntroductiontoRheology(1sted.).

Amsterdam,TheNetherlands:ElsevierSciencePublishersB.V.

Beer,F.P.,Johnston,E.R.,DeWolf,J.T.,&Mazurek,D.F.(2009).MechanicsofMaterials(5th

ed.).NewYorkCity,NY:McGrawHill.

Bird,R.B.,Armstrong,R.C.,&Hassager,O.(1987).Dynamicsofpolymericliquids.Vol.1,2nd

Ed. :Fluidmechanics.UnitedStates:JohnWileyandSonsInc.,NewYork,NY.

Cengel,Y.,&Cimbala,J.(2013).FluidMechanicsFundamentalsandApplications:ThirdEdition

(3rded.).Boston,Massachusetts:McGraw-HillHigherEducation.

Chmielewski,C.,&Jayaraman,K.(1992).Theeffectofpolymerextensibilityoncrossflowof

polymersolutionsthroughcylinderarrays.JournalofRheology,36(6),1105–1126.

Chmielewski,C.,&Jayaraman,K.(1993).Elasticinstabilityincrossflowofpolymersolutions

throughperiodicarraysofcylinders.JournalofNon-NewtonianFluidMechanics,48(3),

285–301.

Chmielewski,C.,Nichols,K.L.,&Jayaraman,K.(1990).Acomparisonofthedragcoefficientsof

spherestranslatingincorn-syrup-basedandpolybutene-basedbogerfluids.Journalof

Non-NewtonianFluidMechanics,35(1),37–49.

Dauben,D.L.,&Menzie,D.E.(1967).FlowofPolymerSolutionsThroughPorousMedia.Journal

ofPetroleumTechnology,19(8).

Durst,F.,Haas,R.,&Interthal,W.(1987).Thenatureofflowsthroughporousmedia.Journalof

Non-NewtonianFluidMechanics,22(2),169–189.

Hemingway,E.J.,Clarke,A.,Pearson,J.R.A.,&Fielding,S.M.(2018).Thickeningofviscoelastic

flowinaporousmedium.JournalofNon-NewtonianFluidMechanics,251,56–68.

Hua,C.C.,&Schieber,J.D.(1998).Viscoelasticflowthroughfibrousmediausingthe

CONNFFESSITapproach.JournalofRheology,42(3),477.

James,D.F.(1966).OpenChannelSiphonwithViscoelasticFluids.Nature,212(5063),754–756.

James,D.F.(2009).BogerFluids.AnnualReviewofFluidMechanics,41(1),129–142.

Page 59: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

51

James,D.F.(2016).N1stressesinextensionalflows.JournalofNon-NewtonianFluid

Mechanics,232,33–42.

James,D.F.,&McLaren,D.R.(1975).Thelaminarflowofdilutepolymersolutionsthrough

porousmedia.JournalofFluidMechanics,70(4),733–752.

James,D.F.,Shiau,T.,&Aldridge,P.M.(2015).FlowofaBogerFluidAroundanIsolated

Cylinder,1–41.

James,D.F.,Yip,R.,&Currie,I.G.(2012).SlowflowofBogerfluidsthroughmodelfibrous

porousmedia.JournalofRheology,56(5),1249–1277.

Khomami,B.,&Moreno,L.D.(1997).Stabilityofviscoelasticflowaroundperiodicarraysof

cylinders.RheologicaActa,36(4),367–383.

Khomami,B.,Talwar,K.K.,&Ganpule,H.K.(1994).Acomparativestudyofhigher-andlower-

orderfiniteelementtechniquesforcomputationofviscoelasticflows.JournalofRheology,

38(2),255–289.

Liu,H.L.,Wang,J.,&Hwang,W.R.(2017).Flowresistanceofviscoelasticflowsinfibrous

porousmedia.JournalofNon-NewtonianFluidMechanics,246,21–30.

Marshall,R.J.,&Metzner,A.B.(1967).FlowofViscoelasticFluidsthroughPorousMedia.

Industrial&EngineeringChemistryFundamentals,6(3),393–400.

Marsily,G.De.(1986).QuantitativeHydrogeology:GroundwaterHydrologyforEngineers.

Orlando,Florida:AcademicPress.

Potter,M.C.,&Wigger,D.C.(2010).MechanicsofFluids(3rdedition).Stamford,CT:Cengage

Learning.

Prilutski,G.,Gupta,R.K.,Sridhar,T.,&Ryan,M.E.(1983).Modelviscoelasticliquids.Journalof

Non-NewtonianFluidMechanics,12(2),233–241.

Pye,D.J.(1964).ImprovedSecondaryRecoverybyControlofWaterMobility.Journalof

PetroleumTechnology,16(8),911–916.

Reiner,M.(1964).TheDeborahNumber.PhysicsToday,17(1),62.

Rodriguez,S.,Romero,C.,Sargenti,M.L.,Müller,A.J.,Sáez,A.E.,&Odell,J.A.(1993).Flowof

polymersolutionsthroughporousmedia.JournalofNon-NewtonianFluidMechanics,

49(1),63–85.

Page 60: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

52

Sangani,A.S.,&Acrivos,A.(1982).Slowflowpastperiodicarraysofcylinderswithapplication

toheattransfer.InternationalJournalofMultiphaseFlow,8(3),193–206.

Skartsis,L.,Khomami,B.,&Kardos,J.L.(1992).Polymericflowthroughfibrousmedia.Journal

ofRheology,36(4),589.

Souvaliotis,A.,&Beris,A.N.(1992).Applicationsofdomaindecompositionspectralcollocation

methodsinviscoelasticflowsthroughmodelporousmedia.JournalofRheology,36(7),

1417–1453.

Talwar,K.K.,&Khomami,B.(1992).Applicationofhigherorderfiniteelementmethodsto

viscoelasticflowinporousmedia.JournalofRheology,36(7),1377.

Talwar,K.K.,&Khomami,B.(1995).Flowofviscoelasticfluidspastperiodicsquarearraysof

cylinders:inertialandshearthinningviscosityandelasticityeffects.JournalofNon-

NewtonianFluidMechanics,57(2–3),177–202.

Tirtaatmadja,V.(1993).Afilamentstretchingdeviceformeasurementofextensionalviscosity.

JournalofRheology,37(6),1081.

Vorwerk,J.,&Brunn,P.O.(1991).PorousmediumflowofthefluidA1:effectsofshearand

elongation.JournalofNon-NewtonianFluidMechanics,41(1),119–131.

White,F.M.(1994).FluidMechanics(3rded.).Boston,Massachusetts:McGrawHill.

Yip,R.(2011).SlowFlowofViscoelasticFluidsthroughFibrousPorousMedia.Universityof

Toronto.

Page 61: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

53

AppendixA:ExpandedUpper-ConvectedMaxwellandOldroyd-BEquations

Theequationsforthe2-dimensionalupper-convectedMaxwellmodelinCartesiancoordinates

are,

𝜏99 + 𝜆𝜕𝜏99𝜕𝑡

+ 𝑢𝜕𝜏99𝜕𝑥

+ 𝑣𝜕𝜏99𝜕𝑦

− 2𝜏99𝜕𝑢𝜕𝑥

− 2𝜏9:𝜕𝑢𝜕𝑦

= 𝜂 2𝜖99 (A.1)

𝜏9: + 𝜆

𝜕𝜏9:𝜕𝑡

+ 𝑢𝜕𝜏9:𝜕𝑥

+ 𝑣𝜕𝜏9:𝜕𝑦

− 𝜏99𝜕𝑣𝜕𝑥

− 𝜏::𝜕𝑢𝜕𝑦

= 𝜂 𝛾9: (A.2)

𝜏:: + 𝜆

𝜕𝜏::𝜕𝑡

+ 𝑢𝜕𝜏::𝜕𝑥

+ 𝑣𝜕𝜏::𝜕𝑦

− 2𝜏::𝜕𝑣𝜕𝑦

− 2𝜏9:𝜕𝑣𝜕𝑥

= 𝜂 2𝜖:: (A.3)

where,

𝜖99 =𝜕𝑢𝜕𝑥, 𝜖:: =

𝜕𝑣𝜕𝑦. (A.4)

Theequationsforthe2-dimensionalOldroyd-BequationsinCartesiancoordinatesare,

𝜏99 + 𝜆𝜕𝜏99𝜕𝑡

+ 𝑢𝜕𝜏99𝜕𝑥

+ 𝑣𝜕𝜏99𝜕𝑦

− 2𝜏99𝜕𝑢𝜕𝑥

− 2𝜏9:𝜕𝑢𝜕𝑦

= 𝜂 2𝜖99 + 𝜆7 2𝜕𝜖99𝜕𝑡

+ 2𝑢𝜕𝜖99𝜕𝑥

+ 2𝑣𝜕𝜖99𝜕𝑦

− 4𝜖997 − 2𝛾9:𝜕𝑢𝜕𝑦

(A.5)

𝜏9: + 𝜆𝜕𝜏9:𝜕𝑡

+ 𝑢𝜕𝜏9:𝜕𝑥

+ 𝑣𝜕𝜏9:𝜕𝑦

− 𝜏99𝜕𝑣𝜕𝑥

− 𝜏::𝜕𝑢𝜕𝑦

= 𝜂 𝛾9: + 𝜆7𝜕𝛾9:𝜕𝑡

+ 𝑢𝜕𝛾9:𝜕𝑥

+ 𝑣𝜕𝛾9:𝜕𝑦

− 2𝜖99𝜕𝑣𝜕𝑥

− 2𝜖::𝜕𝑢𝜕𝑦

(A.6)

𝜏:: + 𝜆𝜕𝜏::𝜕𝑡

+ 𝑢𝜕𝜏::𝜕𝑥

+ 𝑣𝜕𝜏::𝜕𝑦

− 2𝜏::𝜕𝑣𝜕𝑦

− 2𝜏9:𝜕𝑣𝜕𝑥

= 𝜂 2𝜖:: + 𝜆7 2𝜕𝜖::𝜕𝑡

+ 2𝑢𝜕𝜖::𝜕𝑥

+ 2𝑣𝜕𝜖::𝜕𝑦

− 4𝜖::7 − 2𝛾9:𝜕𝑣𝜕𝑥

(A.7)

Page 62: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

54

AppendixB:FLUENTUserDefinedFunctionInANSYSFLUENT™,theupper-convectedMaxwellmodelstresseswerefoundintheprogram

weredefinedasuser-definedscalars.Userdefinedscalarshaveanequationtemplatedefined

asfollows(ANSYSInc.,2015),

𝜕𝛼¦𝜕𝑡

+𝜕𝜕𝑥§

𝐹§𝛼¦ − 𝛤¦𝜕𝛼¦𝜕𝑥§

= 𝑆ª«, 𝑤ℎ𝑒𝑟𝑒𝑘 = 1,…𝑁dx®¯®�d

Where𝛼¦arethescalarsorvariables,𝐹§ aretheconvectivecoefficients,𝛤¦arethediffusivity

constants,and𝑆ª« arethesourceterms.

Thecoefficientfortheconvectiveterm,𝐹§,wassetas𝑢𝜆torepresentthe𝑢 ⋅ 𝛻𝝉term,the

unsteadyterm,�°«�c

,wassettozero,andthesourcetermswereprogrammedtomatchwiththe

restoftheupper-convectedMaxwellequationsfoundinAppendixA.Followingistheuser-

definedfunctioncodeusedtoobtainthestressresults.

#include"udf.h"#include"math.h"#definedomain_ID1#defineM_Lambda0.6/*RelaxationTime[s]*/#defineM_Eta_P1.9/*PolymerViscosity[Pas]*/#defineM_Eta_S2.1/*SolventViscosity[Pas]*/enum{ Txx, Txy, Tyy, Txx_OB, Txy_OB, Tyy_OB, Txx_Newt, Txy_Newt, Tyy_Newt, Txx_OB_Dif, Txy_OB_Dif, Tyy_OB_Dif, N_REQUIRED_UDS

Page 63: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

55

};DEFINE_ON_DEMAND(calculate_UCM_values){ Domain*d; cell_tc; cell_tc0; Thread*t; Thread*t0; face_tf; d=Get_Domain(1); thread_loop_c(t,d) { begin_c_loop_all(c,t) { C_UDMI(c,t,0)=C_UDSI_G(c,t,Txx_OB)[0]; C_UDMI(c,t,1)=C_UDSI_G(c,t,Txy_OB)[0]; C_UDMI(c,t,2)=C_UDSI_G(c,t,Txy_OB)[1]; C_UDMI(c,t,3)=C_UDSI_G(c,t,Tyy_OB)[1]; C_UDMI(c,t,4)=C_UDSI_G(c,t,Txx_Newt)[0]; C_UDMI(c,t,5)=C_UDSI_G(c,t,Txy_Newt)[0]; C_UDMI(c,t,6)=C_UDSI_G(c,t,Txy_Newt)[1]; C_UDMI(c,t,7)=C_UDSI_G(c,t,Tyy_Newt)[1]; C_UDMI(c,t,8)=C_UDSI_G(c,t,Txx_OB_Dif)[0]; C_UDMI(c,t,9)=C_UDSI_G(c,t,Txy_OB_Dif)[0]; C_UDMI(c,t,10)=C_UDSI_G(c,t,Txy_OB_Dif)[1]; C_UDMI(c,t,11)=C_UDSI_G(c,t,Tyy_OB_Dif)[1]; } end_c_loop_all(c,t) } }DEFINE_ON_DEMAND(initialize_UCM){ Domain*d; cell_tc; Thread*t; d=Get_Domain(1);

Page 64: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

56

thread_loop_c(t,d) { begin_c_loop_all(c,t) { C_UDSI(c,t,Txx)=2*M_Eta_S*C_DUDX(c,t); C_UDSI(c,t,Txy)=M_Eta_S*(C_DVDX(c,t)+C_DUDY(c,t)); C_UDSI(c,t,Tyy)=2*M_Eta_S*C_DVDY(c,t); } end_c_loop_all(c,t) } }DEFINE_EXECUTE_ON_LOADING(define_variables,libname){ if(n_uds<N_REQUIRED_UDS) Internal_Error("notenoughuserdefinedscalarsallocated"); offset=Reserve_User_Scalar_Vars(3); Set_User_Scalar_Name(Txx,"txx"); Set_User_Scalar_Name(Txy,"txy"); Set_User_Scalar_Name(Tyy,"tyy"); Set_User_Scalar_Name(Txx_OB,"txxOB"); Set_User_Scalar_Name(Txy_OB,"txyOB"); Set_User_Scalar_Name(Tyy_OB,"tyyOB"); Set_User_Scalar_Name(Txx_Newt,"txxNewt"); Set_User_Scalar_Name(Txy_Newt,"txyNewt"); Set_User_Scalar_Name(Tyy_Newt,"tyyNewt"); Set_User_Scalar_Name(Txx_Newt,"txxOB_Dif"); Set_User_Scalar_Name(Txy_Newt,"txyOB_Dif"); Set_User_Scalar_Name(Tyy_Newt,"tyyOB_Dif");}DEFINE_SOURCE(txx_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=2*M_Eta_P*C_DUDX(c,t)+2*M_Lambda*C_UDSI(c,t,Txy)*C_DUDY(c,t)-C_UDSI(c,t,Txx)+2*M_Lambda*C_UDSI(c,t,Txx)*C_DUDX(c,t); dS[eqn]=2*M_Lambda*C_DUDX(c,t)-1;

Page 65: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

57

returnsource;}DEFINE_SOURCE(txy_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=M_Eta_P*(C_DVDX(c,t)+C_DUDY(c,t))+M_Lambda*C_UDSI(c,t,Txx)*C_DVDX(c,t)+M_Lambda*C_UDSI(c,t,Tyy)*C_DUDY(c,t)-C_UDSI(c,t,Txy); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(tyy_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=2*M_Eta_P*C_DVDY(c,t)+2*M_Lambda*C_UDSI(c,t,Txy)*C_DVDX(c,t)-C_UDSI(c,t,Tyy)+2*M_Lambda*C_UDSI(c,t,Tyy)*C_DVDY(c,t); dS[eqn]=2*M_Lambda*C_DVDY(c,t)-1; returnsource;}DEFINE_SOURCE(test_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=C_UDSI(c,t,1)-C_UDSI(c,t,0); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Txx_OB_source,c,t,dS,eqn){ realsource; realx[ND_ND];

Page 66: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

58

source=2*M_Eta_S*C_DUDX(c,t)+C_UDSI(c,t,Txx)-C_UDSI(c,t,Txx_OB); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Txy_OB_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=M_Eta_S*(C_DVDX(c,t)+C_DUDY(c,t))+C_UDSI(c,t,Txy)-C_UDSI(c,t,Txy_OB); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Tyy_OB_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=2*M_Eta_S*C_DVDY(c,t)+C_UDSI(c,t,Tyy)-C_UDSI(c,t,Tyy_OB); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Txx_Newt_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=2*(M_Eta_S+M_Eta_P)*C_DUDX(c,t)-C_UDSI(c,t,Txx_Newt); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Txy_Newt_source,c,t,dS,eqn){ realsource; realx[ND_ND];

Page 67: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

59

source=(M_Eta_S+M_Eta_P)*(C_DVDX(c,t)+C_DUDY(c,t))-C_UDSI(c,t,Txy_Newt); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Tyy_Newt_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=2*(M_Eta_S+M_Eta_P)*C_DVDY(c,t)-C_UDSI(c,t,Tyy_Newt); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Txx_OB_Dif_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=C_UDSI(c,t,Txx)-2*M_Eta_P*C_DUDX(c,t)-C_UDSI(c,t,Txx_OB_Dif); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Txy_OB_Dif_source,c,t,dS,eqn){ realsource; realx[ND_ND]; source=C_UDSI(c,t,Txy)-(M_Eta_P)*(C_DVDX(c,t)+C_DUDY(c,t))-C_UDSI(c,t,Txy_OB_Dif); dS[eqn]=-1; returnsource;}DEFINE_SOURCE(Tyy_OB_Dif_source,c,t,dS,eqn){ realsource;

Page 68: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

60

realx[ND_ND]; source=C_UDSI(c,t,Tyy)-2*(M_Eta_P)*C_DVDY(c,t)-C_UDSI(c,t,Tyy_OB_Dif); dS[eqn]=-1; returnsource;}DEFINE_UDS_FLUX(uds_flux,f,t,i){ realflux=0.0; realrho=C_R(F_C0(f,t),THREAD_T0(t)); flux=F_FLUX(f,t)/rho*M_Lambda; returnflux;}

Page 69: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

61

AppendixC:MeshConvergenceAnalysisatCylinderPoles

FigureC.1:Meshconvergenceanalysisof2.5%solidvolumefractionatthecylinderpole.

FigureC.2:Meshconvergenceanalysisof5%solidvolumefractionatthecylinderpole.

200

210

220

230

240

250

260

26711 49629 93918 181266 351883

τ xxStressat(0.5D

,0)(Pa)

NumberofElements

227

228

229

230

231

232

233

234

235

236

23665 51948 98506 183044 352389

τ xxStressat(0.5D

,0)(Pa)

NumberofElements

Page 70: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

62

FigureC.3:Meshconvergenceanalysisof10%solidvolumefractionatthecylinderpole.

260

262

264

266

268

270

272

274

276

23216 44297 85553 167713 329164

τ xxStressat(0.5D

,0)(Pa)

NumberofElements

Page 71: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

63

AppendixD:ComparisonofNewtonianVelocityProfilestoParticleImageVelocimetryResultsfromYip(2011)

ThefollowinggraphscompareNewtoniancomputationalresultsfromthisworkandparticle

imagevelocimetryresultsfromYip(2011)fortheB2Fluid.

FigureD.1.2.5%arrayvelocityprofilesbetweenparallelcylinders(x/L=0).Particleimage

velocimetryresultsareadaptedfromYip(2011).

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Velocity

,u/U

y/LPosition

Newt.(CFD)

Newt.PIV,Yip(2011)De=0.2PIV,Yip(2011)De=1.6PIV,Yip(2011)

Page 72: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

64

FigureD.2.2.5%arrayvelocityprofilesattheinletboundary(x/L=-0.5).ParticleimagevelocimetryresultsareadaptedfromYip(2011).

FigureD.3.5%arrayvelocityprofilesbetweenparallelcylinders(x/L=0).ParticleimagevelocimetryresultsareadaptedfromYip(2011).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Velocity

,u/U

y/LPosition

Newt.(CFD)

Newt.PIV,Yip(2011)De=0.2PIV,Yip(2011)De=1.6PIV,Yip(2011)

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Velocity

,u/U

y/LPosition

Newt.(CFD)

Newt.PIV,Yip(2011)

De=0.3PIV,Yip(2011)

De=2.1PIV,Yip(2011)

Page 73: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

65

FigureD.4.5%arrayvelocityprofilesattheinletboundary(x/L=-0.5).Particleimage

velocimetryresultsareadaptedfromYip(2011).

FigureD.5.10%arrayvelocityprofilesbetweenparallelcylinders(x/L=0).Particleimage

velocimetryresultsareadaptedfromYip(2011).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Velocity

,u/U

y/LPosition

Newt.(CFD)

Newt.PIV,Yip(2011)De=0.3PIV,Yip(2011)De=2.1PIV,Yip(2011)

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Velocity

,u/U

y/LPosition

Newt.(CFD)

Newt.PIV,Yip(2011)

De=0.3PIV,Yip(2011)

De=1.4PIV,Yip(2011)

Page 74: A Numerical Study of Viscoelastic Flow Through an Array of ... · overview of viscoelastic constitutive models is presented, including stresses caused by these types of fluids. Finally,

66

FigureD.6.10%arrayvelocityprofilesattheinletboundary(x/L=-0.5).ParticleimagevelocimetryresultsareadaptedfromYip(2011).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized

Velocity

,u/U

y/LPosition

Newt.(CFD)

Newt.PIV,Yip(2011)De=0.3PIV,Yip(2011)De=1.4PIV,Yip(2011)