Top Banner
A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1 , A.G. Ulyashin 1 , W.R. Fahrner 1 , 1 University of Hagen, Dept. of Electrical Engineering and Information Technology (LGBE), Germany F.J. Niedernostheide 2 , H.J. Schulze 2 , 2 Infineon AG, Munich, Germany E. Simoen 3 , C.L. Claeys 3, 4 , 3 IMEC, Leuven, Belgium 4 University of Leuven (KU), Dept. of Electrical Engineering, Belgium G. Tonelli 5 5 INFN, Pisa, Italy
49

A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dec 16, 2015

Download

Documents

Alex Foulger
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation

for Future High-Voltage Applications

R. Job 1, A.G. Ulyashin 1, W.R. Fahrner 1, 1 University of Hagen, Dept. of Electrical Engineering and Information

Technology (LGBE), Germany

F.J. Niedernostheide 2, H.J. Schulze 2, 2 Infineon AG, Munich, Germany

E. Simoen 3, C.L. Claeys 3, 4, 3 IMEC, Leuven, Belgium

4 University of Leuven (KU), Dept. of Electrical Engineering, Belgium

G. Tonelli 5 5 INFN, Pisa, Italy

Page 2: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Outline of the Talk

• Introduction

• Experimental (substrates, H-plasma treatments & annealing)

• Experimental Results (analysis by SRP measurements, I-V and C-V curves, DLTS, Raman spectroscopy, SEM, TEM )

• Discussion (low temperature doping by thermal donors

low thermal budget technology for special devices,i.e. high-voltage devices, radiation detectors, etc.)

• Summary

Page 3: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Thermal Donors (TDs)

• 'Old thermal donors' (TDs), oxygen related double donors (TDDs)

– formation at T 300 - 500 °C

– T > 550 °C TDs are dissolved

– family of 'bistable' double donors TDD1, TDD2, ... , TDD16, ... (?)

– classification by IR-absorption spectroscopy

– 2 energy levels of the donor: 70 meV, 150 meV

– formation rate R correlated with [Oi] and [Cs]: [Oi] high R high, [Cs] high R low

• Our investigations: 'Old thermal donors' (i.e. TDDs)

• Other types of TDs: NDs, NTDs, STDs

Page 4: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Thermal Donors

• 'New donors' (NDs) – formation at T 550 - 800 °C

– R correlated with [Oi] and [Cs]: [Oi] high R high, [Cs] high R high

– energy level of the donor: 17 meV

• 'New thermal donors' (NTDs)– formation at T 300 - 500 °C

– NTDs appear only after very long annealing times (> 105 min)

– NTDs double donors

– large agglomerates of oxygen (?)

• 'Shallow thermal donors' (STDs)– formation at T 300 - 500 °C (low concentrations)

– family of 7 single donors

Page 5: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Low Thermal Budget Doping by Thermal Donors

• Hydrogen enhances thermal donor (TD) formation in Cz silicon

• Thermal donors: 'old' TDs, i.e. TDDs (oxygen related double donors)

• Counter doping of initial p-type Cz Si by hydrogen enhanced TD formation formation of deep p-n junctions

• Developed process routes:- "1-step-process"- "2-step-process"

Page 6: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Experimental

• Substrates:

– p-type Cz Silicon wafers

( = 3 inches, d 370 - 380 µm, (100)-oriented)

Impurities:

[Oi] 7 - 81017 cm-3 (specified, IR-Absorption)

[Cs] < 51016 cm-3 (specified)

Doping:

= 12 - 20 cm, = 5 - 10 cm, = 1 - 2 cm

[B] 61014 cm-3 - 1.31016 cm-3

Page 7: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Experimental

Applied measurements:

“Spreading-Resistance-Probe”- (SRP-) measurements- resistance profiles in dependence on the depth- estimation of the location of p-n junctions

Thermoelectrical Microprobe Method (‘Seebeck-Effect’)- determination of the type of doping (n-type / p-type)

C(V) measurements- characterization of p-n junctions due to TD formation

Infrared- (IR-) absorption measurements- characterization of TD types (”TDDi- family")

I(V) measurements- characterization of diodes (”TD-Diodes”)

Page 8: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

"1-Step-Process" for TD Formation

• Hydrogen enhanced TD formation in Cz Si only by H-plasma treatment

• "1-step-process":TDD formation during H-plasma treatment(Tplasma = 400 - 450 °C, tplasma 30 min)

• Cz Si wafers: [B] = 11015 cm-3, [Oi] = 7 - 81017 cm-3

• Example: DC plasma treatment (RIE setup, 500 V plate voltage, 440 µA/cm2) formation of TDDs, [TDD] 11016 cm-3 formation of deep p-n junctions (counter doping)

Page 9: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

SRP measurements:

p-n junction location

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:30 min at 400 °C (1-step-process)

0 100 200 300 400 50010

3

104

105

106

30 min DC H-Plasma

Tpl = 400 °C

p-typen-type

p-n junctionSR

(

)

Depth (µm)

Page 10: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

Free carrier concen-tration Nc in depen-dence on the depth

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:30 min at 400 °C (1-step-process)

0 100 200 300 400 500 60010

14

1015

1016

30 min DC H-Plasma

Tpl = 400 °C

n-type p-type

p-n junction

NA

[Nc]

(cm

-3)

Depth (µm)

Page 11: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

Electron concentra-tion Ne(TD) due to TDDs in dependence on the depth

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:30 min at 400 °C (1-step-process)

0 100 200 300 400 50010

14

1015

1016

p-type

n-type

p-n junction

NAN

e(T

D) (

cm-3

)

Tiefe (µm)

Page 12: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

C(V) measurements:

C-3 Vbias linear graded junction

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:30 min at 400 °C (1-step-process)

0 -5 -10 -15 -20 -25 -300

1x10-6

2x10-6

3x10-6

4x10-6

5x10-6

C-3

(p

F-3

)

VBIAS

(V)

Page 13: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

SRP measurements:

p-n junction location

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:45 min at 400 °C (1-step-process)

0 100 200 300 400 50010

3

104

105

106

45 min DC H-Plasma / Tpl = 400 °C

p-typen-type

p-n junctionSR

(

)

Depth (µm)

Page 14: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

Free carrier concen-tration Nc in depen-dence on the depth

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:45 min at 400 °C (1-step-process)

0 100 200 300 400 50010

14

1015

1016

45 min DC H-Plasma / Tpl = 400 °C

p-typen-type

pn-junction[N

c] (

cm-3

)

Depth (µm)

Page 15: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

SRP measurements:

p-n junction depth in dependence on the initial p-type doping

Substrate:1, 12 cm Cz Si, [B] 1015, 1016 cm-3

(p-type)

H-Plasma:120 min at 400 °C (1-step-process)

0 100 200 300 400 50010

3

104

105

106

107

12 cm1 cm

120 min DC H-Plasma / Tpl = 400 °C

SR

(

)

Depth (µm)

Page 16: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

SRP measurements:

p-n junction depth in dependence on the amount of incorpo-rated hydrogen

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:120 min at 400 °C (1-step-process)

0 100 200 300 400 50010

3

104

105

106

107

108

120 min DC H-Plasma / Tpl = 400 °C

440 µA cm-260 µA cm

-2

SR

(

)

Depth (µm)

Page 17: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

C(V) measurements:

Ne(TD) in dependen-ce on the hydrogen dose

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:at 400 °C (1-step-process)

0 5x1018

1x1019

2x1019

2x1019

0

5x1015

1x1016

2x1016

2x1016

Ne

(TD

) (cm

-3)

H-dose (cm-2

)

Page 18: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

SRP measurements:

p-n junction depth in dependence on the plasma treatment time

Substrate:12 cm Cz Si, [B] = 11015 cm-3

(p-type)

H-Plasma:30 - 120 min at 400 °C

(1-step-process)

0 100 200 300 400 50010

3

104

105

106

107

DC H-Plasma / Tpl = 400 °C

120 min

45 min

30 min

SR

(

)

Depth (µm)

Page 19: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "1-Step-Process"

]H[K]H[Kt

]H[

]H[K]H[K2x

]H[D

t

]H[

222

12

222

12

2

H

DH: diffusion constant of atomic hydrogen

K1 : rate of H2 formation

K2 : dissociation constant of H2 molecules

Time dependences of H and H2 concentrations:

Page 20: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "1-Step-Process"

kT

48.0exp1067.9D

kT

EexpK,DR8K

3H

b2H01

K1 : rate of H2 formation

K2 : dissociation constant of H2 molecules

DH: "Van Wieringen-Warmholtz" relation diffusion constant

R0 : capture radius (R0 = 5 Å *))

: vibration frequency of the dissociation of H2

Eb: binding energy (Eb = 1.6 eV)

*) J.T. Borenstein et al., J. Appl. Phys. 73, 2751 (1993)

Page 21: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "1-Step-Process"

]H[Kt

]N[3

TD

NTD: concentration of thermal double donors ("TDD")

compensation (p-n junction): 2 [NTD] = [B]

K3 : free parameter (deduced by fitting of experimental data)

K3 = 3.810-2 s-2

Boundary condition:

x = 0, t 0: [H0], with [H0] = 1014 cm-3

(constant hydrogen concentration at the wafer surface)

Time dependence of [TD] :

Page 22: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

Simulated curves:

[TDD], [H], [H2] in dependence on the depth

Assumption:T = 400 °Ct = 30 min(1-step-process)

[TDD]-profile:

K3 = 3.810-2 s-2 (Fit to exp. Data)

0 100 200 300 400 50010

10

1011

1012

1013

1014

1015

1016

[H2]

[H]

[TDD]

[H],

[H

2],

[T

D]

(cm

-3)

Depth (µm)

Page 23: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("1-Step-Process")

Comparison of simulated [TD] profiles & experimental data

Assumption:T = 400 °Ct = 30, 45, 120 min(1-step-process)

Fit to exp. Data:

K3 = 3.810-2 s-2

0 100 200 300 400 50010

13

1014

1015

1016

1017

p-n junctions (exp.)

tplasma = 120 min

tplasma = 45 min

tplasma

= 30 min

[TD

] (c

m-3

)

Depth (µm)

Page 24: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "1-Step-Process"

Summary / Conclusions:

• "1-Step-Process": various processes occur

– T > 200 °C no acceptor passivation

– incorporation of hydrogen from the plasma ambient

– formation and decay of H2 complexes

– diffusion of H via interstitial lattice sites

– H lowers the barrier for the diffusion of Oi

– probability is enhanced that Oi forms a TD complex

hydrogen supports the TD formation

– loss of Oi due to the incorporation of Oi into TD-complexes

Question: Charge state of hydrogen (H0, H+, H-) ?

Page 25: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

"2-Step-Process" for TD Formation

• Hydrogen enhanced TD formation in Cz Si by H-plasma treatment and subsequent annealing

• "2-step-process":TDD formation during post-hydrogenation annealing- H-plasma exposure: Tplasma 250 °C, tplasma = 60 min - annealing: Tanneal 450 °C, tanneal 15 min

• Cz Si wafers: [B] = 11015 cm-3, [Oi] = 7 - 81017 cm-3

• Example: PECVD plasma treatment (110 Mhz, 50 W, 440 µA/cm2) formation TDDs / p-n junctions, [TDD] 11016 cm-3

Page 26: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("2-Step-Process")

SRP measurements:

p-n junction depth in dependence on the post-hydrogenation annealing time

Substrate:1.8 - 2.6 cm Cz Si, [B] 71015 cm-3

(p-type)

H-Plasma:60 min at 250 °C Annealing:at 450 °C/air

0 100 200 300 40010

3

104

105

106

15'10'

= 1.8 - 2.6 cm

480'240'120'60'45'30'20'

wafer thickness: 367 + 5 µm

SR

(

)

Depth (µm)

Page 27: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("2-Step-Process")

SRP measurements:

p-n junction depth in dependence on the post-hydrogenation annealing time

Substrate:5 - 10 cm Cz Si, [B] 21015 cm-3

(p-type)

H-Plasma:60 min at 250 °C Annealing:at 450 °C/air

0 100 200 300 40010

3

104

105

106

240'480'

30' 120'60'45'10' 15' 20'

= 5 - 10 cm

wafer thickness: 378 + 5 µm

SR

(

)

Depth (µm)

Page 28: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "2-Step-Process"

• "2-step-process": 60 min RF H-plasma at 250 °C+ annealing at 450 °C/air

• Hydrogen supports the formation of TDs, i.e. TDDs

• Supposition: TD formation / depth of p-n junctions penetration of n-type regions into

the wafer bulk are driven by H diffusion

• "Fick's Diffusion Law":

[H]: hydrogen concentration, D: diffusion constant, t: time,

]H)[D(t

]H[

Page 29: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "2-Step-Process"

• "Fick's Law":

• if D = const.

(D: diffusion constant, d: depth, t: time, [H0]: surface concentration)

• mean diffusion length:

• assume: p-n junction depth dpn proportional to diffusion length L:

dpn L, i.e. dpn t1/2

tD4

derfc]H[]H[ 0

tD4L

]H)[D(t

]H[

Page 30: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("2-Step-Process")

p-n junction depth:

description by the "Fick's diffusion law"

(D: diffusion constant)

linear slope

D = 2.9 10-7 cm2s-1 (5 - 10 cm Cz Si)

D = 7.9 10-7 cm2s-1

(1.8 - 2.6 cm Cz Si)

0 50 100 150 2000

100

200

300

400

= 5 - 10 cm

= 1.8 - 2.6 cm

De

pth

m)

t1/2

(s1/2

)

tD4L

Page 31: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "2-Step-Process"

• Relation of Van Wieringen and Warmholtz (VWW):

(Ea = 0.48 eV)

• VWW equation holds for atomic hydrogen !

• extrapolation to 450 °C: DVWW = 4.36 10-6 cm2/s

• experiment: D 7.9 10-7 cm2s-1 (1 cm Cz Si) D 2.9 10-6 cm2s-1 (5 cm Cz

Si)

Tk

Eexp67.9D a

H

Page 32: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of p-n Junctions ("2-Step-Process")

RF H-plasma exposure at room temperature:

p-n junction formation only after long time annealing at 450 °C (t > 8 hours)

Substrate:12 - 20 cm Cz Si, [B] 1.11015 cm-3

(p-type)

H-Plasma:60 min at RTAnnealing:at 450 °C/air

0 50 100 150 200 250 300Depth (microns)

104

105

106

107

SR

(O

hm

)

8h 30'

8h

8h 15'

p-n junction

p-n junction

Page 33: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "2-Step-Process"

Summary / Conclusions (1):

• Hydrogen is amphoteric (standard model: H+ in p-type Si, H0 and H- in n-type Si)

• Estimated diffusion constants neutral atomic hydrogen H0 plays the major role for the TD formation

• H0 is responsible for the enhancement of the TD formation in p-type and n-type Cz Si

• D(H0) is several orders of magnitude larger than the diffusion constant D(H+) of positively charged H+ ions

D(H0)/D(H+) 105 *)

*) D. Matthiot, Phys. Rev. B 40, 5867 (1989)

Page 34: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "2-Step-Process"

Summary / Conclusions (2):

• "2-Step-Process": various processes occur

– T > 200 °C no acceptor passivation occurs

– T 250 °C immobile hydrogen complexes are created

– T 400 - 450 °C immobile hydrogen complexes are dissolved high concentration of mobile H0

– diffusion of H0 via interstitial lattice sites

– H0 lowers the barrier for the migration of Oi

– probability is enhanced that Oi forms a TD complex

hydrogen supports the TD formation

Page 35: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Kinetic Analysis of the "2-Step-Process"

Summary / Conclusions (3):

• Dominant reaction at T 250 °C (H-plasma treatment):

H+ + H0 H2 + h+ *)

(H+, H0: hydrogen in positive, neutral state, h+: hole, compensated by crystal field)

*) S.M. Myers et al., Rev. Mod. Phys. 64, 559 (1992)

immobile H2 species: "zero spin clusters (ZSC)"

• Dominant reaction at T 450 °C (annealing):

decay of ZSCs large concentration of H0

• "2-step-process" indirect way for H0 incorporation

"1-step-process" direct way for H0 incorporation

Page 36: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of Extremely Deep p-n Junctions

SRP measurements:

ultra-deep p-n junc-tion in highly oxidi-zed Cz Si

[Oi] = 1.151018 cm-3

Substrate:12 cm Cz Si, [B] 11015 cm-3

(p-type)

H-Plasma:60 min at 450 °C µ-wave H-plasma (1-step-process)

0 500 1000 1500 200010

3

104

105

106

107

p-typen-type

p-n junction

> 1.2 mm (!)

SR

(

cm)

Depth (µm)

Page 37: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of Extremely Deep Graded Doping

SRP measurements:

ultra-deep graded doping in highly oxidized Cz Si

[Oi] = 1.21018 cm-3

Substrate:5 cm Cz Si, [P] 11015 cm-3

(n-type)

H-Plasma:60 min at 450 °C µ-wave H-plasma (1-step-process)

0 500 1000 1500 200010

3

104

105

H from the

backside

H from the

frontside

n-type Cz Si (5 cm)

SR

(

cm)

Depth (µm)

Page 38: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Hydrogen Enhanced Thermal Donor Formation

IR-absorption measurements:

verification of TDDs (neutral species up to the 5th generation)

Substrate:12 cm Cz Si, [B] 11015 cm-3

(p-type)

[Oi] = 1.151018 cm-3

H-Plasma:60 min at 450 °C µ-wave H-plasma (1-step-process)

400 425 450 475 500 525 5501,5

2,0

2,5

3,0

3,5

4,0

4,5

: TDDi (i = 1 - 5)

Oi

p-type

Cz Si

Ab

so

rpti

on

Co

eff

icie

nt

(cm

-1)

Wavenumber (cm-1

)

Page 39: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Hydrogen Enhanced Thermal Donor Formation

IR-absorption measurements:

verification of TDD+s (singly ionized spe-cies up to the 5th generation)

Substrate:12 cm Cz Si, [B] 11015 cm-3

(p-type)

[Oi] = 1.151018 cm-3

H-Plasma:60 min at 450 °C µ-wave H-plasma (1-step-process)

600 700 800 900 1000 1100 1200 13000,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

: TDDi

+ (i = 1 - 5) p-Typ

Cz Si?

Oi

Ab

so

rpti

on

Co

eff

icie

nt

(cm

-1)

Wavenumber (cm-1

)

Page 40: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Hydrogen Enhanced Thermal Donor Formation

IR-absorption measurements:

verification of TDDs (neutral species up to the 5th generation)

Substrate:5 cm Cz Si, [P] 11015 cm-3

(n-type)

[Oi] = 1.21018 cm-3

H-Plasma:8 h at 270 °C1 h at 450 °C µ-wave H-plasma (1-step-process)

400 420 440 460 480 500 520 540 5600

2

4

6

8

10

12

14

16

Oi

b)

a)

a) H-plasma: Tpl = 270 °C, t

pl = 8 h

b) H-plasma: Tpl = 450 °C, t

pl = 1 h

n-Typ

Cz SiA

bs

orp

tio

n C

oe

ffic

ien

t (c

m-1

)

Wavenumber (cm-1

)

Page 41: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

IR-absorption measurements:

verification of TDDs (neutral species up to the 5th generation)

Substrate:5 cm Cz Si, [P] 11015 cm-3

(n-type)

[Oi] = 1.21018 cm-3

H-Plasma:8 h at 270 °CAnnealing:1 h / 4 h at 450 °C/air(2-step-process)

Hydrogen Enhanced Thermal Donor Formation

400 420 440 460 480 500 520 540 5600

2

4

6

8

10

12

14

16Annealing:

T temp = 450 °C

b) ttemp = 1 h

c) ttemp = 4 h

Oi

c)

b)

a)

n-Typ

Cz Si

H-Plasma:

Tpl = 270 °C,

tpl = 8 h

a) as plasma

treatedA

bs

orp

tio

n C

oe

ffic

ien

t (c

m-1

)

Wavenumber (cm-1

)

Page 42: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

Formation of Diodes by Thermal Donor Doping

• Substrates:

– p-type Cz Si (1.8 - 2.6 cm , 5 - 10 cm, 12 - 20 cm)[B] 6 1014 cm-3 - 1.3 1016 cm-3 [Oi] = 7 8 1017 cm-3, [Cs] < 5 1016 cm-3

• TD formation (plasma treatment / annealing):

– H-plasma: µ-wave 2.45 GHz, tpl = 30 min, Tpl = 450 °Cannealing: no annealing

(1-step-process: TD-diode No. 1)

– H-plasma: 110 MHz, 50 W, tpl = 60 min, Tpl = 250 °Cannealing: tann = 20 or 30 min, Tann = 450 °C/air

(2-step-process: TD-diodes No. 2, 3)

also alternative plasma hydrogenation possible:

– H-plasma: DC, 500 V, Tpl = 400 - 450 °C, tpl 30 min (1-step-process)

Page 43: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

TD-diode (No. 1):

contact area: 1 mm2

- SRP profile p-n junction depth: d = 40 µm

- I(V) curves at T = RT

Substrate:12 - 20 cm Cz Si

H-Plasma:30 min at 450 °C µ-wave H-plasma (1-step-process)

Formation of Diodes by Thermal Donor Doping

-100 -80 -60 -40 -20 0

0,00

0,02

0,04

0,06

0,08

0,10

I (A

)

VBIAS (V)

0 25 50 75 100 125 15010

4

105

106

107

n-type

region

p-type region

p-n junction

SR

(

)

Depth (m)

Page 44: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

TD-diode (No. 2):

contact area: 1 cm2

- SRP profile p-n junction depth: d 170 µm

- I(V) curves at T = RT

Substrate:12 - 20 cm Cz Si

H-Plasma:60 min at 250 °C Annealing:30 min 450 °C/air (2-step-process)

Formation of Diodes by Thermal Donor Doping

-100 -80 -60 -40 -20 0-0,01

0,00

0,01

0,02

0,03

0,04

I (A

)

Vbias

(V)

0 50 100 150 200 250 30010

4

105

106

n-type region p-type region

p-n junction

SR

(

)Depth (µm)

Page 45: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

TD-diode (No. 1):

contact area: 1 mm2

(1-step-process)

TD-diode (No. 2):

contact area: 1 cm2

(2-step-process)

Comparison

I(V) curves at T = RT:

Data normalized to contact size !

Formation of Diodes by Thermal Donor Doping

-100 -80 -60 -40 -20 0 1 210

-5

10-4

10-3

10-2

10-1

100

101

2)2)

1)

1)

2) TD-diode (2-step-process)

1) TD-diode (1-step-process)

I (A

cm-2

)

Vbias

(V)

Page 46: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

TD-diode (No. 1):

contact area: 1 mm2

- I(V) curves at T = RT 150 °C

Substrate:12 - 20 cm Cz Si

H-Plasma:30 min at 450 °C µ-wave H-plasma (1-step-process)

Analysis of TD-Diodes

-100 -80 -60 -40 -20 0-0,02

0,00

0,02

0,04

0,06

0,08

0,10

TD-Diode No. 1

T = 22°C, 100°C, 150°C

I (A

)

VBIAS

(V)

Page 47: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

TD-diode (No. 1):

contact area: 1 mm2

- C(V) measurements

linear slope

C V-3 linearly graded p-n junction (if C V-2 abrupt junction)

Substrate:12 - 20 cm Cz Si

H-Plasma:30 min at 450 °C µ-wave H-plasma (1-step-process)

Analysis of TD-Diodes

-30 -25 -20 -15 -10 -5 01x10

-11

2x10-11

3x10-11

4x10-11

5x10-11

6x10-11

f = 1 MHz "reverse bias"

VBIAS (V)

C (

F)

0,0

5,0x1031

1,0x1032

1,5x1032

2,0x1032

1/C

³ (1

/F³)

Page 48: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

TD-diode (No. 3):

contact area: 1 mm2

- p-n junction depth: d 100 µm

- I(V) curves, mapping at T = RT

Substrate:12 - 20 cm Cz Si

H-Plasma:60 min at 250 °C Annealing:20 min 450 °C/air (2-step-process)

Analysis of TD-Diodes / Wafer Mapping

-25 -20 -15 -10 -5 0 5-0,01

0,00

0,01

0,02

0,03

0,04

"2-step-process":

- 60 min H plasma at 260°C

- 20 min annealing at 450°C/air

wa

fer

rad

ius

I (A

)

Vbias

(V)

Page 49: A Low Temperature Technology on the Base of Hydrogen Enhanced Thermal Donor Formation for Future High-Voltage Applications R. Job 1, A.G. Ulyashin 1, W.R.

Dr. Reinhart Job, University of Hagen, Germany

• appropriate plasma hydrogenation enhanced TD formation

• counter doping of p-type Cz Si can occurs due to TDs formation of deep p-n junctions (low thermal budget < 500 °C, process time 1 hour)

• graded doping in n-type Cz Si

• p-n junction formation due to TDs rapid and low thermal budget technology for high voltage or power device applications

Summary