Top Banner
Hydrogen Photoelectrochemical Cells Equations Results Conclusions A Mathematical Model for Hydrogen Production of a Proton Exchange Membrane Photoelectrochemical Cell Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. Kreider University of Akron April 7, 2011 Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. Kreider A Mathematical Model for Hydrogen Production of a Proton E
63

A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

Jul 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

A Mathematical Model for Hydrogen Productionof a Proton Exchange Membrane

Photoelectrochemical Cell

Bryan Van Scoy, Josh Adams, Robert MoserDr. Young, Dr. Clemons, Dr. Kreider

University of Akron

April 7, 2011

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 2: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Benefits of Hydrogen

Little or no emissions

Hydrogen engines more efficient than gasoline

Fuel cells available

Many ways to produce

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 3: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Ways to Produce Hydrogen

Natural gas

Coal

Biomass

Waste

Wind

Nuclear power

Sunlight

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 4: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Basic Cell Operation

Anode Water ChannelMembrane (PEM)Proton Exchange

+ −

Anode CL Cathode CL

Cathode Water Channel

H2OH2O

H+

H2O2

e−

Vcell

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 5: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Basic Cell Operation

Anode Water ChannelMembrane (PEM)Proton Exchange

+ −

Anode CL Cathode CL

Cathode Water Channel

H2OH2O

H+

H2O2

e−

Vcell

&%'$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 6: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Nafion Membrane

Hydration Shell

Water Region

Polymer Backbone

x

SO−3 Charge

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 7: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Delta Functions

-800

-600

-400

-200

0

200

400

600

800

0 10 20 30 40 50 60

15 45C

harg

e D

ensi

ty (

C/m

3 )

Length (µm)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 8: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Basic Cell Operation

Anode Water ChannelMembrane (PEM)Proton Exchange

+ −

Anode CL Cathode CL

Cathode Water Channel

H2OH2O

H+

H2O2

e−

Vcell

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 9: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Basic Cell Operation

Anode Water ChannelMembrane (PEM)Proton Exchange

+ −

Anode CL Cathode CL

Cathode Water Channel

H2OH2O

H+

H2O2

e−

Vcell

&%'$

&%'$

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 10: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electrode Nanowire Array Assembly

Current ConductingSupport Scaffold

SiliconGermanium

Proton ExchangeMembrane (PEM)Silicon

Electrocatalyst (Pt)

Germanium

Electrocatalyst (Pt)

Anode Catalyst Layer Cathode Catalyst Layer

-

e−

Vcell

+

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 11: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Photograph of Nanowire Arrays

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 12: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electrode Nanowire Array Assembly

Cathode

1 cm

1 cm

Mem

bran

e

Pitch (P)

ScaffoldThickness

Anode

(Pscaffold)

Default Lengths:LA = 15 µmLM = 30 µmLC = 15 µm

LM LCLA

y

x

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 13: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Symbol Description Symbol Description

A Surface area/volume ratio [m−1] pos Position of point-chargesc Speed of light [m/s] q Charge of a proton [C]D Diffusivity of protons [m2/s] R Gas constant [J/K·mol]Dw Diffusivity of water [m2/s] S Source/Sink termE Activation energy [J/mol] T Temperature [K]EW Equivalent weight of electrolyte

[kg/mol]W Molecular weight [kg/mol]

F Faraday constant [C/mol] V Volume [m3]h Planck constant [m2

·kg/s] V0 Equilibrium potential [V]Iν Radiant intensity [W/m2] η Overpotential [V]j Current density [A/m3] µ Mobility of protons [m2/V·s]J Flux ρ Density [kg/m3]kB Boltzmann constant [J/K] κ Thermal conductivity [W/m·K]L Length [m] σ Ionic conductivity [S/m]m Mass of an electron [kg] ǫ Permittivity [F/m]NA Avogadro constant [mol−1] ν Frequency of sunlight [Hz]

NSO

3

Number of SO−

3 charges χ Surface potential difference [J]

n Concentration of protons [mol/m3] φmetal Work function of metal [J]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 14: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Governing Equation

Concentration of H+ 0 = ∇ · (D ∇n + µn ∇Φ) + S

Potential (CLs) 0 = ∇ · (σ ∇Φ) + S

Potential (Membrane) 0 = ∇ · (ǫ ∇Φ) + S

Water Content 0 = ∇ ·

(

ρmem

EWDmemw ∇λ

)

−∇ ·

(

ndjF

)

+ S

Temperature 0 = ∇ · (κ ∇T ) + S

D - Diffusivity of protons Dmemw - Diffusivity of water

n - Concentration of protons λ - Water contentµ - Mobility of protons nd - Electro-osmotic dragσ - Electrical conductivity j - Current densityΦ - Electric potential F - Faraday constantǫ - Permittivity κ - Thermal conductivityρmem - Density of membrane T - TemperatureEW - Equiv. weight of dry membrane

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 15: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Governing Equation

Concentration of H+ 0 = ddx(D dn

dx+ µn dΦ

dx) + S

Potential (CLs) 0 = ddx(σ dΦ

dx) + S

Potential (Membrane) 0 = ddx(ǫdΦ

dx) + S

Water Content 0 = ddx

(

ρmem

EWDmemw

dλdx

)

−ddx

(

ndjF

)

+ S

Temperature 0 = ddx(κdT

dx) + S

D - Diffusivity of protons Dmemw - Diffusivity of water

n - Concentration of protons λ - Water contentµ - Mobility of protons nd - Electro-osmotic dragσ - Electrical conductivity j - Current densityΦ - Electric potential F - Faraday constantǫ - Permittivity κ - Thermal conductivityρmem - Density of membrane T - TemperatureEW - Equiv. weight of dry membrane

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 16: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Current Density

jν =FIν

NA

mc2

h2ν2

(

1−φmetal + χ

)

(Light)

japplied = iA0

[

exp

(

FηA

RT

)

− exp

(

−FηA

RT

)]

(Anode)

japplied = iC0

[

n

nrefexp

(

−FηC

RT

)

−n

nrefexp

(

FηC

RT

)]

(Cathode)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 17: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Overpotentials

ηA =RT

Fsinh−1

(

japplied

2iA0

)

(Anode)

ηC = −RT

Fsinh−1

(

japplied

2iC0

nref

nC

)

(Cathode)

ηM =LM

σj (Membrane)

ηI = .05V0 (Interface)

V0 = 1.23− .9× 10−3(T − 298.15) (Equilibrium Potential)

φ0 = V0 + ηA − ηC + ηM + ηI (Cell Voltage)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 18: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Other Equations

σ = (.5139λ− .326) exp

[

1268

(

1

303−

1

T

)]

(Conductivity)

D = 8× 10−10λ− 3.1× 10−9 (Diffusivity)

µ =Dq

kBT(Mobility)

RH2 =nC

nref

j

F

[

mol

m2 s

]

=nC

nref

j

F

WH2

ρH2

VC

P+ Pscaffold

[

L

s

]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 19: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electric Potential - Governing Equation

0 = (σΦx)x + S

0 = σΦxx + σxΦx + S

0 =σ

∆x2[Φi−1 − 2Φi +Φi+1] +

1

4∆x2[σi+1 − σi−1] [Φi+1 − Φi−1] + S

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 20: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electric Potential - Matrix Equation

[1] Φi−1

+ [−2] Φi = −∆x2

σiS −

1

4σi(σi+1 − σi−1)(Φi+1 − Φi−1)

+ [1] Φi+1

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 21: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electric Potential - Boundary Conditions

Left Boundary Anode/Membrane Membrane/Cathode Right Boundaryx = xA = 0 x = xAM x = xMC x = xC

ΦA = V0 + ηA − ηC ΦA = ΦM + ηI2 ΦM = ΦC + ηI

2 ΦC = 0+ηM + ηI ǫA∇ΦA · n̂ ǫM∇ΦM · n̂

= ǫM∇ΦM · n̂ = ǫC∇ΦC · n̂

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 22: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electric Potential - Boundary Conditions

ǫ1dΦ1

dx= ǫ2

dΦ2

dx

ǫ1

2∆x[Φi−2 − 4Φi−1 + 3Φi ] =

ǫ2

2∆x[−3Φi + 4Φi+1 − Φi+2]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 23: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Electric Potential - Boundary Conditions

[ǫ1] Φi−2

+ [−4ǫ1] Φi−1

+ [3(ǫ1 + ǫ2)] Φi = 0

+ [−4ǫ2] Φi+1

+ [ǫ1] Φi+2

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 24: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Concentration of Hydrogen - Governing Equation

nt = (Dnx + µnΦx)x + S

1

∆t[nk+1

i − nki ] =Di

2∆x2[(nki−1 − 2nki + nki−1) + (nk+1

i−1 − 2nk+1i + nk+1

i−1 )]

+1

8∆x2[Di+1 − Di−1][(n

ki+1 − nki−1) + (nk+1

i+1 − nk+1i−1 )]

+µi

2∆x2[nk+1

i − nki ][Φi−1 − 2Φi +Φi+1]

+µi

8∆x2[(nki+1 − nki−1) + (nk+1

i+1 − nk+1i−1 )][Φi+1 − Φi−1]

+1

8∆x2[µi+1 − µi−1][n

k+1i − nki ][Φi+1 − Φi−1]

+ Ski

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 25: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Concentration of Hydrogen - Matrix Equation

[

−r̃

2Di +

8(Di+1 + Di−1) +

8µi (Φi+1 − Φi−1)

]

nk+1i−1

+

[

1 + r̃Di −r̃

2µi (Φi+1 − 2Φi +Φi−1)−

8(µi+1 − µi−1)(Φi+1 − Φi−1)

]

nk+1i

+

[

−r̃

2Di −

8(Di+1 − Di−1)−

8µi (Φi+1 − Φi−1)

]

nk+1i+1

= nki +r̃

2Di (n

ki−1 − 2nki + nki−1) +

8(Di+1 − Di−1)(n

ki+1 − nki−1)

+r̃

2µin

ki (Φi−1 − 2Φi +Φi+1) +

8µi (Φi+1 − Φi−1)(n

ki+1 − nki−1)

−r̃

8nki (µi+1 − µi−1)(Φi+1 − Φi−1) + ∆t Sk

i

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 26: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Concentration of Hydrogen - Boundary Conditions

Left Boundary Anode/Membrane Membrane/Cathode Right Boundaryx = xA = 0 x = xAM x = xMC x = xCnA = n0 nA = nM nM = nC

~JA · n̂ = ~JM · n̂ ~JM · n̂ = ~JC · n̂ ~JC · n̂ = KMT [nC − n0]

~J = D ∇n − µn ∇Φ

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 27: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Concentration of Hydrogen - Boundary Conditions

D1dn1

dx+ µ1n1

dΦ1

dx= D2

dn2

dx+ µ2n2

dΦ2

dx

D1

2∆x[ni−2 − 4ni−1 + 3ni ] +

µ1ni

2∆x[Φi−2 − 4Φi−1 + 3Φi ]

=D2

2∆x[−3ni + 4ni+1 − ni+2] +

µ2ni

2∆x[−3Φi + 4Φi+1 − Φi+2]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 28: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Concentration of Hydrogen - Boundary Conditions

[D1] ni−2

+ [−4D1] ni−1

+ [3(D1 + D2) + µ1(Φi−2 − 4Φi−1 + 3Φi )

−µ2(−3Φi + 4Φi+1 − Φi+2)] ni = 0

+ [−4D2] ni+1

+ [D2] ni+2

[Di ] ni−2

+ [−4Di ] ni−1

+ [3Di + µi (Φi−2 − 4Φi−1 + 3Φi )− 2KMT∆x ] ni = −2KMTn0∆x

+ [−4D2] ni+1

+ [D2] ni+2

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 29: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Temperature - Governing Equation

0 = (κTx)x + S

0 = κTxx + S

0 =κ

∆x2[Ti−1 − 2Ti + Ti+1] + S

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 30: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Temperature - Matrix Equation

[κ] Ti−1

+ [−2κ] Ti = −∆x2 S

+ [κ] Ti+1

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 31: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Temperature - Boundary Conditions

Left Boundary Anode/Membrane Membrane/Cathode Right Boundaryx = xA = 0 x = xAM x = xMC x = xCTA = T0 TA = TM TM = TC TC = T0

∇TA · n̂ = ∇TM · n̂ ∇TM · n̂ = ∇TC · n̂

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 32: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Temperature - Boundary Conditions

κ1dT1

dx= κ2

dT2

dx

κ1

2∆x2[Ti−2 − 4Ti−1 + 3Ti ] =

κ2

2∆x2[−3Ti + 4Ti+1 − Ti+2]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 33: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Temperature - Boundary Conditions

[κ1] Ti−2

+ [−4κ1] Ti−1

+ [3(κ1 + κ2)] Ti = 0

+ [−4κ2] Ti+1

+ [κ2] Ti+2

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 34: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Water Content - Governing Equation

0 =

(

ρmem

EWDw λx

)

x

(

ndj

F

)

x

+ S , nd =2.5

22λ

0 =ρmem

EW

Dwi

∆x2[λi−1 − 2λi + λi+1]

+ρmem

EW

1

4∆x2

[

Dwi+1 − Dwi−1

]

[λi+1 − λi−1]

−2.5

22

i

F

1

2∆x[λi+1 − λi−1]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 35: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Water Content - Matrix Equation

[

ρmem

EW

(

Dwi−

Dwi+1 − Dwi−1

4

)

+∆x2.5

22

i

F

]

λi−1

+

[

−2ρmem

EWDwi

]

λi = −∆x2 S

+

[

ρmem

EW

(

Dwi+

Dwi+1 − Dwi−1

4

)

−∆x2.5

22

i

F

]

λi+1

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 36: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Water Content - Boundary Conditions

Left Boundary Anode/Membrane Membrane/Cathode Right Boundaryx = xA = 0 x = xAM x = xMC x = xCλA = λ0 λA = λM λM = λC λC = λ0

DwA∇λA · n̂ DwM

∇λM · n̂

= DwM∇λM · n̂ = DwC

∇λC · n̂

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 37: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Water Content - Boundary Conditions

Dw1

dλ1

dx= Dw2

dλ2

dx

Dw1

4 ∆x[λi−2 − 4λi−1 + 3λi ] =

Dw2

4 ∆x[−3λi + 4λi − λi+2]

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 38: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Water Content - Boundary Conditions

[Dw1 ] λi−2

+ [−4Dw1 ] λi−1

+ [3(Dw1 + Dw2)] λi = 0

+ [−4Dw2 ] λi+1

+ [Dw2 ] λi+2

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 39: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

BC3 BC4 BC5

A2 A3 A4 A5

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5 0

. . .. . .

. . .. . .

. . .

A1 A2 A3 A4 A5

BC1 BC2 BC3 BC4 BC5

A1 A2 A3 A4 A5

. . .. . .

. . .. . .

. . .

A1 A2 A3 A4 A5

BC1 BC2 BC3 BC4 BC5

0 A1 A2 A3 A4 A5

. . .. . .

. . .. . .

. . .

A1 A2 A3 A4

BC1 BC2 BC3

x1

x2

x3

x4

...

xA−1

xA

xA+1

...

xM−1

xM

xM+1

...

xC−1

xC

=

b1

b2

b3

b4

...

bA−1

bA

bA+1

...

bM−1

bM

bM+1

...

bC−1

bC

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 40: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Default Electric Potential

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

15 45P

oten

tial (

V)

Length (µm)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 41: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Default Hydrogen Concentration

0

5

10

15

20

25

30

0 10 20 30 40 50 60

15 45H

+ C

once

ntra

tion

(mol

/m3 )

Length (µm)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 42: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Default Temperature

352.98

353

353.02

353.04

353.06

353.08

353.1

353.12

353.14

353.16

353.18

0 10 20 30 40 50 60

15 45T

empe

ratu

re (

K)

Length (µm)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 43: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Default Water Content

19.5

20

20.5

21

21.5

22

0 10 20 30 40 50 60

15 45W

ater

Con

tent

(m

ol S

O3- /m

ol H

20)

Length (µm)

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 44: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effects of Temperature

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

15 45P

oten

tial (

V)

Length (µm)

T = 353KT = 333KT = 303K

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 45: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effects of Temperature

16

17

18

19

20

21

22

0 10 20 30 40 50 60

15 45W

ater

Con

tent

(m

ol S

O3- /m

ol H

20)

Length (µm)

T = 353KT = 333KT = 303K

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 46: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effects of Charges in Membrane

25.8

26

26.2

26.4

26.6

26.8

27

27.2

27.4

15 20 25 30 35 40 45

H+ C

once

ntra

tion

(mol

/m3 )

Length (µm)

NSO3- = 30

NSO3- = 100

NSO3- = 300

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 47: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effects of Charges in Membrane

25

25.5

26

26.5

27

27.5

28

15 20 25 30 35 40 45

H+ C

once

ntra

tion

(mol

/m3 )

Length (µm)

pos = 0.5 pos = 0.25pos = 0.1

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 48: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effects of Water Content

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

15 45

H+ C

once

ntra

tion

(mol

/m3 )

Length (µm)

λ0 = 22λ0 = 18λ0 = 12

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 49: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effects of Mobility

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

15 45

H+ C

once

ntra

tion

(mol

/m3 )

Length (µm)

Full MobilityHalf MobilityNo Mobility

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 50: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Effect of Mass Transfer Coefficient

0

50

100

150

200

250

300

350

400

46 48 50 52 54 56 58 60

H+ C

once

ntra

tion

(mol

/m3 )

Length (µm)

KMT = .01KMT = 0KMT = ∞

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 51: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Hydrogen Production (Part I)

Test Case H2 Production[ml/min] % of Default

Default 5.9531 100.0 %Low Temperature (T = 333K) 5.8859 98.9 %Low Temperature (T = 303K) 6.0412 101.5 %λ0 = 18 6.8881 115.7 %λ0 = 12 9.4656 159.0 %100 SO−

3 and H+ Charges 5.9714 100.3 %300 SO−

3 and H+ Charges 6.0240 101.2 %pos = .25 6.0044 100.9 %pos = .1 6.0345 101.4 %KMT = 0 12.1445 204.0 %KMT = ∞ 5.5605 93.4 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 52: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Hydrogen Production (Part I)

Test Case H2 Production[ml/min] % of Default

Default 5.9531 100.0 %Low Temperature (T = 333K) 5.8859 98.9 %Low Temperature (T = 303K) 6.0412 101.5 %λ0 = 18 6.8881 115.7 %λ0 = 12 9.4656 159.0 %100 SO−

3 and H+ Charges 5.9714 100.3 %300 SO−

3 and H+ Charges 6.0240 101.2 %pos = .25 6.0044 100.9 %pos = .1 6.0345 101.4 %KMT = 0 12.1445 204.0 %KMT = ∞ 5.5605 93.4 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 53: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Hydrogen Production (Part II)

Test Case H2 Production[ml/min] % of Default

Default 5.9531 100.0 %Half Mobility 7.5597 127.0 %No Mobility 1.6420 27.6 %Iν = 0.6 mW/cm2 5.9869 100.6 %Iν = 1.2 mW/cm2 6.0556 101.7 %P = 5µm 9.6349 161.8 %P = 3µm 17.9736 301.9 %LA = LC = 10µm 2.4909 41.8 %LA = LC = 30µm 22.5301 378.5 %LM = 20µm 5.3653 90.1 %LM = 40µm 6.4290 108.0 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 54: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Hydrogen Production (Part II)

Test Case H2 Production[ml/min] % of Default

Default 5.9531 100.0 %Half Mobility 7.5597 127.0 %No Mobility 1.6420 27.6 %Iν = 0.6 mW/cm2 5.9869 100.6 %Iν = 1.2 mW/cm2 6.0556 101.7 %P = 5µm 9.6349 161.8 %P = 3µm 17.9736 301.9 %LA = LC = 10µm 2.4909 41.8 %LA = LC = 30µm 22.5301 378.5 %LM = 20µm 5.3653 90.1 %LM = 40µm 6.4290 108.0 %

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 55: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Significant Factors

Electrode surface area

Mass transfer coefficient between cathode and water channel

Input water concentration

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 56: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Significant Factors

Electrode surface area

Mass transfer coefficient between cathode and water channel

Input water concentration

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 57: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Significant Factors

Electrode surface area

Mass transfer coefficient between cathode and water channel

Input water concentration

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 58: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Future Work

Inclusion of water channels

Multi-dimensional

Non-linear channel flow

Optimal mobility and diffusivity

Transient response

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 59: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Future Work

Inclusion of water channels

Multi-dimensional

Non-linear channel flow

Optimal mobility and diffusivity

Transient response

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 60: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Future Work

Inclusion of water channels

Multi-dimensional

Non-linear channel flow

Optimal mobility and diffusivity

Transient response

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 61: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Future Work

Inclusion of water channels

Multi-dimensional

Non-linear channel flow

Optimal mobility and diffusivity

Transient response

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 62: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

Future Work

Inclusion of water channels

Multi-dimensional

Non-linear channel flow

Optimal mobility and diffusivity

Transient response

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange

Page 63: A Mathematical Model for Hydrogen Production of a Proton ...s defense.pdf · Hydrogen PhotoelectrochemicalCells Equations Results Conclusions A Mathematical Model for Hydrogen Production

HydrogenPhotoelectrochemical Cells

EquationsResults

Conclusions

References

E. Afshari and S.A. Jazayeri, Analyses of heat and water transport interactions in a proton exchange

membrane fuel cell, Journal of Power Sources 194 (2009), no. 1, Sp. Iss. SI, 423–432 (English), 10thSymposium on Fast Ionic Conductors, Grybow, POLAND, SEP 14-17, 2008.

Y. Akinaga, S. Hyodo, and T. Ikeshoji, Lattice Boltzmann simulations for proton transport in 2-D model

channels of Nafion, Physical Chemistry Chemical Physics 10 (2008), no. 37, 5678–5688 (English).

J.A. Elliott and S.J. Paddison, Modelling of morphology and proton transport in PFSA membranes, Physical

Chemistry Chemical Physics 9 (2007), no. 21, 2602–2618 (English).

K. Kang and H. Ju, Numerical modeling and analysis of micro-porous layer effects in polymer electrolyte

fuel cells, Journal of Power Sources 194 (2009), no. 2, Sp. Iss. SI, 763–773 (English).

K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel

cells, Journal of Membrane Science 185 (2001), no. 1, Sp. Iss. SI, 29–39 (English).

J. Nie, Y. Chen, R.F. Boehm, and S. Katukota, A photoelectrochemical model of proton exchange water

electrolysis for hydrogen production, Journal of Heat Transfer-Transactions of the ASME 130 (2008), no. 4(English).

J.M. Ogden, Hydrogen: The fuel of the future?, Physics Today 55 (2002), no. 4, 69–75 (English).

J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg, B.S. Brunschwig, H.A. Atwater, and N.S. Lewis,

Flexible, Polymer-Supported, Si Wire Array Photoelectrodes, Advanced Materials 22 (2010), no. 30, 3277+(English).

Bryan Van Scoy, Josh Adams, Robert Moser Dr. Young, Dr. Clemons, Dr. KreiderA Mathematical Model for Hydrogen Production of a Proton Exchange