Top Banner
A MAPS-based readout of an A MAPS-based readout of an electromagnetic calorimeter electromagnetic calorimeter for the ILC for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta, M.Tyndel, E.G.Villani (STFC-RAL) Y.Mikami, O.D.Miller, V.Rajovic, NKW, J.A.Wilson (Birmingham)
17

A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

Mar 28, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

A MAPS-based readout of an A MAPS-based readout of an electromagnetic calorimeter electromagnetic calorimeter

for the ILCfor the ILC

A MAPS-based readout of an A MAPS-based readout of an electromagnetic calorimeter electromagnetic calorimeter

for the ILCfor the ILC

Nigel Watson

(Birmingham Univ.)

•Motivation•Physics simulations•Sensor simulations•Testing•Summary

For the CALICE MAPS groupJ.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta, M.Tyndel,

E.G.Villani (STFC-RAL)

Y.Mikami, O.D.Miller, V.Rajovic, NKW, J.A.Wilson (Birmingham)J.A.Ballin, P.D.Dauncey, A.-M.Magnan, M.Noy (Imperial)

Page 2: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Mass (jet1+jet2)

Mass (

jet3

+je

t4)

Mass (

jet3

+je

t4)

Mass (jet1+jet2)

E/E = 60%/EE/E = 60%/E E/E = 30%/EE/E = 30%/E

Equivalent best LEP detector Goal at ILC

Essential to reconstruct jet-jet invariant masses in hadronic

final states, e.g. separation of W+W, Z0Z0, tth, Zhh, H

ILC: high performance ILC: high performance

calorimetrycalorimetry

ILC: high performance ILC: high performance

calorimetrycalorimetry

LEP/SLD: optimal jet reconstruction by energy flow Explicit association of tracks/clusters Replace poor calorimeter measurements with tracker

measurements – no “double counting”

Little benefit from beam energy constraint, cf. LEP

Page 3: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Shower containment in ECAL, X0 large

Small Rmoliere and X0 – compact and narrow showers

int/X0 large, EM showers early, hadronic showers late

ECAL, HCAL inside coil

Lateral separation of neutral/charged particles/’particle flow’

Strong B field to suppresses large beam-related background in detector

Compact ECAL (cost of coil)

Tungsten passive absorber

Silicon pixel readout, minimal interlayer gaps, stability “Swap-in” alternative to Si diode detector designs, e.g. in LDC, SiD CMOS process, more mainstream:

Industry standard, multiple vendors (schedule, cost) (At least) as performant – ongoing studies Simpler assembly Power consumption larger – but better thermal properties

ECAL design principlesECAL design principlesECAL design principlesECAL design principles

Page 4: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Basic concept for MAPSBasic concept for MAPSBasic concept for MAPSBasic concept for MAPS

• How small?• EM shower core density at

500GeV is ~100/mm2

• Pixels must be<100100m2

• Our baseline is 5050m2

• Gives ~1012 pixels for ECAL – “Tera-pixel APS”

• How small?• EM shower core density at

500GeV is ~100/mm2

• Pixels must be<100100m2

• Our baseline is 5050m2

• Gives ~1012 pixels for ECAL – “Tera-pixel APS”

• Swap ~0.5x0.5 cm2 Si pads with small pixels• “Small” := at most one particle/pixel• 1-bit ADC/pixel, i.e.

Digital ECALDigital ECAL

Effect of pixel sizeEffect of pixel size

50m

100m

>1 particle/pixel

Incoming photon energy (GeV)

Weig

hte

d n

o.

pix

els

/even

t

Page 5: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

SiD 16mm2 area cells

ZOOM

5050 μm2

MAPS pixels

Tracking calorimeter

Page 6: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Physics simulationPhysics simulationPhysics simulationPhysics simulation0.5 GeVMPV = 3.4 keVσ = 0.8 keV

5 GeVMPV = 3.4 keVσ = 0.8 keV

200 GeVMPV = 3.4 keVσ = 0.8 keV

Geant4 energy of simulated hits

Ehit (keV)

Ehit (keV)

Ehit (keV)

MAPS geometry implemented in Geant4 detector model (Mokka) for LDC detector concept

Peak of MIP Landau stable with energy

Definition of energy: E Npixels

Artefact of MIPS crossing boundaries Correct by clustering algorithm

Optimal threshold (and uniformity/stability) important for binary readout

Threshold (keV)

(E)/

E 20 GeV photons

Page 7: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

CALICE INMAPS ASIC1CALICE INMAPS ASIC1CALICE INMAPS ASIC1CALICE INMAPS ASIC1

Architecture-specific analogue circuitry

4 diodes Ø 1.8 m

First round, four architectures/chip (common comparator+readout logic)

INMAPS process: deep p-well implant 1 μm thick under electronics n-well, improves charge collection

0.18m feature size

Page 8: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Physics data rate low – noise dominates

Optimised diode for Signal over noise ratio Worst case scenario

charge collection Collection time

Device level simulationDevice level simulationDevice level simulationDevice level simulation

Signal/noiseSignal/noise

0.9 μm1.8 μm3.6 μm

Distance to diode (charge injection point)

Sig

nal/

Nois

e

Page 9: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Near future plansNear future plansNear future plansNear future plans

Work ongoing on the set of PCBs holding, controlling and reading the sensor.

Test device-level simulations using laser-based charge diffusion measurements at RAL 1064, 532,355 nm,focusing < 2 μm,

pulse 4ns, 50 Hz repetition, fully automated

Cosmics and source setup, Birmingham and Imperial, respectively.

Potential for beam test at DESY end of 2007

Expand work on physics simulations Test performance of MAPS ECAL in

GLDC and SiD detector concepts Emphasis on re-optimisation of particle

flow algorithms

3 July: 1st sensors delivered to RAL

3 July: 1st sensors delivered to RAL

Page 10: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

SummarySummarySummarySummary Concept of CMOS MAPS digital ECAL for

ILC Multi-vendors, cost/performance gains

New INMAPS deep p-well process (optimise charge collection)

Four architectures for sensor on first chips, delivered to RAL Jul 2007

Tests of sensor performance, charge diffusion to start in August

Physics benchmark studies with MAPS ECAL to evaluate performance relative to standard analogue Si-W designs, for both SiD and LDC detector concepts

Page 11: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Backup slides…Backup slides…Backup slides…Backup slides…

Page 12: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Architectures on ASIC1Architectures on ASIC1Architectures on ASIC1Architectures on ASIC1

Presampler Preshaper

Type dependant area: capacitors, and big resistor or monostable

Page 13: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Beam background studiesBeam background studiesBeam background studiesBeam background studies Beam-Beam interaction by

GuineaPig

Detector: LDC01sc

2 scenarios studied : 500 GeV baseline, 1 TeV high luminosity

purple = innermost endcap radius500 ns reset time ~ 2‰ inactive pixels

Page 14: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

The sensor test setupThe sensor test setupThe sensor test setupThe sensor test setup5 dead pixelsfor logic :-hits buffering (SRAM)- time stamp = BX(13 bits)- only part with clock lines.

84

pix

els

42 pixels

Data format 3 + 6 + 13 + 9 = 31 bits per hit

7 * 6 bits patternper row

Row index

1*1 cm² in total2 capacitor arrangements

2 architectures6 million transistors, 28224 pixels

Page 15: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

•Neighbouring hit:•hit ? Neighbour’s contribution•no hit ? Creation of hit from charge spread only

•All contributions added per pixel

•+ noise σ = 100 eV

Impact of digitisationImpact of digitisationImpact of digitisationImpact of digitisation

E initial : geant4 deposit

•What remains in the cell after charge spread assuming perfect P-well

•+ noise σ = 100 eV, minus dead areas : 5 pixels every 42 pixels in one direction

Page 16: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Physics data rate low – noise dominates

Optimised diode for Signal over noise ratio Worst case scenario

charge collection Collection time.

Device level simulationDevice level simulationDevice level simulationDevice level simulation

Using Centaurus TCAD for sensor simulation + CADENCE GDS file for pixel description

Signal/noiseCollected charge

0.9 μm1.8 μm3.6 μm

Distance to diodeDistance to diode

Page 17: A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.

EPS'07, 19-Jul-2007Nigel Watson / Birmingham

Digitisation procedureDigitisation procedureDigitisation procedureDigitisation procedure

Geant4 Einit

in 5x5 μm² cells

Sum energy in 50x50 μm² cells

Esum

Apply charge spreadEafter charge spread

Add noise to signal hitswith σ = 100 eV

(1 e- ~ 3 eV 30 e- noise)

+ noise only hits : proba 10-6 ~ 106 hits in the whole detector

BUT in a 1.5*1.5 cm² tower : ~3 hits.

%Einit

%Einit

%Einit %Einit

%Einit

%Einit %Einit

%Einit

Eini

tRegister the position and the

number of hits above threshold

Importance of the charge spread :

initneighbours EE %)80%50(~