Top Banner
A new scintillator detector for nuclear physics experiments: the CLYC scintillator Franco Camera 1 and Agnese Giaz 2 1 Università di Milano and INFN sezione di Milano 2 INFN sezione di Milano (current affiliation Università di Padova and INFN sezione di Padova)
18

A new scintillator detector for nuclear physics experiments: the CLYC scintillator · 2017. 2. 6. · Alekhin et al. J. Appl. Phys. 113, 224904 (2013) New scintillator materials are

Feb 06, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • A new scintillator detector for nuclear physics experiments: the CLYC

    scintillator

    Franco Camera1 and Agnese Giaz2 1Università di Milano and INFN sezione di Milano

    2INFN sezione di Milano (current affiliation Università di Padova and INFN sezione di Padova)

  • Outline

    Characterization measurements on new scintillators (SrI2, CeBr3, CLYC)

    CLYC • Enrichment with 6Li (Thermal and fast neutrons) • Enrichment with 7Li (fast neutrons) • Measurements with monochromatic fast neutrons • Neutron energy resolution from PSD • Continuous neutron spectra

    Co Doped LaBr3:Ce, CLLB and CLLBC crystals LaBr3:Ce with SIPM Summary

    A. Giaz 2

  • Scintillators in nuclear physics experiments Detector requirements: Measurement of low and high energy gamma rays (0.1 - 15 MeV) Good efficiency Good Time resolution - background rejection - TOF measurements Imaging properties to reduce Doppler Broadening Energy resolution is not mandatory but very useful for: - calibration - measurement and studies of discrete structures Possibility to discriminate between gamma rays and neutrons using TOF and PSD

    MaterialLight Yield

    [ph/MeV]

    Emission lmax [nm]

    En. Res. at 662

    keV [%]Density [g/cm

    2]

    Principal decay

    time [ns]

    NaI:Tl 38000 415 6-7 3.7 230

    CsI:Tl 52000 540 6-7 4.5 1000

    LaBr3:Ce 63000 360 3 5.1 17

    SrI2:Eu 80000 480 3-4 4.6 1500

    CeBr3 45000 370 ~4 5.2 17

    GYGAG 40000 540

  • The SrI2:Eu scintillator (2’’ x 2’’)

    3.2%

    Rise: 24 ns Fall: 7s

    A. Giaz et al., NIM A 804, (2015), 212

    • Energy resolution of ~ 3.2% at 662 keV • Slow detector (fall time ~ 7 s) • Large volume crystals (2’’ x 2’’) available • Self absorption

    Characterization measurements: Energy resolution up to 9 MeV Crystal scan along the three axes Study of the signal shape

    Presence of self - absorption

    4,0% at 662 keV

    100 ± 20 keV @ 9 MeV

    A. Giaz 4

  • The CeBr3 scintillator (2’’ x 3’’) A. Giaz et al., NIM A 804, (2015), 212

    • Energy resolution of ~ 3.5% at 662 keV • Very similar to Labr3:Ce • Large volume crystals (3’’ x 3’’) available • No internal activity

    Characterization measurements: Energy resolution up to 9 MeV Crystal scan along the three axes Study of the signal shape

    4,3% at 662 keV

    120 ± 20 keV @ 9 MeV

    The 9 MeV is at 8.6 MeV (4% non linearity).

    Rise: 18 ns Fall: 70 ns

    No changes along the z axis.

    A. Giaz 5

  • The CeBr3 scintillator (3’’ x 3’’)

    2000 4000 6000 8000

    1

    10

    100

    1000

    10000

    2000 4000 6000 8000

    1

    10

    100

    1000

    10000

    2000 4000 6000 8000

    1

    10

    100

    1000

    10000

    CeBr3

    LaBr3:Ce

    NaI

    A. Giaz 6

  • The CLYC scintillator (Cs2LiYCl6:Ce3+)

    W1 W2

    R ~ 4.5%

    The CLYC crystals were developed approximately 10 years ago. Density of 3.3 g/cm3, light yield of 20 ph/keV high linearity, especially at low energy. Energy resolution at 622 keV < 5% time resolution of 1.5 ns. Excellent neutron gamma discrimation.

    A. Giaz 7

  • Neutron detection Fast neutrons:

    35Cl(n,p)35S Q-value = 0.6 MeV σ ≈ 0.2 barns at En = 3 MeV

    35Cl(n,)32P Q-value = 0.9 MeV σ ≈ 0.01 barns at En = 3 MeV

    Thermal neutrons:

    6Li(n,)t Q-value = 4.78 MeV σ = 940 barns at En = 0.025 eV.

    2 4 6 8 10 12 14 16 180.0

    0.1

    0.2

    0.3

    0.4

    Cro

    ss S

    ection

    [b

    arn

    s]

    Energy [MeV]

    35

    Cl(n,p)35

    S

    35

    Cl(n,)32

    P

    National Nuclear Data Center ENDF/B-VII library

    To fast neutron detection: 7Li (7Li > 99%) enriched CLYC CLYC-7

    The kinetic energy of the neutrons can be measured via: 1) Time of Flight (TOF) techniques. 2) The energy signal

    Two measurements: Monochromatic neutrons Continuous neutron spectrum of an

    241Am/9Be source

    Ep/α = (En + Q) qp/α p or energy is linearly related to n energy CLYC is a neutron spectrometer En > 6 MeV other reaction channels on detectors isotopes not easy neutron spectroscopy

    To Thermal neutron detection: 6Li (6Li = 95%) enriched CLYC CLYC-6

    A. Giaz 8

  • Fast Neutron Detection with CLYC

    Proton Energy

    [MeV]

    Detector

    Angle

    Neutron

    Energy [MeV]5.5 0° 3.83

    5 0° 3.33

    4.5 0° 2.83

    5.5 90° 2.68

    5 90° 2.30

    4.5 90° 1.93

    Proton Beam

    CLYC-6

    CLY

    C-7

    Distance: ~77 cm

    Neu

    tro

    ns

    Neutrons 7LiF Target

    0 2000 4000 6000 800010

    0

    101

    102

    103

    104

    105

    Energy [keV]

    Counts

    0 2000 4000 6000 800010

    0

    101

    102

    103

    104

    105

    Energy [arb. units]

    Counts

    Thermal Neutrons

    A. Giaz et al., NIM A 825, (2016), 51

    A. Giaz 9

  • Fast Neutron Detection with CLYC

    Proton Energy

    [MeV]

    Detector

    Angle

    Neutron

    Energy [MeV]5.5 0° 3.83

    5 0° 3.33

    4.5 0° 2.83

    5.5 90° 2.68

    5 90° 2.30

    4.5 90° 1.93

    Proton Beam

    CLYC-6

    CLY

    C-7

    Distance: ~77 cm

    Neu

    tro

    ns

    Neutrons 7LiF Target

    0 2000 4000 6000 80000

    20

    40

    60

    80

    100

    120

    Energy [keV]

    Counts

    0 2000 4000 6000 80000

    20

    40

    60

    80

    100

    Energy [keV]

    Counts

    A. Giaz et al., NIM A 825, (2016), 51

    Energy [keV]

    Tim

    e [ns]

    0 2000 4000 6000 8000

    20

    40

    60

    80

    100

    120

    Energy [keV]

    Tim

    e [ns]

    0 2000 4000 6000 8000

    20

    40

    60

    80

    100

    120

    Energy [keV]

    PS

    D R

    atio

    0 1000 2000 3000 4000 5000 6000 70000.5

    0.6

    0.7

    0.8

    0.9

    1

    Energy [keV]

    PS

    D R

    atio

    0 2000 4000 6000 80000.5

    0.6

    0.7

    0.8

    0.9

    1

    A. Giaz 10

  • Fast Neutron detection with CLYC

    A. Giaz et al., NIM A 825, (2016), 51

    2.0 2.5 3.0 3.5 4.01.5

    2.0

    2.5

    3.0

    3.5

    CLYC-7 Dig.

    CLYC-6 Dig.

    CLYC-7 An.

    CLYC-6 An.

    Me

    sasu

    red

    Neu

    tron

    Ene

    rgy [

    Me

    V]

    Neutron Energy [MeV]

    1.5 2.0 2.5 3.0 3.5 4.00

    2

    4

    6

    8

    10

    12

    CLYC-7 Dig.

    CLYC-6 Dig.

    CLYC-7 An.

    CLYC-6 An.Ene

    rgy R

    esolu

    tio

    n [

    %]

    Neutron Energy [MeV]

    Proton Energy

    [MeV]

    Detector

    Angle

    Neutron

    Energy [MeV]5.5 0° 3.83

    5 0° 3.33

    4.5 0° 2.83

    5.5 90° 2.68

    5 90° 2.30

    4.5 90° 1.93

    The energy of the outgoing proton is linearly related to the energy of the incoming neutron.

    En = Emis/q – Q

    A. Giaz 11

  • Energy [keV]

    Tim

    e [ns]

    0 1000 2000 3000 4000 500080

    90

    100

    110

    120

    Continuous neutron spectra

    35Cl(n, p)35S

    Energy [keV]

    Tim

    e [

    ns]

    0 1000 2000 3000 4000 500080

    90

    100

    110

    120

    35Cl(n, )32P

    35Cl(n, p)35S

    35Cl(n, )32P

    A. Giaz et al., NIM 825, (2016), 51

    A continuous neutron spectra can be measured using the time vs energy matrices (gated on PSD). The blue region includes contribution of 35Cl(n,p)35S reaction only

    Note: PDS identify an incoming neutron but not its energy TOF identify a neutron or a delayed g-ray

    Using both information it is possible to identify a neutron and to measure its energy

    A. Giaz 12

  • J. Scherzinger, et al., Appl. Rad. and Isotopes, 98, (2015), 74

    2 4 6 8 10 Energy [MeV]

    241Am/9Be Source 241Am/9Be source: 241Am 237Np + α (Eα ~ 5.5 MeV) α + 9Be 13C (Q = 5.7 MeV) 13C n + 12C (En < 11.2 MeV) 12C can be in different states: Ground state : Q = 5.7 MeV 1st excited state: Q = 1.3 MeV, Eg = 4.439 MeV 2nd excited state: Eth = 2.8 MeV Eg = 7.654 MeV 3rd excited state: Eth = 5.7 MeV Eg = 9.641 MeV

    K.G. Geiger and C.K. Hargrove, Nucl. Phys. 53, (1964), 208

    Neutron spectra measured in coincidence with a 4.439 MeV g ray using the TOF technique.

    A. Giaz 13

  • Measurement of the 241Am/9Be spectrum 241Am/9Be

    CLYC-7 2’’ x 2’’ BaF2 2.5’’ x 3’’ n g

    Energy [keV]

    PS

    D R

    atio

    0 2000 4000 6000 8000 100000.5

    0.6

    0.7

    0.8

    0.9

    1

    0 2000 4000 6000 8000 1000010

    0

    101

    102

    103

    104

    Energy [keV]

    Co

    un

    ts

    0 2000 4000 6000 8000 100000

    5

    10

    15

    20

    Co

    un

    ts

    Energy [keVee]

    Emis

    En

    PDS to separate neutrons from gammas. En = Emis/q – Q En < 7 MeV: dominant reaction is

    35Cl(n,p)35S till En < 4 MeV , for higher energies it is necessary to separate different contributions. using TOF techniques.

    A. Giaz 14

  • New Scintillators

    Alekhin et al. J. Appl. Phys. 113, 224904 (2013)

    New scintillator materials are available in small size (ENSAR2-PASPAG Project)

    CLYC Cs2LiYCl6 CLLB Cs2LiLaBr6 CLLBC Cs2LiLa(Br,Cl)6 These new crystals are available since few months CLYC 3”x3” is available since 2016 only Co-doped LaBr3:Ce - Co-doping should improve the linearity at low energy - Co doping should improve energy resolution - No large volume detectors available (maybe

    first in 2017)

    MaterialLight Yield

    [ph/MeV]

    Emission lmax [nm]

    En. Res. at 662

    keV [%]Density [g/cm2]

    NaI:Tl 38000 415 6-7 3.7

    CLYC:Ce 20000 390 > 4 3.3

    CLLBC:Ce 45000 410 < 3 4.1

    CLLB:Ce 55000 410 < 3 4.2

    A. Giaz 15

  • New sensors- Large Area SIPM

    Individual SiPM properties: Technology: NUV-HD produced by

    FBK Active area: 6 x 6 mm2 (39600

    mcells) Microcells size: 30 x 30 mm2

    Cell density: 1100 mcells/mm2 FF (Fill Factor): 77% PDE (Particle Detection Efficiency

    (con FF) ) (@380 nm, Vov = 6V): 43.5%

    DCR (Dark Counr Rate) (Vov = 6V): 68 kcps/mm2

    ENF (Excess Noise Factor): 1.19

    A. Giaz 16

  • Results can be improved: There were 4 cells (6 mm x 6 mm) not working LaBr3 not in the center to cover the least possible of these 4 cells. New arrays in production at FBK

    3.78%

    among the

    best results

    with LaBr3

    and SiPMs

    Without gain stabilization

    Shift = 7.85 %

    With gain stabilization

    Shift = 0.78 %

    LaBr3:Ce (2’’ x 2’’) coupled to SiPM

    A. Giaz 17

  • Several new scintillators are or will be soon on the market CLLB, CLLBC CoDoped LaBr3:Ce, CLYC, CeBr3, SrI2, …. Their detailed performances are not fully known Several studies on CLYC were done and will be done Energy Resolution and PSD Neutron spectroscopy Continuous neutron spectra

    R&D on light sensor (SiPM) for spectroscopy is starting

    Conclusions

    THANK YOU FOR THE ATTENTION

    A. Giaz 18